StatAnalytica

Top 99+ Trending Statistics Research Topics for Students

statistics research topics

Being a statistics student, finding the best statistics research topics is quite challenging. But not anymore; find the best statistics research topics now!!!

Statistics is one of the tough subjects because it consists of lots of formulas, equations and many more. Therefore the students need to spend their time to understand these concepts. And when it comes to finding the best statistics research project for their topics, statistics students are always looking for someone to help them. 

In this blog, we will share with you the most interesting and trending statistics research topics in 2023. It will not just help you to stand out in your class but also help you to explore more about the world.

If you face any problem regarding statistics, then don’t worry. You can get the best statistics assignment help from one of our experts.

As you know, it is always suggested that you should work on interesting topics. That is why we have mentioned the most interesting research topics for college students and high school students. Here in this blog post, we will share with you the list of 99+ awesome statistics research topics.

Why Do We Need to Have Good Statistics Research Topics?

Table of Contents

Having a good research topic will not just help you score good grades, but it will also allow you to finish your project quickly. Because whenever we work on something interesting, our productivity automatically boosts. Thus, you need not invest lots of time and effort, and you can achieve the best with minimal effort and time. 

What Are Some Interesting Research Topics?

If we talk about the interesting research topics in statistics, it can vary from student to student. But here are the key topics that are quite interesting for almost every student:-

  • Literacy rate in a city.
  • Abortion and pregnancy rate in the USA.
  • Eating disorders in the citizens.
  • Parent role in self-esteem and confidence of the student.
  • Uses of AI in our daily life to business corporates.

Top 99+ Trending Statistics Research Topics For 2023

Here in this section, we will tell you more than 99 trending statistics research topics:

Sports Statistics Research Topics

  • Statistical analysis for legs and head injuries in Football.
  • Statistical analysis for shoulder and knee injuries in MotoGP.
  • Deep statistical evaluation for the doping test in sports from the past decade.
  • Statistical observation on the performance of athletes in the last Olympics.
  • Role and effect of sports in the life of the student.

Psychology Research Topics for Statistics

  • Deep statistical analysis of the effect of obesity on the student’s mental health in high school and college students.
  • Statistical evolution to find out the suicide reason among students and adults.
  • Statistics analysis to find out the effect of divorce on children in a country.
  • Psychology affects women because of the gender gap in specific country areas.
  • Statistics analysis to find out the cause of online bullying in students’ lives. 
  • In Psychology, PTSD and descriptive tendencies are discussed.
  • The function of researchers in statistical testing and probability.
  • Acceptable significance and probability thresholds in clinical Psychology.
  • The utilization of hypothesis and the role of P 0.05 for improved comprehension.
  • What types of statistical data are typically rejected in psychology?
  • The application of basic statistical principles and reasoning in psychological analysis.
  • The role of correlation is when several psychological concepts are at risk.
  • Actual case study learning and modeling are used to generate statistical reports.
  • In psychology, naturalistic observation is used as a research sample.
  • How should descriptive statistics be used to represent behavioral data sets?

Applied Statistics Research Topics

  • Does education have a deep impact on the financial success of an individual?
  • The investment in digital technology is having a meaningful return for corporations?
  • The gap of financial wealth between rich and poor in the USA.
  • A statistical approach to identify the effects of high-frequency trading in financial markets.
  • Statistics analysis to determine the impact of the multi-agent model in financial markets. 

Personalized Medicine Statistics Research Topics

  • Statistical analysis on the effect of methamphetamine on substance abusers.
  • Deep research on the impact of the Corona vaccine on the Omnicrone variant. 
  • Find out the best cancer treatment approach between orthodox therapies and alternative therapies.
  • Statistics analysis to identify the role of genes in the child’s overall immunity.
  • What factors help the patients to survive from Coronavirus .

Experimental Design Statistics Research Topics

  • Generic vs private education is one of the best for the students and has better financial return.
  • Psychology vs physiology: which leads the person not to quit their addictions?
  • Effect of breastmilk vs packed milk on the infant child overall development
  • Which causes more accidents: male alcoholics vs female alcoholics.
  • What causes the student not to reveal the cyberbullying in front of their parents in most cases. 

Easy Statistics Research Topics

  • Application of statistics in the world of data science
  • Statistics for finance: how statistics is helping the company to grow their finance
  • Advantages and disadvantages of Radar chart
  • Minor marriages in south-east Asia and African countries.
  • Discussion of ANOVA and correlation.
  • What statistical methods are most effective for active sports?
  • When measuring the correctness of college tests, a ranking statistical approach is used.
  • Statistics play an important role in Data Mining operations.
  • The practical application of heat estimation in engineering fields.
  • In the field of speech recognition, statistical analysis is used.
  • Estimating probiotics: how much time is necessary for an accurate statistical sample?
  • How will the United States population grow in the next twenty years?
  • The legislation and statistical reports deal with contentious issues.
  • The application of empirical entropy approaches with online grammar checking.
  • Transparency in statistical methodology and the reporting system of the United States Census Bureau.

Statistical Research Topics for High School

  • Uses of statistics in chemometrics
  • Statistics in business analytics and business intelligence
  • Importance of statistics in physics.
  • Deep discussion about multivariate statistics
  • Uses of Statistics in machine learning

Survey Topics for Statistics

  • Gather the data of the most qualified professionals in a specific area.
  • Survey the time wasted by the students in watching Tvs or Netflix.
  • Have a survey the fully vaccinated people in the USA 
  • Gather information on the effect of a government survey on the life of citizens
  • Survey to identify the English speakers in the world.

Statistics Research Paper Topics for Graduates

  • Have a deep decision of Bayes theorems
  • Discuss the Bayesian hierarchical models
  • Analysis of the process of Japanese restaurants. 
  • Deep analysis of Lévy’s continuity theorem
  • Analysis of the principle of maximum entropy

AP Statistics Topics

  • Discuss about the importance of econometrics
  • Analyze the pros and cons of Probit Model
  • Types of probability models and their uses
  • Deep discussion of ortho stochastic matrix
  • Find out the ways to get an adjacency matrix quickly

Good Statistics Research Topics 

  • National income and the regulation of cryptocurrency.
  • The benefits and drawbacks of regression analysis.
  • How can estimate methods be used to correct statistical differences?
  • Mathematical prediction models vs observation tactics.
  • In sociology research, there is bias in quantitative data analysis.
  • Inferential analytical approaches vs. descriptive statistics.
  • How reliable are AI-based methods in statistical analysis?
  • The internet news reporting and the fluctuations: statistics reports.
  • The importance of estimate in modeled statistics and artificial sampling.

Business Statistics Topics

  • Role of statistics in business in 2023
  • Importance of business statistics and analytics
  • What is the role of central tendency and dispersion in statistics
  • Best process of sampling business data.
  • Importance of statistics in big data.
  • The characteristics of business data sampling: benefits and cons of software solutions.
  • How may two different business tasks be tackled concurrently using linear regression analysis?
  • In economic data relations, index numbers, random probability, and correctness are all important.
  • The advantages of a dataset approach to statistics in programming statistics.
  • Commercial statistics: how should the data be prepared for maximum accuracy?

Statistical Research Topics for College Students

  • Evaluate the role of John Tukey’s contribution to statistics.
  • The role of statistics to improve ADHD treatment.
  • The uses and timeline of probability in statistics.
  • Deep analysis of Gertrude Cox’s experimental design in statistics.
  • Discuss about Florence Nightingale in statistics.
  • What sorts of music do college students prefer?
  • The Main Effect of Different Subjects on Student Performance.
  • The Importance of Analytics in Statistics Research.
  • The Influence of a Better Student in Class.
  • Do extracurricular activities help in the transformation of personalities?
  • Backbenchers’ Impact on Class Performance.
  • Medication’s Importance in Class Performance.
  • Are e-books better than traditional books?
  • Choosing aspects of a subject in college

How To Write Good Statistics Research Topics?

So, the main question that arises here is how you can write good statistics research topics. The trick is understanding the methodology that is used to collect and interpret statistical data. However, if you are trying to pick any topic for your statistics project, you must think about it before going any further. 

As a result, it will teach you about the data types that will be researched because the sample will be chosen correctly. On the other hand, your basic outline for choosing the correct topics is as follows:

  • Introduction of a problem
  • Methodology explanation and choice. 
  • Statistical research itself is in the main part (Body Part). 
  • Samples deviations and variables. 
  • Lastly, statistical interpretation is your last part (conclusion). 

Note:   Always include the sources from which you obtained the statistics data.

Top 3 Tips to Choose Good Statistics Research Topics

It can be quite easy for some students to pick a good statistics research topic without the help of an essay writer. But we know that it is not a common scenario for every student. That is why we will mention some of the best tips that will help you choose good statistics research topics for your next project. Either you are in a hurry or have enough time to explore. These tips will help you in every scenario.

1. Narrow down your research topic

We all start with many topics as we are not sure about our specific interests or niche. The initial step to picking up a good research topic for college or school students is to narrow down the research topic.

For this, you need to categorize the matter first. And then pick a specific category as per your interest. After that, brainstorm about the topic’s content and how you can make the points catchy, focused, directional, clear, and specific. 

2. Choose a topic that gives you curiosity

After categorizing the statistics research topics, it is time to pick one from the category. Don’t pick the most common topic because it will not help your grades and knowledge. Instead of it, please choose the best one, in which you have little information, or you are more likely to explore it.

In a statistics research paper, you always can explore something beyond your studies. By doing this, you will be more energetic to work on this project. And you will also feel glad to get them lots of information you were willing to have but didn’t get because of any reasons.

It will also make your professor happy to see your work. Ultimately it will affect your grades with a positive attitude.

3. Choose a manageable topic

Now you have decided on the topic, but you need to make sure that your research topic should be manageable. You will have limited time and resources to complete your project if you pick one of the deep statistics research topics with massive information.

Then you will struggle at the last moment and most probably not going to finish your project on time. Therefore, spend enough time exploring the topic and have a good idea about the time duration and resources you will use for the project. 

Statistics research topics are massive in numbers. Because statistics operations can be performed on anything from our psychology to our fitness. Therefore there are lots more statistics research topics to explore. But if you are not finding it challenging, then you can take the help of our statistics experts . They will help you to pick the most interesting and trending statistics research topics for your projects. 

With this help, you can also save your precious time to invest it in something else. You can also come up with a plethora of topics of your choice and we will help you to pick the best one among them. Apart from that, if you are working on a project and you are not sure whether that is the topic that excites you to work on it or not. Then we can also help you to clear all your doubts on the statistics research topic. 

Frequently Asked Questions

Q1. what are some good topics for the statistics project.

Have a look at some good topics for statistics projects:- 1. Research the average height and physics of basketball players. 2. Birth and death rate in a specific city or country. 3. Study on the obesity rate of children and adults in the USA. 4. The growth rate of China in the past few years 5. Major causes of injury in Football

Q2. What are the topics in statistics?

Statistics has lots of topics. It is hard to cover all of them in a short answer. But here are the major ones: conditional probability, variance, random variable, probability distributions, common discrete, and many more. 

Q3. What are the top 10 research topics?

Here are the top 10 research topics that you can try in 2023:

1. Plant Science 2. Mental health 3. Nutritional Immunology 4. Mood disorders 5. Aging brains 6. Infectious disease 7. Music therapy 8. Political misinformation 9. Canine Connection 10. Sustainable agriculture

Related Posts

how-to-find-the=best-online-statistics-homework-help

How to Find the Best Online Statistics Homework Help

why-spss-homework-help-is-an-important-aspects-for-students

Why SPSS Homework Help Is An Important aspect for Students?

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

120 Statistical Research Topics: Explore Up-to-date Trends

Statistical Research Topics Latest Trends & Techniques

Researchers and statistics teachers are often tasked with writing an article or paper on a given stats project idea. One of the most crucial things in writing an outstanding and well-composed statistics research project, paper, or essay is to come up with a very interesting topic that will captivate your reader’s minds and provoke their thoughts.

What Are the Best Statistical Research Topics Worth Writing On?

Leading statistical research topics for college students that will interest you, project topics in statistics worth considering, the best idea for statistics project you can focus on, good experiments for statistics topics you should be writing on, what are the best ap statistics project ideas that will be of keen interest to you, good statistics project ideas suitable for our modern world, some of the most crucial survey topics for statistics project, statistical projects topics every researcher wants to write on, statistical research topics you can focus your research on.

Students often find it difficult to come up with well-composed statistical research project topics that take the format of argumentative essay topics to pass across their message. In this essay, we will look at some of the most interesting statistics research topics to focus your research on.

Here are some of the best statistical research topics worth writing on:

  • Predictive Healthcare Modeling with Machine Learning
  • Analyzing Online Education During COVID-19 Epidemic
  • Modeling How Climate Change Affects Natural Disasters
  • Essential Elements Influencing Personnel Productivity
  • Social Media Influence on Customer Choices and Behavior
  • Can Geographical Statistics Aid In Analyzing Crime Trends and Patterns?
  • Financial Markets and Stock Price Predictions
  • Statistical Analysis of Voting-related Behaviors
  • An Analysis of Public Transportation Usage Trends in Urban Areas
  • How Can Public Health Education Reduce Air Pollution?
  • Statistical Analysis of Suicide In Adolescents and Adults
  • A Review of Divorce and How It Affects Children

As a college student, here are the best statistical projects for high school students to focus your research on, especially if you need social media research topics .

  • Major Factors Influencing College Students’ Academic Performance
  • Social Media and How It Defines thee Mental Health of Students
  • Evaluation of the Elements Influencing Student Engagement and Retention
  • An Examination of Extracurricular Activities On Academic Success
  • Does Parental Involvement Determine Academic Achievement of Kids?
  • Examining How Technology Affects Improving Educational Performance
  • Factors That Motivate Students’ Involvement In Online Learning
  • The Impact of Socioeconomic Status On Academic Performance
  • Does Criticism Enhance Student Performance?
  • Student-Centered Learning and Improved Performance
  • A Cursory Look At Students’ Career Goals and Major Life Decisions
  • Does Mental Health Impact Academic Achievement?

Are you a student tasked with writing a project but can’t come up with befitting stats research topics? Here are the best ideas for statistical projects worth considering:

  • Financial Data And Stock Price Forecasting
  • Investigation of Variables Influencing Students’ Grades
  • What Causes Traffic Flow and Congestion In Urban Areas?
  • How to Guarantee Customer Retention In the Retail Sector
  • Using Epidemiological Data to Model the Spread of Infectious Diseases
  • Does Direct Advertisement Affect Consumer Preferences and Behavior?
  • How to Predict and Adapt to Climate Change
  • Using Spatial Statistics to Analyze Trends and Patterns In Crime
  • Examination of the Elements Influencing Workplace Morale and Productivity
  • Understanding User Behavior and Preferences Through Statistical Analysis of Social Media Data
  • How Many Percent Get Married After Their Degree Programs?
  • A Comparative Analysis of Different Academic Fee Payments

If you have been confused based on the availability of different statistics project topics to choose from, here are some of the best thesis statement about social media to choose from:

  • Analysis of the Variables Affecting A Startup’s Success
  • The Valid Connection Between Mental Health and Social Media Use
  • Different Teaching Strategies and Academic Performance
  • Factors Influencing Employee Satisfaction In Different Work Environments
  • The Impact of Public Policy On Different Population Groups
  • Reviewing Different Health Outcomes and Incomes
  • Different Marketing Tactics for Good Service Promotion
  • What Influences Results In Different Sports Competitions?
  • Differentiating Elements Affecting Students’ Performance In A Given Subject
  • Internal Communication and Building An Effective Workplace
  • Does the Use of Business Technologies Boost Workers’ Output?
  • The Role of Modern Communication In An Effective Company Management

Are you a student tasked with writing an essay on social issues research topics but having challenges coming up with a topic? Here are some amazing statistical experiments ideas you can center your research on.

  • How Global Pandemic Affects Local Businesses
  • Investigating the Link Between Income and Health Outcomes In a Demography
  • Key Motivators for Student’s Performance In a Particular Academic Program
  • Evaluating the Success of a Promotional Plan Over Others
  • Continuous Social Media Use and Impact On Mental Health
  • Does Culture Impact the Religious Beliefs of Certain Groups?
  • Key Indicators of War and How to Manage These Indicators
  • An Overview of War As a Money Laundering Scheme
  • How Implementations Guarantee Effectiveness of Laws In Rural Areas
  • Performance of Students In War-torn Areas
  • Key Indicators For Measuring the Success of Your Venture
  • How Providing FAQs Can Help a Business Scale

The best AP statistic project ideas every student especially those interested in research topics for STEM students  will want to write in include:

  • The Most Affected Age Demography By the Covid-19 Pandemic
  • The Health Outcomes Peculiar to a Specific Demography
  • Unusual Ways to Enhance Student Performance In a Classroom
  • How Marketing Efforts Can Determine Promotional Outputs
  • Can Mental Health Solutions Be Provided On Social Media?
  • Assessing How Certain Species Are Affected By Climate Change.
  • What Influences Voter Turnouts In Different Elections?
  • How Many People Have Used Physical Exercises to Improve Mental Health
  • How Financial Circumstances Can Determine Criminal Activities
  • Ways DUI Laws Can Reduce Road Accidents
  • Examining the Connection Between Corruption and Underdevelopment In Africa
  • What Key Elements Do Top Global Firms Engage for Success?

If you need some of the best economics research paper topics , here are the best statistics experiment ideas you can write research on:

  • Retail Client Behaviors and Weather Trends
  • The Impact of Marketing Initiatives On Sales and Customer Retention
  • How Socioeconomic Factors Determine Crime Rates In Different Locations
  • Public and Private School Students: Who Performs Better?
  • How Fitness Affects the Mental Health of People In Different Ages
  • Focus On the Unbanked Employees Globally
  • Does Getting Involve In a Kid’s Life Make Them Better?
  • Dietary Decisions and a Healthy Life
  • Managing Diabetes and High Blood Pressure of a Specific Group
  • How to Engage Different Learning Methods for Effectiveness
  • Understudying the Sleeping Habits of Specific Age Groups
  • How the Numbers Can Help You Create a Brand Recognition

As a student who needs fresh ideas relating to the topic for a statistics project to write on, here are crucial survey topics for statistics that will interest you.

  • Understanding Consumer Spending and Behavior In Different Regions
  • Why Some People in Certain Areas Live Longer than Others
  • Comparative Analysis of Different Customer Behaviors
  • Do Social Media Businesses Benefit More than Physical Businesses?
  • Does a Healthy Work Environment Guarantee Productivity?
  • The Impact of Ethnicity and Religion On Voting Patterns
  • Does Financial Literacy Guarantee Better Money Management?
  • Cultural Identities and Behavioral Patterns
  • How Religious Orientation Determines Social Media Use
  • The Growing Need for Economists Globally
  • Getting Started with Businesses On Social Media
  • Which Is Better: A 9-5 or An Entrepreneurial Job?

Do you want to write on unique statistical experiment ideas? Here are some topics you do not want to miss out on:

  • Consumer Satisfaction-Related Variables on E-Commerce Websites
  • Obesity Rates and Socioeconomic Status In Developed Countries
  • How Marketing Strategies Can Make or Mar Sales Performance
  • The Correlation Between Increased Income and Happiness In Various Nations
  • Regression Models and Forecasting Home Prices
  • Climate Change Affecting Agricultural Production In Specific Areas
  • A Study of Employee Satisfaction In the Healthcare Industry
  • Social Media, Marketing Tactics, and Consumer Behavior In the Fashion Industry
  • Predicting the Risk of Default Among Credit Card Holders In Different Regions
  • Why Crime Rates Are Increasing In Urban Areas than Rural Areas
  • Statistical Evaluation of Methamphetamine’s Impact On Drug Users
  • Genes and a Child’s Total Immunity

Here are some of the most carefully selected stat research topics you can focus on.

  • Social Media’s Effects On Consumer Behavior
  • The Correlation Between Urban Crime Rates and Poverty Levels
  • Physical Exercise and Mental Health Consequences
  • Predictive Modeling In the Financial Markets
  • How Minimum Wage Regulations Impact Employment Rates
  • Healthcare Outcomes and Access Across Various Socioeconomic Groups
  • How High School Students’ Environment Affect Academic Performance
  • Automated Technology and Employment Loss
  • Environmental Elements and Their Effects On Public Health
  • Various Advertising Tactics and How They Influence Customer Behavior
  • Political Polarization And Economic Inequality
  • Climate Change and Agricultural Productivity

The above statistics final project examples will stimulate your curiosity and test your abilities, and they can even be linked to some biochemistry topics and anatomy research paper topics . Writing about these statistics project ideas helps provide a deeper grasp of the natural and social phenomena that affect our lives and the environment by studying these subjects.

Leave a Reply Cancel reply

  • Privacy Policy

Research Method

Home » 500+ Statistics Research Topics

500+ Statistics Research Topics

Statistics Research Topics

Statistics is a branch of mathematics that deals with the collection, analysis, interpretation, presentation, and organization of data . It is a fundamental tool used in various fields such as business, social sciences, engineering, healthcare, and many more. As a research topic , statistics can be a fascinating subject to explore, as it allows researchers to investigate patterns, trends, and relationships within data. With the help of statistical methods, researchers can make informed decisions and draw valid conclusions based on empirical evidence. In this post, we will explore some interesting statistics research topics that can be pursued by researchers to further expand our understanding of this field.

