• Privacy Policy

Research Method

Home » Concept – Definition, Types and Examples

Concept – Definition, Types and Examples

Table of Contents

Concept

Definition:

Concept is a mental representation or an abstract idea that we use to understand and organize the world around us. It is a general notion that summarizes and simplifies complex information or experiences, making it easier to communicate and process.

For example, the concept of “love” is an abstract idea that represents a range of emotions and behaviors that people experience in their relationships with others. Similarly, the concept of “justice” represents a set of principles and standards that guide our sense of fairness and equality.

Types of Concept

Types of Concepts are as follows:

Concrete Concepts

These are concepts that refer to tangible objects or physical entities that can be perceived through the senses, such as a table, a car, or a flower.

Abstract Concepts

These are concepts that refer to ideas, qualities, or attributes that cannot be perceived through the senses, such as freedom, justice, or happiness.

Formal Concepts

These are concepts that are defined by specific rules or criteria, such as mathematical concepts like a triangle or a circle.

Natural Concepts

These are concepts that are based on our experience and interactions with the world, such as concepts like water, food, or family.

Social Concepts

These are concepts that are based on cultural or social norms, such as concepts like marriage, friendship, or etiquette.

Prototype Concepts

These are concepts that are based on typical or idealized examples of a category, such as a prototype concept of a bird that includes features like wings, feathers, and the ability to fly.

Exemplar Concepts

These are concepts that are based on specific examples or instances of a category, rather than on an idealized prototype.

Examples of Concept

Here are some examples of concepts:

  • Love – a feeling of strong attachment or deep affection towards someone or something.
  • Democracy – a system of government in which power is vested in the people and exercised through free and fair elections.
  • Justice – the quality of being fair and impartial, particularly in the administration of the law.
  • Equality – the state of being equal in status, rights, and opportunities.
  • Freedom – the state of being free from coercion, constraint, or oppression.
  • Creativity – the ability to produce original and imaginative ideas, works, or solutions.
  • Sustainability – the ability to maintain ecological balance and meet the needs of the present generation without compromising the ability of future generations to meet their own needs.
  • Globalization – the process of integration and interdependence among people, companies, and governments across the world.
  • Diversity – the range of different cultures, ethnicities, genders, and other characteristics that exist within a group or society.
  • Leadership – the ability to inspire and guide others towards a common goal or vision.

Applications of Concept

Applications of Concept are as follows:

  • Education : Concepts play a crucial role in education, where they are used to help students develop a deeper understanding of various subjects. For example, in mathematics, concepts such as fractions, decimals, and geometric shapes are used to solve problems.
  • Science : Concepts are used extensively in scientific research to help scientists understand and explain the natural world. For instance, concepts such as energy, matter, and gravity are used to describe and explain various phenomena.
  • Business : Concepts such as marketing, branding, and customer service are essential for businesses to succeed. These concepts help businesses develop effective strategies to reach their target audience and improve customer satisfaction.
  • Technology : Concepts are the foundation of many technological innovations. For example, the concept of artificial intelligence is used to develop intelligent machines that can perform tasks that would otherwise require human intervention.
  • Philosophy : Concepts are a key aspect of philosophical inquiry, where they are used to analyze and understand complex ideas and arguments. For instance, concepts such as justice, ethics, and morality are used to explore ethical dilemmas and the nature of right and wrong.

Purpose of Concept

The purpose of a concept is to provide a mental framework or idea that helps us understand a particular topic or phenomenon. Concepts can range from simple ideas like “honesty” or “loyalty” to more complex ideas like “democracy” or “social justice.”

Concepts allow us to classify, organize, and analyze information, making it easier to understand and communicate. They also help us identify patterns, similarities, and differences between different ideas or things.

Concepts are essential for learning and intellectual development, as they provide a foundation for more advanced understanding and learning. They also allow us to build upon existing knowledge and make connections between different fields or areas of study.

Characteristics of Concept

There are several characteristics of a concept, including:

  • Abstractness: A concept is an abstract idea that represents a class of objects, events, or phenomena. It is a mental construct that does not have a physical existence.
  • Generalization : A concept represents a general idea that applies to a broad range of situations, objects, or events. It helps to identify commonalities among various things or phenomena.
  • Mental Representation : A concept is a mental representation of an idea that we use to understand the world around us.
  • Clarity : A concept should be clearly defined and understandable, so that others can comprehend it.
  • Universality : A concept is universal and can be applied across different domains or contexts.
  • Coherence : A concept should be logically consistent and coherent, so that it can be used to make sense of information and solve problems.
  • Relevance : A concept should be relevant to the context in which it is used, and should have practical applications.
  • Flexibility : A concept should be flexible enough to accommodate changes in our understanding of the world, and to adapt to new situations and contexts.
  • Abstraction : A concept is an abstraction, meaning that it represents a simplified version of reality that is easier to understand and manipulate.

Advantage of Concept

Here are some advantages of concepts:

  • Efficient Communication: Concepts provide a way to communicate efficiently by encapsulating complex ideas into simple, easily understandable units. For example, the concept of “love” represents a broad range of emotional experiences and allows us to communicate about this complex subject more easily.
  • Problem-Solving: Concepts help us to solve problems by allowing us to identify patterns and similarities between different situations. This enables us to apply solutions that have worked in similar situations to new problems.
  • Learning : Concepts provide a way to organize and structure new information, making it easier to learn and remember. By understanding the concept of “gravity,” for example, we can better understand the behavior of objects in the physical world.
  • Decision Making: Concepts enable us to make more informed decisions by providing a framework for evaluating options and considering trade-offs. For example, the concept of “opportunity cost” helps us to weigh the benefits and drawbacks of different choices.

Limitations of Concept

Limitations of the Concept are as follows:

  • Subjectivity : Concepts are inherently subjective, as they are based on individual experiences, beliefs, and cultural contexts. The meaning and interpretation of a concept may vary from person to person or culture to culture.
  • Incompleteness : Concepts are often incomplete, as they represent a simplified version of reality. They may leave out important details or nuances, leading to misunderstandings or misinterpretations.
  • Rigidity : Concepts can be rigid and inflexible, as they may not be able to accommodate new information or perspectives. This can lead to resistance to change or an inability to adapt to new situations.
  • Overgeneralization : Concepts can also be overgeneralized, as people may apply a concept to situations where it does not apply or make assumptions based on incomplete or inaccurate information.
  • Context dependence: The meaning of a concept can depend on the context in which it is used, making it difficult to apply the concept universally. This can lead to confusion or misinterpretation.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

What is Art

What is Art – Definition, Types, Examples

What is Anthropology

What is Anthropology – Definition and Overview

What is Literature

What is Literature – Definition, Types, Examples

Economist

Economist – Definition, Types, Work Area

Anthropologist

Anthropologist – Definition, Types, Work Area

What is History

What is History – Definitions, Periods, Methods

Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 1: Introduction to Research Methods

1.4 Understanding Key Research Concepts and Terms

In this textbook you will be exposed to many terms and concepts associated with research methods, particularly as they relate to the research planning decisions you must make along the way. Figure 1.1 will help you contextualize many of these terms and understand the research process. This general chart begins with two key concepts: ontology and epistemology, advances through other concepts, and concludes with three research methodological approaches: qualitative, quantitative and mixed methods.

Research does not end with making decisions about the type of methods you will use; we could argue that the work is just beginning at this point. Figure 1.3 does not represent an all-encompassing list of concepts and terms related to research methods. Keep in mind that each strategy has its own data collection and analysis approaches associated with the various methodological approaches you choose. Figure 1.1 is intentioned to provide a general overview of the research concept. You may want to keep this figure handy as you read through the various chapters.

definition of a research concept

Ontology & Epistemology

Thinking about what you know and how you know what you know involves questions of ontology and epistemology. Perhaps you have heard these concepts before in a philosophy class? These concepts are relevant to the work of sociologists as well. As sociologists (those who undertake socially-focused research), we want to understand some aspect of our social world. Usually, we are not starting with zero knowledge. In fact, we usually start with some understanding of three concepts: 1) what is; 2) what can be known about what is; and, 3) what the best mechanism happens to be for learning about what is (Saylor Academy, 2012). In the following sections, we will define these concepts and provide an example of the terms, ontology and epistemology.

Ontology is a Greek word that means the study, theory, or science of being. Ontology is concerned with the what is or the nature of reality (Saunders, Lewis, & Thornhill, 2009). It can involve some very large and difficult to answer questions, such as:

  • What is the purpose of life?
  • What, if anything, exists beyond our universe?
  • What categories does it belong to?
  • Is there such a thing as objective reality?
  • What does the verb “to be” mean?

Ontology is comprised of two aspects: objectivism and subjectivism. Objectivism means that social entities exist externally to the social actors who are concerned with their existence. Subjectivism means that social phenomena are created from the perceptions and actions of the social actors who are concerned with their existence (Saunders, et al., 2009). Figure 1.2 provides an example of a similar research project to be undertaken by two different students. While the projects being proposed by the students are similar, they each have different research questions. Read the scenario and then answer the questions that follow.

Subjectivist and objectivist approaches (adapted from Saunders et al., 2009)

Ana is an Emergency & Security Management Studies (ESMS) student at a local college. She is just beginning her capstone research project and she plans to do research at the City of Vancouver. Her research question is: What is the role of City of Vancouver managers in the Emergency Management Department (EMD) in enabling positive community relationships? She will be collecting data related to the roles and duties of managers in enabling positive community relationships.

Robert is also an ESMS student at the same college. He, too, will be undertaking his research at the City of Vancouver. His research question is: What is the effect of the City of Vancouver’s corporate culture in enabling EMD managers to develop a positive relationship with the local community? He will be collecting data related to perceptions of corporate culture and its effect on enabling positive community-emergency management department relationships.

Before the students begin collecting data, they learn that six months ago, the long-time emergency department manager and assistance manager both retired. They have been replaced by two senior staff managers who have Bachelor’s degrees in Emergency Services Management. These new managers are considered more up-to-date and knowledgeable on emergency services management, given their specialized academic training and practical on-the-job work experience in this department. The new managers have essentially the same job duties and operate under the same procedures as the managers they replaced. When Ana and Robert approach the managers to ask them to participate in their separate studies, the new managers state that they are just new on the job and probably cannot answer the research questions; they decline to participate. Ana and Robert are worried that they will need to start all over again with a new research project. They return to their supervisors to get their opinions on what they should do.

Before reading about their supervisors’ responses, answer the following questions:

  • Is Ana’s research question indicative of an objectivist or a subjectivist approach?
  • Is Robert’s research question indicative of an objectivist or a subjectivist approach?
  • Given your answer in question 1, which managers could Ana interview (new, old, or both) for her research study? Why?
  • Given your answer in question 2, which managers could Robert interview (new, old, or both) for his research study? Why?

Ana’s supervisor tells her that her research question is set up for an objectivist approach. Her supervisor tells her that in her study the social entity (the City) exists in reality external to the social actors (the managers), i.e., there is a formal management structure at the City that has largely remained unchanged since the old managers left and the new ones started. The procedures remain the same regardless of whoever occupies those positions. As such, Ana, using an objectivist approach, could state that the new managers have job descriptions which describe their duties and that they are a part of a formal structure with a hierarchy of people reporting to them and to whom they report. She could further state that this hierarchy, which is unique to this organization, also resembles hierarchies found in other similar organizations. As such, she can argue that the new managers will be able to speak about the role they play in enabling positive community relationships. Their answers would likely be no different than those of the old managers, because the management structure and the procedures remain the same. Therefore, she could go back to the new managers and ask them to participate in her research study.

Robert’s supervisor tells him that his research is set up for a subjectivist approach. In his study, the social phenomena (the effect of corporate culture on the relationship with the community) is created from the perceptions and consequent actions of the social actors (the managers); i.e., the corporate culture at the City continually influences the process of social interaction, and these interactions influence perceptions of the relationship with the community. The relationship is in a constant state of revision. As such, Robert, using a subjectivist approach, could state that the new managers may have had few interactions with the community members to date and therefore may not be fully cognizant of how the corporate culture affects the department’s relationship with the community. While it would be important to get the new managers’ perceptions, he would also need to speak with the previous managers to get their perceptions from the time they were employed in their positions. This is because the community-department relationship is in a state of constant revision, which is influenced by the various managers’ perceptions of the corporate culture and its effect on their ability to form positive community relationships. Therefore, he could go back to the current managers and ask them to participate in his study, and also ask that the department please contact the previous managers to see if they would be willing to participate in his study.

As you can see the research question of each study guides the decision as to whether the researcher should take a subjective or an objective ontological approach. This decision, in turn, guides their approach to the research study, including whom they should interview.

Epistemology

Epistemology has to do with knowledge. Rather than dealing with questions about what is, epistemology deals with questions of how we know what is.  In sociology, there are many ways to uncover knowledge. We might interview people to understand public opinion about a topic, or perhaps observe them in their natural environment. We could avoid face-to-face interaction altogether by mailing people surveys to complete on their own or by reading people’s opinions in newspaper editorials. Each method of data collection comes with its own set of epistemological assumptions about how to find things out (Saylor Academy, 2012). There are two main subsections of epistemology: positivist and interpretivist philosophies. We will examine these philosophies or paradigms in the following sections.

Research Methods for the Social Sciences: An Introduction Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Banner

Research Basics

  • What Is Research?
  • Types of Research
  • Secondary Research | Literature Review
  • Developing Your Topic
  • Primary vs. Secondary Sources
  • Evaluating Sources
  • Responsible Conduct of Research
  • Additional Help

Research is formalized curiosity. It is poking and prying with a purpose. - Zora Neale Hurston

A good working definition of research might be:

Research is the deliberate, purposeful, and systematic gathering of data, information, facts, and/or opinions for the advancement of personal, societal, or overall human knowledge.

Based on this definition, we all do research all the time. Most of this research is casual research. Asking friends what they think of different restaurants, looking up reviews of various products online, learning more about celebrities; these are all research.

Formal research includes the type of research most people think of when they hear the term “research”: scientists in white coats working in a fully equipped laboratory. But formal research is a much broader category that just this. Most people will never do laboratory research after graduating from college, but almost everybody will have to do some sort of formal research at some point in their careers.

So What Do We Mean By “Formal Research?”

Casual research is inward facing: it’s done to satisfy our own curiosity or meet our own needs, whether that’s choosing a reliable car or figuring out what to watch on TV. Formal research is outward facing. While it may satisfy our own curiosity, it’s primarily intended to be shared in order to achieve some purpose. That purpose could be anything: finding a cure for cancer, securing funding for a new business, improving some process at your workplace, proving the latest theory in quantum physics, or even just getting a good grade in your Humanities 200 class.

What sets formal research apart from casual research is the documentation of where you gathered your information from. This is done in the form of “citations” and “bibliographies.” Citing sources is covered in the section "Citing Your Sources."

Formal research also follows certain common patterns depending on what the research is trying to show or prove. These are covered in the section “Types of Research.”

Creative Commons License

  • Next: Types of Research >>
  • Last Updated: Dec 21, 2023 3:49 PM
  • URL: https://guides.library.iit.edu/research_basics

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

2.2: Concepts, Constructs, and Variables

  • Last updated
  • Save as PDF
  • Page ID 26212

  • Anol Bhattacherjee
  • University of South Florida via Global Text Project

We discussed in Chapter 1 that although research can be exploratory, descriptive, or explanatory, most scientific research tend to be of the explanatory type in that they search for potential explanations of observed natural or social phenomena. Explanations require development of concepts or generalizable properties or characteristics associated with objects, events, or people. While objects such as a person, a firm, or a car are not concepts, their specific characteristics or behavior such as a person’s attitude toward immigrants, a firm’s capacity for innovation, and a car’s weight can be viewed as concepts.

Knowingly or unknowingly, we use different kinds of concepts in our everyday conversations. Some of these concepts have been developed over time through our shared language. Sometimes, we borrow concepts from other disciplines or languages to explain a phenomenon of interest. For instance, the idea of gravitation borrowed from physics can be used in business to describe why people tend to “gravitate” to their preferred shopping destinations. Likewise, the concept of distance can be used to explain the degree of social separation between two otherwise collocated individuals. Sometimes, we create our own concepts to describe a unique characteristic not described in prior research. For instance, technostress is a new concept referring to the mental stress one may face when asked to learn a new technology.

Concepts may also have progressive levels of abstraction. Some concepts such as a person’s weight are precise and objective, while other concepts such as a person’s personality may be more abstract and difficult to visualize. A construct is an abstract concept that is specifically chosen (or “created”) to explain a given phenomenon. A construct may be a simple concept, such as a person’s weight , or a combination of a set of related concepts such as a person’s communication skill , which may consist of several underlying concepts such as the person’s vocabulary , syntax , and spelling . The former instance (weight) is a unidimensional construct , while the latter (communication skill) is a multi-dimensional construct (i.e., it consists of multiple underlying concepts). The distinction between constructs and concepts are clearer in multi-dimensional constructs, where the higher order abstraction is called a construct and the lower order abstractions are called concepts. However, this distinction tends to blur in the case of unidimensional constructs.

Constructs used for scientific research must have precise and clear definitions that others can use to understand exactly what it means and what it does not mean. For instance, a seemingly simple construct such as income may refer to monthly or annual income, before-tax or after-tax income, and personal or family income, and is therefore neither precise nor clear. There are two types of definitions: dictionary definitions and operational definitions. In the more familiar dictionary definition, a construct is often defined in terms of a synonym. For instance, attitude may be defined as a disposition, a feeling, or an affect, and affect in turn is defined as an attitude. Such definitions of a circular nature are not particularly useful in scientific research for elaborating the meaning and content of that construct. Scientific research requires operational definitions that define constructs in terms of how they will be empirically measured. For instance, the operational definition of a construct such as temperature must specify whether we plan to measure temperature in Celsius, Fahrenheit, or Kelvin scale. A construct such as income should be defined in terms of whether we are interested in monthly or annual income, before-tax or after-tax income, and personal or family income. One can imagine that constructs such as learning , personality , and intelligence can be quite hard to define operationally.

clipboard_e3c11ed02287e51de02928c4dd14dea17.png

A term frequently associated with, and sometimes used interchangeably with, a construct is a variable. Etymologically speaking, a variable is a quantity that can vary (e.g., from low to high, negative to positive, etc.), in contrast to constants that do not vary (i.e., remain constant). However, in scientific research, a variable is a measurable representation of an abstract construct. As abstract entities, constructs are not directly measurable, and hence, we look for proxy measures called variables. For instance, a person’s intelligence is often measured as his or her IQ ( intelligence quotient ) score , which is an index generated from an analytical and pattern-matching test administered to people. In this case, intelligence is a construct, and IQ score is a variable that measures the intelligence construct. Whether IQ scores truly measures one’s intelligence is anyone’s guess (though many believe that they do), and depending on whether how well it measures intelligence, the IQ score may be a good or a poor measure of the intelligence construct. As shown in Figure 2.1, scientific research proceeds along two planes: a theoretical plane and an empirical plane. Constructs are conceptualized at the theoretical (abstract) plane, while variables are operationalized and measured at the empirical (observational) plane. Thinking like a researcher implies the ability to move back and forth between these two planes.