Statistics Research Topics

Statistics Research Topics are as follows:

  • Analysis of the effectiveness of different marketing strategies on consumer behavior.
  • An investigation into the relationship between economic growth and environmental sustainability.
  • A study of the effects of social media on mental health and well-being.
  • A comparative analysis of the educational outcomes of public and private schools.
  • The impact of climate change on agriculture and food security.
  • A survey of the prevalence and causes of workplace stress in different industries.
  • A statistical analysis of crime rates in urban and rural areas.
  • An evaluation of the effectiveness of alternative medicine treatments.
  • A study of the relationship between income inequality and health outcomes.
  • A comparative analysis of the effectiveness of different weight loss programs.
  • An investigation into the factors that affect job satisfaction among employees.
  • A statistical analysis of the relationship between poverty and crime.
  • A study of the factors that influence the success of small businesses.
  • A survey of the prevalence and causes of childhood obesity.
  • An evaluation of the effectiveness of drug addiction treatment programs.
  • A statistical analysis of the relationship between gender and leadership in organizations.
  • A study of the relationship between parental involvement and academic achievement.
  • An investigation into the causes and consequences of income inequality.
  • A comparative analysis of the effectiveness of different types of therapy for mental health conditions.
  • A survey of the prevalence and causes of substance abuse among teenagers.
  • An evaluation of the effectiveness of online education compared to traditional classroom learning.
  • A statistical analysis of the impact of globalization on different industries.
  • A study of the relationship between social media use and political polarization.
  • An investigation into the factors that influence customer loyalty in the retail industry.
  • A comparative analysis of the effectiveness of different types of advertising.
  • A survey of the prevalence and causes of workplace discrimination.
  • An evaluation of the effectiveness of different types of employee training programs.
  • A statistical analysis of the relationship between air pollution and health outcomes.
  • A study of the factors that affect employee turnover rates.
  • An investigation into the causes and consequences of income mobility.
  • A comparative analysis of the effectiveness of different types of leadership styles.
  • A survey of the prevalence and causes of mental health disorders among college students.
  • An evaluation of the effectiveness of different types of cancer treatments.
  • A statistical analysis of the impact of social media influencers on consumer behavior.
  • A study of the factors that influence the adoption of renewable energy sources.
  • An investigation into the relationship between alcohol consumption and health outcomes.
  • A comparative analysis of the effectiveness of different types of conflict resolution strategies.
  • A survey of the prevalence and causes of childhood poverty.
  • An evaluation of the effectiveness of different types of diversity training programs.
  • A statistical analysis of the relationship between immigration and economic growth.
  • A study of the factors that influence customer satisfaction in the service industry.
  • An investigation into the causes and consequences of urbanization.
  • A comparative analysis of the effectiveness of different types of economic policies.
  • A survey of the prevalence and causes of elder abuse.
  • An evaluation of the effectiveness of different types of rehabilitation programs for prisoners.
  • A statistical analysis of the impact of automation on different industries.
  • A study of the factors that influence employee productivity in the workplace.
  • An investigation into the causes and consequences of gentrification.
  • A comparative analysis of the effectiveness of different types of humanitarian aid.
  • A survey of the prevalence and causes of homelessness.
  • Exploring the relationship between socioeconomic status and access to healthcare services
  • An analysis of the relationship between parental education level and children’s academic performance.
  • Exploring the effects of different statistical models on prediction accuracy in machine learning.
  • The Impact of Social Media on Consumer Behavior: A Statistical Analysis
  • Bayesian hierarchical modeling for network data analysis
  • Spatial statistics and modeling for environmental data
  • Nonparametric methods for time series analysis
  • Bayesian inference for high-dimensional data analysis
  • Multivariate analysis for genetic data
  • Machine learning methods for predicting financial markets
  • Causal inference in observational studies
  • Sampling design and estimation for complex surveys
  • Robust statistical methods for outlier detection
  • Statistical inference for large-scale simulations
  • Survival analysis and its applications in medical research
  • Mixture models for clustering and classification
  • Time-varying coefficient models for longitudinal data
  • Multilevel modeling for complex data structures
  • Graphical modeling and Bayesian networks
  • Experimental design for clinical trials
  • Inference for network data using stochastic block models
  • Nonlinear regression modeling for data with complex structures
  • Statistical learning for social network analysis
  • Time series forecasting using deep learning methods
  • Model selection and variable importance in high-dimensional data
  • Spatial point process modeling for environmental data
  • Bayesian spatial modeling for disease mapping
  • Functional data analysis for longitudinal studies
  • Bayesian network meta-analysis
  • Statistical methods for big data analysis
  • Mixed-effects models for longitudinal data
  • Clustering algorithms for text data
  • Bayesian modeling for spatiotemporal data
  • Multivariate analysis for ecological data
  • Statistical analysis of genomic data
  • Bayesian network inference for gene regulatory networks
  • Principal component analysis for high-dimensional data
  • Time series analysis of financial data
  • Multivariate survival analysis for complex outcomes
  • Nonparametric estimation of causal effects
  • Bayesian network analysis of complex systems
  • Statistical inference for multilevel network data
  • Generalized linear mixed models for non-normal data
  • Bayesian inference for dynamic systems
  • Latent variable modeling for categorical data
  • Statistical inference for social network data
  • Regression models for panel data
  • Bayesian spatiotemporal modeling for climate data
  • Predictive modeling for customer behavior analysis
  • Nonlinear time series analysis for ecological systems
  • Statistical modeling for image analysis
  • Bayesian hierarchical modeling for longitudinal data
  • Network-based clustering for high-dimensional data
  • Bayesian spatial modeling for ecological systems.
  • Analysis of the Effect of Climate Change on Crop Yields: A Case Study
  • Examining the Relationship Between Physical Activity and Mental Health in Young Adults
  • A Comparative Study of Crime Rates in Urban and Rural Areas Using Statistical Methods
  • Investigating the Effect of Online Learning on Student Performance in Mathematics
  • A Statistical Analysis of the Relationship Between Economic Growth and Environmental Sustainability
  • Evaluating the Effectiveness of Different Marketing Strategies for E-commerce Businesses
  • Identifying the Key Factors Affecting Customer Loyalty in the Hospitality Industry
  • An Analysis of the Factors Influencing Student Dropout Rates in Higher Education
  • Examining the Impact of Gender on Salary Disparities in the Workplace Using Statistical Methods
  • Investigating the Relationship Between Physical Fitness and Academic Performance in High School Students
  • Analyzing the Effect of Social Support on Mental Health in Elderly Populations
  • A Comparative Study of Different Methods for Forecasting Stock Prices
  • Investigating the Effect of Online Reviews on Consumer Purchasing Decisions
  • Identifying the Key Factors Affecting Employee Turnover Rates in the Technology Industry
  • Analyzing the Effect of Advertising on Brand Awareness and Purchase Intentions
  • A Study of the Relationship Between Health Insurance Coverage and Healthcare Utilization
  • Examining the Effect of Parental Involvement on Student Achievement in Elementary School
  • Investigating the Impact of Social Media on Political Campaigns Using Statistical Methods
  • A Comparative Analysis of Different Methods for Detecting Fraud in Financial Transactions
  • Analyzing the Relationship Between Entrepreneurial Characteristics and Business Success
  • Investigating the Effect of Job Satisfaction on Employee Performance in the Service Industry
  • Identifying the Key Factors Affecting the Adoption of Renewable Energy Technologies
  • A Study of the Relationship Between Personality Traits and Academic Achievement
  • Examining the Impact of Social Media on Body Image and Self-Esteem in Adolescents
  • Investigating the Effect of Mobile Advertising on Consumer Behavior
  • Analyzing the Relationship Between Healthcare Expenditures and Health Outcomes Using Statistical Methods
  • A Comparative Study of Different Methods for Analyzing Customer Satisfaction Data
  • Investigating the Impact of Economic Factors on Voter Behavior Using Statistical Methods
  • Identifying the Key Factors Affecting Student Retention Rates in Community Colleges
  • Analyzing the Relationship Between Workplace Diversity and Organizational Performance
  • Investigating the Effect of Gamification on Learning and Motivation in Education
  • A Study of the Relationship Between Social Support and Depression in Cancer Patients
  • Examining the Impact of Technology on the Travel Industry Using Statistical Methods
  • Investigating the Effect of Customer Service Quality on Customer Loyalty in the Retail Industry
  • Analyzing the Relationship Between Internet Usage and Social Isolation in Older Adults
  • A Comparative Study of Different Methods for Predicting Customer Churn in Telecommunications
  • Investigating the Impact of Social Media on Consumer Attitudes Towards Brands Using Statistical Methods
  • Identifying the Key Factors Affecting Student Success in Online Learning Environments
  • Analyzing the Relationship Between Employee Engagement and Organizational Commitment
  • Investigating the Effect of Customer Reviews on Sales in E-commerce Businesses
  • A Study of the Relationship Between Political Ideology and Attitudes Towards Climate Change
  • Examining the Impact of Technological Innovations on the Manufacturing Industry Using Statistical Methods
  • Investigating the Effect of Social Support on Postpartum Depression in New Mothers
  • Analyzing the Relationship Between Cultural Intelligence and Cross-Cultural Adaptation
  • Investigating the relationship between socioeconomic status and health outcomes using statistical methods.
  • Analyzing trends in crime rates and identifying factors that contribute to them using statistical methods.
  • Examining the effectiveness of different advertising strategies using statistical analysis of consumer behavior.
  • Identifying factors that influence voting behavior and election outcomes using statistical methods.
  • Investigating the relationship between employee satisfaction and productivity in the workplace using statistical methods.
  • Developing new statistical models to better understand the spread of infectious diseases.
  • Analyzing the impact of climate change on global food production using statistical methods.
  • Identifying patterns and trends in social media data using statistical methods.
  • Investigating the relationship between social networks and mental health using statistical methods.
  • Developing new statistical models to predict financial market trends and identify investment opportunities.
  • Analyzing the effectiveness of different educational programs and interventions using statistical methods.
  • Investigating the impact of environmental factors on public health using statistical methods.
  • Developing new statistical models to analyze complex biological systems and identify new drug targets.
  • Analyzing trends in consumer spending and identifying factors that influence buying behavior using statistical methods.
  • Investigating the relationship between diet and health outcomes using statistical methods.
  • Developing new statistical models to analyze gene expression data and identify biomarkers for disease.
  • Analyzing patterns in crime data to predict future crime rates and improve law enforcement strategies.
  • Investigating the effectiveness of different medical treatments using statistical methods.
  • Developing new statistical models to analyze the impact of air pollution on public health.
  • Analyzing trends in global migration and identifying factors that influence migration patterns using statistical methods.
  • Investigating the impact of automation on the job market using statistical methods.
  • Developing new statistical models to analyze climate data and predict future climate trends.
  • Analyzing trends in online shopping behavior and identifying factors that influence consumer decisions using statistical methods.
  • Investigating the impact of social media on political discourse using statistical methods.
  • Developing new statistical models to analyze gene-environment interactions and identify new disease risk factors.
  • Analyzing trends in the stock market and identifying factors that influence investment decisions using statistical methods.
  • Investigating the impact of early childhood education on long-term academic and social outcomes using statistical methods.
  • Developing new statistical models to analyze the relationship between human behavior and the environment.
  • Analyzing trends in the use of renewable energy and identifying factors that influence adoption rates using statistical methods.
  • Investigating the impact of immigration on labor market outcomes using statistical methods.
  • Developing new statistical models to analyze the relationship between social determinants and health outcomes.
  • Analyzing patterns in customer churn to predict future customer behavior and improve business strategies.
  • Investigating the effectiveness of different marketing strategies using statistical methods.
  • Developing new statistical models to analyze the relationship between air pollution and climate change.
  • Analyzing trends in global tourism and identifying factors that influence travel behavior using statistical methods.
  • Investigating the impact of social media on mental health using statistical methods.
  • Developing new statistical models to analyze the impact of transportation on the environment.
  • Analyzing trends in global trade and identifying factors that influence trade patterns using statistical methods.
  • Investigating the impact of social networks on political participation using statistical methods.
  • Developing new statistical models to analyze the relationship between climate change and biodiversity loss.
  • Analyzing trends in the use of alternative medicine and identifying factors that influence adoption rates using statistical methods.
  • Investigating the impact of technological change on the labor market using statistical methods.
  • Developing new statistical models to analyze the impact of climate change on agriculture.
  • Investigating the impact of social media on mental health: A longitudinal study.
  • A comparison of the effectiveness of different types of teaching methods on student learning outcomes.
  • Examining the relationship between sleep duration and productivity among college students.
  • A study of the factors that influence employee job satisfaction in the tech industry.
  • Analyzing the relationship between income level and health outcomes among low-income populations.
  • Investigating the effectiveness of online learning platforms for high school students.
  • A study of the factors that contribute to success in online entrepreneurship.
  • Analyzing the impact of climate change on agricultural productivity in developing countries.
  • A comparison of different statistical models for predicting stock market trends.
  • Examining the impact of sports on mental health: A cross-sectional study.
  • A study of the factors that influence employee retention in the hospitality industry.
  • Analyzing the impact of cultural differences on international business negotiations.
  • Investigating the effectiveness of different weight loss interventions for obese individuals.
  • A study of the relationship between personality traits and academic achievement.
  • Examining the impact of technology on job displacement: A longitudinal study.
  • A comparison of the effectiveness of different types of advertising strategies on consumer behavior.
  • Analyzing the impact of environmental regulations on corporate profitability.
  • Investigating the effectiveness of different types of therapy for treating depression.
  • A study of the factors that contribute to success in e-commerce.
  • Examining the relationship between social support and mental health in the elderly population.
  • A comparison of different statistical methods for analyzing complex survey data.
  • Analyzing the impact of employee diversity on organizational performance.
  • Investigating the effectiveness of different types of exercise for improving cardiovascular health.
  • A study of the relationship between emotional intelligence and job performance.
  • Examining the impact of work-life balance on employee well-being.
  • A comparison of the effectiveness of different types of financial education programs for low-income populations.
  • Analyzing the impact of air pollution on respiratory health in urban areas.
  • Investigating the relationship between personality traits and leadership effectiveness.
  • A study of the factors that influence consumer behavior in the luxury goods market.
  • Examining the impact of social networks on political participation: A cross-sectional study.
  • A comparison of different statistical methods for analyzing survival data.
  • Analyzing the impact of government policies on income inequality.
  • Investigating the effectiveness of different types of counseling for substance abuse.
  • A study of the relationship between cultural values and consumer behavior.
  • Examining the impact of technology on privacy: A longitudinal study.
  • A comparison of the effectiveness of different types of online marketing strategies.
  • Analyzing the impact of the gig economy on job satisfaction: A cross-sectional study.
  • Investigating the effectiveness of different types of education interventions for improving financial literacy.
  • A study of the factors that contribute to success in social entrepreneurship.
  • Examining the impact of gender diversity on board performance in publicly-traded companies.
  • A comparison of different statistical methods for analyzing panel data.
  • Analyzing the impact of employee involvement in decision-making on organizational performance.
  • Investigating the effectiveness of different types of treatment for anxiety disorders.
  • A study of the relationship between cultural values and entrepreneurial success.
  • Examining the impact of technology on the labor market: A longitudinal study.
  • A comparison of the effectiveness of different types of direct mail campaigns.
  • Analyzing the impact of telecommuting on employee productivity: A cross-sectional study.
  • Investigating the effectiveness of different types of retirement planning interventions for low-income individuals.
  • Analyzing the effectiveness of different educational interventions in improving student performance
  • Investigating the impact of climate change on food production and food security
  • Identifying factors that influence employee satisfaction and productivity in the workplace
  • Examining the prevalence and causes of mental health disorders in different populations
  • Evaluating the effectiveness of different marketing strategies in promoting consumer behavior
  • Analyzing the prevalence and consequences of substance abuse in different communities
  • Investigating the relationship between social media use and mental health outcomes
  • Examining the role of genetics in the development of different diseases
  • Identifying factors that contribute to the gender wage gap in different industries
  • Analyzing the effectiveness of different policing strategies in reducing crime rates
  • Investigating the impact of immigration on economic growth and development
  • Examining the prevalence and causes of domestic violence in different populations
  • Evaluating the effectiveness of different interventions for treating addiction
  • Analyzing the prevalence and impact of childhood obesity on health outcomes
  • Investigating the relationship between diet and chronic diseases such as diabetes and heart disease
  • Examining the effects of different types of exercise on physical and mental health outcomes
  • Identifying factors that influence voter behavior and political participation
  • Analyzing the prevalence and impact of sleep disorders on health outcomes
  • Investigating the effectiveness of different educational interventions in improving health outcomes
  • Examining the impact of environmental pollution on public health outcomes
  • Evaluating the effectiveness of different interventions for reducing opioid addiction and overdose rates
  • Analyzing the prevalence and causes of homelessness in different communities
  • Investigating the relationship between race and health outcomes
  • Examining the impact of social support networks on health outcomes
  • Identifying factors that contribute to income inequality in different regions
  • Analyzing the prevalence and impact of workplace stress on employee health outcomes
  • Investigating the relationship between education and income levels in different communities
  • Examining the effects of different types of technology on mental health outcomes
  • Evaluating the effectiveness of different interventions for reducing healthcare costs
  • Analyzing the prevalence and impact of chronic pain on health outcomes
  • Investigating the relationship between urbanization and public health outcomes
  • Examining the effects of different types of drugs on health outcomes
  • Identifying factors that contribute to educational attainment in different populations
  • Analyzing the prevalence and causes of food insecurity in different communities
  • Investigating the relationship between race and crime rates
  • Examining the impact of social media on political participation and engagement
  • Evaluating the effectiveness of different interventions for reducing poverty levels
  • Analyzing the prevalence and impact of stress on mental health outcomes
  • Investigating the relationship between religion and health outcomes
  • Examining the effects of different types of parenting styles on child development outcomes
  • Identifying factors that contribute to political polarization in different regions
  • Analyzing the prevalence and causes of teenage pregnancy in different communities
  • Investigating the impact of globalization on economic growth and development
  • Examining the prevalence and impact of social isolation on mental health outcomes
  • Evaluating the effectiveness of different interventions for reducing gun violence
  • Analyzing the prevalence and impact of bullying on mental health outcomes
  • Investigating the relationship between immigration and crime rates
  • Examining the effects of different types of diets on health outcomes
  • Identifying factors that contribute to social inequality in different regions
  • Bayesian inference for high-dimensional models
  • Analysis of longitudinal data with missing values
  • Nonparametric regression with functional predictors
  • Estimation and inference for copula models
  • Statistical methods for neuroimaging data analysis
  • Robust methods for high-dimensional data analysis
  • Analysis of spatially correlated data
  • Bayesian nonparametric modeling
  • Statistical methods for network data
  • Optimal experimental design for nonlinear models
  • Multivariate time series analysis
  • Inference for partially identified models
  • Statistical learning for personalized medicine
  • Statistical inference for rare events
  • High-dimensional mediation analysis
  • Analysis of multi-omics data
  • Nonparametric regression with mixed types of predictors
  • Estimation and inference for graphical models
  • Statistical inference for infectious disease dynamics
  • Robust methods for high-dimensional covariance matrix estimation
  • Analysis of spatio-temporal data
  • Bayesian modeling for ecological data
  • Multivariate spatial point pattern analysis
  • Statistical methods for functional magnetic resonance imaging (fMRI) data
  • Nonparametric estimation of conditional distributions
  • Statistical methods for spatial econometrics
  • Inference for stochastic processes
  • Bayesian spatiotemporal modeling
  • High-dimensional causal inference
  • Analysis of data from complex survey designs
  • Bayesian nonparametric survival analysis
  • Statistical methods for fMRI connectivity analysis
  • Spatial quantile regression
  • Statistical modeling for climate data
  • Estimation and inference for item response models
  • Bayesian model selection and averaging
  • High-dimensional principal component analysis
  • Analysis of data from clinical trials with noncompliance
  • Nonparametric regression with censored data
  • Statistical methods for functional data analysis
  • Inference for network models
  • Bayesian nonparametric clustering
  • High-dimensional classification
  • Analysis of ecological network data
  • Statistical modeling for time-to-event data with multiple events
  • Estimation and inference for nonparametric density estimation
  • Bayesian nonparametric regression with time-varying coefficients
  • Statistical methods for functional magnetic resonance spectroscopy (fMRS) data

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

  • Buy Custom Assignment
  • Custom College Papers
  • Buy Dissertation
  • Buy Research Papers
  • Buy Custom Term Papers
  • Cheap Custom Term Papers
  • Custom Courseworks
  • Custom Thesis Papers
  • Custom Expository Essays
  • Custom Plagiarism Check
  • Cheap Custom Essay
  • Custom Argumentative Essays
  • Custom Case Study
  • Custom Annotated Bibliography
  • Custom Book Report
  • How It Works
  • +1 (888) 398 0091
  • Essay Samples
  • Essay Topics
  • Research Topics
  • Writing Tips

Statistics Research Topics: Ideas & Questions

June 16, 2023

Looking for research topics in statistics? Whether you’re a student working on a class project or a researcher in need of inspiration, finding the right topic can be challenging. With numerous areas to explore in statistics, narrowing down your options can be overwhelming. But with some creativity and research, you can find an interesting and relevant topic. This article offers ideas and examples of statistics research topics to consider, so let’s dive in!

Statistics Research: What It Comprises

The data collected by statistics research can be quantitative (numbers) or qualitative (text). The data can also be presented in tables or graphs for easy understanding by the audience. However, it is not always necessary to present the data in the form of tables or graphs, as sometimes the raw data can be good enough to convey the message from the researcher.

In statistics projects, the researchers usually design experiments to test specific hypotheses about a population’s characteristics or behavior. For example, suppose you want to know whether people who wear glasses will have better eyesight than those who don’t wear glasses. In that case, you need to collect information about their vision before and after wearing glasses (experimental group) and compare their vision with those who do not wear glasses (control group). You would then find out whether there was any difference between these two groups with respect to eyesight improvement due to wearing glasses.

Tips on How to Choose a Statistics Research Topic

Firstly, remember that a good statistics topic should interest you and also have a substantial amount of data available for analysis. Once you have decided on your topic, you can collect data for your study using secondary sources or conducting primary research through surveys or interviews.

You can also use search engines like Google or Yahoo! to find information about your topic of interest. You can use keywords like “income disparity” or “inequality causes” to find relevant websites on which you can find information related to your topic of interest.

Next, consider what types of questions your supervisor would like answered with this data type. For example, if you’re looking at crime rates in your city, maybe they would like to know which areas have higher crime rates than others to plan police patrols accordingly. Or maybe they just want to know whether there’s any correlation between high crime rates and low-income neighborhoods (there probably will be).

Feel free to select any topic and try our free AI essay generator to craft your essay.

Statistics Research Topics in Business

  • Understanding the factors that influence consumer purchase decisions in the technology industry
  • Advertising and sales revenue: a time-series analysis
  • The effectiveness of customer loyalty programs in increasing customer retention and revenue
  • The relationship between employee job satisfaction and productivity
  • The factors that contribute to employee turnover in the hospitality industry
  • Product quality on customer satisfaction and loyalty: a longitudinal study
  • The application of social media marketing in increasing brand awareness and customer engagement
  • Corporate social responsibility (CSR) initiatives and brand reputation: a meta-analysis
  • Understanding the factors that influence customer satisfaction in the restaurant industry
  • E-commerce on traditional brick-and-mortar retail sales: a comparative analysis
  • The effectiveness of supply chain management strategies in reducing operational costs and improving efficiency
  • The relationship between market competition and innovation: a cross-country analysis
  • Understanding the factors that influence employee motivation and engagement in the workplace
  • Business analytics on strategic decision-making: a case study approach
  • The effectiveness of performance-based incentives in increasing employee productivity and job satisfaction
  • Organizational performance dependence on employee diversity and organizational performance
  • Understanding the factors that contribute to startup success in the technology industry
  • The impact of pricing strategies on sales revenue and profitability
  • The effectiveness of corporate training programs in improving employee skill development and performance
  • The relationship between brand image and customer loyalty

Research Topics in Applied Statistics

  • The impact of educational attainment on income level
  • The effectiveness of different advertising strategies in increasing sales
  • The relationship between socioeconomic status and health outcomes
  • The effectiveness of different teaching methods in promoting academic success
  • The impact of job training programs on employment rates
  • The relationship between crime rates and community demographics
  • Different medication dosages in treating a particular condition
  • The influence of environmental pollutants on health outcomes
  • The interconnection between access to healthcare and health outcomes
  • The effectiveness of different weight loss programs in promoting weight loss
  • The impact of social support on mental health outcomes
  • The relationship between demographic factors and political affiliation
  • The effectiveness of different exercise programs in promoting physical fitness
  • The influence of parenting styles on child behavior
  • The relationship between diet and chronic disease risk
  • Different smoking cessation programs for promoting smoking cessation
  • The impact of public transportation on urban development
  • The relationship between technology usage and social isolation
  • The effectiveness of different stress reduction techniques in reducing stress levels
  • The influence of climate change on crop

Statistics Research Topics in Psychology

  • The correlation between childhood trauma and adult depression
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders
  • The impact of social media on self-esteem and body image in adolescents
  • Personality traits and job satisfaction: how are they related?
  • The prevalence and predictors of bullying in schools
  • The effects of sleep deprivation on cognitive performance
  • The role of parenting styles in the development of emotional intelligence
  • The effectiveness of mindfulness-based interventions in reducing stress and anxiety
  • The impact of childhood abuse on adult relationship satisfaction
  • The influence of social support on coping with chronic illness
  • The factors that contribute to successful aging
  • The prevalence and predictors of addiction relapse
  • The impact of cultural factors on mental health diagnosis and treatment
  • Exercise and mental health: in which way are they connected?
  • The effectiveness of art therapy in treating trauma-related disorders
  • The prevalence and predictors of eating disorders in college students
  • The influence of attachment styles on romantic relationships
  • The effectiveness of group therapy in treating substance abuse disorders
  • The prevalence and predictors of postpartum depression
  • The impact of childhood socioeconomic

Sports Statistics Research Topics

  • The relationship between player performance and team success in the National Football League (NFL)
  • Understanding the factors that influence home-field advantage in professional soccer
  • The impact of game-day weather conditions on player performance in Major League Baseball (MLB)
  • The effectiveness of different training regimens in improving endurance and performance in long-distance running
  • The relationship between athlete injury history and future injury risk in professional basketball
  • The impact of crowd noise on team performance in college football
  • The effectiveness of sports psychology interventions in improving athlete performance and mental health
  • The relationship between player height and success in professional basketball: a regression analysis
  • Understanding the factors that contribute to the development of youth soccer players in the United States
  • The influence of playing surface on injury rates in professional football: a longitudinal study
  • The effectiveness of pre-game routines in improving athlete performance in tennis
  • The relationship between athletic ability and academic success among college athletes
  • Understanding the factors that influence injury risk and recovery time in professional hockey players
  • The impact of in-game statistics on coaching decisions in professional basketball
  • The effectiveness of different dietary regimens in improving athlete performance in endurance sports
  • The relationship between athlete sleep habits and performance: a longitudinal study
  • Understanding the factors that influence athlete endorsement deals and sponsorships in professional sports
  • The influence of stadium design on crowd noise levels and player performance in college football
  • The effectiveness of different strength training regimens in improving athlete performance in track and field events
  • The relationship between player salary and team success in professional baseball: a longitudinal analysis

Survey Methods Statistics Research Topics

  • Understanding the factors that influence response rates in online surveys
  • The effectiveness of different survey question formats in eliciting accurate and reliable responses
  • The relationship between survey mode (phone, online, mail) and response quality in political polling
  • The impact of incentives on survey response rates and data quality
  • Understanding the factors that contribute to respondent satisfaction in surveys
  • The effectiveness of different sampling methods in achieving representative samples in survey research
  • The relationship between survey item order and response bias: a meta-analysis
  • The impact of social desirability bias on survey responses: a longitudinal study
  • Understanding the factors that influence survey question wording and response bias
  • The effectiveness of different visual aids in improving respondent comprehension and response quality
  • The relationship between survey timing and response rate: a comparative analysis
  • The impact of interviewer characteristics on survey response quality in face-to-face surveys
  • Understanding the factors that contribute to nonresponse bias in survey research
  • The effectiveness of different response scales in measuring attitudes and perceptions in surveys
  • The relationship between survey length and respondent engagement: a cross-sectional analysis
  • The influence of skip patterns on survey response quality and completion rates
  • Understanding the factors that influence survey item nonresponse and item refusal rates
  • The effectiveness of pre-testing and piloting surveys in improving data quality and reliability
  • The relationship between survey administration and response quality: a comparative analysis of phone, online, and in-person surveys
  • The impact of survey fatigue on response quality and data completeness: a longitudinal study

As mentioned above, statistics is the science of collecting and analyzing data to draw conclusions and make predictions. To conduct a proper statistical analysis, you must first define your research question, gather data from various sources, analyze the information, and draw conclusions based on the results.