Depending on their intended use, variables may be classified as independent, dependent, moderating, mediating, or control variables. Variables that explain other variables are called independent variables , those that are explained by other variables are dependent variables , those that are explained by independent variables while also explaining dependent variables are mediating variables (or intermediate variables), and those that influence the relationship between independent and dependent variables are called moderating variables . As an example, if we state that higher intelligence causes improved learning among students, then intelligence is an independent variable and learning is a dependent variable. There may be other extraneous variables that are not pertinent to explaining a given dependent variable, but may have some impact on the dependent variable. These variables must be controlled for in a scientific study, and are therefore called control variables .

clipboard_ec4455df573382437125e02822d3e7aa4.png

To understand the differences between these different variable types, consider the example shown in Figure 2.2. If we believe that intelligence influences (or explains) students’ academic achievement, then a measure of intelligence such as an IQ score is an independent variable, while a measure of academic success such as grade point average is a dependent variable. If we believe that the effect of intelligence on academic achievement also depends on the effort invested by the student in the learning process (i.e., between two equally intelligent students, the student who puts is more effort achieves higher academic achievement than one who puts in less effort), then effort becomes a moderating variable. Incidentally, one may also view effort as an independent variable and intelligence as a moderating variable. If academic achievement is viewed as an intermediate step to higher earning potential, then earning potential becomes the dependent variable for the independent variable academic achievement , and academic achievement becomes the mediating variable in the relationship between intelligence and earning potential. Hence, variable are defined as an independent, dependent, moderating, or mediating variable based on their nature of association with each other. The overall network of relationships between a set of related constructs is called a nomological network (see Figure 2.2). Thinking like a researcher requires not only being able to abstract constructs from observations, but also being able to mentally visualize a nomological network linking these abstract constructs.

Nature of Research

  • First Online: 14 May 2023

Cite this chapter

definition of a research concept

  • D. N. P. Murthy 3 &
  • N. W. Page 4  

130 Accesses

The word research is widely used in the general community to refer to any activity that seeks information or perhaps new knowledge for an individual. For example, some might describe their investigation of what television set, or car they should purchase as research . A school student might do an assignment on, say, the physical geography of Tibet during the course of which the student would research the topic—meaning that the student gained new knowledge about it. However, neither of these two examples would add to the world bank of knowledge. Here we use the word research to describe the process of generating new knowledge—things previously not known by anyone. Sometimes this is referred to as original research to distinguish it from other usages. This new knowledge can lead to new technologies and new solutions to the needs of humankind. As such it is a fundamental driver for economic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Project being a scientific endeavour to answer a clearly specified research question.

Methodology is about the range of possible approaches that can be taken in conducting the research. The related term Method is the actual approach taken in the project in question. This is discussed later.

Author information

Authors and affiliations.

School of Mechanical & Mining Engineering, The University of Queensland, St Lucia, QLD, Australia

D. N. P. Murthy

Mechanical Engineering, The University of Newcastle, Callaghan, NSW, Australia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to D. N. P. Murthy .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Murthy, D.N.P., Page, N.W. (2023). Nature of Research. In: Education and Research for the Future. Springer, Cham. https://doi.org/10.1007/978-3-031-29685-7_17

Download citation

DOI : https://doi.org/10.1007/978-3-031-29685-7_17

Published : 14 May 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-29684-0

Online ISBN : 978-3-031-29685-7

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Scientific Research and Methodology

2.2 conceptual and operational definitions.

Research studies usually include terms that must be carefully and precisely defined, so that others know exactly what has been done and there are no ambiguities. Two types of definitions can be given: conceptual definitions and operational definitions .

Loosely speaking, a conceptual definition explains what to measure or observe (what a word or a term means for your study), and an operational definitions defines exactly how to measure or observe it.

For example, in a study of stress in students during a university semester. A conceptual definition would describe what is meant by ‘stress.’ An operational definition would describe how the ‘stress’ would be measured.

Sometimes the definitions themselves aren’t important, provided a clear definition is given. Sometimes, commonly-accepted definitions exist, so should be used unless there is a good reason to use a different definition (for example, in criminal law, an ‘adult’ in Australia is someone aged 18 or over ).

Sometimes, a commonly-accepted definition does not exist, so the definition being used should be clearly articulated.

Example 2.2 (Operational and conceptual definitions) Players and fans have become more aware of concussions and head injuries in sport. A Conference on concussion in sport developed this conceptual definition ( McCrory et al. 2013 ) :

Concussion is a brain injury and is defined as a complex pathophysiological process affecting the brain, induced by biomechanical forces. Several common features that incorporate clinical, pathologic and biomechanical injury constructs that may be utilised in defining the nature of a concussive head injury include: Concussion may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an “impulsive” force transmitted to the head. Concussion typically results in the rapid onset of short-lived impairment of neurological function that resolves spontaneously. However, in some cases, symptoms and signs may evolve over a number of minutes to hours. Concussion may result in neuropathological changes, but the acute clinical symptoms largely reflect a functional disturbance rather than a structural injury and, as such, no abnormality is seen on standard structural neuroimaging studies. Concussion results in a graded set of clinical symptoms that may or may not involve loss of consciousness. Resolution of the clinical and cognitive symptoms typically follows a sequential course. However, it is important to note that in some cases symptoms may be prolonged.

While this is all helpful… it does not explain how to identify a player with concussion during a game.

Rugby decided on this operational definition ( Raftery et al. 2016 ) :

… a concussion applies with any of the following: The presence, pitch side, of any Criteria Set 1 signs or symptoms (table 1)… [ Note : This table includes symptoms such as ‘convulsion,’ ‘clearly dazed,’ etc.]; An abnormal post game, same day assessment…; An abnormal 36–48 h assessment…; The presence of clinical suspicion by the treating doctor at any time…

Example 2.3 (Operational and conceptual definitions) Consider a study requiring water temperature to be measured.

An operational definition would explain how the temperature is measured: the thermometer type, how the thermometer was positioned, how long was it left in the water, and so on.

definition of a research concept

Example 2.4 (Operational definitions) Consider a study measuring stress in first-year university students.

Stress cannot be measured directly, but could be assessed using a survey (like the Perceived Stress Scale (PSS) ( Cohen et al. 1983 ) ).

The operational definition of stress is the score on the ten-question PSS. Other means of measuring stress are also possible (such as heart rate or blood pressure).

Meline ( 2006 ) discusses five studies about stuttering, each using a different operational definition:

  • Study 1: As diagnosed by speech-language pathologist.
  • Study 2: Within-word disfluences greater than 5 per 150 words.
  • Study 3: Unnatural hesitation, interjections, restarted or incomplete phrases, etc.
  • Study 4: More than 3 stuttered words per minute.
  • Study 5: State guidelines for fluency disorders.

A study of snacking in Australia ( Fayet-Moore et al. 2017 ) used this operational definition of ‘snacking’:

…an eating occasion that occurred between meals based on time of day. — Fayet-Moore et al. ( 2017 ) (p. 3)

A study examined the possible relationship between the ‘pace of life’ and the incidence of heart disease ( Levine 1990 ) in 36 US cities. The researchers used four different operational definitions for ‘pace of life’ (remember the article was published in 1990!):

  • The walking speed of randomly chosen pedestrians.
  • The speed with which bank clerks gave ‘change for two $20 bills or [gave] two $20 bills for change.’
  • The talking speed of postal clerks.
  • The proportion of men and women wearing a wristwatch.

None of these perfectly measure ‘pace of life,’ of course. Nonetheless, the researchers found that, compared to people on the West Coast,

… people in the Northeast walk faster, make change faster, talk faster and are more likely to wear a watch… — Levine ( 1990 ) (p. 455)

Campus Career Club

Follow What Your Heart Says

Research Concept and Definition with Examples

Abdul Awal

Research Concept what does it mean? Simply, research is a scientific, systematic, and creative practical work with a view to producing new knowledge. Research is the most powerful tool for getting accurate and real knowledge on a particular topic. For example, the actual reason for the spread of the Novel Corona V irus if we would like to explore there is no better alternative to Scientific Research.

Some terms are deeply associated with the research concept such as What, Why, and How. If we want to prevent Novel Corona Virus, first of all, we must know what is the Novel Corona Virus? Then Why this has spread across the Chinese and some other countries? Naturally, the next question that comes up is how did it spread?

The Greek philosopher Aristotle’s question was why the smoke of fire rises up in the sky? Why it doesn’t go down or to the side? The Why question of Aristotle was very popular at that time among the philosopher.

Today’s researchers and scientists are more interested in how the event occurs. Researchers believe that a kind of thought and inference is sought after in order to find out why something happens in nature. Often, the right thing is not known for thought and inference.

Therefore, at present, the result is now scientifically proven through research so we accept it as true knowledge.

Now we can define Research as a careful and detailed study of a specific problem, concern, or issue, for example, “Graduate Unemployment” using the scientific method.

Definition of Research  

Let’s see what the scholars say about the research concepts and definitions.

American Sociologist Earl Robert Babbie, “Research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. Research involves inductive and deductive methods.”

Cambridge English Dictionary defined Research as-

“To study a subject in detail, especially in order to discover new information or reach a new understanding.”

Merriam-Webster defines as:

“Investigation or experimentation aimed at the discovery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical application of such new or revised theories or laws”

Katzer, Cook & Crough say the research as follows:

“I define research here as the systematic process of collecting and analyzing information (data) in order to increase our understanding of the phenomenon with which we are concerned or interested.”

Research can start with questions or problems . But there are some important steps to take for research. For example-

  • Collection of questions arising from problems.
  • Willingness to solve problems.
  • Setting goals to solve problems.
  • Determining the problem-solving strategy.
  • Making decisions based on the information obtained using the strategy.

Research in Nature

  • Research is a systematic approach that necessarily studies accurate data. Some rules and procedures are an integral part of the research process that sets the objective of the research.
  • The research basically is based on logical reasoning and involves both inductive and deductive methods.
  • The information and data derived are in reality from actual observations in natural settings.
  • The research follows an in-depth analysis of all data collected so that there is no deviation associated with the research investigation.
  • Research creates a way of originating new questions related to practical problems existing in society.
  • Research, in fact, is analytical in nature. It makes use of all the available data so that there is no ambiguity in the hypothesis .
  • The most important aspect of the research is accurate. The information and data that is to collect should be accurate and real in nature.

7 Basic Steps in Formulating a Research Problem  

You might also like

What happens if you don’t read books, 7 skills of a good researcher must have, literature review guidelines for your research, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Turk J Anaesthesiol Reanim
  • v.44(4); 2016 Aug

Logo of tjar

What is Scientific Research and How Can it be Done?

Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained.

Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new information is revealed with respect to diagnosis, treatment and reliability of applications. The purpose of this review is to provide information about the definition, classification and methodology of scientific research.

Before beginning the scientific research, the researcher should determine the subject, do planning and specify the methodology. In the Declaration of Helsinki, it is stated that ‘the primary purpose of medical researches on volunteers is to understand the reasons, development and effects of diseases and develop protective, diagnostic and therapeutic interventions (method, operation and therapies). Even the best proven interventions should be evaluated continuously by investigations with regard to reliability, effectiveness, efficiency, accessibility and quality’ ( 1 ).

The questions, methods of response to questions and difficulties in scientific research may vary, but the design and structure are generally the same ( 2 ).

Classification of Scientific Research

Scientific research can be classified in several ways. Classification can be made according to the data collection techniques based on causality, relationship with time and the medium through which they are applied.

  • Observational
  • Experimental
  • Descriptive
  • Retrospective
  • Prospective
  • Cross-sectional
  • Social descriptive research ( 3 )

Another method is to classify the research according to its descriptive or analytical features. This review is written according to this classification method.

I. Descriptive research

  • Case series
  • Surveillance studies

II. Analytical research

  • Observational studies: cohort, case control and cross- sectional research
  • Interventional research: quasi-experimental and clinical research
  • Case Report: it is the most common type of descriptive study. It is the examination of a single case having a different quality in the society, e.g. conducting general anaesthesia in a pregnant patient with mucopolysaccharidosis.
  • Case Series: it is the description of repetitive cases having common features. For instance; case series involving interscapular pain related to neuraxial labour analgesia. Interestingly, malignant hyperthermia cases are not accepted as case series since they are rarely seen during historical development.
  • Surveillance Studies: these are the results obtained from the databases that follow and record a health problem for a certain time, e.g. the surveillance of cross-infections during anaesthesia in the intensive care unit.

Moreover, some studies may be experimental. After the researcher intervenes, the researcher waits for the result, observes and obtains data. Experimental studies are, more often, in the form of clinical trials or laboratory animal trials ( 2 ).

Analytical observational research can be classified as cohort, case-control and cross-sectional studies.

Firstly, the participants are controlled with regard to the disease under investigation. Patients are excluded from the study. Healthy participants are evaluated with regard to the exposure to the effect. Then, the group (cohort) is followed-up for a sufficient period of time with respect to the occurrence of disease, and the progress of disease is studied. The risk of the healthy participants getting sick is considered an incident. In cohort studies, the risk of disease between the groups exposed and not exposed to the effect is calculated and rated. This rate is called relative risk. Relative risk indicates the strength of exposure to the effect on the disease.

Cohort research may be observational and experimental. The follow-up of patients prospectively is called a prospective cohort study . The results are obtained after the research starts. The researcher’s following-up of cohort subjects from a certain point towards the past is called a retrospective cohort study . Prospective cohort studies are more valuable than retrospective cohort studies: this is because in the former, the researcher observes and records the data. The researcher plans the study before the research and determines what data will be used. On the other hand, in retrospective studies, the research is made on recorded data: no new data can be added.

In fact, retrospective and prospective studies are not observational. They determine the relationship between the date on which the researcher has begun the study and the disease development period. The most critical disadvantage of this type of research is that if the follow-up period is long, participants may leave the study at their own behest or due to physical conditions. Cohort studies that begin after exposure and before disease development are called ambidirectional studies . Public healthcare studies generally fall within this group, e.g. lung cancer development in smokers.

  • Case-Control Studies: these studies are retrospective cohort studies. They examine the cause and effect relationship from the effect to the cause. The detection or determination of data depends on the information recorded in the past. The researcher has no control over the data ( 2 ).

Cross-sectional studies are advantageous since they can be concluded relatively quickly. It may be difficult to obtain a reliable result from such studies for rare diseases ( 2 ).

Cross-sectional studies are characterised by timing. In such studies, the exposure and result are simultaneously evaluated. While cross-sectional studies are restrictedly used in studies involving anaesthesia (since the process of exposure is limited), they can be used in studies conducted in intensive care units.

  • Quasi-Experimental Research: they are conducted in cases in which a quick result is requested and the participants or research areas cannot be randomised, e.g. giving hand-wash training and comparing the frequency of nosocomial infections before and after hand wash.
  • Clinical Research: they are prospective studies carried out with a control group for the purpose of comparing the effect and value of an intervention in a clinical case. Clinical study and research have the same meaning. Drugs, invasive interventions, medical devices and operations, diets, physical therapy and diagnostic tools are relevant in this context ( 6 ).

Clinical studies are conducted by a responsible researcher, generally a physician. In the research team, there may be other healthcare staff besides physicians. Clinical studies may be financed by healthcare institutes, drug companies, academic medical centres, volunteer groups, physicians, healthcare service providers and other individuals. They may be conducted in several places including hospitals, universities, physicians’ offices and community clinics based on the researcher’s requirements. The participants are made aware of the duration of the study before their inclusion. Clinical studies should include the evaluation of recommendations (drug, device and surgical) for the treatment of a disease, syndrome or a comparison of one or more applications; finding different ways for recognition of a disease or case and prevention of their recurrence ( 7 ).

Clinical Research

In this review, clinical research is explained in more detail since it is the most valuable study in scientific research.

Clinical research starts with forming a hypothesis. A hypothesis can be defined as a claim put forward about the value of a population parameter based on sampling. There are two types of hypotheses in statistics.

  • H 0 hypothesis is called a control or null hypothesis. It is the hypothesis put forward in research, which implies that there is no difference between the groups under consideration. If this hypothesis is rejected at the end of the study, it indicates that a difference exists between the two treatments under consideration.
  • H 1 hypothesis is called an alternative hypothesis. It is hypothesised against a null hypothesis, which implies that a difference exists between the groups under consideration. For example, consider the following hypothesis: drug A has an analgesic effect. Control or null hypothesis (H 0 ): there is no difference between drug A and placebo with regard to the analgesic effect. The alternative hypothesis (H 1 ) is applicable if a difference exists between drug A and placebo with regard to the analgesic effect.

The planning phase comes after the determination of a hypothesis. A clinical research plan is called a protocol . In a protocol, the reasons for research, number and qualities of participants, tests to be applied, study duration and what information to be gathered from the participants should be found and conformity criteria should be developed.

The selection of participant groups to be included in the study is important. Inclusion and exclusion criteria of the study for the participants should be determined. Inclusion criteria should be defined in the form of demographic characteristics (age, gender, etc.) of the participant group and the exclusion criteria as the diseases that may influence the study, age ranges, cases involving pregnancy and lactation, continuously used drugs and participants’ cooperation.

The next stage is methodology. Methodology can be grouped under subheadings, namely, the calculation of number of subjects, blinding (masking), randomisation, selection of operation to be applied, use of placebo and criteria for stopping and changing the treatment.

I. Calculation of the Number of Subjects

The entire source from which the data are obtained is called a universe or population . A small group selected from a certain universe based on certain rules and which is accepted to highly represent the universe from which it is selected is called a sample and the characteristics of the population from which the data are collected are called variables. If data is collected from the entire population, such an instance is called a parameter . Conducting a study on the sample rather than the entire population is easier and less costly. Many factors influence the determination of the sample size. Firstly, the type of variable should be determined. Variables are classified as categorical (qualitative, non-numerical) or numerical (quantitative). Individuals in categorical variables are classified according to their characteristics. Categorical variables are indicated as nominal and ordinal (ordered). In nominal variables, the application of a category depends on the researcher’s preference. For instance, a female participant can be considered first and then the male participant, or vice versa. An ordinal (ordered) variable is ordered from small to large or vice versa (e.g. ordering obese patients based on their weights-from the lightest to the heaviest or vice versa). A categorical variable may have more than one characteristic: such variables are called binary or dichotomous (e.g. a participant may be both female and obese).

If the variable has numerical (quantitative) characteristics and these characteristics cannot be categorised, then it is called a numerical variable. Numerical variables are either discrete or continuous. For example, the number of operations with spinal anaesthesia represents a discrete variable. The haemoglobin value or height represents a continuous variable.

Statistical analyses that need to be employed depend on the type of variable. The determination of variables is necessary for selecting the statistical method as well as software in SPSS. While categorical variables are presented as numbers and percentages, numerical variables are represented using measures such as mean and standard deviation. It may be necessary to use mean in categorising some cases such as the following: even though the variable is categorical (qualitative, non-numerical) when Visual Analogue Scale (VAS) is used (since a numerical value is obtained), it is classified as a numerical variable: such variables are averaged.