This process can be challenging for many people who do not have an extensive background in statistics. However, it does not have to be so tricky if you use our professional Custom Writing help. Our writers are highly qualified professionals who will work with you to develop a clear understanding of your research problem and then guide you through every step of the process. We will also ensure that your paper follows all academic standards to meet all requirements for originality and quality.

Sociology Research Topics Ideas

Importance of Computer in Nursing Practice Essay

History Research Paper Topics For Students

By clicking “Continue”, you agree to our terms of service and privacy policy. We’ll occasionally send you promo and account related emails.

Latest Articles

In today’s digital era, the fusion of artificial intelligence (AI) with academic writing has revolutionized how students approach essay composition....

Using Artificial Intelligence (AI) in education is changing how things are taught and learned in standard ways. With its ability...

The advancement of artificial intelligence has made it increasingly common for essays and articles to be written by AI. But...

I want to feel as happy, as your customers do, so I'd better order now

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.

statistics related thesis topics

Recent Dissertation Topics

Marty Wells and a student look over papers

Kerstin Emily Frailey - “PRACTICAL DATA QUALITY FOR MODERN DATA & MODERN USES, WITH APPLICATIONS TO AMERICA’S COVID-19 DATA"

Dissertation Advisor: Martin Wells

Initial job placement: Co-Founder & CEO

David Kent - “Smoothness-Penalized Deconvolution: Rates of Convergence, Choice of Tuning Parameter, and Inference"

Dissertation Advisor: David Ruppert

Initial job placement: VISITING ASSISTANT PROFESSOR - Cornell University

Yuchen Xu - “Dynamic Atomic Column Detection in Transmission Electron Microscopy Videos via Ridge Estimation”

Dissertation Advisor: David Matteson

Initial job placement: Postdoctoral Fellow - UCLA

Siyi Deng - “Optimal and Safe Semi-supervised Estimation and Inference for High-dimensional Linear Regression"

Dissertation Advisor: Yang Ning

Initial job placement: Data Scientist - TikTok

Peter (Haoxuan) Wu - “Advances in adaptive and deep Bayesian state-space models”

Initial job placement: Quantitative Researcher - DRW

Grace Deng - “Generative models and Bayesian spillover graphs for dynamic networks”

Initial job placement: Data Scientist - Research at Google

Samriddha Lahiry - “Some problems of asymptotic quantum statistical inference”

Dissertation Advisor: Michael Nussbaum

Initial job placement: Postdoctoral Fellow - Harvard University

Yaosheng Xu - “WWTA load-balancing for parallel-server systems with heterogeneous servers and multi-scale heavy traffic limits for generalized Jackson networks”

Dissertation Advisor: Jim Dai

Initial job placement: Applied Scientist - Amazon

Seth Strimas-Mackey - “Latent structure in linear prediction and corpora comparison”

Dissertation Advisor: Marten Wegkamp and Florentina Bunea

Initial job placement: Data Scientist at Google

Tao Zhang - “Topics in modern regression modeling”

Dissertation Advisor: David Ruppert and Kengo Kato

Initial job placement: Quantitative Researcher - Point72

Wentian Huang - “Nonparametric and semiparametric approaches to functional data modeling”

Initial job placement: Ernst & Young

Binh Tang - “Deep probabilistic models for sequential prediction”

Initial job placement: Amazon

Yi Su - “Off-policy evaluation and learning for interactive systems"

Dissertation Advisor: Thorsten Joachims

Initial job placement: Berkeley (postdoc)

Ruqi Zhang - “Scalable and reliable inference for probabilistic modeling”

Dissertation Advisor: Christopher De Sa

Jason Sun - “Recent developments on Matrix Completion"

Initial job placement: LinkedIn

Indrayudh Ghosal - “Model combinations and the Infinitesimal Jackknife : how to refine models with boosting and quantify uncertainty”

Dissertation Advisor: Giles Hooker

Benjamin Ryan Baer - “Contributions to fairness and transparency”

Initial job placement: Rochester (postdoc)

Megan Lynne Gelsinger - “Spatial and temporal approaches to analyzing big data”

Dissertation Advisor: David Matteson and Joe Guinness

Initial job placement: Institute for Defense Analysis

Zhengze Zhou - “Statistical inference for machine learning : feature importance, uncertainty quantification and interpretation stability”

Initial job placement: Facebook

Huijie Feng - “Estimation and inference of high-dimensional individualized threshold with binary responses”

Initial job placement: Microsoft

Xiaojie Mao - “Machine learning methods for data-driven decision making : contextual optimization, causal inference, and algorithmic fairness”

Dissertation Advisor: Nathan Kallus and Madeleine Udell

Initial job placement: Tsinghua University, China

Xin Bing - “Structured latent factor models : Identifiability, estimation, inference and prediction”

Initial job placement: Cambridge (postdoc), University of Toronto

Yang Liu - “Nonparametric regression and density estimation on a network"

Dissertation Advisor: David Ruppert and Peter Frazier

Initial job placement: Research Analyst - Cubist Systematic Strategies

Skyler Seto - “Learning from less : improving and understanding model selection in penalized machine learning problems”

Initial job placement: Machine Learning Researcher - Apple

Jiekun Feng - “Markov chain, Markov decision process, and deep reinforcement learning with applications to hospital management and real-time ride-hailing”

Initial job placement:

Wenyu Zhang - “Methods for change point detection in sequential data”

Initial job placement: Research Scientist - Institute for Infocomm Research

Liao Zhu - “The adaptive multi-factor model and the financial market"

Initial job placement: Quantitative Researcher - Two Sigma

Xiaoyun Quan - “Latent Gaussian copula model for high dimensional mixed data, and its applications”

Dissertation Advisor: James Booth and Martin Wells

Praphruetpong (Ben) Athiwaratkun - "Density representations for words and hierarchical data"

Dissertation Advisor: Andrew Wilson

Initial job placement: AI Scientist - AWS AI Labs

Yiming Sun - “High dimensional data analysis with dependency and under limited memory”

Dissertation Advisor: Sumanta Basu and Madeleine Udell

Zi Ye - “Functional single index model and jensen effect"

Dissertation Advisor: Giles Hooker 

Initial job placement: Data & Applied Scientist - Microsoft

Hui Fen (Sarah) Tan - “Interpretable approaches to opening up black-box models”

Dissertation Advisor: Giles Hooker and Martin Wells

Daniel E. Gilbert - “Luck, fairness and Bayesian tensor completion”

Yichen zhou - “asymptotics and interpretability of decision trees and decision tree ensemblesg”.

Initial job placement: Data Scientist - Google

Ze Jin - “Measuring statistical dependence and its applications in machine learning”  

Initial job placement: Research Scientist, Facebook Integrity Ranking & ML - Facebook

Xiaohan Yan - “Statistical learning for structural patterns with trees”

Dissertation Advisor: Jacob Bien

Initial job placement: Senior Data Scientist - Microsoft

Guo Yu - “High-dimensional structured regression using convex optimization”

Dan kowal - "bayesian methods for functional and time series data".

Dissertation Advisor: David Matteson and David Ruppert

Initial job placement: assistant professor, Department of Statistics, Rice University

Keegan Kang - "Data Dependent Random Projections"

David sinclair - "model selection results for high dimensional graphical models on binary and count data with applications to fmri and genomics", liu, yanning – "statistical issues in the design and analysis of clinical trials".

Dissertation Advisor: Bruce Turnbull

Nicholson, William Bertil – "Tools for Modeling Sparse Vector Autoregressions"

Tupper, laura lindley – "topics in classification and clustering of high-dimensional data", chetelat, didier – "high-dimensional inference by unbiased risk estimation".

Initial Job Placement: Assistant Professor Universite de Montreal, Montreal, Canada

Gaynanova, Irina – "Estimation Of Sparse Low-Dimensional Linear Projections"

Dissertation Advisor: James Booth

Initial Job Placement: Assistant Professor, Texas A&M, College Station, TX

Mentch, Lucas – "Ensemble Trees and CLTS: Statistical Inference in Machine Learning"

Initial Job Placement: Assistant Professor, University of Pittsburgh, Pittsburgh, PA

Risk, Ben – "Topics in Independent Component Analysis, Likelihood Component Analysis, and Spatiotemporal Mixed Modeling"

Dissertation Advisors: David Matteson and David Ruppert

Initial Job Placement: Postdoctoral Fellow, University of North Carolina, Chapel Hill, NC

Zhao, Yue – "Contributions to the Statistical Inference for the Semiparametric Elliptical Copula Model"

Disseration Advisor: Marten Wegkamp 

Initial Job Placement: Postoctoral Fellow, McGill University, Montreal, Canada

Chen, Maximillian Gene – "Dimension Reduction and Inferential Procedures for Images"

Dissertation Advisor: Martin Wells 

Earls, Cecelia – Bayesian hierarchical Gaussian process models for functional data analysis

Dissertation Advisor: Giles Hooker

Initial Job Placement: Lecturer, Cornell University, Ithaca, NY

Li, James Yi-Wei – "Tensor (Multidimensional Array) Decomposition, Regression, and Software for Statistics and Machine Learning"

Initial Job Placement: Research Scientist, Yahoo Labs

Schneider, Matthew John – "Three Papers on Time Series Forecasting and Data Privacy"

Dissertation Advisor: John Abowd

Initial Job Placement: Assistant Professor, Northwestern University, Evanston, IL

Thorbergsson, Leifur – "Experimental design for partially observed Markov decision processes"

Initial Job Placement: Data Scientist, Memorial Sloan Kettering Cancer Center, New York, NY

Wan, Muting – "Model-Based Classification with Applications to High-Dimensional Data in Bioinformatics"

Initial Job Placement: Senior Associate, 1010 Data, New York, NY

Johnson, Lynn Marie – "Topics in Linear Models: Methods for Clustered, Censored Data and Two-Stage Sampling Designs"

Dissertation Advisor: Robert Strawderman

Initial Job Placement: Statistical Consultant, Cornell, Statistical Consulting Unit, Ithaca, NY

Tecuapetla Gomez, Inder Rafael –  "Asymptotic Inference for Locally Stationary Processes"

Initial Job Placement: Postdoctoral Fellow, Georg-August-Universitat Gottigen, Gottigen, Germany. 

Bar, Haim – "Parallel Testing, and Variable Selection -- a Mixture-Model Approach with Applications in Biostatistics" 

Dissertation Advisor: James Booth

Initial Job Placement: Postdoc, Department of Medicine, Weill Medical Center, New York, NY

Cunningham, Caitlin –  "Markov Methods for Identifying ChIP-seq Peaks" 

Initial Job Placement: Assistant Professor, Le Moyne College, Syracuse, NY

Ji, Pengsheng – "Selected Topics in Nonparametric Testing and Variable Selection for High Dimensional Data" 

Dissertation Advisor: Michael Nussbaum 

Initial Job Placement: Assistant Professor, University of Georgia, Athens, GA

Morris, Darcy Steeg – "Methods for Multivariate Longitudinal Count and Duration Models with Applications in Economics" 

Dissertation Advisor: Francesca Molinari 

Initial Job Placement: Research Mathematical Statistician, Center for Statistical Research and Methodology, U.S. Census Bureau, Washington DC

Narayanan, Rajendran – "Shrinkage Estimation for Penalised Regression, Loss Estimation and Topics on Largest Eigenvalue Distributions" 

Initial Job Placement: Visiting Scientist, Indian Statistical Institute, Kolkata, India

Xiao, Luo – "Topics in Bivariate Spline Smoothing" 

Dissertation Advisor: David Ruppert 

Initial Job Placement: Postdoc, Johns Hopkins University, Baltimore, MD

Zeber, David – "Extremal Properties of Markov Chains and the Conditional Extreme Value Model" 

Dissertation Advisor: Sidney Resnick 

Initial Job Placement: Data Analyst, Mozilla, San Francisco, CA

Clement, David – "Estimating equation methods for longitudinal and survival data" 

Dissertation Advisor: Robert Strawderman 

Initial Job Placement: Quantitative Analyst, Smartodds, London UK

Eilertson, Kirsten – "Estimation and inference of random effect models with applications to population genetics and proteomics" 

Dissertation Advisor: Carlos Bustamante 

Initial Job Placement: Biostatistician, The J. David Gladstone Institutes, San Francisco CA

Grabchak, Michael – "Tempered stable distributions: properties and extensions" 

Dissertation Advisor: Gennady Samorodnitsky 

Initial Job Placement: Assistant Professor, UNC Charlotte, Charlotte NC

Li, Yingxing – "Aspects of penalized splines" 

Initial Job Placement: Assistant Professor, The Wang Yanan Institute for Studies in Economics, Xiamen University

Lopez Oliveros, Luis – "Modeling end-user behavior in data networks" 

Dissertation Advisor: Sidney Resnick  

Initial Job Placement: Consultant, Murex North America, New York NY

Ma, Xin – "Statistical Methods for Genome Variant Calling and Population Genetic Inference from Next-Generation Sequencing Data" 

Initial Job Placement: Postdoc, Stanford University, Stanford CA

Kormaksson, Matthias – "Dynamic path analysis and model based clustering of microarray data" 

Dissertation Advisor: James Booth 

Initial Job Placement: Postdoc, Department of Public Health, Weill Cornell Medical College, New York NY

Schifano, Elizabeth – "Topics in penalized estimation" 

Initial Job Placement: Postdoc, Department of Biostatistics, Harvard University, Boston MA

Hanlon, Bret – "High-dimensional data analysis" 

Dissertation Advisor: Anand Vidyashankar 

Shaby, Benjamin – "Tools for hard bayesian computations" 

Initial Job Placement: Postdoc, SAMSI, Durham NC

Zipunnikov, Vadim – "Topics on generalized linear mixed models" 

Initial Job Placement: Postdoc, Department of Biostatistics, Johns Hopkins University, Baltimore MD

Barger, Kathryn Jo-Anne – "Objective bayesian estimation for the number of classes in a population using Jeffreys and reference priors" 

Dissertation Advisor: John Bunge 

Initial Job Placement: Pfizer Incorporated

Chan, Serena Suewei – "Robust and efficient inference for linear mixed models using skew-normal distributions" 

Initial Job Placement: Statistician, Takeda Pharmaceuticles, Deerfield IL

Lin, Haizhi – "Distressed debt prices and recovery rate estimation" 

Dissertation Advisor: Martin Wells  

Initial Job Placement: Associate, Fixed Income Department, Credit Suisse Securities (USA), New York, NY

Digital Commons @ University of South Florida

  • USF Research
  • USF Libraries

Digital Commons @ USF > College of Arts and Sciences > Mathematics and Statistics > Theses and Dissertations

Mathematics and Statistics Theses and Dissertations

Theses/dissertations from 2023 2023.

Classification of Finite Topological Quandles and Shelves via Posets , Hitakshi Lahrani

Applied Analysis for Learning Architectures , Himanshu Singh

Rational Functions of Degree Five That Permute the Projective Line Over a Finite Field , Christopher Sze

Theses/Dissertations from 2022 2022

New Developments in Statistical Optimal Designs for Physical and Computer Experiments , Damola M. Akinlana

Advances and Applications of Optimal Polynomial Approximants , Raymond Centner

Data-Driven Analytical Predictive Modeling for Pancreatic Cancer, Financial & Social Systems , Aditya Chakraborty

On Simultaneous Similarity of d-tuples of Commuting Square Matrices , Corey Connelly

Symbolic Computation of Lump Solutions to a Combined (2+1)-dimensional Nonlinear Evolution Equation , Jingwei He

Boundary behavior of analytic functions and Approximation Theory , Spyros Pasias

Stability Analysis of Delay-Driven Coupled Cantilevers Using the Lambert W-Function , Daniel Siebel-Cortopassi

A Functional Optimization Approach to Stochastic Process Sampling , Ryan Matthew Thurman

Theses/Dissertations from 2021 2021

Riemann-Hilbert Problems for Nonlocal Reverse-Time Nonlinear Second-order and Fourth-order AKNS Systems of Multiple Components and Exact Soliton Solutions , Alle Adjiri

Zeros of Harmonic Polynomials and Related Applications , Azizah Alrajhi

Combination of Time Series Analysis and Sentiment Analysis for Stock Market Forecasting , Hsiao-Chuan Chou

Uncertainty Quantification in Deep and Statistical Learning with applications in Bio-Medical Image Analysis , K. Ruwani M. Fernando

Data-Driven Analytical Modeling of Multiple Myeloma Cancer, U.S. Crop Production and Monitoring Process , Lohuwa Mamudu

Long-time Asymptotics for mKdV Type Reduced Equations of the AKNS Hierarchy in Weighted L 2 Sobolev Spaces , Fudong Wang

Online and Adjusted Human Activities Recognition with Statistical Learning , Yanjia Zhang

Theses/Dissertations from 2020 2020

Bayesian Reliability Analysis of The Power Law Process and Statistical Modeling of Computer and Network Vulnerabilities with Cybersecurity Application , Freeh N. Alenezi

Discrete Models and Algorithms for Analyzing DNA Rearrangements , Jasper Braun

Bayesian Reliability Analysis for Optical Media Using Accelerated Degradation Test Data , Kun Bu

On the p(x)-Laplace equation in Carnot groups , Robert D. Freeman

Clustering methods for gene expression data of Oxytricha trifallax , Kyle Houfek

Gradient Boosting for Survival Analysis with Applications in Oncology , Nam Phuong Nguyen

Global and Stochastic Dynamics of Diffusive Hindmarsh-Rose Equations in Neurodynamics , Chi Phan

Restricted Isometric Projections for Differentiable Manifolds and Applications , Vasile Pop

On Some Problems on Polynomial Interpolation in Several Variables , Brian Jon Tuesink

Numerical Study of Gap Distributions in Determinantal Point Process on Low Dimensional Spheres: L -Ensemble of O ( n ) Model Type for n = 2 and n = 3 , Xiankui Yang

Non-Associative Algebraic Structures in Knot Theory , Emanuele Zappala

Theses/Dissertations from 2019 2019

Field Quantization for Radiative Decay of Plasmons in Finite and Infinite Geometries , Maryam Bagherian

Probabilistic Modeling of Democracy, Corruption, Hemophilia A and Prediabetes Data , A. K. M. Raquibul Bashar

Generalized Derivations of Ternary Lie Algebras and n-BiHom-Lie Algebras , Amine Ben Abdeljelil

Fractional Random Weighted Bootstrapping for Classification on Imbalanced Data with Ensemble Decision Tree Methods , Sean Charles Carter

Hierarchical Self-Assembly and Substitution Rules , Daniel Alejandro Cruz

Statistical Learning of Biomedical Non-Stationary Signals and Quality of Life Modeling , Mahdi Goudarzi

Probabilistic and Statistical Prediction Models for Alzheimer’s Disease and Statistical Analysis of Global Warming , Maryam Ibrahim Habadi

Essays on Time Series and Machine Learning Techniques for Risk Management , Michael Kotarinos

The Systems of Post and Post Algebras: A Demonstration of an Obvious Fact , Daviel Leyva

Reconstruction of Radar Images by Using Spherical Mean and Regular Radon Transforms , Ozan Pirbudak

Analyses of Unorthodox Overlapping Gene Segments in Oxytricha Trifallax , Shannon Stich

An Optimal Medium-Strength Regularity Algorithm for 3-uniform Hypergraphs , John Theado

Power Graphs of Quasigroups , DayVon L. Walker

Theses/Dissertations from 2018 2018

Groups Generated by Automata Arising from Transformations of the Boundaries of Rooted Trees , Elsayed Ahmed

Non-equilibrium Phase Transitions in Interacting Diffusions , Wael Al-Sawai

A Hybrid Dynamic Modeling of Time-to-event Processes and Applications , Emmanuel A. Appiah

Lump Solutions and Riemann-Hilbert Approach to Soliton Equations , Sumayah A. Batwa

Developing a Model to Predict Prevalence of Compulsive Behavior in Individuals with OCD , Lindsay D. Fields

Generalizations of Quandles and their cohomologies , Matthew J. Green

Hamiltonian structures and Riemann-Hilbert problems of integrable systems , Xiang Gu

Optimal Latin Hypercube Designs for Computer Experiments Based on Multiple Objectives , Ruizhe Hou

Human Activity Recognition Based on Transfer Learning , Jinyong Pang

Signal Detection of Adverse Drug Reaction using the Adverse Event Reporting System: Literature Review and Novel Methods , Minh H. Pham

Statistical Analysis and Modeling of Cyber Security and Health Sciences , Nawa Raj Pokhrel

Machine Learning Methods for Network Intrusion Detection and Intrusion Prevention Systems , Zheni Svetoslavova Stefanova

Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane , Meng Yang

Theses/Dissertations from 2017 2017

Modeling in Finance and Insurance With Levy-It'o Driven Dynamic Processes under Semi Markov-type Switching Regimes and Time Domains , Patrick Armand Assonken Tonfack

Prevalence of Typical Images in High School Geometry Textbooks , Megan N. Cannon

On Extending Hansel's Theorem to Hypergraphs , Gregory Sutton Churchill

Contributions to Quandle Theory: A Study of f-Quandles, Extensions, and Cohomology , Indu Rasika U. Churchill

Linear Extremal Problems in the Hardy Space H p for 0 p , Robert Christopher Connelly

Statistical Analysis and Modeling of Ovarian and Breast Cancer , Muditha V. Devamitta Perera

Statistical Analysis and Modeling of Stomach Cancer Data , Chao Gao

Structural Analysis of Poloidal and Toroidal Plasmons and Fields of Multilayer Nanorings , Kumar Vijay Garapati

Dynamics of Multicultural Social Networks , Kristina B. Hilton

Cybersecurity: Stochastic Analysis and Modelling of Vulnerabilities to Determine the Network Security and Attackers Behavior , Pubudu Kalpani Kaluarachchi

Generalized D-Kaup-Newell integrable systems and their integrable couplings and Darboux transformations , Morgan Ashley McAnally