Clinical research is carried out on the sample and generalised to the population. Accordingly, the number of samples should be correctly determined. Different sample size formulas are used on the basis of the statistical method to be used. When the sample size increases, error probability decreases. The sample size is calculated based on the primary hypothesis. The determination of a sample size before beginning the research specifies the power of the study. Power analysis enables the acquisition of realistic results in the research, and it is used for comparing two or more clinical research methods.

Because of the difference in the formulas used in calculating power analysis and number of samples for clinical research, it facilitates the use of computer programs for making calculations.

It is necessary to know certain parameters in order to calculate the number of samples by power analysis.

  • Type-I (α) and type-II (β) error levels
  • Difference between groups (d-difference) and effect size (ES)
  • Distribution ratio of groups
  • Direction of research hypothesis (H1)

a. Type-I (α) and Type-II (β) Error (β) Levels

Two types of errors can be made while accepting or rejecting H 0 hypothesis in a hypothesis test. Type-I error (α) level is the probability of finding a difference at the end of the research when there is no difference between the two applications. In other words, it is the rejection of the hypothesis when H 0 is actually correct and it is known as α error or p value. For instance, when the size is determined, type-I error level is accepted as 0.05 or 0.01.

Another error that can be made during a hypothesis test is a type-II error. It is the acceptance of a wrongly hypothesised H 0 hypothesis. In fact, it is the probability of failing to find a difference when there is a difference between the two applications. The power of a test is the ability of that test to find a difference that actually exists. Therefore, it is related to the type-II error level.

Since the type-II error risk is expressed as β, the power of the test is defined as 1–β. When a type-II error is 0.20, the power of the test is 0.80. Type-I (α) and type-II (β) errors can be intentional. The reason to intentionally make such an error is the necessity to look at the events from the opposite perspective.

b. Difference between Groups and ES

ES is defined as the state in which statistical difference also has clinically significance: ES≥0.5 is desirable. The difference between groups is the absolute difference between the groups compared in clinical research.

c. Allocation Ratio of Groups

The allocation ratio of groups is effective in determining the number of samples. If the number of samples is desired to be determined at the lowest level, the rate should be kept as 1/1.

d. Direction of Hypothesis (H1)

The direction of hypothesis in clinical research may be one-sided or two-sided. While one-sided hypotheses hypothesis test differences in the direction of size, two-sided hypotheses hypothesis test differences without direction. The power of the test in two-sided hypotheses is lower than one-sided hypotheses.

After these four variables are determined, they are entered in the appropriate computer program and the number of samples is calculated. Statistical packaged software programs such as Statistica, NCSS and G-Power may be used for power analysis and calculating the number of samples. When the samples size is calculated, if there is a decrease in α, difference between groups, ES and number of samples, then the standard deviation increases and power decreases. The power in two-sided hypothesis is lower. It is ethically appropriate to consider the determination of sample size, particularly in animal experiments, at the beginning of the study. The phase of the study is also important in the determination of number of subjects to be included in drug studies. Usually, phase-I studies are used to determine the safety profile of a drug or product, and they are generally conducted on a few healthy volunteers. If no unacceptable toxicity is detected during phase-I studies, phase-II studies may be carried out. Phase-II studies are proof-of-concept studies conducted on a larger number (100–500) of volunteer patients. When the effectiveness of the drug or product is evident in phase-II studies, phase-III studies can be initiated. These are randomised, double-blinded, placebo or standard treatment-controlled studies. Volunteer patients are periodically followed-up with respect to the effectiveness and side effects of the drug. It can generally last 1–4 years and is valuable during licensing and releasing the drug to the general market. Then, phase-IV studies begin in which long-term safety is investigated (indication, dose, mode of application, safety, effectiveness, etc.) on thousands of volunteer patients.

II. Blinding (Masking) and Randomisation Methods

When the methodology of clinical research is prepared, precautions should be taken to prevent taking sides. For this reason, techniques such as randomisation and blinding (masking) are used. Comparative studies are the most ideal ones in clinical research.

Blinding Method

A case in which the treatments applied to participants of clinical research should be kept unknown is called the blinding method . If the participant does not know what it receives, it is called a single-blind study; if even the researcher does not know, it is called a double-blind study. When there is a probability of knowing which drug is given in the order of application, when uninformed staff administers the drug, it is called in-house blinding. In case the study drug is known in its pharmaceutical form, a double-dummy blinding test is conducted. Intravenous drug is given to one group and a placebo tablet is given to the comparison group; then, the placebo tablet is given to the group that received the intravenous drug and intravenous drug in addition to placebo tablet is given to the comparison group. In this manner, each group receives both the intravenous and tablet forms of the drug. In case a third party interested in the study is involved and it also does not know about the drug (along with the statistician), it is called third-party blinding.

Randomisation Method

The selection of patients for the study groups should be random. Randomisation methods are used for such selection, which prevent conscious or unconscious manipulations in the selection of patients ( 8 ).

No factor pertaining to the patient should provide preference of one treatment to the other during randomisation. This characteristic is the most important difference separating randomised clinical studies from prospective and synchronous studies with experimental groups. Randomisation strengthens the study design and enables the determination of reliable scientific knowledge ( 2 ).

The easiest method is simple randomisation, e.g. determination of the type of anaesthesia to be administered to a patient by tossing a coin. In this method, when the number of samples is kept high, a balanced distribution is created. When the number of samples is low, there will be an imbalance between the groups. In this case, stratification and blocking have to be added to randomisation. Stratification is the classification of patients one or more times according to prognostic features determined by the researcher and blocking is the selection of a certain number of patients for each stratification process. The number of stratification processes should be determined at the beginning of the study.

As the number of stratification processes increases, performing the study and balancing the groups become difficult. For this reason, stratification characteristics and limitations should be effectively determined at the beginning of the study. It is not mandatory for the stratifications to have equal intervals. Despite all the precautions, an imbalance might occur between the groups before beginning the research. In such circumstances, post-stratification or restandardisation may be conducted according to the prognostic factors.

The main characteristic of applying blinding (masking) and randomisation is the prevention of bias. Therefore, it is worthwhile to comprehensively examine bias at this stage.

Bias and Chicanery

While conducting clinical research, errors can be introduced voluntarily or involuntarily at a number of stages, such as design, population selection, calculating the number of samples, non-compliance with study protocol, data entry and selection of statistical method. Bias is taking sides of individuals in line with their own decisions, views and ideological preferences ( 9 ). In order for an error to lead to bias, it has to be a systematic error. Systematic errors in controlled studies generally cause the results of one group to move in a different direction as compared to the other. It has to be understood that scientific research is generally prone to errors. However, random errors (or, in other words, ‘the luck factor’-in which bias is unintended-do not lead to bias ( 10 ).

Another issue, which is different from bias, is chicanery. It is defined as voluntarily changing the interventions, results and data of patients in an unethical manner or copying data from other studies. Comparatively, bias may not be done consciously.

In case unexpected results or outliers are found while the study is analysed, if possible, such data should be re-included into the study since the complete exclusion of data from a study endangers its reliability. In such a case, evaluation needs to be made with and without outliers. It is insignificant if no difference is found. However, if there is a difference, the results with outliers are re-evaluated. If there is no error, then the outlier is included in the study (as the outlier may be a result). It should be noted that re-evaluation of data in anaesthesiology is not possible.

Statistical evaluation methods should be determined at the design stage so as not to encounter unexpected results in clinical research. The data should be evaluated before the end of the study and without entering into details in research that are time-consuming and involve several samples. This is called an interim analysis . The date of interim analysis should be determined at the beginning of the study. The purpose of making interim analysis is to prevent unnecessary cost and effort since it may be necessary to conclude the research after the interim analysis, e.g. studies in which there is no possibility to validate the hypothesis at the end or the occurrence of different side effects of the drug to be used. The accuracy of the hypothesis and number of samples are compared. Statistical significance levels in interim analysis are very important. If the data level is significant, the hypothesis is validated even if the result turns out to be insignificant after the date of the analysis.

Another important point to be considered is the necessity to conclude the participants’ treatment within the period specified in the study protocol. When the result of the study is achieved earlier and unexpected situations develop, the treatment is concluded earlier. Moreover, the participant may quit the study at its own behest, may die or unpredictable situations (e.g. pregnancy) may develop. The participant can also quit the study whenever it wants, even if the study has not ended ( 7 ).

In case the results of a study are contrary to already known or expected results, the expected quality level of the study suggesting the contradiction may be higher than the studies supporting what is known in that subject. This type of bias is called confirmation bias. The presence of well-known mechanisms and logical inference from them may create problems in the evaluation of data. This is called plausibility bias.

Another type of bias is expectation bias. If a result different from the known results has been achieved and it is against the editor’s will, it can be challenged. Bias may be introduced during the publication of studies, such as publishing only positive results, selection of study results in a way to support a view or prevention of their publication. Some editors may only publish research that extols only the positive results or results that they desire.

Bias may be introduced for advertisement or economic reasons. Economic pressure may be applied on the editor, particularly in the cases of studies involving drugs and new medical devices. This is called commercial bias.

In recent years, before beginning a study, it has been recommended to record it on the Web site www.clinicaltrials.gov for the purpose of facilitating systematic interpretation and analysis in scientific research, informing other researchers, preventing bias, provision of writing in a standard format, enhancing contribution of research results to the general literature and enabling early intervention of an institution for support. This Web site is a service of the US National Institutes of Health.