Patterns in Words Related to DNA Rearrangements , Lukas Nabergall

Time Series Online Empirical Bayesian Kernel Density Segmentation: Applications in Real Time Activity Recognition Using Smartphone Accelerometer , Shuang Na

Schreier Graphs of Thompson's Group T , Allen Pennington

Cybersecurity: Probabilistic Behavior of Vulnerability and Life Cycle , Sasith Maduranga Rajasooriya

Bayesian Artificial Neural Networks in Health and Cybersecurity , Hansapani Sarasepa Rodrigo

Real-time Classification of Biomedical Signals, Parkinson’s Analytical Model , Abolfazl Saghafi

Lump, complexiton and algebro-geometric solutions to soliton equations , Yuan Zhou

Theses/Dissertations from 2016 2016

A Statistical Analysis of Hurricanes in the Atlantic Basin and Sinkholes in Florida , Joy Marie D'andrea

Statistical Analysis of a Risk Factor in Finance and Environmental Models for Belize , Sherlene Enriquez-Savery

Putnam's Inequality and Analytic Content in the Bergman Space , Matthew Fleeman

On the Number of Colors in Quandle Knot Colorings , Jeremy William Kerr

Statistical Modeling of Carbon Dioxide and Cluster Analysis of Time Dependent Information: Lag Target Time Series Clustering, Multi-Factor Time Series Clustering, and Multi-Level Time Series Clustering , Doo Young Kim

Some Results Concerning Permutation Polynomials over Finite Fields , Stephen Lappano

Hamiltonian Formulations and Symmetry Constraints of Soliton Hierarchies of (1+1)-Dimensional Nonlinear Evolution Equations , Solomon Manukure

Modeling and Survival Analysis of Breast Cancer: A Statistical, Artificial Neural Network, and Decision Tree Approach , Venkateswara Rao Mudunuru

Generalized Phase Retrieval: Isometries in Vector Spaces , Josiah Park

Leonard Systems and their Friends , Jonathan Spiewak

Resonant Solutions to (3+1)-dimensional Bilinear Differential Equations , Yue Sun

Statistical Analysis and Modeling Health Data: A Longitudinal Study , Bhikhari Prasad Tharu

Global Attractors and Random Attractors of Reaction-Diffusion Systems , Junyi Tu

Time Dependent Kernel Density Estimation: A New Parameter Estimation Algorithm, Applications in Time Series Classification and Clustering , Xing Wang

On Spectral Properties of Single Layer Potentials , Seyed Zoalroshd

Theses/Dissertations from 2015 2015

Analysis of Rheumatoid Arthritis Data using Logistic Regression and Penalized Approach , Wei Chen

Active Tile Self-assembly and Simulations of Computational Systems , Daria Karpenko

Nearest Neighbor Foreign Exchange Rate Forecasting with Mahalanobis Distance , Vindya Kumari Pathirana

Statistical Learning with Artificial Neural Network Applied to Health and Environmental Data , Taysseer Sharaf

Radial Versus Othogonal and Minimal Projections onto Hyperplanes in l_4^3 , Richard Alan Warner

Ensemble Learning Method on Machine Maintenance Data , Xiaochuang Zhao

Theses/Dissertations from 2014 2014

Properties of Graphs Used to Model DNA Recombination , Ryan Arredondo

Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability , Jonathan Burns

On the Classification of Groups Generated by Automata with 4 States over a 2-Letter Alphabet , Louis Caponi

Statistical Analysis, Modeling, and Algorithms for Pharmaceutical and Cancer Systems , Bong-Jin Choi

Topological Data Analysis of Properties of Four-Regular Rigid Vertex Graphs , Grant Mcneil Conine

Trend Analysis and Modeling of Health and Environmental Data: Joinpoint and Functional Approach , Ram C. Kafle

Advanced Search

  • Email Notifications and RSS
  • All Collections
  • USF Faculty Publications
  • Open Access Journals
  • Conferences and Events
  • Theses and Dissertations
  • Textbooks Collection

Useful Links

  • Mathematics and Statistics Department
  • Rights Information
  • SelectedWorks
  • Submit Research

Home | About | Help | My Account | Accessibility Statement | Language and Diversity Statements

Privacy Copyright

Grad Coach

Research Topics & Ideas: Data Science

50 Topic Ideas To Kickstart Your Research Project

Research topics and ideas about data science and big data analytics

If you’re just starting out exploring data science-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research by providing a hearty list of data science and analytics-related research ideas , including examples from recent studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . These topic ideas provided here are intentionally broad and generic , so keep in mind that you will need to develop them further. Nevertheless, they should inspire some ideas for your project.

To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan to fill that gap. If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, consider our 1-on-1 coaching service .

Research topic idea mega list

Data Science-Related Research Topics

  • Developing machine learning models for real-time fraud detection in online transactions.
  • The use of big data analytics in predicting and managing urban traffic flow.
  • Investigating the effectiveness of data mining techniques in identifying early signs of mental health issues from social media usage.
  • The application of predictive analytics in personalizing cancer treatment plans.
  • Analyzing consumer behavior through big data to enhance retail marketing strategies.
  • The role of data science in optimizing renewable energy generation from wind farms.
  • Developing natural language processing algorithms for real-time news aggregation and summarization.
  • The application of big data in monitoring and predicting epidemic outbreaks.
  • Investigating the use of machine learning in automating credit scoring for microfinance.
  • The role of data analytics in improving patient care in telemedicine.
  • Developing AI-driven models for predictive maintenance in the manufacturing industry.
  • The use of big data analytics in enhancing cybersecurity threat intelligence.
  • Investigating the impact of sentiment analysis on brand reputation management.
  • The application of data science in optimizing logistics and supply chain operations.
  • Developing deep learning techniques for image recognition in medical diagnostics.
  • The role of big data in analyzing climate change impacts on agricultural productivity.
  • Investigating the use of data analytics in optimizing energy consumption in smart buildings.
  • The application of machine learning in detecting plagiarism in academic works.
  • Analyzing social media data for trends in political opinion and electoral predictions.
  • The role of big data in enhancing sports performance analytics.
  • Developing data-driven strategies for effective water resource management.
  • The use of big data in improving customer experience in the banking sector.
  • Investigating the application of data science in fraud detection in insurance claims.
  • The role of predictive analytics in financial market risk assessment.
  • Developing AI models for early detection of network vulnerabilities.

Research topic evaluator

Data Science Research Ideas (Continued)

  • The application of big data in public transportation systems for route optimization.
  • Investigating the impact of big data analytics on e-commerce recommendation systems.
  • The use of data mining techniques in understanding consumer preferences in the entertainment industry.
  • Developing predictive models for real estate pricing and market trends.
  • The role of big data in tracking and managing environmental pollution.
  • Investigating the use of data analytics in improving airline operational efficiency.
  • The application of machine learning in optimizing pharmaceutical drug discovery.
  • Analyzing online customer reviews to inform product development in the tech industry.
  • The role of data science in crime prediction and prevention strategies.
  • Developing models for analyzing financial time series data for investment strategies.
  • The use of big data in assessing the impact of educational policies on student performance.
  • Investigating the effectiveness of data visualization techniques in business reporting.
  • The application of data analytics in human resource management and talent acquisition.
  • Developing algorithms for anomaly detection in network traffic data.
  • The role of machine learning in enhancing personalized online learning experiences.
  • Investigating the use of big data in urban planning and smart city development.
  • The application of predictive analytics in weather forecasting and disaster management.
  • Analyzing consumer data to drive innovations in the automotive industry.
  • The role of data science in optimizing content delivery networks for streaming services.
  • Developing machine learning models for automated text classification in legal documents.
  • The use of big data in tracking global supply chain disruptions.
  • Investigating the application of data analytics in personalized nutrition and fitness.
  • The role of big data in enhancing the accuracy of geological surveying for natural resource exploration.
  • Developing predictive models for customer churn in the telecommunications industry.
  • The application of data science in optimizing advertisement placement and reach.

Recent Data Science-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic, they are fairly generic and non-specific. So, it helps to look at actual studies in the data science and analytics space to see how this all comes together in practice.

Below, we’ve included a selection of recent studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • Data Science in Healthcare: COVID-19 and Beyond (Hulsen, 2022)
  • Auto-ML Web-application for Automated Machine Learning Algorithm Training and evaluation (Mukherjee & Rao, 2022)
  • Survey on Statistics and ML in Data Science and Effect in Businesses (Reddy et al., 2022)
  • Visualization in Data Science VDS @ KDD 2022 (Plant et al., 2022)
  • An Essay on How Data Science Can Strengthen Business (Santos, 2023)
  • A Deep study of Data science related problems, application and machine learning algorithms utilized in Data science (Ranjani et al., 2022)
  • You Teach WHAT in Your Data Science Course?!? (Posner & Kerby-Helm, 2022)
  • Statistical Analysis for the Traffic Police Activity: Nashville, Tennessee, USA (Tufail & Gul, 2022)
  • Data Management and Visual Information Processing in Financial Organization using Machine Learning (Balamurugan et al., 2022)
  • A Proposal of an Interactive Web Application Tool QuickViz: To Automate Exploratory Data Analysis (Pitroda, 2022)
  • Applications of Data Science in Respective Engineering Domains (Rasool & Chaudhary, 2022)
  • Jupyter Notebooks for Introducing Data Science to Novice Users (Fruchart et al., 2022)
  • Towards a Systematic Review of Data Science Programs: Themes, Courses, and Ethics (Nellore & Zimmer, 2022)
  • Application of data science and bioinformatics in healthcare technologies (Veeranki & Varshney, 2022)
  • TAPS Responsibility Matrix: A tool for responsible data science by design (Urovi et al., 2023)
  • Data Detectives: A Data Science Program for Middle Grade Learners (Thompson & Irgens, 2022)
  • MACHINE LEARNING FOR NON-MAJORS: A WHITE BOX APPROACH (Mike & Hazzan, 2022)
  • COMPONENTS OF DATA SCIENCE AND ITS APPLICATIONS (Paul et al., 2022)
  • Analysis on the Application of Data Science in Business Analytics (Wang, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

IT & Computer Science Research Topics

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

DP Logo

Dissertation Services

  • Dissertation Writing Service
  • Dissertation Assistance Service
  • Dissertation Consulting Service
  • Buy Dissertation
  • Dissertation Abstract Writing Services
  • Dissertation Formatting Service
  • Buy Dissertation Methodology
  • Dissertation Case Study Service
  • Pay For Dissertation
  • Dissertation Chapter Writing Services
  • Dissertation Conclusion Services
  • Dissertation Data Analysis Services
  • Dissertation Discussion Writing Services
  • Dissertation Introduction Writing Service
  • Dissertation Outline Service
  • Online Dissertation Help
  • Write My Dissertation
  • Do My Dissertation
  • Help With Thesis Writing Service
  • Dissertation Writing England
  • Dissertation Writing Service London
  • Dissertation Writing Northern Ireland
  • Dissertation Writing Scotland
  • Dissertation Writing Wales
  • Personal Statement Writing Service

Dissertation Subjects

  • Marketing Dissertation
  • Digital Marketing Dissertation
  • Law Dissertation Help
  • Economics Dissertation
  • Accounting Dissertation
  • Business Management Dissertation
  • Nursing Dissertation
  • Psychology Dissertation
  • Social Media Marketing Dissertation
  • English Literature Dissertation Help
  • Finance Dissertation
  • History Dissertation
  • HRM Dissertation
  • IT Dissertation
  • Linguistics Dissertation Help
  • Supply Chain Management Dissertation Help
  • Health And Social Care Dissertation

Dissertation Levels

  • Buy Master Dissertation
  • MBA Dissertation Writing Service
  • Buy PhD Dissertation
  • Masters Dissertation Proposal Help
  • MBA Dissertation Proposal Help
  • PhD Data Collection Services
  • PhD Dissertation Proposal Help
  • PhD Qualitative Data Analysis Services
  • Master Thesis Help
  • PhD Thesis Writing Help
  • PhD Dissertation Editing
  • Finance Dissertation Editing
  • Digital Marketing Dissertation Editing
  • Accounting Dissertation Editing
  • Sociology Dissertation Editing
  • English Literature Dissertation Editing
  • Economics Dissertation Editing
  • Linguistics Dissertation Editing
  • Business Management Dissertation Editing
  • Psychology Dissertation Editing
  • Marketing Dissertation Editing
  • Academic Poster Designing Services
  • Dissertation PowerPoint Presentation Service
  • Dissertation Presentation Writing Services
  • Literature Review Writing Service
  • Primary Data Collection Service
  • Qualitative Data Dissertation Services
  • Research Data Collection Service
  • Secondary Data Collection Help
  • DISSERTATION SERVICES
  • DISSERTATION SUBJECTS
  • DISSERTATION LEVELS
  • Buy MBA Dissertation
  • PhD Dissertation Editing Services

Hire a Writer

Get an expert writer for your academic paper

Check Samples

Take a look at samples for quality assurance

  • Dissertation Topics

Free customised dissertation topics for your assistance

  • Statistics Research Topic
  • Accounting Dissertation Topics (8)
  • Banking & Finance Dissertation Topics (10)
  • Business Management Dissertation Topics (35)
  • Economic Dissertation Topics (1)
  • Education Dissertation Topics (12)
  • Engineering Dissertation Topics (9)
  • English Literature Dissertation Topics (3)
  • HRM Dissertation Topics (3)
  • Law Dissertation Topics (13)
  • Marketing Dissertation Topics (9)
  • Medical Dissertation Topics (7)
  • Nursing Dissertation Topics (10)
  • Other Topics (10)
  • Supply Chain Dissertation Topics (2)
  • Biomedical Science (1)
  • Business Management Research Topics (1)
  • Computer Science Research Topics (1)
  • Criminology Research Topics (1)
  • Economics Research Topics (1)
  • Google Scholar Research Topics (1)
  • HR Research Topics (1)
  • Law Research Topics (1)
  • Management Research Topics (1)
  • Marketing Research Topics (1)
  • MBA Research Topics (1)
  • Medical Research Topics (1)
  • How To (22)

Get a native to improve your language & writing

Enjoy quality dissertation help on any topic

Qualitative & Quantitative data analysis

Best Statistics Research Topics & Ideas For 2021-22

Date published October 7 2021 by Jacob Miller

Statistics is a demanding subject that deals with the collection, analysis, interpretation, evaluation, and management of numeric data. The topic selection of the statistics dissertation can involve the subfields of statistics, i.e. Probability Theory, Mathematical Statistics, Design of Experiments, Sampling, Classification, and Time Series.

Table of Contents

How “Dissertation Proposal” Can Help You!

Our top dissertation writing experts are waiting 24/7 to assist you with your university project, from critical literature reviews to a complete masters dissertation.

Complications in statistics researches:

This subject is much complicated, further, the implication of the proportions in large quantities under complex theories contribute to the difficulties concerning the subject. That’s why it is hard to find considerable statistics dissertation topics. Moreover, the multiple dimensions of the subject make it more problematic to come up with a focused and comprehensive topic.

Why Choosing a Statistics Dissertation Topic is Hard for Students?

While selecting a topic for a statistics dissertation, you must consider the fundamental idea of statistics, i.e. variation and uncertainty. Certain statistical frameworks and methods are applied to get the results.

The topic of the statistics dissertation should be so close to the subject that you will be able the statistical method in the dissertation and presentation of findings.

There are several reasons which together make it a difficult task for the students to select a worthwhile topic for their statistics dissertation.

Shortage of Ideas

Students usually lack in generating potential ideas concerning different areas and aspects of the subject. That’s why they face difficulty in listing out the suitable statistics topics for the dissertation.

Wider Scope

Statistics has a wide scope. It holds a relation with scientific, industrial, and social problems. So, a dissertation topic for this subject can never stand out alone. Due to this reason, students find it difficult to determine their direction and fail to select a potential topic.

Irrelevant or diversified knowledge

Somehow, if students manage to come up with some understandable topics for their dissertation, the uncertainty of the context or the background leads them towards the confusion. They are unable to find a purpose and the background on which they can base their research.

While this all seems a pretty tough task, so then you may take inspiration from our free dissertation topics, and even better you can get the professional on those each topic.

How Do We Help You Select a Statistics Dissertation Topic?

We have skilled and professional subject experts, who bring the best ideas for your statistics dissertation selection. They are well aware of how to meet your subject requirements and professors’ expectations. Through their expertise, they help you select the most significant topics for your dissertation.

By selecting one of the strong statistics research topics we propose, you may contribute to the subject through your intellectual capabilities and unique ideas. While preparing a list of topic suggestions for you, we focus on the following points.

  • Your level of Education
  • Subject Domain
  • Area of Interest
  • Prerequisite Guidelines by the University (if any)

What do our experts say about the Statistics Topic Selection?

Our statistics dissertation experts are well-equipped with dense knowledge in the subject. They know which topic is worthy to be chosen for your dissertation. According to our experts, your topic must involve data collection, data analysis, and data synthesis.

You also must have to go through with several previous dissertations and research papers regarding the subject so that you can come up with a topic having fine scope, context, relevancy, and accuracy. Further, it should be concise and manageable so that you can complete a dissertation on it within the deadline.

You can avoid all these complexities by hiring our statistics dissertation topic selection services. Our experts have produced hundreds of successful works for the satisfaction of the customers. With vast experience in the world of academics and command of statistics dissertations, they have prepared the list of most suitable statistics dissertation topics.

Bayesian Methods for Functional and Time Series

Kernel regression using the four fourier transform, assessing and accounting for correlation in rna-seq data analysis., a guide to doing statistics in second language research using spss, prediction interval methods for reliability data, relevance of tests of significances uses and limitations., interaction forward selection in ultra-high-dimension functional linear models..

To know the details of the above-mentioned topics and have an idea about their aims and objectives, you can consult with our team. You are welcomed 24/7 to get our consultancy. Further, you can have more potential topics for your statistics dissertation topics by hiring our services.

Get Free Customize Topics Now

Academic Level Undergraduate Masters PhD Others

List of Best Statistics Research Topics with Objectives

Objectives:

  • To explore all new bayesian methods which are used in statistical analysis.
  • To introduce new methodology of bayesian which are suitable  for functional and time series data.
  • To exhibit the functional challenges provided by the methodology. 

To explore the methods of kernel  regression

To demonstrate  the method  of speeding up the computation of kernel.

To analyse the FFT to improve the computation of kernel.

Difficulties in Learning Basic Concepts in Probability and Statistics: Implications of Research.

To explore the importance of statistics and probability.

To examine the different methods of statistics and probability used in education system. 

To provide the need for collaborative and cross-disciplinary in researches. 

To explore the concepts behind the usage of statistics in different domains.

To examine the concept of statistics in Second Language.

To study and implement the SPSS software in statistics.

To study the importance of Prediction in statistics.

To analyse the statistical Prediction methods in statistics theory.

To examine the different methods of Prediction interval under the parametric framework. 

To study the importance of statistical tools and significance test both in parametric and nonparametric test.

To examine the statistical tools significance in decision making.

To evaluate the statistical significance test in information retrieval.

To study the statistical methods for the variable selection in ultra-high dimensional functional linear models.

To propose two forward selection procedures on the basis of coefficients approximation.

To demonstrate the application of the proposed methodologies.

Bayes Methods for Biclustering and Vector Data with Binary Coordinates.

To explore the different method of Bayes and its applications.

To examine the Bayes method for the purpose of biclustering and inference for mixture models.

To represent the performance of model through the simulation and applications to real datasets.

To study the concept behind the RNA- sequence data analysis and its procedure.

To examine the papers on the analysis of RNA- sequence data analysis.

To perform a simulation and validate the proposed methods on the basis of results.

An Exploration of Techniques Used in Data Analytics to Produce Analysed Data in Graphical Format.

To explore the techniques used in data analytics used for various purposes in order to produce visual charts.

To demonstrate the use of python language as a main feature in Data analytics.

Consult Our Writers to Discuss Your Needs

View different varieties of dissertation topics and samples on multiple subjects for every educational level

  • Skip to main content

We use cookies

Necessary cookies.

Necessary cookies enable core functionality. The website cannot function properly without these cookies, and can only be disabled by changing your browser preferences.

Analytics cookies

Analytical cookies help us improve our website. We use Google Analytics. All data is anonymised.

Clarity helps us to understand our users’ behaviour by visually representing their clicks, taps and scrolling. All data is anonymised.

Privacy policy

School of Mathematics & Statistics

  • Postgraduate research study
  • Statistics Thesis Topics
  • About the School
  • Postgraduate Research Courses
  • Mathematics Thesis Topics

Statistics thesis topics

Below are sample topics available for prospective postgraduate research students. These sample topics do not contain every possible project; they are aimed at giving an impression of the breadth of different topics available. Most prospective supervisors would be more than happy to discuss projects not listed below.

Funded projects are projects with project-specific funding. Funding for other projects is usally available on a competitive basis.

Modelling in Space and Time - Example Research Projects

Information about postgraduate research opportunities and how to apply can be found on the  Postgraduate Research Study page . Below is a selection of projects that could be undertaken with our group.

Evaluating probabilistic forecasts in high-dimensional settings (PhD)

Supervisors:   Jethro Browell Relevant research groups:  Modelling in Space and Time , Computational Statistics , Applied Probability and Stochastic Processes

Many decisions are informed by forecasts, and almost all forecasts are uncertain to some degree. Probabilistic forecasts quantify uncertainty to help improve decision-making and are playing an important role in fields including weather forecasting, economics, energy, and public policy. Evaluating the quality of past forecasts is essential to give forecasters and forecast users confidence in their current predictions, and to compare the performance of forecasting systems.

While the principles of probabilistic forecast evaluation have been established over the past 15 years, most notably that of “ sharpness subject to calibration/reliability” , we lack a complete toolkit for applying these principles in many situations, especially those that arise in high-dimensional settings. Furthermore, forecast evaluation must be interpretable by forecast users as well as expert forecasts, and assigning value to marginal improvements in forecast quality remains a challenge in many sectors.

This PhD will develop new statistical methods for probabilistic forecast evaluation considering some of the following issues:

  • Verifying probabilistic calibration conditional on relevant covariates
  • Skill scores for multivariate probabilistic forecasts where “ideal” performance is unknowable
  • Assigning value to marginal forecast improvement though the convolution of utility functions and Murphey Diagrams
  • Development of the concept of “anticipated verification” and “predicting the of uncertainty of future forecasts”
  • Decomposing forecast misspecification (e.g. into spatial and temporal components)
  • Evaluation of  Conformal Predictions

Good knowledge of multivariate statistics is essential, prior knowledge of probabilistic forecasting and forecast evaluation would be an advantage.

Adaptive probabilistic forecasting (PhD)

Supervisors:   Jethro Browell Relevant research groups:   Modelling in Space and Time , Computational Statistics , Applied Probability and Stochastic Processes

Data-driven predictive models depend on the representativeness of data used in model selection and estimation. However, many processes change over time meaning that recent data is more representative than old data. In this situation, predictive models should track these changes, which is the aim of “online” or “adaptive” algorithms. Furthermore, many users of forecasts require probabilistic forecasts, which quantify uncertainty, to inform their decision-making. Existing adaptive methods such as Recursive Least Squares, the Kalman Filter have been very successful for adaptive point forecasting, but adaptive probabilistic forecasting has received little attention. This PhD will develop methods for adaptive probabilistic forecasting from a theoretical perspective and with a view to apply these methods to problems in at least one application area to be determined.

In the context of adaptive probabilistic forecasting, this PhD may consider:

  • Online estimation of Generalised Additive Models for Location Scale and Shape
  • Online/adaptive (multivariate) time series prediction
  • Online aggregation (of experts, or hierarchies)

A good knowledge of methods for time series analysis and regression is essential, familiarity with flexible regression (GAMs) and distributional regression (GAMLSS/quantile regression) would be an advantage.