The last stage in the methodology of clinical studies is the selection of intervention to be conducted. Placebo use assumes an important place in interventions. In Latin, placebo means ‘I will be fine’. In medical literature, it refers to substances that are not curative, do not have active ingredients and have various pharmaceutical forms. Although placebos do not have active drug characteristic, they have shown effective analgesic characteristics, particularly in algology applications; further, its use prevents bias in comparative studies. If a placebo has a positive impact on a participant, it is called the placebo effect ; on the contrary, if it has a negative impact, it is called the nocebo effect . Another type of therapy that can be used in clinical research is sham application. Although a researcher does not cure the patient, the researcher may compare those who receive therapy and undergo sham. It has been seen that sham therapies also exhibit a placebo effect. In particular, sham therapies are used in acupuncture applications ( 11 ). While placebo is a substance, sham is a type of clinical application.

Ethically, the patient has to receive appropriate therapy. For this reason, if its use prevents effective treatment, it causes great problem with regard to patient health and legalities.

Before medical research is conducted with human subjects, predictable risks, drawbacks and benefits must be evaluated for individuals or groups participating in the study. Precautions must be taken for reducing the risk to a minimum level. The risks during the study should be followed, evaluated and recorded by the researcher ( 1 ).

After the methodology for a clinical study is determined, dealing with the ‘Ethics Committee’ forms the next stage. The purpose of the ethics committee is to protect the rights, safety and well-being of volunteers taking part in the clinical research, considering the scientific method and concerns of society. The ethics committee examines the studies presented in time, comprehensively and independently, with regard to ethics and science; in line with the Declaration of Helsinki and following national and international standards concerning ‘Good Clinical Practice’. The method to be followed in the formation of the ethics committee should be developed without any kind of prejudice and to examine the applications with regard to ethics and science within the framework of the ethics committee, Regulation on Clinical Trials and Good Clinical Practice ( www.iku.com ). The necessary documents to be presented to the ethics committee are research protocol, volunteer consent form, budget contract, Declaration of Helsinki, curriculum vitae of researchers, similar or explanatory literature samples, supporting institution approval certificate and patient follow-up form.

Only one sister/brother, mother, father, son/daughter and wife/husband can take charge in the same ethics committee. A rector, vice rector, dean, deputy dean, provincial healthcare director and chief physician cannot be members of the ethics committee.

Members of the ethics committee can work as researchers or coordinators in clinical research. However, during research meetings in which members of the ethics committee are researchers or coordinators, they must leave the session and they cannot sign-off on decisions. If the number of members in the ethics committee for a particular research is so high that it is impossible to take a decision, the clinical research is presented to another ethics committee in the same province. If there is no ethics committee in the same province, an ethics committee in the closest settlement is found.

Thereafter, researchers need to inform the participants using an informed consent form. This form should explain the content of clinical study, potential benefits of the study, alternatives and risks (if any). It should be easy, comprehensible, conforming to spelling rules and written in plain language understandable by the participant.

This form assists the participants in taking a decision regarding participation in the study. It should aim to protect the participants. The participant should be included in the study only after it signs the informed consent form; the participant can quit the study whenever required, even when the study has not ended ( 7 ).

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - C.Ö.Ç., A.D.; Design - C.Ö.Ç.; Supervision - A.D.; Resource - C.Ö.Ç., A.D.; Materials - C.Ö.Ç., A.D.; Analysis and/or Interpretation - C.Ö.Ç., A.D.; Literature Search - C.Ö.Ç.; Writing Manuscript - C.Ö.Ç.; Critical Review - A.D.; Other - C.Ö.Ç., A.D.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

Table of Contents

Ai, ethics & human agency, collaboration, information literacy, writing process.

  • © 2023 by Joseph M. Moxley - University of South Florida

Research refers to a systematic investigation carried out to discover new knowledge , expand existing knowledge , solve practical problems , and develop new products, apps, and services. This article explores why different research communities have different ideas about what research is and how to conduct it. Learn about the different epistemological assumptions that undergird  informal , qualitative , quantitative , textual , and mixed research methods .

definition of a research concept

What is Research?

Research may refer to

  • For most researchers, the first step in any research project involves strategic searching to learn what the current and best research, theory, and scholarship is on a topic .
  • scholars create knowledge by engaging in textual research , interpretation , and hermeneutics .
  • Ethnography
  • Participant Observation
  • Survey Research
  • “a systematic application of knowledge toward the production of useful materials, devices, and systems or methods, including design, development, and improvement of prototypes and new processes” (NSF n.d.)
  • a process,  a research methodology , that follows  the principles of lean design .

Key Words: Research Community ; Research Methodology ; Research Methods ; Epistemology

definition of a research concept

Why Does Research Matter?

Overall, research is essential for advancing knowledge, solving problems, informing decision-making, fostering innovation, and promoting critical thinking. It plays a crucial role in shaping the world we live in and the future we create.

  • Research allows us to better understand the world around us, from the fundamental workings of the universe to the intricacies of human behavior. By conducting research, scholars can uncover new information, develop new theories and models, and identify gaps in existing knowledge that need to be filled. This knowledge can help students and teachers to better understand the world around them and develop new solutions to the problems facing society.
  • Research helps us identify and solve problems. It can help us find ways to improve our health, protect the environment, reduce poverty, and develop new technologies.
  • Research provides important information that can inform policy decisions, business strategies, and individual choices. By studying trends, analyzing data, and conducting experiments, researchers can help us make better-informed decisions.
  • Research often leads to new technologies, products, and services. By pushing the boundaries of what is currently possible, researchers can inspire and fuel innovation.
  • Research teaches us to question assumptions, evaluate evidence, and think critically. These skills are important for students to develop because they enable them to become more informed and engaged citizens, able to make more informed decisions and contribute to society in meaningful ways.
  • Research experience can be an asset in many career fields, including academia, business, government, and nonprofit organizations. By conducting research as an undergraduate student, students can develop valuable skills and experience that can help them to succeed in their future careers.

Types of Research

definition of a research concept

The choice of research methods depends on the epistemological assumptions of the researchers and the practices of a particular methodological community , the research question , the type of data needed, and the resources available.

definition of a research concept

Epistemology and Research Communities

Investigators across academic disciplines — the humanities, social sciences, sciences, and the arts — share some common methods and values. For instance, in both workplace writing and academic writing , investigators are careful

  • to cite sources , particularly sources that have changed the conversation on a topic
  • to provide evidence for claims (as opposed to opinion or other forms of anecdotal knowledge .

Yet it is also important to note that different research communities also develop unique approaches to exploring and solving problems in their knowledge domains. Research communities develop different ways of conducting research because they face different problems and because they may have different epistemological assumptions about what knowledge is and how to measure it. For example, if a researcher believes that knowledge can only be gained through observation and empirical evidence , they may choose to use quantitative research methods such as experiments or surveys . Conversely, if a researcher believes that knowledge can also be gained through subjective experience and interpretation , they may choose to use qualitative research methods such as case study , ethnography or participant observation

While there are many nuanced definitions of epistemology , scholars have identified three major epistemological perspectives that inform the works of three research communities

  • The Scholars – aka Scholarship
  • The Positivists – aka Positivism
  • The Postpositivists – aka Postpositivism

overfiew of figure 2

Research & Mindset

Researchers are curious about the world. They embrace openness , a growth mindset , and collaboration . They undertake research projects in order to review existing knowledge and generate original knowledge claims about the topic , thesis, research question they are investigating. Research finds evidence.

Research Ethics

Researchers and consumers of research are wise to view research claims and research plans from an ethical perspective. Given human nature — such as the tendency to look for confirming evidence and ignore disconfirming evidence and to allow emotions to cloud reasoning — it’s foolhardy to disregard critical literacy practices when consuming the research of others.

Ethics are important to undergraduate students as researchers because ethics provide a framework for conducting research that is responsible, respectful, and accountable :

  • Ethics ensure that participants in research are treated with respect and dignity, and that their rights and well-being are protected. As a student researcher, it is important to obtain informed consent from participants, ensure their confidentiality, and minimize any potential harm or discomfort.
  • Ethics ensure that research is conducted with integrity and honesty. This means that data is collected and analyzed accurately, and that findings are reported truthfully and transparently.
  • Ethics help to build trust between researchers and the public. When research is conducted ethically, participants and the wider community are more likely to trust the findings and the researchers themselves.
  • Adhering to ethical standards in research can help students to develop important professional skills, such as critical thinking, problem-solving, and communication . These skills can be useful in a wide range of career fields, including academia, healthcare, and government.
  • Ethical research is a professional obligation. By conducting research ethically, students are fulfilling their obligations to the wider research community.

Research as an Iterative, Recursive, Chaotic Process

Research is commonly depicted on websites and textbooks on research methods as systematic work (see, e.g., Wikipedia’s Research page).

Depicting research as systematic work is certainly valid, especially in natural and social science research. For instance, scientists in the lab working with a virus like COVID-19 or Ebola aren’t going to play around. Their professionalism and safety is tied to rigorously following research protocols.

That said, it’s an oversimplification to suggest research processes are invariably systematic. Discoveries have emerged from basic research that have been wildly popular and useful real-world applications . (See, for example, 24 Unintended Scientific Discoveries — the video below). Scientists may begin researching hypothesis A but rewrite that hypothesis multiple times until they find hypothesis Z — something that explains the data. Then they go back and repackage their investigation, following ethical standards, for a wider audience.

Ultimately, because research is such an iterative process, the thesis or hypothesis a researcher began with may not be the one the researcher ends up with. The takeaway here is that research is a learning process. Research efforts can lead to unpredictable applications and insights. Research finds evidence. Ultimately, research is about curiosity and openness. The question that initiates a research effort may morph into other questions as researchers

  • dig deeper into the literature on the topic and become more conversant
  • endeavor to make sense of the data/information they have gathered during the conduct of the study.

definition of a research concept

Related Concepts

Research methods.