The evolution of shape (PhD)

Supervisors:   Vincent Macaulay Relevant research groups:   Bayesian Modelling and Inference , Modelling in Space and Time , Statistical Modelling for Biology, Genetics and *omics

Shapes of objects change in time. Organisms evolve and in the process change form: humans and chimpanzees derive from some common ancestor presumably different from either in shape. Designed objects are no different: an Art Deco tea pot from the 1920s might share some features with one from Ikea in 2010, but they are different. Mathematical models of evolution for certain data types, like the strings of As, Gs , Cs and Ts in our evolving DNA, are quite mature and allow us to learn about the relationships of the objects (their phylogeny or family tree), about the changes that happen to them in time (the evolutionary process) and about the ways objects were configured in the past (the ancestral states), by statistical techniques like phylogenetic analysis. Such techniques for shape data are still in their infancy. This project will develop novel statistical inference approaches (in a Bayesian context) for complex data objects, like functions, surfaces and shapes, using Gaussian-process models, with potential application in fields as diverse as language evolution, morphometrics and industrial design.

New methods for analysis of migratory navigation (PhD)

Supervisors:   Janine Illian Relevant research groups:   Modelling in Space and Time , Bayesian Modelling and Inference , Computational Statistics , Environmental, Ecological Sciences and Sustainability

Joint project with Dr Urška Demšar (University of St Andrews)

Migratory birds travel annually across vast expanses of oceans and continents to reach their destination with incredible accuracy. How they are able to do this using only locally available cues is still not fully understood. Migratory navigation consists of two processes: birds either identify the direction in which to fly (compass orientation) or the location where they are at a specific moment in time (geographic positioning). One of the possible ways they do this is to use information from the Earth’s magnetic field in the so-called geomagnetic navigation (Mouritsen 2018). While there is substantial evidence (both physiological and behavioural) that they do sense magnetic field (Deutschlander and Beason 2014), we however still do not know exactly which of the components of the field they use for orientation or positioning. We also do not understand how rapid changes in the field affect movement behaviour.

There is a possibility that birds can sense these rapid large changes and that this may affect their navigational process. To study this, we need to link accurate data on Earth’s magnetic field with animal tracking data. This has only become possible very recently through new spatial data science advances:  we developed the MagGeo tool, which links contemporaneous geomagnetic data from Swarm satellites of the European Space Agency with animal tracking data (Benitez Paez et al. 2021).

Linking geomagnetic data to animal tracking data however creates a highly-dimensional data set, which is difficult to explore. Typical analyses of contextual environmental information in ecology include representing contextual variables as co-variates in relatively simple statistical models (Brum Bastos et al. 2021), but this is not sufficient for studying detailed navigational behaviour. This project will analyse complex spatio-temporal data using computationally efficient statistical model fitting approches in a Bayesian context.

This project is fully based on open data to support reproducibility and open science. We will test our new methods by annotating publicly available bird tracking data (e.g. from repositories such as Movebank.org), using the open MagGeo tool and implementing our new methods as Free and Open Source Software (R/Python).

Benitez Paez F, Brum Bastos VdS, Beggan CD, Long JA and Demšar U, 2021. Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration.  Movement Ecology , 9:31.  https://doi.org/10.1186/s40462-021-00268-4

Brum Bastos VdS, Łos M, Long JA, Nelson T and Demšar U, 2021, Context-aware movement analysis in ecology: a systematic review.  International Journal of Geographic Information Science ,  https://doi.org/10.1080/13658816.2021.1962528

Deutschlander ME and Beason RC, 2014. Avian navigation and geographic positioning.  Journal of Field Ornithology , 85(2):111–133. https://doi.org/10.1111/jofo.12055

Integrated spatio-temporal modelling for environmental data (PhD)

Supervisors:   Janine Illian Relevant research groups:   Modelling in Space and Time ,  Bayesian Modelling and Inference ,  Computational Statistics ,  Environmental, Ecological Sciences and Sustainability

(Jointly supervised by Peter Henrys, CEH)

The last decade has seen a proliferation of environmental data with vast quantities of information available from various sources. This has been due to a number of different factors including: the advent of sensor technologies; the provision of remotely sensed data from both drones and satellites; and the explosion in citizen science initiatives. These data represent a step change in the resolution of available data across space and time - sensors can be streaming data at a resolution of seconds whereas citizen science observations can be in the hundreds of thousands.  

Over the same period, the resources available for traditional field surveys have decreased dramatically whilst logistical issues (such as access to sites, ) have increased. This has severely impacted the ability for field survey campaigns to collect data at high spatial and temporal resolutions. It is exactly this sort of information that is required to fit models that can quantify and predict the spread of invasive species, for example. 

Whilst we have seen an explosion of data across various sources, there is no single source that provides both the spatial and temporal intensity that may be required when fitting complex spatio-temporal models (cf invasive species example) - each has its own advantages and benefits in terms of information content. There is therefore potentially huge benefit in beginning together data from these different sources within a consistent framework to exploit the benefits each offers and to understand processes at unprecedented resolutions/scales that would be impossible to monitor. 

Current approaches to combining data in this way are typically very bespoke and involve complex model structures that are not reusable outside of the particular application area. What is needed is an overarching generic methodological framework and associated software solutions to implement such analyses. Not only would such a framework provide the methodological basis to enable researchers to benefit from this big data revolution, but also the capability to change such analyses from being stand alone research projects in their own right, to more operational, standard analytical routines. 

FInally, such dynamic, integrated analyses could feedback into data collection initiatives to ensure optimal allocation of effort for traditional surveys or optimal power management for sensor networks. The major step change being that this optimal allocation of effort is conditional on other data that is available. So, for example, given the coverage and intensity of the citizen science data, where should we optimally send our paid surveyors? The idea is that information is collected at times and locations that provide the greatest benefit in understanding the underpinning stochastic processes. These two major issues - integrated analyses and adaptive sampling - ensure that environmental monitoring is fit for purpose and scientists, policy and industry can benefit from the big data revolution. 

This project will develop an integrated statistical modelling strategy that provides a single modelling framework for enabling quantification of ecosystem goods and services while accounting for the fundamental differences in different data streams. Data collected at different spatial resolutions can be used within the same model through projecting it into continuous space and projecting it back into the landscape level of interest.  As a result, decisions can be made at the relevant spatial scale and uncertainty is propagated through, facilitating appropriate decision making.

Statistical methodology for assessing the impacts of offshore renewable developments on marine wildlife (PhD)

(jointly supervised by Esther Jones and Adam Butler, BIOSS)

Assessing the impacts of offshore renewable developments on marine wildlife is a critical component of the consenting process. A NERC-funded project, ECOWINGS, will provide a step-change in analysing predator-prey dynamics in the marine environment, collecting data across trophic levels against a backdrop of developing wind farms and climate change. Aerial survey and GPS data from multiple species of seabirds will be collected contemporaneously alongside prey data available over the whole water column from an automated surface vehicle and underwater drone.

These methods of data collection will generate 3D space and time profiles of predators and prey, creating a rich source of information and enormous potential for modelling and interrogation. The data present a unique opportunity for experimental design across a dynamic and changing marine ecosystem, which is heavily influenced by local and global anthropogenic activities. However, these data have complex intrinsic spatio-temporal properties, which are challenging to analyse. Significant statistical methods development could be achieved using this system as a case study, contributing to the scientific knowledge base not only in offshore renewables but more generally in the many circumstances where patchy ecological spatio-temporal data are available. 

This PhD project will develop spatio-temporal modelling methodology that will allow user to anaylse these exciting - and complex - data sets and help inform our knowledge on the impact of off-shore renewable on wildlife. 

Analysis of spatially correlated functional data objects (PhD)

Supervisors:   Surajit Ray Relevant research groups:   Modelling in Space and Time ,  Computational Statistics ,  Nonparametric and Semi-parametric Statistics ,  Imaging, Image Processing and Image Analysis

Historically, functional data analysis techniques have widely been used to analyze traditional time series data, albeit from a different perspective. Of late, FDA techniques are increasingly being used in domains such as environmental science, where the data are spatio-temporal in nature and hence is it typical to consider such data as functional data where the functions are correlated in time or space. An example where modeling the dependencies is crucial is in analyzing remotely sensed data observed over a number of years across the surface of the earth, where each year forms a single functional data object. One might be interested in decomposing the overall variation across space and time and attribute it to covariates of interest. Another interesting class of data with dependence structure consists of weather data on several variables collected from balloons where the domain of the functions is a vertical strip in the atmosphere, and the data are spatially correlated. One of the challenges in such type of data is the problem of missingness, to address which one needs develop appropriate spatial smoothing techniques for spatially dependent functional data. There are also interesting design of experiment issues, as well as questions of data calibration to account for the variability in sensing instruments. Inspite of the research initiative in analyzing dependent functional data there are several unresolved problems, which the student will work on:

  • robust statistical models for incorporating temporal and spatial dependencies in functional data
  • developing reliable prediction and interpolation techniques for dependent functional data
  • developing inferential framework for testing hypotheses related to simplified dependent structures
  • analysing sparsely observed functional data by borrowing information from neighbours
  • visualisation of data summaries associated with dependent functional data
  • Clustering of functional data

Estimating the effects of air pollution on human health (PhD)

Supervisors:   Duncan Lee Relevant research groups:   Modelling in Space and Time ,  Biostatistics, Epidemiology and Health Applications

The health impact of exposure to air pollution is thought to reduce average life expectancy by six months, with an estimated equivalent health cost of 19 billion each year (from DEFRA). These effects have been estimated using statistical models, which quantify the impact on human health of exposure in both the short and the long term. However, the estimation of such effects is challenging, because individual level measures of health and pollution exposure are not available. Therefore, the majority of studies are conducted at the population level, and the resulting inference can only be made about the effects of pollution on overall population health. However, the data used in such studies are spatially misaligned, as the health data relate to extended areas such as cities or electoral wards, while the pollution concentrations are measured at individual locations. Furthermore, pollution monitors are typically located where concentrations are thought to be highest, known as preferential sampling, which is likely to result in overly high measurements being recorded. This project aims to develop statistical methodology to address these problems, and thus provide a less biased estimate of the effects of pollution on health than are currently produced.

Mapping disease risk in space and time (PhD)

Disease risk varies over space and time, due to similar variation in environmental exposures such as air pollution and risk inducing behaviours such as smoking.  Modelling the spatio-temporal pattern in disease risk is known as disease mapping, and the aims are to: quantify the spatial pattern in disease risk to determine the extent of health inequalities,  determine whether there has been any increase or reduction in the risk over time, identify the locations of clusters of areas at elevated risk, and quantify the impact of exposures, such as air pollution, on disease risk. I am working on all these related problems at present, and I have PhD projects in all these areas.

Bayesian Mixture Models for Spatio-Temporal Data (PhD)

Supervisors:   Craig Anderson Relevant research groups:   Modelling in Space and Time , Bayesian Modelling and Inference , Biostatistics, Epidemiology and Health Applications

The prevalence of disease is typically not constant across space – instead the risk tends to vary from one region to another.  Some of this variability may be down to environmental conditions, but many of them are driven by socio-economic differences between regions, with poorer regions tending to have worse health than wealthier regions.  For example, within the the Greater Glasgow and Clyde region, where the World Health Organisation noted that life expectancy ranges from 54 in Calton to 82 in Lenzie, despite these areas being less than 10 miles apart. There is substantial value to health professionals and policymakers in identifying some of the causes behind these localised health inequalities.

Disease mapping is a field of statistical epidemiology which focuses on estimating the patterns of disease risk across a geographical region. The main goal of such mapping is typically to identify regions of high disease risk so that relevant public health interventions can be made. This project involves the development of statistical models which will enhance our understanding regional differences in the risk of suffering from major diseases by focusing on these localised health inequalities.

Standard Bayesian hierarchical models with a conditional autoregressive prior are frequently used for risk estimation in this context, but these models assume a smooth risk surface which is often not appropriate in practice. In reality, it will often be the case that different regions have vastly different risk profiles and require different data generating functions as a result.

In this work we propose a mixture model based approach which allows different sub-populations to be represented by different underlying statistical distributions within a single modelling framework. By integrating CAR models into mixture models, researchers can simultaneously account for spatial dependencies and identify distinct disease patterns within subpopulations.

Bayesian Modelling and Inference - Example Research Projects

Modelling genetic variation (msc/phd).

Supervisors:   Vincent Macaulay Relevant research groups:   Bayesian Modelling and Inference ,  Statistical Modelling for Biology, Genetics and *omics

Variation in the distribution of different DNA sequences across individuals has been shaped by many processes which can be modelled probabilistically, processes such as demographic factors like prehistoric population movements, or natural selection. This project involves developing new techniques for teasing out information on those processes from the wealth of raw data that is now being generated by high-throughput genetic assays, and is likely to involve computationally-intensive sampling techniques to approximate the posterior distribution of parameters of interest. The characterization of the amount of population structure on different geographical scales will influence the design of experiments to identify the genetic variants that increase risk of complex diseases, such as diabetes or heart disease.

The evolution of shape (PhD)

Supervisors:   Vincent Macaulay Relevant research groups:   Bayesian Modelling and Inference ,  Modelling in Space and Time , Statistical Modelling for Biology, Genetics and *omics

New methods for analysis of migratory navigation (PhD)

Integrated spatio-temporal modelling for environmental data (phd), statistical methodology for assessing the impacts of offshore renewable developments on marine wildlife (phd).

This PhD project will develop spatio-temporal modelling methodology that will allow user to anaylse these exciting - and complex - data sets and help inform our knowledge on the impact of off-shore renewable on wildlife.

Bayesian variable selection for genetic and genomic studies (PhD)

Supervisors:   Mayetri Gupta Relevant research groups:   Bayesian Modelling and Inference ,  Computational Statistics ,  Statistical Modelling for Biology, Genetics and *omics

An important issue in high-dimensional regression problems is the accurate and efficient estimation of models when, compared to the number of data points, a substantially larger number of potential predictors are present. Further complications arise with correlated predictors, leading to the breakdown of standard statistical models for inference; and the uncertain definition of the outcome variable, which is often a varying composition of several different observable traits. Examples of such problems arise in many scenarios in genomics- in determining expression patterns of genes that may be responsible for a type of cancer; and in determining which genetic mutations lead to higher risks for occurrence of a disease. This project involves developing broad and improved Bayesian methodologies for efficient inference in high-dimensional regression-type problems with complex multivariate outcomes, with a focus on genetic data applications.

The successful candidate should have a strong background in methodological and applied Statistics, expert skills in relevant statistical software or programming languages (such as R, C/C++/Python), and also have a deep interest in developing knowledge in cross-disciplinary topics in genomics. The candidate will be expected to consolidate and master an extensive range of topics in modern Statistical theory and applications during their PhD, including advanced Bayesian modelling and computation, latent variable models, machine learning, and methods for Big Data. The successful candidate will be considered for funding to cover domestic tuition fees, as well as paying a stipend at the Research Council rate for four years.

Bayesian statistical data integration of single-cell and bulk “OMICS” datasets with clinical parameters for accurate prediction of treatment outcomes in Rheumatoid Arthritis (PhD)

Supervisors:   Mayetri Gupta Relevant research groups:   Bayesian Modelling and Inference ,  Computational Statistics ,  Statistical Modelling for Biology, Genetics and *omics ,  Biostatistics, Epidemiology and Health Applications

In recent years, many different computational methods to analyse biological data have been established: including DNA (Genomics), RNA (Transcriptomics), Proteins (proteomics) and Metabolomics, that captures more dynamic events. These methods were refined by the advent of single cell technology, where it is now possible to capture the transcriptomics profile of single cells, spatial arrangements of cells from flow methods or imaging methods like functional magnetic resonance imaging. At the same time, these OMICS data can be complemented with clinical data – measurement of patients, like age, smoking status, phenotype of disease or drug treatment. It is an interesting and important open statistical question how to combine data from different “modalities” (like transcriptome with clinical data or imaging data) in a statistically valid way, to compare different datasets and make justifiable statistical inferences. This PhD project will be jointly supervised with  Dr. Thomas Otto  and  Prof. Stefan Siebert  from the  Institute of Infection, Immunity & Inflammation ), you will explore how to combine different datasets using Bayesian latent variable modelling, focusing on clinical datasets from Rheumatoid Arthritis.

Funding Notes

The successful candidate will be considered for funding to cover domestic tuition fees, as well as paying a stipend at the Research Council rate for four years.

Scalable Bayesian models for inferring evolutionary traits of plants (PhD)

Supervisors:   Vinny Davies ,  Richard Reeve Relevant research groups:   Bayesian Modelling and Inference ,  Computational Statistics ,  Environmental, Ecological Sciences and Sustainability ,  Statistical Modelling for Biology, Genetics and *omics

The functional traits and environmental preferences of plant species determine how they will react to changes resulting from global warming. The main global biodiversity repositories, such as the Global Biodiversity Information Facility ( GBIF ), contain hundreds of millions of records from hundreds of thousands of species in the plant kingdom alone, and the spatiotemporal data in these records can be associated with soil, climate or other environmental data from other databases. Combining these records allow us to identify environmental preferences, especially for common species where many records exist. Furthermore, in a previous PhD studentship we showed that these traits are highly evolutionarily conserved ( Harris et al., 2022 ), so it is possible to impute the preferences for rare species where little data exists using phylogenetic inference techniques.

The aim of this PhD project is to investigate the application of Bayesian variable selection methods to identify these evolutionarily conserved traits more effectively, and to quantify these traits and their associated uncertainty for all plant species for use in a plant ecosystem digital twin that we are developing separately to forecast the impact of climate change on biodiversity. In another PhD studentship, we previously developed similar methods for trait inference in viral evolution ( Davies et al., 2017 ;  Davies et al., 2019 ), but due to the scale of the data here, these methods will need to be significantly enhanced. We therefore propose a project to investigate extensions to methods for phylogenetic trait inference to handle datasets involving hundreds of millions of records in phylogenies with hundreds of thousands of tips, potentially through either sub-sampling ( Quiroz et al, 2018 ) or modelling splitting and recombination ( Nemeth & Sherlock, 2018 ).

Computational Statistics - Example Research Projects

Supervisors:   Jethro Browell Relevant research groups:  Modelling in Space and Time ,  Computational Statistics ,  Applied Probability and Stochastic Processes

Supervisors:   Jethro Browell Relevant research groups:   Modelling in Space and Time ,  Computational Statistics ,  Applied Probability and Stochastic Processes

This project will develop an integrated statistical modelling strategy that provides a single modelling framework for enabling quantification of ecosystem goods and services while accounting for the fundamental differences in different data streams. Data collected at different spatial resolutions can be used within the same model through projecting it into continuous space and projecting it back into the landscape level of interest.  As a result, decisions can be made at the relevant spatial scale and uncertainty is propagated through, facilitating appropriate decision making. 

Statistical methodology for assessing the impacts of offshore renewable developments on marine wildlife (PhD)

Bayesian variable selection for genetic and genomic studies (phd), bayesian statistical data integration of single-cell and bulk “omics” datasets with clinical parameters for accurate prediction of treatment outcomes in rheumatoid arthritis (phd), scalable bayesian models for inferring evolutionary traits of plants (phd).

The aim of this PhD project is to investigate the application of Bayesian variable selection methods to identify these evolutionarily conserved traits more effectively, and to quantify these traits and their associated uncertainty for all plant species for use in a plant ecosystem digital twin that we are developing separately to forecast the impact of climate change on biodiversity. In another PhD studentship, we previously developed similar methods for trait inference in viral evolution ( Davies et al., 2017 ;  Davies et al., 2019 ), but due to the scale of the data here, these methods will need to be significantly enhanced. We therefore propose a project to investigate extensions to methods for phylogenetic trait inference to handle datasets involving hundreds of millions of records in phylogenies with hundreds of thousands of tips, potentially through either sub-sampling ( Quiroz et al, 2018 ) or modelling splitting and recombination ( Nemeth & Sherlock, 2018 ).

Multi objective Bayesian optimisation for in silico  to real metabolomics experiments    (PhD/MSc)

Supervisors:   Vinny Davies ,  Craig Alexander Relevant research groups:   Computational Statistics ,  Machine Learning and AI ,  Emulation and Uncertainty Quantification ,  Statistical Modelling for Biology, Genetics and *omics ,  Statistics in Chemistry/Physics

Untargeted metabolomics experiments aim to  identify  the small molecules that make up a particular sample  (e.g. ,  blood), allowing   us to  identify  biomarkers, discover new chemicals, or understand the  metabolism  ( Smith et al., 2014 ) .  Data Dependent Acquisition  (DDA)  methods  are used to collect  the information needed to  identify  the metabolites ,  and various more advanced  DDA  methods have  recently  been designed to improve this process  ( Davies et al. (2021) ;  McBride et al. (2023) ) . Each of  these methods , however,  ha s  parameters that must be  chosen   in order to  maximise the amount of relevant data  (metabolite spectra)  that is collected . Our recent work  led to the design of  a Virtual Metabolomics Mass Spectrometer ( ViMMS ) in which we can run  computer simulations of experiments  and test different parameter  settings  ( Wandy et al., 2019 ,  2022 ). Previously this has involve d  running a  pre-determined set of parameters as part of a grid search  in  ViMMS ,  and then choosing the best parameter settings  based on a single measure of performance. The proposed  M . Res .  (or Ph . D . ) will  extend this appro ach by using  multi objective  Bayesian Optimisation  to  adapt simulations and optimise over  multiple  different  measurements of quality . By  optimising parameters in this  manner,  we can help improve real experiments currently underway at the University of Glasgow and beyond.

Analysis of spatially correlated functional data objects (PhD)

Nonparametric and semi-parametric statistics - example research projects, modality of mixtures of distributions (phd).

Supervisors:   Surajit Ray Relevant research groups:   Nonparametric and Semi-parametric Statistics ,  Applied Probability and Stochastic Processes ,  Statistical Modelling for Biology, Genetics and *omics ,  Biostatistics, Epidemiology and Health Applications

Finite mixtures provide a flexible and powerful tool for fitting univariate and multivariate distributions that cannot be captured by standard statistical distributions. In particular, multivariate mixtures have been widely used to perform modeling and cluster analysis of high-dimensional data in a wide range of applications. Modes of mixture densities have been used with great success for organizing mixture components into homogenous groups. But the results are limited to normal mixtures. Beyond the clustering application existing research in this area has provided fundamental results regarding the upper bound of the number of modes, but they too are limited to normal mixtures. In this project, we wish to explore the modality of non-normal distributions and their application to real life problems.

Applied Probability and Stochastic Processes - Example Research Projects

Modality of mixtures of distributions (phd).

Finite mixtures provide a flexible and powerful tool for fitting univariate and multivariate distributions that cannot be captured by standard statistical distributions. In particular, multivariate mixtures have been widely used to perform modeling and cluster analysis of high-dimensional data in a wide range of applications. Modes of mixture densities have been used with great success for organizing mixture components into homogenous groups. But the results are limited to normal mixtures. Beyond the clustering application existing research in this area has provided fundamental results regarding the upper bound of the number of modes, but they too are limited to normal mixtures. In this project, we wish to explore the modality of non-normal distributions and their application to real life problems.

Machine Learning and AI - Example Research Projects

Estimating false discovery rates in metabolite identification using generative ai  (phd).

Supervisors:   Vinny Davies , Andrew Elliott ,  Justin J.J. van der Hooft (Wageningen University) Relevant research groups:   Machine Learning and AI ,  Emulation and Uncertainty Quantification ,  Statistical Modelling for Biology, Genetics and *omics ,  Statistics in Chemistry/Physics

Metabolomics is the study field that aims to map all molecules that are part of an organism, which can help us understand its metabolism and how it can be affected by disease, stress, age, or other factors. During metabolomics experiments, mass spectra of the metabolites are collected and then annotated by comparison against spectral databases such as METLIN ( Smith et al., 2005 ) or GNPS ( Wang et al., 2016 ). Generally, however, these spectral databases do not contain the mass spectra of a large proportion of metabolites, so the best matching spectrum from the database is not always the correct identification. Matches can be scored using cosine similarity, or more advanced methods such as Spec2Vec ( Huber et al., 2021 ), but these scores do not provide any statement about the statistical accuracy of the match. Creating decoy spectral libraries, specifically a large database of fake spectra, is one potential way of estimating False Discovery Rates (FDRs), allowing us to quantify the probability of a spectrum match being correct ( Scheubert et al., 2017 ). However, these methods are not widely used, suggesting there is significant scope to improve their performance and ease of use. In this project, we will use the code framework from our recently developed Virtual Metabolomics Mass Spectrometer (ViMMS) ( Wandy et al., 2019 ,  2022 ) to systematically evaluate existing methods and identify possible improvements. We will then explore how we can use generative AI, e.g., Generative Adversarial Networks or Variational Autoencoders, to train a deep neural network that can create more realistic decoy spectra, and thus improve our estimation of FDRs.