Research results— knowledge claims -—are important. But, how researchers claim to know what they know—their research methods and research methodology —are equally important.

During the early stages of a writing project, you can identify research questions worth asking by engaging in Information Literacy practices.

Using Evidence

Learn to summarize,  paraphrase , and  cite sources . Weave others’ ideas and words into your texts in ways that support your  thesis/research question ,  information ,  rhetorical stance .

Hale, J. (2018). Understanding research methodology 5: Applied and basic research, PsychCentral . https://psychcentral.com/blog/understanding-research-methodology-5-applied-and-basic-research/

Related Articles:

Applied Research, Basic Research

Applied Research, Basic Research

Research Ethics

Research Methodology

Research Methods

Scholarship

Suggested edits.

  • Please select the purpose of your message. * - Corrections, Typos, or Edits Technical Support/Problems using the site Advertising with Writing Commons Copyright Issues I am contacting you about something else
  • Your full name
  • Your email address *
  • Page URL needing edits *
  • Name This field is for validation purposes and should be left unchanged.

Applied Research, Basic Research

  • Joseph M. Moxley

Understand the difference between Applied Research and Basic Research.

Research Ethics

As an investigator be sure to protect your research subjects and follow ethical standards. As a consumer of research, be mindful of when investigators may be exaggerating results, making claims...

Research Methodology

Not all research methods are equal or produce the same kind of knowledge. Learn about the philosophies, the epistemologies, that inform qualitative, quantitative, mixed, and textual research methods.

Research Methods

Understand how to identify appropriate research methods for particular methodological communities, rhetorical situations, and research questions.

Scholarship is not just about memorizing facts or regurgitating information. It’s about developing a deep understanding of a subject, making connections across disciplines, and contributing to the ongoing conversation about...

Featured Articles

Student engrossed in reading on her laptop, surrounded by a stack of books

Academic Writing – How to Write for the Academic Community

definition of a research concept

Professional Writing – How to Write for the Professional World

definition of a research concept

Authority – How to Establish Credibility in Speech & Writing

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

definition of a research concept

Home Market Research

Conceptual Research: Definition, Framework, Example and Advantages

conceptual research

Conceptual Research: Definition

Conceptual research is defined as a methodology wherein research is conducted by observing and analyzing already present information on a given topic. Conceptual research doesn’t involve conducting any practical experiments. It is related to abstract concepts or ideas. Philosophers have long used conceptual research to develop new theories or interpret existing theories in a different light.

For example, Copernicus used conceptual research to come up with the concepts of stellar constellations based on his observations of the universe. Down the line, Galileo simplified Copernicus’s research by making his own conceptual observations which gave rise to more experimental research and confirmed the predictions made at that time.

The most famous example of conceptual research is Sir Issac Newton. He observed his surroundings to conceptualize and develop theories about gravitation and motion.

Einstein is widely known and appreciated for his work on conceptual research. Although his theories were based on conceptual observations, Einstein also proposed experiments to come up with theories to test the conceptual research.

Nowadays, conceptual research is used to answer business questions and solve real-world problems. Researchers use analytical research tools called conceptual frameworks to make conceptual distinctions and organize ideas required for research purposes.

Conceptual Research Framework

Conceptual research framework constitutes of a researcher’s combination of previous research and associated work and explains the occurring phenomenon. It systematically explains the actions needed in the course of the research study based on the knowledge obtained from other ongoing research and other researchers’ points of view on the subject matter.

Here is a stepwise guide on how to create the conceptual research framework:

01. Choose the topic for research

Before you start working on collecting any research material, you should have decided on your topic for research. It is important that the topic is selected beforehand and should be within your field of specialization.

02. Collect relevant literature

Once you have narrowed down a topic, it is time to collect relevant information about it. This is an important step, and much of your research is dependent on this particular step, as conceptual research is mostly based on information obtained from previous research. Here collecting relevant literature and information is the key to successfully completing research.

The material that you should preferably use is scientific journals , research papers published by well-known scientists , and similar material. There is a lot of information available on the internet and in public libraries as well. All the information that you find on the internet may not be relevant or true. So before you use the information, make sure you verify it.  

03. Identify specific variables

Identify the specific variables that are related to the research study you want to conduct. These variables can give your research a new scope and can also help you identify how these can be related to your research design . For example, consider hypothetically you want to conduct research about the occurrence of cancer in married women. Here the two variables that you will be concentrating on are married women and cancer.

While collecting relevant literature, you understand that the spread of cancer is more aggressive in married women who are beyond 40 years of age. Here there is a third variable which is age, and this is a relevant variable that can affect the end result of your research.  

04. Generate the framework

In this step, you start building the required framework using the mix of variables from the scientific articles and other relevant materials. The research problem statement in your research becomes the research framework. Your attempt to start answering the question becomes the basis of your research study. The study is carried out to reduce the knowledge gap and make available more relevant and correct information.

Example of Conceptual Research Framework

Thesis statement/ Purpose of research: Chronic exposure to sunlight can lead to precancerous (actinic keratosis), cancerous (basal cell carcinoma, squamous cell carcinoma, and melanoma), and even skin lesions (caused by loss of skin’s immune function) in women over 40 years of age.

The study claims that constant exposure to sunlight can cause the precancerous condition and can eventually lead to cancer and other skin abnormalities. Those affected by these experience symptoms like fatigue, fine or coarse wrinkles, discoloration of the skin, freckles, and a burning sensation in the more exposed areas.

Note that in this study, there are two variables associated- cancer and women over 40 years in the African subcontinent. But one is a dependent variable (women over 40 years, in the African subcontinent), and the other is an independent variable (cancer). Cumulative exposure to the sun till the age of 18 years can lead to symptoms similar to skin cancer. If this is not taken care of, there are chances that cancer can spread entirely.

Assuming that the other factors are constant during the research period, it will be possible to correlate the two variables and thus confirm that, indeed, chronic exposure to sunlight causes cancer in women over the age of 40 in the African subcontinent. Further, correlational research can verify this association further.

Advantages of Conceptual Research

1. Conceptual research mainly focuses on the concept of the research or the theory that explains a phenomenon. What causes the phenomenon, what are its building blocks, and so on? It’s research based on pen and paper.

2. This type of research heavily relies on previously conducted studies; no form of experiment is conducted, which saves time, effort, and resources. More relevant information can be generated by conducting conceptual research.

3. Conceptual research is considered the most convenient form of research. In this type of research, if the conceptual framework is ready, only relevant information and literature need to be sorted.

QuestionPro for Conceptual Research

QuestionPro offers readily available conceptual frameworks. These frameworks can be used to research consumer trust, customer satisfaction (CSAT) , product evaluations, etc. You can select from a wide range of templates question types, and examples curated by expert researchers.

We also help you decide which conceptual framework might be best suited for your specific situation.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

NPS Survey Platform

NPS Survey Platform: Types, Tips, 11 Best Platforms & Tools

Apr 26, 2024

user journey vs user flow

User Journey vs User Flow: Differences and Similarities

gap analysis tools

Best 7 Gap Analysis Tools to Empower Your Business

Apr 25, 2024

employee survey tools

12 Best Employee Survey Tools for Organizational Excellence

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

How Pew Research Center will report on generations moving forward

Journalists, researchers and the public often look at society through the lens of generation, using terms like Millennial or Gen Z to describe groups of similarly aged people. This approach can help readers see themselves in the data and assess where we are and where we’re headed as a country.

Pew Research Center has been at the forefront of generational research over the years, telling the story of Millennials as they came of age politically and as they moved more firmly into adult life . In recent years, we’ve also been eager to learn about Gen Z as the leading edge of this generation moves into adulthood.

But generational research has become a crowded arena. The field has been flooded with content that’s often sold as research but is more like clickbait or marketing mythology. There’s also been a growing chorus of criticism about generational research and generational labels in particular.

Recently, as we were preparing to embark on a major research project related to Gen Z, we decided to take a step back and consider how we can study generations in a way that aligns with our values of accuracy, rigor and providing a foundation of facts that enriches the public dialogue.

A typical generation spans 15 to 18 years. As many critics of generational research point out, there is great diversity of thought, experience and behavior within generations.

We set out on a yearlong process of assessing the landscape of generational research. We spoke with experts from outside Pew Research Center, including those who have been publicly critical of our generational analysis, to get their take on the pros and cons of this type of work. We invested in methodological testing to determine whether we could compare findings from our earlier telephone surveys to the online ones we’re conducting now. And we experimented with higher-level statistical analyses that would allow us to isolate the effect of generation.

What emerged from this process was a set of clear guidelines that will help frame our approach going forward. Many of these are principles we’ve always adhered to , but others will require us to change the way we’ve been doing things in recent years.

Here’s a short overview of how we’ll approach generational research in the future:

We’ll only do generational analysis when we have historical data that allows us to compare generations at similar stages of life. When comparing generations, it’s crucial to control for age. In other words, researchers need to look at each generation or age cohort at a similar point in the life cycle. (“Age cohort” is a fancy way of referring to a group of people who were born around the same time.)

When doing this kind of research, the question isn’t whether young adults today are different from middle-aged or older adults today. The question is whether young adults today are different from young adults at some specific point in the past.

To answer this question, it’s necessary to have data that’s been collected over a considerable amount of time – think decades. Standard surveys don’t allow for this type of analysis. We can look at differences across age groups, but we can’t compare age groups over time.

Another complication is that the surveys we conducted 20 or 30 years ago aren’t usually comparable enough to the surveys we’re doing today. Our earlier surveys were done over the phone, and we’ve since transitioned to our nationally representative online survey panel , the American Trends Panel . Our internal testing showed that on many topics, respondents answer questions differently depending on the way they’re being interviewed. So we can’t use most of our surveys from the late 1980s and early 2000s to compare Gen Z with Millennials and Gen Xers at a similar stage of life.