Medical image segmentation and uncertainty quantification (PhD)

Supervisors:  Surajit Ray Relevant research groups:   Machine Learning and AI ,  Imaging, Image Processing and Image Analysis

This project focuses on the application of medical imaging and uncertainty quantification for the detection of tumours. The project aims to provide clinicians with accurate, non-invasive methods for detecting and classifying the presence of malignant and benign tumours. It seeks to combine advanced medical imaging technologies such as ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI) with the latest artificial intelligence algorithms. These methods will automate the detection process and may be used for determining malignancy with a high degree of accuracy. Uncertainty quantification (UQ) techniques will help generate a more precise prediction for tumour malignancy by providing a characterisation of the degree of uncertainty associated with the diagnosis. The combination of medical imaging and UQ will significantly decrease the requirement for performing invasive medical procedures such as biopsies. This will improve the accuracy of the tumour detection process and reduce the duration of diagnosis. The project will also benefit from the development of novel image processing algorithms (e.g. deep learning) and machine learning models. These algorithms and models will help improve the accuracy of the tumour detection process and assist clinicians in making the best treatment decisions.

Generating deep fake left ventricles: a step towards personalised heart treatments (PhD)

Supervisors:  Andrew Elliott , Vinny Davies , Hao Gao Relevant research groups:  Machine Learning and AI , Emulation and Uncertainty Quantification , Biostatistics, Epidemiology and Health Applications , Imaging, Image Processing and Image Analysis

Personalised medicine is an exciting avenue in the field of cardiac healthcare where an understanding of patient-specific mechanisms can lead to improved treatments ( Gao et al., 2017 ). The use of mathematical models to link the underlying properties of the heart with cardiac imaging offers the possibility of obtaining important parameters of heart function non-invasively ( Gao et al., 2015 ). Unfortunately, current estimation methods rely on complex mathematical forward simulations, resulting in a solution taking hours, a time frame not suitable for real-time treatment decisions. To increase the applicability of these methods, statistical emulation methods have been proposed as an efficient way of estimating the parameters ( Davies et al., 2019 ;  Noè et al., 2019 ). In this approach, simulations of the mathematical model are run in advance and then machine learning based methods are used to estimate the relationship between the cardiac imaging and the parameters of interest. These methods are, however, limited by our ability to understand the how cardiac geometry varies across patients which is in term limited by the amount of data available ( Romaszko et al., 2019 ). In this project we will look at AI based methods for generating fake cardiac geometries which can be used to increase the amount of data ( Qiao et al., 2023 ). We will explore different types of AI generation, including Generative Adversarial Networks or Variational Autoencoders, to understand how we can generate better 3D and 4D models of the fake left ventricles and create an improved emulation strategy that can make use of them.

Emulation and Uncertainty Quantification - Example Research Projects

Metabolomics is the study field that aims to map all molecules that are part of an organism, which can help us understand its metabolism and how it can be affected by disease, stress, age, or other factors. During metabolomics experiments, mass spectra of the metabolites are collected and then annotated by comparison against spectral databases such as METLIN ( Smith et al., 2005 ) or GNPS ( Wang et al., 2016 ). Generally, however, these spectral databases do not contain the mass spectra of a large proportion of metabolites, so the best matching spectrum from the database is not always the correct identification. Matches can be scored using cosine similarity, or more advanced methods such as Spec2Vec ( Huber et al., 2021 ), but these scores do not provide any statement about the statistical accuracy of the match. Creating decoy spectral libraries, specifically a large database of fake spectra, is one potential way of estimating False Discovery Rates (FDRs), allowing us to quantify the probability of a spectrum match being correct ( Scheubert et al., 2017 ). However, these methods are not widely used, suggesting there is significant scope to improve their performance and ease of use. In this project, we will use the code framework from our recently developed Virtual Metabolomics Mass Spectrometer (ViMMS) ( Wandy et al., 2019 ,  2022 ) to systematically evaluate existing methods and identify possible improvements. We will then explore how we can use generative AI, e.g., Generative Adversarial Networks or Variational Autoencoders, to train a deep neural network that can create more realistic decoy spectra, and thus improve our estimation of FDRs.

Supervisors: Andrew Elliott , Vinny Davies , Hao Gao Relevant research groups:  Machine Learning and AI ,  Emulation and Uncertainty Quantification ,  Biostatistics, Epidemiology and Health Applications ,  Imaging, Image Processing and Image Analysis

Environmental, Ecological Sciences and Sustainability - Example Research Projects

Statistical methodology for assessing the impacts of offshore renewable developments on marine wildlife (phd), statistical modelling for biology, genetics and *omics - example research projects, modelling genetic variation (msc/phd).

Supervisors:   Vincent Macaulay Relevant research groups:   Bayesian Modelling and Inference ,  Modelling in Space and Time ,  Statistical Modelling for Biology, Genetics and *omics

Bayesian statistical data integration of single-cell and bulk “OMICS” datasets with clinical parameters for accurate prediction of treatment outcomes in Rheumatoid Arthritis (PhD)

Supervisors:   Vinny Davies ,  Richard Reeve ,  Claire Harris (BIOSS) Relevant research groups:   Bayesian Modelling and Inference ,  Computational Statistics ,  Environmental, Ecological Sciences and Sustainability ,  Statistical Modelling for Biology, Genetics and *omics

Supervisors:   Vinny Davies , Andrew Elliott ,  Justin J.J. van der Hooft (Wageningen University) Relevant research groups:   Machine Learning and AI ,  Emulation and Uncertainty Quantification ,  Statistical Modelling for Biology, Genetics and *omics , Statistics in Chemistry/Physics

Multi objective Bayesian optimisation for in silico  to real metabolomics experiments  (PhD/MSc)

Finite mixtures provide a flexible and powerful tool for fitting univariate and multivariate distributions that cannot be captured by standard statistical distributions. In particular, multivariate mixtures have been widely used to perform modeling and cluster analysis of high-dimensional data in a wide range of applications. Modes of mixture densities have been used with great success for organizing mixture components into homogenous groups. But the results are limited to normal mixtures. Beyond the clustering application existing research in this area has provided fundamental results regarding the upper bound of the number of modes, but they too are limited to normal mixtures. In this project, we wish to explore the modality of non-normal distributions and their application to real life problems

Implementing a biology-empowered statistical framework to detect rare varient risk factors for complex diseases in whole genome sequence cohorts (PhD)

Supervisors:   Vincent Macaulay , Luísa Pereira (Geneticist, i3s ) Relevant research groups:  Statistical Modelling for Biology, Genetics and *omics ,  Biostatistics, Epidemiology and Health Applications

The traditional genome-wide association studies to detect candidate genetic risk factors for complex diseases/phenotypes (GWAS) recur largely to the microarray technology, genotyping at once thousands or millions of variants regularly spaced across the genome. These microarrays include mostly common variants (minor allele frequency, MAF>5%), missing candidate rare variants which are the more likely to be deleterious [ 1 ]. Currently, the best strategy to genotype low-frequency (1%<MAF<5%) and rare (MAF<1%) variants is through next generation sequencing, and the increasingly availability of whole genome sequences (WGS) places us in the brink of detecting rare variants associated with complex diseases [ 2 ]. Statistically, this detection constitutes a challenge, as the massive number of rare variants in genomes (for example, 64.7M in 150 Iberian WGSs) would imply genotyping millions/billions of individuals to attain statistical power. In the last couple years, several statistical methods have being tested in the context of association of rare variants with complex traits [ 2 , 3 , 4 ], largely testing strategies to aggregate the rare variants. These works have not yet tested the statistical empowerment that can be gained by incorporating reliable biological evidence on the aggregation of rare variants in the most probable functional regions, such as non-coding regulatory regions that control the expression of genes [ 4 ]. In fact, it has been demonstrated that even for common candidate variants, most of these variants (around 88%; [ 5 ]) are located in non-coding regions. If this is true for the common variants detected by the traditional GWAS, it is highly probable to be also true for rare variants.

In this work, we will implement a biology-empowered statistical framework to detect rare variant risk factors for complex diseases in WGS cohorts. We will recur to the 200,000 WGSs from UK Biobank database [ 6 ], that will be available to scientists before the end of 2023. Access to clinical information of these >40 years old UK residents is also provided. We will build our framework around type-2 diabetes (T2D), a common complex disease for which thousands of common variant candidates have been found [ 7 ]. Also, the mapping of regulatory elements is well known for the pancreatic beta cells that play a leading role in T2D [ 8 ]. We will use this mapping in guiding the rare variants’ aggregation and test it against a random aggregation across the genome. Of course, the framework rationale will be appliable to any other complex disease. We will browse literature for aggregation methods available at the beginning of this work, but we already selected the method SKAT (sequence kernel association test; [ 3 ]) to be tested. SKAT fits a random-effects model to the set of variants within a genomic interval or biologically-meaningful region (such as a coding or regulatory region) and computes variant-set level p-values, while permitting correction for covariates (such as the principal components mentioned above that can account for population stratification between cases and controls).

Biostatistics, Epidemiology and Health Applications - Example Research Projects

Bayesian statistical data integration of single-cell and bulk “omics” datasets with clinical parameters for accurate prediction of treatment outcomes in rheumatoid arthritis (phd).

Supervisors:   Mayetri Gupta Relevant research groups:   Bayesian Modelling and Inference ,  Computational Statistics ,  Vincent Macaulay ,  Biostatistics, Epidemiology and Health Applications

Supervisors: Andrew Elliott , Vinny Davies , Hao Gao Relevant research groups:  Machine Learning and AI ,  Emulation and Uncertainty Quantification ,  Biostatistics, Epidemiology and Health Applications ,  Statistical Modelling for Biology, Genetics and *omics

Supervisors:   Craig Anderson Relevant research groups: Modelling in Space and Time , Bayesian Modelling and Inference , Biostatistics, Epidemiology and Health Applications

Implementing a biology-empowered statistical framework to detect rare varient risk factors for complex diseases in whole genome sequence cohorts (PhD)

Supervisors:   Vincent Macaulay , Luísa Pereira (Geneticist,  i3s ) Relevant research groups:  Statistical Modelling for Biology, Genetics and *omics ,  Biostatistics, Epidemiology and Health Applications

The traditional genome-wide association studies to detect candidate genetic risk factors for complex diseases/phenotypes (GWAS) recur largely to the microarray technology, genotyping at once thousands or millions of variants regularly spaced across the genome. These microarrays include mostly common variants (minor allele frequency, MAF>5%), missing candidate rare variants which are the more likely to be deleterious [ 1 ]. Currently, the best strategy to genotype low-frequency (1%<MAF<5%) and rare (MAF<1%) variants is through next generation sequencing, and the increasingly availability of whole genome sequences (WGS) places us in the brink of detecting rare variants associated with complex diseases [ 2 ]. Statistically, this detection constitutes a challenge, as the massive number of rare variants in genomes (for example, 64.7M in 150 Iberian WGSs) would imply genotyping millions/billions of individuals to attain statistical power. In the last couple years, several statistical methods have being tested in the context of association of rare variants with complex traits [ 2 ,  3 ,  4 ], largely testing strategies to aggregate the rare variants. These works have not yet tested the statistical empowerment that can be gained by incorporating reliable biological evidence on the aggregation of rare variants in the most probable functional regions, such as non-coding regulatory regions that control the expression of genes [ 4 ]. In fact, it has been demonstrated that even for common candidate variants, most of these variants (around 88%; [ 5 ]) are located in non-coding regions. If this is true for the common variants detected by the traditional GWAS, it is highly probable to be also true for rare variants.

Social and Urban Studies - Example Research Projects

Our group has an active PhD student community, and every year we admit new PhD students. We welcome applications from across the world. Further information can be found here .

Imaging, Image Processing and Image Analysis - Example Research Projects

Supervisors:  Andrew Elliott , Vinny Davies , Hao Gao Relevant research groups:  Machine Learning and AI ,  Emulation and Uncertainty Quantification ,  Biostatistics, Epidemiology and Health Applications ,  Imaging, Image Processing and Image Analysis

Statistics in Chemistry/Physics - Example Research Projects

Statistics and data analytics education - example research projects.

Our group has an active PhD student community, and every year we admit new PhD students. We welcome applications from across the world. Further information can be found here .

statistics related thesis topics

Department of Statistics – Academic Commons Link to Recent Ph.D. Dissertations (2011 – present)

2022 Ph.D. Dissertations

Andrew Davison

Statistical Perspectives on Modern Network Embedding Methods

Sponsor: Tian Zheng

Nabarun Deb

Blessing of Dependence and Distribution-Freeness in Statistical Hypothesis Testing

Sponsor: Bodhisattva Sen / Co-Sponsor: Sumit Mukherjee

Elliot Gordon Rodriguez

Advances in Machine Learning for Compositional Data

Sponsor: John Cunningham

Charles Christopher Margossian

Modernizing Markov Chains Monte Carlo for Scientific and Bayesian Modeling

Sponsor: Andrew Gelman

Alejandra Quintos Lima

Dissertation TBA

Sponsor: Philip Protter

Bridgette Lynn Ratcliffe

Statistical approach to tagging stellar birth groups in the Milky Way

Sponsor: Bodhisattva Sen

Chengliang Tang

Latent Variable Models for Events on Social Networks

On Recovering the Best Rank-? Approximation from Few Entries

Sponsor: Ming Yuan

Sponsor: Sumit Mukherjee

2021 Ph.D. Dissertations

On the Construction of Minimax Optimal Nonparametric Tests with Kernel Embedding Methods

Sponsor: Liam Paninski

Advances in Statistical Machine Learning Methods for Neural Data Science

Milad Bakhshizadeh

Phase retrieval in the high-dimensional regime

Chi Wing Chu

Semiparametric Inference of Censored Data with Time-dependent Covariates

Miguel Angel Garrido Garcia

Characterization of the Fluctuations in a Symmetric Ensemble of Rank-Based Interacting Particles

Sponsor: Ioannis Karatzas

Rishabh Dudeja

High-dimensional Asymptotics for Phase Retrieval with Structured Sensing Matrices

Sponsor: Arian Maleki

Statistical Learning for Process Data

Sponsor: Jingchen Liu

Toward a scalable Bayesian workflow

2020 Ph.D. Dissertations

Jonathan Auerbach

Some Statistical Models for Prediction

Sponsor: Shaw-Hwa Lo

Adji Bousso Dieng

Deep Probabilistic Graphical Modeling

Sponsor: David Blei

Guanhua Fang

Latent Variable Models in Measurement: Theory and Application

Sponsor: Zhiliang Ying

Promit Ghosal

Time Evolution of the Kardar-Parisi-Zhang Equation

Sponsor: Ivan Corwin

Partition-based Model Representation Learning

Sihan Huang

Community Detection in Social Networks: Multilayer Networks and Pairwise Covariates

Peter JinHyung Lee

Spike Sorting for Large-scale Multi-electrode Array Recordings in Primate Retina

Statistical Analysis of Complex Data in Survival and Event History Analysis

Multiple Causal Inference with Bayesian Factor Models

New perspectives in cross-validation

Quick Links

  • Undergraduate Programs
  • M.A. Statistics Programs
  • M.A. in Mathematical Finance
  • M.S. in Actuarial Science
  • M.A. in Quantitative Methods in the Social Sciences
  • M.S. in Data Science
  • PhD Program
  • BA/MA Program
  • Department Directory
  • Faculty Positions
  • Founder’s Postdoctoral Fellowship Positions
  • Staff Hiring
  • Joint Postdoc with Data Science Institute
  • Department News
  • Department Calendar
  • Research Computing

Upcoming Events

  • Utility Menu

University Logo

Department of Statistics

4c69b3a36a33a4c1c5b5cd3ef5360949.

  • Open Positions

What do senior theses in Statistics look like?

This is a brief overview of thesis writing; for more information, please see our  complete guide here . Senior theses in Statistics cover a wide range of topics, across the spectrum from applied to theoretical. Typically, senior theses are expected to have one of the following three flavors:                                                                                                            

1. Novel statistical theory or methodology, supported by extensive mathematical and/or simulation results, along with a clear account of how the research extends or relates to previous related work.

2. An analysis of a complex data set that advances understanding in a related field, such as public health, economics, government, or genetics. Such a thesis may rely entirely on existing methods, but should give useful results and insights into an interesting applied problem.                                                                                 

3. An analysis of a complex data set in which new methods or modifications of published methods are required. While the thesis does not necessarily contain an extensive mathematical study of the new methods, it should contain strong plausibility arguments or simulations supporting the use of the new methods.

A good thesis is clear, readable, and well-motivated, justifying the applicability of the methods used rather than, for example, mechanically running regressions without discussing the assumptions (and whether they are plausible), performing diagnostics, and checking whether the conclusions make sense. 

Recent FAQs

  • What is a qualified applicant's likelihood for admission?
  • What is the application deadline?
  • Can I start the program in the spring?
  • Can I apply to two different GSAS degree programs at the same time?
  • Is a Math or Stats major required for admission?
  • Is the GRE required?

We use cookies on reading.ac.uk to improve your experience, monitor site performance and tailor content to you

Read our cookie policy to find out how to manage your cookie settings

This site may not work correctly on Internet Explorer. We recommend switching to a different browser for a better experience.

Statistics PhD theses

2015 onwards.

Department of Statistics

Research topics in probability and statistics, problem solving in mathematics and statistics is inspiring and enjoyable. but are achievements in mathematics and statistics any of use in the so-called real world , researchers in the department of statistics at warwick are developing and utilising modern statistics, mathematics, and computing to solve practical problems., examples of themes for undergraduate research projects:.

  • Discovering which genes can discriminate between diseased and healthy patients
  • Modelling and detecting asset price bubbles while they are happening and before they burst
  • Modelling infectious diseases and identifying localized outbreaks
  • Developing a fast algorithm through probabilistic modeling for compression of sound data
  • Automatically diagnosing diseases with large-scale image data utilizing crime data for crime prevention and optimal allocation of police resources
  • Predicting the outcome of elections based on exit poll data
  • Computed Tomography validation of complex structures in Additive Layer Manufacturing

Probability of containment for multitype branching process models for emerging epidemics

Non-stationary statistical modeling and inference for circadian oscillations for research in cancer chronotherapy

Bayesian Models of Category-Specific Emotional Brain Responses

Decision focused inference on Networked Proabilistic Systems: with applications to food security

Rotationally invariant statistics for examining the evidence from the pores in fingerprints

Dynamic Uncertainty Handling for Coherent Decision Making in Nuclear Emergency Response

Study of Key Interventions into Terrorism using Bayesian Networks

Assessing the risk of subsequent tonic-clonic seizures in patients with a history of simple or complex partial seizures

Multidimensional Markov-functional Interest Rate Models

Prospect Theory, Liquidation and the Disposition Effect

Dynamic Bradley-Terry modelling of sports tournaments

Further information on the wide range of research opportunities open to you as an Undergraduate or Postgraduate Taught student in the Department of Statistics can be found on at our Student Research Opportunities webpage.

More information about research in the Department of Statistics, both applied and theoretical, can be found at the departmental research pages .

Mathematics as bridge

The work of mathematicians and statisticians often turns out useful and essential, but typically in a less concrete manner than say the work of a scientists or a physician. David Hilbert, in his now historical address to scientists and physicians, put it this way:

"The instrument that mediates between theory and practice, between thought and observation, is mathematics; it builds the connecting bridge and makes it stronger and stronger. Thus it happens that our entire present-day culture, insofar as it rests on intellectual insight into and harnessing of nature, is founded on mathematics"

Probability and Statistics in the 21st century

Almost a century after Hilbert's words, the mathematical fundations of sciences and social sciences, and the evidence based approach in medicine are often being taken for granted. In the 21st century we are facing complex big data sets with unknown structures from manifold aspecs of the 'real world' as well as fascinating discourses about objective and subjective notions of risk and uncertainty.

Probability and statistics are mathematical disciplines for modelling and analysing theoretical and practical aspects of these burning questions.

  • Weblog home

International Students Blog

International Students blog

Thesis life: 7 ways to tackle statistics in your thesis.

statistics related thesis topics

By Pranav Kulkarni

Thesis is an integral part of your Masters’ study in Wageningen University and Research. It is the most exciting, independent and technical part of the study. More often than not, most departments in WU expect students to complete a short term independent project or a part of big on-going project for their thesis assignment.

https://www.coursera.org/learn/bayesian

Source : www.coursera.org

This assignment involves proposing a research question, tackling it with help of some observations or experiments, analyzing these observations or results and then stating them by drawing some conclusions.

Since it is an immitigable part of your thesis, you can neither run from statistics nor cry for help.

The penultimate part of this process involves analysis of results which is very crucial for coherence of your thesis assignment.This analysis usually involve use of statistical tools to help draw inferences. Most students who don’t pursue statistics in their curriculum are scared by this prospect. Since it is an immitigable part of your thesis, you can neither run from statistics nor cry for help. But in order to not get intimidated by statistics and its “greco-latin” language, there are a few ways in which you can make your journey through thesis life a pleasant experience.

Make statistics your friend

The best way to end your fear of statistics and all its paraphernalia is to befriend it. Try to learn all that you can about the techniques that you will be using, why they were invented, how they were invented and who did this deed. Personifying the story of statistical techniques makes them digestible and easy to use. Each new method in statistics comes with a unique story and loads of nerdy anecdotes.

Source: Wikipedia

If you cannot make friends with statistics, at least make a truce

If you cannot still bring yourself about to be interested in the life and times of statistics, the best way to not hate statistics is to make an agreement with yourself. You must realise that although important, this is only part of your thesis. The better part of your thesis is something you trained for and learned. So, don’t bother to fuss about statistics and make you all nervous. Do your job, enjoy thesis to the fullest and complete the statistical section as soon as possible. At the end, you would have forgotten all about your worries and fears of statistics.

Visualize your data

The best way to understand the results and observations from your study/ experiments, is to visualize your data. See different trends, patterns, or lack thereof to understand what you are supposed to do. Moreover, graphics and illustrations can be used directly in your report. These techniques will also help you decide on which statistical analyses you must perform to answer your research question. Blind decisions about statistics can often influence your study and make it very confusing or worse, make it completely wrong!

Self-sourced

Simplify with flowcharts and planning

Similar to graphical visualizations, making flowcharts and planning various steps of your study can prove beneficial to make statistical decisions. Human brain can analyse pictorial information faster than literal information. So, it is always easier to understand your exact goal when you can make decisions based on flowchart or any logical flow-plans.

https://www.imindq.com/blog/how-to-simplify-decision-making-with-flowcharts

Source: www.imindq.com

Find examples on internet

Although statistics is a giant maze of complicated terminologies, the internet holds the key to this particular maze. You can find tons of examples on the web. These may be similar to what you intend to do or be different applications of the similar tools that you wish to engage. Especially, in case of Statistical programming languages like R, SAS, Python, PERL, VBA, etc. there is a vast database of example codes, clarifications and direct training examples available on the internet. Various forums are also available for specialized statistical methodologies where different experts and students discuss the issues regarding their own projects.

Self-sourced

Comparative studies

Much unlike blindly searching the internet for examples and taking word of advice from online faceless people, you can systematically learn which quantitative tests to perform by rigorously studying literature of relevant research. Since you came up with a certain problem to tackle in your field of study, chances are, someone else also came up with this issue or something quite similar. You can find solutions to many such problems by scouring the internet for research papers which address the issue. Nevertheless, you should be cautious. It is easy to get lost and disheartened when you find many heavy statistical studies with lots of maths and derivations with huge cryptic symbolical text.

When all else fails, talk to an expert

All the steps above are meant to help you independently tackle whatever hurdles you encounter over the course of your thesis. But, when you cannot tackle them yourself it is always prudent and most efficient to ask for help. Talking to students from your thesis ring who have done something similar is one way of help. Another is to make an appointment with your supervisor and take specific questions to him/ her. If that is not possible, you can contact some other teaching staff or researchers from your research group. Try not to waste their as well as you time by making a list of specific problems that you will like to discuss. I think most are happy to help in any way possible.

Talking to students from your thesis ring who have done something similar is one way of help.

Sometimes, with the help of your supervisor, you can make an appointment with someone from the “Biometris” which is the WU’s statistics department. These people are the real deal; chances are, these people can solve all your problems without any difficulty. Always remember, you are in the process of learning, nobody expects you to be an expert in everything. Ask for help when there seems to be no hope.

Apart from these seven ways to make your statistical journey pleasant, you should always engage in reading, watching, listening to stuff relevant to your thesis topic and talking about it to those who are interested. Most questions have solutions in the ether realm of communication. So, best of luck and break a leg!!!

Related posts:

No related posts.

MSc Animal Science

View articles

There are 4 comments.

A perfect approach in a very crisp and clear manner! The sequence suggested is absolutely perfect and will help the students very much. I particularly liked the idea of visualisation!

You are write! I get totally stuck with learning and understanding statistics for my Dissertation!

Statistics is a technical subject that requires extra effort. With the highlighted tips you already highlighted i expect it will offer the much needed help with statistics analysis in my course.

this is so much relevant to me! Don’t forget one more point: try to enrol specific online statistics course (in my case, I’m too late to join any statistic course). The hardest part for me actually to choose what type of statistical test to choose among many options

Leave a reply Cancel reply

Your email address will not be published. Required fields are marked *

Doctoral Program

Program summary.

Students are required to

  • master the material in the prerequisite courses ;
  • pass the first-year core program;
  • attempt all three parts of the qualifying examinations and show acceptable performance in at least two of them (end of 1st year);
  • satisfy the depth and breadth requirements (2nd/3rd/4th year);
  • successfully complete the thesis proposal meeting (winter quarter of the 3rd year);
  • present a draft of their dissertation and pass the university oral examination (4th/5th year).

The PhD requires a minimum of 135 units. Students are required to take a minimum of nine units of advanced topics courses (for depth) offered by the department (not including literature, research, consulting or Year 1 coursework), and a minimum of nine units outside of the Statistics Department (for breadth). Courses for the depth and breadth requirements must equal a combined minimum of 24 units. In addition, students must enroll in STATS 390 Statistical Consulting, taking it at least twice.

All students who have passed the qualifying exams but have not yet passed the Thesis Proposal Meeting must take STATS 319 at least once each year. For example, a student taking the qualifying exams in the summer after Year 1 and having the dissertation proposal meeting in Year 3, would take 319 in Years 2 and 3. Students in their second year are strongly encouraged to take STATS 399 with at least one faculty member. All details of program requirements can be found in our PhD handbook (available to Stanford affiliates only, using Stanford authentication. Requests for access from non-affiliates will not be approved).

Statistics Department PhD Handbook

All students are expected to abide by the Honor Code and the Fundamental Standard .

Doctoral and Research Advisors

During the first two years of the program, students' academic progress is monitored by the department's Graduate Director. Each student should meet at least once a quarter with the Graduate Director to discuss their academic plans and their progress towards choosing a thesis advisor (before the final study list deadline of spring of the second year). From the third year onward students are advised by their selected advisor.

Qualifying Examinations

Qualifying examinations are part of most PhD programs in the United States. At Stanford these exams are intended to test the student's level of knowledge when the first-year program, common to all students, has been completed. There are separate examinations in the three core subjects of statistical theory and methods, applied statistics, and probability theory, which are typically taken during the summer at the end of the student's first year. Students are expected to attempt all three examinations and show acceptable performance in at least two of them. Letter grades are not given. Qualifying exams may be taken only once. After passing the qualifying exams, students must file for Ph.D. Candidacy, a university milestone, by the end of spring quarter of their second year.

While nearly all students pass the qualifying examinations, those who do not can arrange to have their financial support continued for up to three quarters while alternative plans are made. Usually students are able to complete the requirements for the M.S. degree in Statistics in two years or less, whether or not they have passed the PhD qualifying exams.

Thesis Proposal Meeting and Dissertation Reading Committee 

The thesis proposal meeting is intended to demonstrate a student's depth in some areas of statistics, and to examine the general plan for their research. In the meeting the student gives a 60-minute presentation involving ideas developed to date and plans for completing a PhD dissertation, and for another 60 minutes answers questions posed by the committee. which consists of their advisor and two other members. The meeting must be successfully completed by the end of winter quarter of the third year. If a student does not pass, the exam must be repeated. Repeated failure can lead to a loss of financial support.

The Dissertation Reading Committee consists of the student’s advisor plus two faculty readers, all of whom are responsible for reading the full dissertation. Of these three, at least two must be members of the Statistics Department (faculty with a full or joint appointment in Statistics but excluding for this purpose those with only a courtesy or adjunct appointment). Normally, all committee members are members of the Stanford University Academic Council or are emeritus Academic Council members; the principal dissertation advisor must be an Academic Council member. 

The Doctoral Dissertation Reading Committee form should be completed and signed at the Dissertation Proposal Meeting. The form must be submitted before approval of TGR status or before scheduling a University Oral Examination.

 For further information on the Dissertation Reading Committee, please see the Graduate Academic Policies and Procedures (GAP) Handbook section 4.8.

University Oral Examinations

The oral examination consists of a public, approximately 60-minute, presentation on the thesis topic, followed by a 60 minute question and answer period attended only by members of the examining committee. The questions relate to the student's presentation and also explore the student's familiarity with broader statistical topics related to the thesis research. The oral examination is normally completed during the last few months of the student's PhD period. The examining committee typically consists of four faculty members from the Statistics Department and a fifth faculty member from outside the department serving as the committee chair. Four out of five passing votes are required and no grades are given. Nearly all students can expect to pass this examination, although it is common for specific recommendations to be made regarding completion of the thesis.

The Dissertation Reading Committee must also read and approve the thesis.

For further information on university oral examinations and committees, please see the Graduate Academic Policies and Procedures (GAP) Handbook section 4.7 .

Dissertation

The dissertation is the capstone of the PhD degree. It is expected to be an original piece of work of publishable quality. The research advisor and two additional faculty members constitute the student's dissertation reading committee.

  • Faculty of Arts and Sciences
  • FAS Theses and Dissertations
  • Browsing FAS Theses and Dissertations by FAS Department
  • Communities & Collections
  • By Issue Date
  • FAS Department
  • Quick submit
  • Waiver Generator
  • DASH Stories
  • Accessibility
  • COVID-related Research
  • Terms of Use
  • Privacy Policy
  • By Collections
  • By Departments

Browsing FAS Theses and Dissertations by FAS Department "Statistics"

title issue date submit date

ascending descending

5 10 20 40 60 80 100

Now showing items 1-20 of 52

  • submit date

A Grand Journey of Statistical Hierarchical Modelling 

Advances in empirical bayes modeling and bayesian computation , advances in statistical network modeling and nonlinear time series modeling , advances in the normal-normal hierarchical model , analysis, modeling, and optimal experimental design under uncertainty: from carbon nano-structures to 3d printing , bayesian biclustering on discrete data: variable selection methods , bayesian learning of relationships , a bayesian perspective on factorial experiments using potential outcomes , building interpretable models: from bayesian networks to neural networks , causal inference under network interference: a framework for experiments on social networks , complications in causal inference: incorporating information observed after treatment is assigned , diagnostic tools in missing data and causal inference on time series , dilemmas in design: from neyman and fisher to 3d printing , distributed and multiphase inference in theory and practice: principles, modeling, and computation for high-throughput science , essays in causal inference and public policy , expediting scientific discoveries with bayesian statistical methods , exploring objective causal inference in case-noncase studies under the rubin causal model , exploring the role of randomization in causal inference , extensions of randomization-based methods for causal inference , g-squared statistic for detecting dependence, additive modeling, and calibration concordance for astrophysical data .

Innovative Statistics Project Ideas for Insightful Analysis

image

Table of contents

  • 1.1 AP Statistics Topics for Project
  • 1.2 Statistics Project Topics for High School Students
  • 1.3 Statistical Survey Topics
  • 1.4 Statistical Experiment Ideas
  • 1.5 Easy Stats Project Ideas
  • 1.6 Business Ideas for Statistics Project
  • 1.7 Socio-Economic Easy Statistics Project Ideas
  • 1.8 Experiment Ideas for Statistics and Analysis
  • 2 Conclusion: Navigating the World of Data Through Statistics

Diving into the world of data, statistics presents a unique blend of challenges and opportunities to uncover patterns, test hypotheses, and make informed decisions. It is a fascinating field that offers many opportunities for exploration and discovery. This article is designed to inspire students, educators, and statistics enthusiasts with various project ideas. We will cover:

  • Challenging concepts suitable for advanced placement courses.
  • Accessible ideas that are engaging and educational for younger students.
  • Ideas for conducting surveys and analyzing the results.
  • Topics that explore the application of statistics in business and socio-economic areas.

Each category of topics for the statistics project provides unique insights into the world of statistics, offering opportunities for learning and application. Let’s dive into these ideas and explore the exciting world of statistical analysis.

Top Statistics Project Ideas for High School

Statistics is not only about numbers and data; it’s a unique lens for interpreting the world. Ideal for students, educators, or anyone with a curiosity about statistical analysis, these project ideas offer an interactive, hands-on approach to learning. These projects range from fundamental concepts suitable for beginners to more intricate studies for advanced learners. They are designed to ignite interest in statistics by demonstrating its real-world applications, making it accessible and enjoyable for people of all skill levels.

Need help with statistics project? Get your paper written by a professional writer Get Help Reviews.io 4.9/5

AP Statistics Topics for Project

  • Analyzing Variance in Climate Data Over Decades.
  • The Correlation Between Economic Indicators and Standard of Living.
  • Statistical Analysis of Voter Behavior Patterns.
  • Probability Models in Sports: Predicting Outcomes.
  • The Effectiveness of Different Teaching Methods: A Statistical Study.
  • Analysis of Demographic Data in Public Health.
  • Time Series Analysis of Stock Market Trends.
  • Investigating the Impact of Social Media on Academic Performance.
  • Survival Analysis in Clinical Trial Data.
  • Regression Analysis on Housing Prices and Market Factors.

Statistics Project Topics for High School Students

  • The Mathematics of Personal Finance: Budgeting and Spending Habits.
  • Analysis of Class Performance: Test Scores and Study Habits.
  • A Statistical Comparison of Local Public Transportation Options.
  • Survey on Dietary Habits and Physical Health Among Teenagers.
  • Analyzing the Popularity of Various Music Genres in School.
  • The Impact of Sleep on Academic Performance: A Statistical Approach.
  • Statistical Study on the Use of Technology in Education.
  • Comparing Athletic Performance Across Different Sports.
  • Trends in Social Media Usage Among High School Students.
  • The Effect of Part-Time Jobs on Student Academic Achievement.

Statistical Survey Topics

  • Public Opinion on Environmental Conservation Efforts.
  • Consumer Preferences in the Fast Food Industry.
  • Attitudes Towards Online Learning vs. Traditional Classroom Learning.
  • Survey on Workplace Satisfaction and Productivity.
  • Public Health: Attitudes Towards Vaccination.
  • Trends in Mobile Phone Usage and Preferences.
  • Community Response to Local Government Policies.
  • Consumer Behavior in Online vs. Offline Shopping.
  • Perceptions of Public Safety and Law Enforcement.
  • Social Media Influence on Political Opinions.

Statistical Experiment Ideas

  • The Effect of Light on Plant Growth.
  • Memory Retention: Visual vs. Auditory Information.
  • Caffeine Consumption and Cognitive Performance.
  • The Impact of Exercise on Stress Levels.
  • Testing the Efficacy of Natural vs. Chemical Fertilizers.
  • The Influence of Color on Mood and Perception.
  • Sleep Patterns: Analyzing Factors Affecting Sleep Quality.
  • The Effectiveness of Different Types of Water Filters.
  • Analyzing the Impact of Room Temperature on Concentration.
  • Testing the Strength of Different Brands of Batteries.

Easy Stats Project Ideas

  • Average Daily Screen Time Among Students.
  • Analyzing the Most Common Birth Months.
  • Favorite School Subjects Among Peers.
  • Average Time Spent on Homework Weekly.
  • Frequency of Public Transport Usage.
  • Comparison of Pet Ownership in the Community.
  • Favorite Types of Movies or TV Shows.
  • Daily Water Consumption Habits.
  • Common Breakfast Choices and Their Nutritional Value.
  • Steps Count: A Week-Long Study.

Business Ideas for Statistics Project

  • Analyzing Customer Satisfaction in Retail Stores.
  • Market Analysis of a New Product Launch.
  • Employee Performance Metrics and Organizational Success.
  • Sales Data Analysis for E-commerce Websites.
  • Impact of Advertising on Consumer Buying Behavior.
  • Analysis of Supply Chain Efficiency.
  • Customer Loyalty and Retention Strategies.
  • Trend Analysis in Social Media Marketing.
  • Financial Risk Assessment in Investment Decisions.
  • Market Segmentation and Targeting Strategies.

Socio-Economic Easy Statistics Project Ideas

  • Income Inequality and Its Impact on Education.
  • The Correlation Between Unemployment Rates and Crime Levels.
  • Analyzing the Effects of Minimum Wage Changes.
  • The Relationship Between Public Health Expenditure and Population Health.
  • Demographic Analysis of Housing Affordability.
  • The Impact of Immigration on Local Economies.
  • Analysis of Gender Pay Gap in Different Industries.
  • Statistical Study of Homelessness Causes and Solutions.
  • Education Levels and Their Impact on Job Opportunities.
  • Analyzing Trends in Government Social Spending.

Experiment Ideas for Statistics and Analysis

  • Multivariate Analysis of Global Climate Change Data.
  • Time-Series Analysis in Predicting Economic Recessions.
  • Logistic Regression in Medical Outcome Prediction.
  • Machine Learning Applications in Statistical Modeling.
  • Network Analysis in Social Media Data.
  • Bayesian Analysis of Scientific Research Data.
  • The Use of Factor Analysis in Psychology Studies.
  • Spatial Data Analysis in Geographic Information Systems (GIS).
  • Predictive Analysis in Customer Relationship Management (CRM).
  • Cluster Analysis in Market Research.

Conclusion: Navigating the World of Data Through Statistics

In this exploration of good statistics project ideas, we’ve ventured through various topics, from the straightforward to the complex, from personal finance to global climate change. These ideas are gateways to understanding the world of data and statistics, and platforms for cultivating critical thinking and analytical skills. Whether you’re a high school student, a college student, or a professional, engaging in these projects can deepen your appreciation of how statistics shapes our understanding of the world around us. These projects encourage exploration, inquiry, and a deeper engagement with the world of numbers, trends, and patterns – the essence of statistics.

Readers also enjoyed

Likes, Shares, and Beyond: Exploring the Impact of Social Media in Essays

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

statistics related thesis topics

Statistics and Actuarial Science

Information for new graduate students in actuarial science, data science and statistics at the university of iowa..

Welcome New Graduate Students!

Information for NEW graduate students in Actuarial Science, Data Science and Statistics at the University of Iowa. 

Last Updated, May 31, 2024.                                   Additional  updates will be sent this summer!

Important Information for International Students

The Office of International Students and Scholars does an incredible job helping you settle into Iowa City and the University of Iowa.  They have webinars to help with:  

1. Getting Started and Making Travel Arrangements

2. Achieving Success: On-campus Involvement and Cultural Adjustment (undergraduate students)

3. Graduate Student Professionalization and Support

4. Understanding Orientation Expectations, Responsibilities, and Placement Tests (graduate students)

5. On-campus Housing Assignments and Move-in Tips (undergraduate students)

6. Student Employment

7. Money Matters - University Billing

Do you need to take the SPEC (Spoken Proficiency of English for the Classroom)?

All students for whom English is not a first language (as self-reported on their admissions application) and who have first-time appointments as graduate teaching assistants (TAs) are required to go through a testing process to assess their effectiveness in speaking English before they are assigned assistantship responsibilities. Beginning in Fall 2024, there will be a new test to assess communication in English in a classroom context called SPEC (Spoken Proficiency of English in the Classroom).  This is replacing ESPA and ELPT.  Details will be coming soon.

Any graduate student who is included in the following categories needs to have their oral English proficiency tested by the TAPE Program:

  • Students whose first language is not English (i.e., learned another language first) as self-reported on their admissions application, and
  • Have been appointed as a Teaching Assistant

Exemptions (may change):

  • Students with an official valid (within the last two years) iBT Listening score of 25 and an iBT Speaking score of 26.
  • Undergraduate degrees and/or     
  • Continuous attendance of English-language schools since the age of 12 (or younger)
  • Students who served as teaching assistants at other institutions of higher learning in which the language of instruction is English, if they were listed as the instructor of record for a course or led a discussion section in English for at least one year, with a year defined as either two academic semesters or three academic quarters.
  • Requests for exceptions regarding the SPEC  can be submitted for evaluation to a committee consisting of the Director of ESL Programs, the Associate Dean for Administrative Affairs in the Graduate College, and a representative from University Human Resources.

Requests for exemption and exceptions must come from the department by the deadline, not the student.   Deadlines to register students for the SPEC are:

  • March 1  

NOT Exemptions:

  • Students who come from a country where English is one of the official languages.
  • Students who are U.S. permanent residents or U.S. citizens whose first language is not English.

Testing Procedures & Results

 To be announced soon!

Graduate/Professional International Students Important Dates

July 12, 2024:  Earliest date you may enter the U.S. in F-1 or J-1 status. August 11, 2024:  Latest date by which you should arrive in Iowa City August 12 - 16, 2024: International Student Orientation August 26, 2024:  Classes begin.

Housing Information for All Students

The department has a housing webpage, please let us know if you have any questions or concerns. If you are looking for a roommate, please let us know and we can update this web page!

Looking for housing options ?

All US citizens that are financially supported (TA, RA) need to be here on August 21.

All students will register for classes the week before classes start.  International students must complete the required Orientation Program before  they can register for classes.    

____________________

Fall Classes Advising will be August 19-23

All NEW UI students must meet with their advisor prior to registration.  There is no worry about getting into any of the classes we teach.  

  • IF you are an Actuarial Science MS or PhD student you will need to meet with Professor Shyamalkumar.  Email him after August 12 at [email protected] to set a time to meet to discuss what classes to take, it may be on Zoom or in his office (233 Schaeffer Hall).
  • IF you are a Data Science MS, Statistics MS, or PhD student you will need to meet with Professor Boxiang Wang.  Email him after August 12 at [email protected]  to set a time to meet to discuss what classes to take, it may be on Zoom or in his office (261 Schaeffer Hall).

New Graduate College Welcome and Orientation, August 21

The Graduate College Fall 2024 Graduate Student Orientation event will take place on Wednesday, August 21, 2024.  A registration form will be sent to your UI email sometime this early summer from the Graduate College. All new doctoral and master’s students are invited to attend.  

New Teaching Assistant Orientation, August 22- required for all new supported students

Sponsored by the Center for Teaching

This event will introduce participants to the role of teaching assistant at the University of Iowa and prepare them for the first week of classes and beyond. 

Participants will discuss evidence-based teaching strategies for lesson planning, inclusive teaching, and more with Center for Teaching staff. Participants will also choose two workshops of interest to them out of several options; these will be facilitated synchronously by experienced TAs.  This is a virtual event for 9-noon.

  • Sign up before August 21!

New Student Department Orientation, August 23 at 9 a.m., Room to be determined.

  • All New Student Orientation —Group Introductions and General Policy Procedures.

New Supported Graduate Assistants Orientation, August 23 at 1 p.m., Room to be determined.

  • Our Director of Graduate Studies will have a department review of expectations and your specific roles in our department. Teaching and grading assignments will be explained, as well as preparation, teaching tips, problems and questions, quizzes and exams, weekly meetings, grading, appropriate office use and the Sexual Harassment Prevention Education

Mailbox in 241 Schaeffer Hall 

All graduate students will have a mailbox in our main office.  The faculty do as well.  Please check your mailbox at least once a week!

Office Desk Assignment

Nearly all supported students will have a desk in one of our offices.  The assignment priority (in this order) includes Ph.D. and Fellowship candidates, research assistants, half-time teaching assistants, quarter-time teaching assistants and lastly graders.  Having a desk is a privilege and should be used only for university business.  Office assignments will be given to students on, August 23.  Keys are checked out ONLY after that time.  Please remember to keep the rooms clean and take out all trash to the large bins in the main hallways.

Set-up your University of Iowa Email

All University of Iowa students are required to activate their assigned uiowa.edu email address, as all official communication from university offices are now sent via email, rather than hard copy. This address usually follows the pattern [email protected]   (However, often a number is also attached.) 

To activate the account:

  • Log on to  MyUI
  • Click on My UIowa / My Email / Request Email Account
  • Complete the specified steps.

Students who prefer to maintain only their work or home email addresses can do so by routing the uiowa.edu email to a work or home account. To do so, follow these steps:

  • Click on My UIowa / My Email / Update Email Routing Address

Important Notes:

  • If your uiowa.edu email address is routed to a different account, you will  not  need to change your address in ICON, as your messages will already forward to your routed address.
  • Log on to MYUI.
  • Click on My UIowa / My Email / Email Account Filter bulk mail.
  • Make sure that none of the categories are checked.

Required Graduate Assistants Teaching Courses:

  • ONLINE CLASS Requirement: Sexual Harassment Prevention Edu.  Use your HawkID and password to log into Employee Self Service. Click the Personal tab, next (under Learning and Development) click on Sexual Harassment Prevention Edu., follow instructions.
  • ONLINE CLASS Requirement:  Federal Educational Rights and Privacy Act (FERPA), Use your HawkID and password to log into Employee Self Service. Click the Personal tab, next (under Learning and Development) next click on Available Online Icon Courses, next FERPA Training, then click on View Details twice and the last click will be to Enroll in this ICON Course Session.
  • A six-hour orientation program will be required of all students who are certified at level A or B and are teaching for the first time.  This orientation helps new teaching assistants understand the culture of the U.S. classroom and treats topics such as student expectations, teacher-student relationships, and understanding and answering student questions. Discussion focuses on suggestions for maximizing comprehensibility in spoken English. This course meets twice for 3 hours early in the semester. Both meetings are held in the evening.

Administrative Department Staff:

Professor aixin tan (until july 1, 2024).

Director of Graduate Studies, Statistics and Data Science Graduate Advisor: [email protected]   (319) 335-0821.

Professor Boxiang Wang (beginning July 1, 2024)

Director of Graduate Studies, Statistics and Data Science Graduate Advisor: [email protected] (319) 335-2294.

Professor N.D. Shyamalkumar

Actuarial Science Graduate Advisor:  [email protected]    (319) 335-1980

Margie Ebert

Academic Services Coordinator ,  [email protected]  (319) 335-2082

Heather Roth

Administrative Services Coordinator  [email protected]   (319) 335-0712

Tammy Siegel

Department Administrator ,  [email protected] , (319) 335-0706

Advertisement

Supported by

Climate Change Added a Month’s Worth of Extra-Hot Days in Past Year

Since last May, the average person experienced 26 more days of abnormal warmth than they would have without global warming, a new analysis found.

  • Share full article

A woman wearing a patterned scarf and green pants sits on a hospital bed while connected to an IV stand.

By Raymond Zhong

Over the past year of record-shattering warmth, the average person on Earth experienced 26 more days of abnormally high temperatures than they otherwise would have, were it not for human-induced climate change, scientists said Tuesday.

The past 12 months have been the planet’s hottest ever measured, and the burning of fossil fuels, which has added huge amounts of heat-trapping gases to the atmosphere, is a major reason. Nearly 80 percent of the world’s population experienced at least 31 days of atypical warmth since last May as a result of human-caused warming, the researchers’ analysis found.

Hypothetically, had we not heated the globe to its current state , the number of unusually warm days would have been far fewer, the scientists estimated, using mathematical modeling of the global climate.

The precise difference varies place to place. In some countries, it is just two or three weeks, the researchers found. In others, including Colombia, Indonesia and Rwanda, the difference is upward of 120 days.

“That’s a lot of toll that we’ve imposed on people,” said one of the researchers who conducted the new analysis, Andrew Pershing, the vice president for science at Climate Central, a nonprofit research and news organization based in Princeton, N.J., adding, “It’s a lot of toll that we’ve imposed on nature.” In parts of South America and Africa, he said, it amounts to “120 days that just wouldn’t be there without climate change.”

Currently, the world’s climate is shifting toward the La Niña phase of the cyclical pattern known as the El Niño-Southern Oscillation. This typically portends cooler temperatures on average. Even so, the recent heat could have reverberating effects on weather and storms in some places for months to come. Forecasters expect this year’s Atlantic hurricane season to be extraordinarily active, in part because the ocean waters where storms form have been off-the-charts warm.

The analysis issued Tuesday was a collaboration between several groups: Climate Central, the Red Cross Red Crescent Climate Centre and World Weather Attribution, a scientific initiative that examines extreme weather episodes. The report’s authors considered a given day’s temperature to be abnormally high in a particular location if it exceeded 90 percent of the daily temperatures recorded there between 1991 and 2020.

The average American experienced 39 days of such temperatures as a result of climate change since last May, the report found. That’s 19 more days than in a hypothetical world without human-caused warming. In some states, including Arizona and New Mexico in the Southwest and Washington and Oregon in the Northwest, the difference is 30 days or more, a full extra month.

The scientists also tallied up how many extreme heat waves the planet had experienced since last May. They defined these as episodes of unseasonable warmth across a large area, lasting three or more days, with significant loss of life or disruption to infrastructure and industry.

In total, the researchers identified 76 such episodes over the past year, affecting 90 countries, on every continent except Antarctica. There was the punishing hot spell in India last spring. There was the extreme heat that worsened wildfires and strained power grids in North America, Europe and East Asia last summer. And, already this year, there has been excessive warmth from Africa to the Middle East to Southeast Asia .

Raymond Zhong reports on climate and environmental issues for The Times. More about Raymond Zhong

Our Coverage of Climate and the Environment

News and Analysis

Over the past year of record-shattering warmth, the average person on Earth experienced 26 more days of abnormally high temperatures  than they otherwise would have, were it not for human-induced climate change, scientists said.

The Biden administration laid out for the first time a set of broad government guidelines around the use of carbon offsets  in an attempt to shore up confidence in a method for tackling global warming that has faced growing criticism.

A group of health experts, economists and U.S. government lawyers are working to address a growing crisis: people dying on the job from extreme heat. They face big hurdles .

Adopting Orphaned Oil Wells:  Students, nonprofit groups and others are fund-raising to cap highly polluting oil and gas wells  abandoned by industry.

Struggling N.Y.C. Neighborhoods:  New data projects are linking social issues with global warming. Here’s what that means for five communities in New York .

Biden Environmental Rules:  The Biden administration has rushed to finalize 10 major environmental regulations  to meet its self-imposed spring deadline.

F.A.Q.:  Have questions about climate change? We’ve got answers .

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

May 30, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Drugs can reduce recurrence after bowel cancer surgery, new thesis suggests

by Claes Björnberg, Umea University

surgery

A thesis at Umeå University shows that certain non-steroidal anti-inflammatory drugs, known as NSAIDs, can help patients who have undergone surgery for colorectal cancer. These patients suffer fewer recurrences of cancer and fewer leaks at the surgical site, so-called anastomotic leakage.

The researchers investigated whether NSAIDs, if taken in the first week after surgery for rectal cancer, could reduce the risk of recurrence-free survival. No conclusive effect were seen. This may be because there is no effect, that there were too few patients in the study, that different NSAIDs were used, or that a longer treatment with NSAIDs may be needed to see an effect.

"When we included a larger group of patients in the study, we saw positive effects in those treated with NSAIDs. These patients had a reduced rate of cancer recurrence, especially for left-sided colon cancer, and a reduced rate of anastomotic leakage," says the study's author Oskar Grahn, Department of Diagnostics and Intervention.

Furthermore, the biological processes that can explain why anastomotic leakage negatively affect long-term cancer outcomes were investigated. They discovered that even though patients who suffered anastomotic leakage or intra-abdominal abscess had normal levels of a protein called C-reactive protein (CRP) 41 days after surgery, there were 72 proteins that were upregulated and five that were downregulated still. This suggests that there may still be harmful processes going on in the body, even though one might think that the negative effects already have passed.

Finally, it was studied how common a certain mutation of the gene for the enzyme cyclooxygenase (COX-2) is among patients with colorectal cancer in Sweden. COX-2 is one of the enzymes that NSAIDs inhibit. However, it was not possible to confirm a previous finding showing that this mutation could be linked to an increased risk of anastomotic leakage.

In conclusion, research suggests that NSAIDs may have beneficial effects on cancer recurrence and anastomotic leakage in patients with colorectal cancer , depending on the location of the tumor and the anastomosis. This is especially the case for left-sided colon cancer, as these tumors often overexpress COX-2.

"Further research is needed to confirm these results and to investigate whether a longer treatment with NSAIDs could have an even greater effect," says Oskar Grahn.

Explore further

Feedback to editors

statistics related thesis topics

Eye-tracking techniques could help primary care providers diagnose autism sooner, more accurately

5 hours ago

statistics related thesis topics

This self-powered sensor could make MRIs more efficient

6 hours ago

statistics related thesis topics

Not eating can hinder weight loss, study in fruit flies suggests

7 hours ago

statistics related thesis topics

Neuroscience research suggests ketones can enhance cognitive function and protect brain networks

8 hours ago

statistics related thesis topics

New research finds antidepressants may help deliver other drugs into the brain

statistics related thesis topics

Mediterranean diet tied to one-fifth lower risk of death in women

statistics related thesis topics

Scientists find new method to enhance efficacy of bispecific antibodies for solid tumors

9 hours ago

statistics related thesis topics

Cardiomyocytes study discovers new way to regenerate damaged heart cells

statistics related thesis topics

Study: The route into the cell influences the outcome of SARS-CoV-2 infection

statistics related thesis topics

Prenatal testing offers a window for finding a mother's cancer risk

10 hours ago

Related Stories

statistics related thesis topics

Colorectal cancer surgery: Modifying gut microbiota could reduce postoperative complications

Jan 31, 2023

statistics related thesis topics

New research may explain unexpected effects of common painkillers

May 23, 2022

statistics related thesis topics

How does aspirin help prevent colorectal cancer development and progression?

Apr 22, 2024

statistics related thesis topics

Antibiotics use in relation to colorectal cancer risk, survival and postoperative complications

Mar 19, 2024

statistics related thesis topics

Soy lecithin NSAID combo drug protects against cancer with fewer side effects

May 30, 2018

statistics related thesis topics

Use of ibuprofen and similar NSAIDs may shorten life of patients

May 1, 2018

Recommended for you

statistics related thesis topics

Study shows most doctors endorsing drugs on X are paid to do so

statistics related thesis topics

Team finds new potential causes of rare and lethal bone cancer

12 hours ago

statistics related thesis topics

Cancer can be caused by reversible molecular changes, study shows

statistics related thesis topics

Gene variants foretell the biology of future breast cancers, study finds

statistics related thesis topics

Taking the contraceptive pill could contribute to scarring hair loss

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Global Purchasing Power Parities Data Released for 2021

WASHINGTON, May 30, 2024 — New purchasing power parities (PPPs), which provide a standardized way to assess the relative buying power of different economies, were released today by the International Comparison Program (ICP) for the reference year 2021. 

PPPs adjust for price-level differences across economies, enabling comparison of key metrics such as gross domestic product (GDP) and material well-being. Because price levels tend to be higher in high-income countries and lower in low-income countries, GDP comparisons based on exchange rates—which do not account for price-level differences—overstate the economic size of high-income countries while understating the economic size of low-income countries. PPP-based metrics also have the advantage of avoiding market exchange-rate fluctuations.

The latest ICP data show the size of the global economy in PPP terms in 2021 was $152 trillion. Middle-income economies accounted for more than half of the total. High-income economies accounted for slightly less than half. Low-income economies constituted barely 1% of global GDP. 

“The completion of the latest ICP cycle is a testament to the resilience of national and regional statistical agencies that worked tirelessly to overcome the challenges imposed by the COVID-19 pandemic and to ensure the success of ICP activities,” said Haishan Fu, the World Bank Group’s Chief Statistician .  “As a result, the ICP partnership has delivered an important global public good—vital economic statistics that support critical policy analysis to advance economic development.”

The ICP is one of the world’s largest statistical initiatives, coordinated by the World Bank under the auspices of the United Nations Statistical Commission. ICP 2021 marks the tenth comparison completed since the initiative was launched in 1968. It covers 176 participating economies for the reference year 2021. 

The program relies on a partnership of international, regional, sub-regional, and national statistical agencies. This includes the African Development Bank, the Asian Development Bank, the Interstate Statistical Committee of the Commonwealth of Independent States, the United Nations Economic Commission for Latin America and the Caribbean, the United Nations Economic and Social Commission for Western Asia, the Statistical Office of the European Union, and the Organization for Economic Co-operation and Development. Global coordination, methodology development, and governance activities are financed by the International Monetary Fund—through the Global Data Facility—and the World Bank.

“PPPs produced by the ICP provide a powerful lens through which to better understand the global economy,” the ICP’s Governing Board co-chairs, Markus Sovala and Risenga Maluleke , said in a joint statement. “ PPP-based metrics show that developing countries play a larger role than other economic output measures may indicate, and they also reveal large differences in per capita expenditures.” Sovala is Director-General of Statistics Finland and Maluleke is Statistician General of Statistics South Africa.

The ICP 2021 results are available through the ICP website and the World Bank’s Databank . The many uses and applications of PPPs and other ICP data are highlighted here .

Access ICP data

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here .

U.S. flag

An official website of the United States government, Department of Justice.

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Correctional Populations in the United States, 2022 – Statistical Tables

This report summarizes data on populations supervised by probation or parole agencies and those incarcerated in state or federal prisons or in the custody of local jails. It presents data on the number of persons supervised by adult correctional systems from 2012 to 2022 and on their correctional status (i.e., in prison, in local jail, on parole, or on probation). The report also includes tables on sex and race or ethnicity of persons supervised by correctional systems. BJS has published statistics on correctional populations since 1985.

  • The rate of persons under supervision of adult correctional systems was 2,060 per 100,000 adult U.S. residents at yearend 2022, the fifteenth year of decline since the high of 3,210 per 100,000 under supervision in 2007.
  • At yearend 2022, more than two-thirds of persons under correctional supervision were supervised in the community on probation or parole (3,668,800), while almost one-third (1,827,600) were incarcerated in state or federal prisons or local jails.
  • While the total community supervision population decreased 2% from yearend 2021 to yearend 2022, the incarcerated population increased 3% due to a 4% increase in the number of persons held in local jails and a 2% increase in persons held in prisons.
  • There were about 954,000 fewer persons on probation in 2022 than in 2012.

Additional Details

  • Press release, (PDF 277K)
  • Summary, (PDF 2M)
  • Full report, (PDF 718K)
  • Data tables, (Zip format 24K)

Related Datasets

  • Annual Probation Survey and Annual Parole Survey
  • Annual Survey of Jails (ASJ)
  • Census of Jails (COJ)
  • National Prisoner Statistics (NPS)
  • Annual Survey of Jails in Indian Country (SJIC)
  • Survey of Prison Inmates (SPI)

Related Topics

Similar publications.

  • Federal Justice Statistics, 2022
  • Jail Inmates in 2019
  • Federal Justice Statistics, 2016 - Statistical Tables
  • Economy & Politics ›

Industry-specific and extensively researched technical data (partially from exclusive partnerships). A paid subscription is required for full access.

Topics addressed during health and safety training in Poland 2023

Which issues related to psychosocial factors in the workplace were addressed during health and safety training.

  • Immediate access to 1m+ statistics
  • Incl. source references
  • Download as PNG, PDF, XLS, PPT

Additional Information

Show sources information Show publisher information Use Ask Statista Research Service

September 2023

June 16 to July 3, 2023

1,276 respondents

Computer-assisted telephone interviews (CATI)

*CATI survey was conducted on 204 employers **CAWI survey was conducted on 1072 employees

Other statistics on the topic

Demographics

  • Suicide rate South Korea 2000-2022
  • Suicide rate South Korea 2010-2022, by age

State of Health

  • Leading health problems worldwide 2023
  • Reasons for suicide South Korea 2021

To download this statistic in XLS format you need a Statista Account

To download this statistic in PNG format you need a Statista Account

To download this statistic in PDF format you need a Statista Account

To download this statistic in PPT format you need a Statista Account

As a Premium user you get access to the detailed source references and background information about this statistic.

As a Premium user you get access to background information and details about the release of this statistic.

As soon as this statistic is updated, you will immediately be notified via e-mail.

… to incorporate the statistic into your presentation at any time.

You need at least a Starter Account to use this feature.

  • Immediate access to statistics, forecasts & reports
  • Usage and publication rights
  • Download in various formats

You only have access to basic statistics. This statistic is not included in your account.

  • Instant access  to 1m statistics
  • Download  in XLS, PDF & PNG format
  • Detailed  references

Business Solutions including all features.

Statistics on " Mental health in South Korea "

  • Number of people globally with mental health disorders as of 2017
  • Share of mentally disabled people among all disabled people South Korea 2013-2023
  • Total number of registered mentally disabled persons in South Korea 2013-2023
  • Labor participation rate of people with mental disabilities in South Korea 2019-2023
  • Unemployment rate of people with mental disabilities in South Korea 2019-2023
  • National mental healthcare budget in South Korea 2019-2023
  • Amount of mental health care facilities in South Korea 2022, by type
  • Amount of mental health care facilities in South Korea 2022, by province
  • Density of hospital beds in psychiatric care in South Korea 2000-2021
  • Distribution of doctors in South Korea 2022, by medical special
  • Number of field nurses South Korea 2022, by medical specialty
  • Mental health care services use rate in South Korea 2001-2021
  • Amount of patients treated per 100.000 population in South Korea 2021, by disorder
  • Readmittance rate of severely mentally ill patients in South Korea 2021, by time
  • Number of calls to suicide helpline South Korea 2019-2020
  • Share of people actively working on mental wellbeing South Korea 2022
  • Methods used by people to improve mental wellbeing South Korea 2022
  • Lifetime prevalence of mental disorders in South Korea 2021, by age and gender
  • One-year prevalence of mental disorders in South Korea 2001-2021
  • Lifetime prevalence of various anxiety disorders in South Korea 2021
  • One-year prevalence of anxiety in South Korea 2021, by age group and gender
  • One-year prevalence of depression in South Korea 2021, by age group and gender
  • One-year prevalence of alcohol abuse in South Korea 2021, by age group and gender
  • One-year prevalence of alcoholism in South Korea 2021, by age group and gender
  • One-year prevalence of nicotine dependence in South Korea 2001-2021
  • Smartphone overdependence South Korea 2014-2023
  • Smartphone overdependence risk South Korea 2023, by age group
  • Share of teenagers with a high smartphone overdependence risk South Korea 2013-2023
  • Suicide prevention budget South Korea 2015-2020
  • Suicide deaths South Korea 2010-2022
  • Share of suicide attempts involving mental disorders South Korea 2021, by disorder

Other statistics that may interest you Mental health in South Korea

  • Basic Statistic Number of people globally with mental health disorders as of 2017
  • Premium Statistic Leading health problems worldwide 2023
  • Premium Statistic Share of mentally disabled people among all disabled people South Korea 2013-2023
  • Premium Statistic Total number of registered mentally disabled persons in South Korea 2013-2023
  • Premium Statistic Labor participation rate of people with mental disabilities in South Korea 2019-2023
  • Premium Statistic Unemployment rate of people with mental disabilities in South Korea 2019-2023

Mental healthcare structure

  • Premium Statistic National mental healthcare budget in South Korea 2019-2023
  • Premium Statistic Amount of mental health care facilities in South Korea 2022, by type
  • Premium Statistic Amount of mental health care facilities in South Korea 2022, by province
  • Premium Statistic Density of hospital beds in psychiatric care in South Korea 2000-2021
  • Premium Statistic Distribution of doctors in South Korea 2022, by medical special
  • Premium Statistic Number of field nurses South Korea 2022, by medical specialty

Mental health patients

  • Premium Statistic Mental health care services use rate in South Korea 2001-2021
  • Premium Statistic Amount of patients treated per 100.000 population in South Korea 2021, by disorder
  • Premium Statistic Readmittance rate of severely mentally ill patients in South Korea 2021, by time
  • Premium Statistic Number of calls to suicide helpline South Korea 2019-2020
  • Premium Statistic Share of people actively working on mental wellbeing South Korea 2022
  • Premium Statistic Methods used by people to improve mental wellbeing South Korea 2022

Prevalence of selected disorders

  • Premium Statistic Lifetime prevalence of mental disorders in South Korea 2021, by age and gender
  • Premium Statistic One-year prevalence of mental disorders in South Korea 2001-2021
  • Premium Statistic Lifetime prevalence of various anxiety disorders in South Korea 2021
  • Premium Statistic One-year prevalence of anxiety in South Korea 2021, by age group and gender
  • Premium Statistic One-year prevalence of depression in South Korea 2021, by age group and gender

Substance abuse and addiction

  • Premium Statistic One-year prevalence of alcohol abuse in South Korea 2021, by age group and gender
  • Premium Statistic One-year prevalence of alcoholism in South Korea 2021, by age group and gender
  • Premium Statistic One-year prevalence of nicotine dependence in South Korea 2001-2021
  • Premium Statistic Smartphone overdependence South Korea 2014-2023
  • Premium Statistic Smartphone overdependence risk South Korea 2023, by age group
  • Premium Statistic Share of teenagers with a high smartphone overdependence risk South Korea 2013-2023
  • Premium Statistic Suicide prevention budget South Korea 2015-2020
  • Premium Statistic Suicide deaths South Korea 2010-2022
  • Premium Statistic Suicide rate South Korea 2000-2022
  • Premium Statistic Suicide rate South Korea 2010-2022, by age
  • Premium Statistic Reasons for suicide South Korea 2021
  • Premium Statistic Share of suicide attempts involving mental disorders South Korea 2021, by disorder

Further Content: You might find this interesting as well

IMAGES

  1. Top 99+ Trending Statistics Research Topics for Students

    statistics related thesis topics

  2. 500+ Statistics Research Topics

    statistics related thesis topics

  3. [100+] Statistics Research Topics With Free [Thesis Pdf] 2023

    statistics related thesis topics

  4. ⛔ Statistics essay sample. Reflection about Statistics. 2022-10-09

    statistics related thesis topics

  5. Quantitative-Research-Proposal-Topics-list.pdf

    statistics related thesis topics

  6. PPT

    statistics related thesis topics

VIDEO

  1. Demographic Analysis in SPSS

  2. The most important ideas in modern statistics

  3. Architecture Thesis Topics: Sustainability #architecture #thesis #thesisproject #design #school

  4. Thesis Preparation Video #1 Introduction

  5. Writing the Findings, Discussion and Conclusion Chapter of the Thesis

  6. STATISTICS Concepts for Data Science pt.1

COMMENTS

  1. Top 99+ Trending Statistics Research Topics for Students

    If we talk about the interesting research topics in statistics, it can vary from student to student. But here are the key topics that are quite interesting for almost every student:-. Literacy rate in a city. Abortion and pregnancy rate in the USA. Eating disorders in the citizens.

  2. 120 Statistical Research Topics: Latest Trends & Techniques

    Here are some of the best statistical research topics worth writing on: Predictive Healthcare Modeling with Machine Learning. Analyzing Online Education During COVID-19 Epidemic. Modeling How Climate Change Affects Natural Disasters. Essential Elements Influencing Personnel Productivity. Social Media Influence on Customer Choices and Behavior.

  3. 500+ Statistics Research Topics

    500+ Statistics Research Topics. March 25, 2024. by Muhammad Hassan. Statistics is a branch of mathematics that deals with the collection, analysis, interpretation, presentation, and organization of data. It is a fundamental tool used in various fields such as business, social sciences, engineering, healthcare, and many more.

  4. 100 Statistics Research Topics

    Statistics Research Topics in Business. Understanding the factors that influence consumer purchase decisions in the technology industry. Advertising and sales revenue: a time-series analysis. The effectiveness of customer loyalty programs in increasing customer retention and revenue.

  5. Recent Dissertation Topics

    2015. 2014. 2013. 2012. 2011. 2010. 2009. 2008. This list of recent dissertation topics shows the range of research areas that our students are working on.

  6. Mathematics and Statistics Theses and Dissertations

    Zeros of Harmonic Polynomials and Related Applications, Azizah Alrajhi. PDF. Combination of Time Series Analysis and Sentiment Analysis for Stock Market Forecasting, Hsiao-Chuan Chou. PDF. Uncertainty Quantification in Deep and Statistical Learning with applications in Bio-Medical Image Analysis, K. Ruwani M. Fernando. PDF

  7. Research Topics & Ideas: Data Science

    If you're just starting out exploring data science-related topics for your dissertation, thesis or research project, you've come to the right place. ... Survey on Statistics and ML in Data Science and Effect in Businesses (Reddy et al., 2022) Visualization in Data Science VDS @ KDD 2022 (Plant et al., 2022) ...

  8. Top 10 Essential Data Science Topics to Real-World Application From the

    1. Introduction. Statistics and data science are more popular than ever in this era of data explosion and technological advances. Decades ago, John Tukey (Brillinger, 2014) said, "The best thing about being a statistician is that you get to play in everyone's backyard."More recently, Xiao-Li Meng (2009) said, "We no longer simply enjoy the privilege of playing in or cleaning up everyone ...

  9. PhD Theses

    PhD Theses. 2023. Title. Author. Supervisor. Statistical Methods for the Analysis and Prediction of Hierarchical Time Series Data with Applications to Demography. Daphne Liu. Adrian E Raftery. Exponential Family Models for Rich Preference Ranking Data.

  10. PDF Topics in Applied Statistics

    One of the fundamental goals of statistics is to develop methods which provide im-proved inference in applied problems. This dissertation will introduce novel method-ology and review state-of-the-art existing methods in three different areas of applied statistics. Chapter 2 focuses on modelling subcommunity dynamics in gut micro-biome data.

  11. Best Statistics Research Topics & Ideas For 2021-22

    With vast experience in the world of academics and command of statistics dissertations, they have prepared the list of most suitable statistics dissertation topics. Bayesian Methods for Functional and Time Series. Kernel Regression Using the Four Fourier Transform. Assessing and Accounting for Correlation in RNA-Seq Data Analysis.

  12. University of Glasgow

    Statistics thesis topics. Below are sample topics available for prospective postgraduate research students. These sample topics do not contain every possible project; they are aim

  13. Department of Statistics

    2022 Ph.D. Dissertations. Andrew Davison. Statistical Perspectives on Modern Network Embedding Methods. Sponsor: Tian Zheng. Nabarun Deb. Blessing of Dependence and Distribution-Freeness in Statistical Hypothesis Testing. Sponsor: Bodhisattva Sen / Co-Sponsor: Sumit Mukherjee. Elliot Gordon Rodriguez.

  14. Topics for master thesis in mathematics

    The main research themes of the Statistics and Data Science section are robust and computational statistics.. The thesis topics are closely related to the core course on Robust Statistics and the in-depth courses Statistical Data Analysis and Advanced Statistical Methods which are preferably included in your course program.. Thesis topics involve the development of robust methodology ...

  15. What do senior theses in Statistics look like?

    Senior theses in Statistics cover a wide range of topics, across the spectrum from applied to theoretical. Typically, senior theses are expected to have one of the following three flavors: 1. Novel statistical theory or methodology, supported by extensive mathematical and/or simulation results, along with