This means that most generational analysis we do will use datasets that have employed similar methodologies over a long period of time, such as surveys from the U.S. Census Bureau. A good example is our 2020 report on Millennial families , which used census data going back to the late 1960s. The report showed that Millennials are marrying and forming families at a much different pace than the generations that came before them.

Even when we have historical data, we will attempt to control for other factors beyond age in making generational comparisons. If we accept that there are real differences across generations, we’re basically saying that people who were born around the same time share certain attitudes or beliefs – and that their views have been influenced by external forces that uniquely shaped them during their formative years. Those forces may have been social changes, economic circumstances, technological advances or political movements.

When we see that younger adults have different views than their older counterparts, it may be driven by their demographic traits rather than the fact that they belong to a particular generation.

The tricky part is isolating those forces from events or circumstances that have affected all age groups, not just one generation. These are often called “period effects.” An example of a period effect is the Watergate scandal, which drove down trust in government among all age groups. Differences in trust across age groups in the wake of Watergate shouldn’t be attributed to the outsize impact that event had on one age group or another, because the change occurred across the board.

Changing demographics also may play a role in patterns that might at first seem like generational differences. We know that the United States has become more racially and ethnically diverse in recent decades, and that race and ethnicity are linked with certain key social and political views. When we see that younger adults have different views than their older counterparts, it may be driven by their demographic traits rather than the fact that they belong to a particular generation.

Controlling for these factors can involve complicated statistical analysis that helps determine whether the differences we see across age groups are indeed due to generation or not. This additional step adds rigor to the process. Unfortunately, it’s often absent from current discussions about Gen Z, Millennials and other generations.

When we can’t do generational analysis, we still see value in looking at differences by age and will do so where it makes sense. Age is one of the most common predictors of differences in attitudes and behaviors. And even if age gaps aren’t rooted in generational differences, they can still be illuminating. They help us understand how people across the age spectrum are responding to key trends, technological breakthroughs and historical events.

Each stage of life comes with a unique set of experiences. Young adults are often at the leading edge of changing attitudes on emerging social trends. Take views on same-sex marriage , for example, or attitudes about gender identity .

Many middle-aged adults, in turn, face the challenge of raising children while also providing care and support to their aging parents. And older adults have their own obstacles and opportunities. All of these stories – rooted in the life cycle, not in generations – are important and compelling, and we can tell them by analyzing our surveys at any given point in time.

When we do have the data to study groups of similarly aged people over time, we won’t always default to using the standard generational definitions and labels. While generational labels are simple and catchy, there are other ways to analyze age cohorts. For example, some observers have suggested grouping people by the decade in which they were born. This would create narrower cohorts in which the members may share more in common. People could also be grouped relative to their age during key historical events (such as the Great Recession or the COVID-19 pandemic) or technological innovations (like the invention of the iPhone).

By choosing not to use the standard generational labels when they’re not appropriate, we can avoid reinforcing harmful stereotypes or oversimplifying people’s complex lived experiences.

Existing generational definitions also may be too broad and arbitrary to capture differences that exist among narrower cohorts. A typical generation spans 15 to 18 years. As many critics of generational research point out, there is great diversity of thought, experience and behavior within generations. The key is to pick a lens that’s most appropriate for the research question that’s being studied. If we’re looking at political views and how they’ve shifted over time, for example, we might group people together according to the first presidential election in which they were eligible to vote.

With these considerations in mind, our audiences should not expect to see a lot of new research coming out of Pew Research Center that uses the generational lens. We’ll only talk about generations when it adds value, advances important national debates and highlights meaningful societal trends.

  • Age & Generations
  • Demographic Research
  • Generation X
  • Generation Z
  • Generations
  • Greatest Generation
  • Methodological Research
  • Millennials
  • Silent Generation

Kim Parker's photo

Kim Parker is director of social trends research at Pew Research Center

How Teens and Parents Approach Screen Time

Who are you the art and science of measuring identity, u.s. centenarian population is projected to quadruple over the next 30 years, older workers are growing in number and earning higher wages, teens, social media and technology 2023, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

IMAGES

  1. Concept

    definition of a research concept

  2. PPT

    definition of a research concept

  3. What is conceptual research: Definition & examples

    definition of a research concept

  4. What is Research

    definition of a research concept

  5. Research Concept Map: Definition, Templates and Tutorial

    definition of a research concept

  6. PPT

    definition of a research concept

VIDEO

  1. THEORETICAL FRAMEWORK CHECKLISTS l PART 2

  2. Definition and Concepts of Research? key points of research.#Research

  3. 1.1.Definition of Research

  4. Definition and Types of Research Explained

  5. LECTURE 1. THE MEANING OF RESEARCH

COMMENTS

  1. Concept

    Definition: Concept is a mental representation or an abstract idea that we use to understand and organize the world around us. It is a general notion that summarizes and simplifies complex information or experiences, making it easier to communicate and process. For example, the concept of "love" is an abstract idea that represents a range ...

  2. (PDF) What is research? A conceptual understanding

    Research is a systematic endeavor to acquire understanding, broaden knowledge, or find answers to unanswered questions. It is a methodical and structured undertaking to investigate the natural and ...

  3. 1.4 Understanding Key Research Concepts and Terms

    Figure 1.1 is intentioned to provide a general overview of the research concept. You may want to keep this figure handy as you read through the various chapters. Figure 1.3: Shows the research paradigms and research process. Figure 1.3 by JIBC is licensed under a CC BY-NC-SA 4.0 License. Ontology & Epistemology

  4. Research

    A keen interest in the chosen subject area is advisable. The research will have to be justified by linking its importance to already existing knowledge about the topic. Hypothesis: A testable prediction which designates the relationship between two or more variables. Conceptual definition: Description of a concept by relating it to other concepts.

  5. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  6. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  7. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  8. What Is Research?

    Research is the deliberate, purposeful, and systematic gathering of data, information, facts, and/or opinions for the advancement of personal, societal, or overall human knowledge. Based on this definition, we all do research all the time. Most of this research is casual research. Asking friends what they think of different restaurants, looking ...

  9. PDF 1 What is Research?

    Introduction Social research is persuasive Social research is purposive Social research is positional Social research is political Traditions of enquiry: false dichotomies Ethics: pause for reflection. 4. 5. v be able to define 'research'. v be able to respond to the view that social research is persuasive, purposive, positional and political.

  10. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  11. 4 Defining and Measuring Concepts

    4.1 Concepts and Operationalization. We begin with concepts. We want to study resiliency, or health, or gentrification, or happiness. These are all concepts, abstract ideas or general notions that occur in the mind, in speech, or in thought. The name used to identify a concept is a "term". For instance, the term "toughness" is a concept.

  12. 2.2: Concepts, Constructs, and Variables

    As shown in Figure 2.1, scientific research proceeds along two planes: a theoretical plane and an empirical plane. Constructs are conceptualized at the theoretical (abstract) plane, while variables are operationalized and measured at the empirical (observational) plane. Thinking like a researcher implies the ability to move back and forth ...

  13. The Basic Concepts of Research: the Key to Getting Started in Research

    A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed, and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary ...

  14. Nature of Research

    2.1 Concept. Research is a creative and systematic activity undertaken to increase the stock of knowledge, relating to society, culture and nature, and the use of this stock of knowledge to devise new applications. Research aims to provide answers and solutions to a range of research questions and problems.

  15. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  16. PDF Why research is important

    A useful working definition of research is: a systematic process of critical inquiry leading to valid propositions and conclusions that are communicated to interested others. Breaking this definition down into its component meanings allows some of the assumptions that lie behind it to be made explicit: 1 The concept of critical inquiry ...

  17. 2.2 Conceptual and operational definitions

    2.2 Conceptual and operational definitions. Research studies usually include terms that must be carefully and precisely defined, so that others know exactly what has been done and there are no ambiguities. Two types of definitions can be given: conceptual definitions and operational definitions. Loosely speaking, a conceptual definition explains what to measure or observe (what a word or a ...

  18. Research Concept and Definition with Examples

    Definition of Research Let's see what the scholars say about the research concepts and definitions. American Sociologist Earl Robert Babbie, "Research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. Research involves inductive and deductive methods." Cambridge English Dictionary defined Research as-

  19. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  20. Research Definition

    Research. Research refers to a systematic investigation carried out to discover new knowledge, expand existing knowledge, solve practical problems, and develop new products, apps, and services. This article explores why different research communities have different ideas about what research is and how to conduct it.

  21. PDF Unit: 01 Research: Meaning, Types, Scope and Significance

    1.3 Meaning of Research 1.4 Definition of Research 1.5 Characteristics of Research 1.6 Types of Research 1.7 Methodology of Research 1.8 Formulation of Research Problem 1.9 Research Design 1.9.1 Meaning of Research Design 1.9.2 Characteristics of Research Design 1.9.3 Steps in Research Design 1.10 Concept of Hypotheses

  22. Conceptual Research: Definition, Framework, Example and Advantages

    Conceptual research is defined as a methodology wherein research is conducted by observing and analyzing already present information on a given topic. Conceptual research doesn't involve conducting any practical experiments. It is related to abstract concepts or ideas. Philosophers have long used conceptual research to develop new theories or ...

  23. What is Project Management, Approaches, and PMI

    Research; Education; Since our establishment, we've worked hard to build a proud legacy as a "for-purpose" organization. If that sounds like something you'd like to be a part of, we invite you to learn more about PMI and the impact of our legacy. Advertisement.

  24. How Pew Research Center will report on generations moving forward

    ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions.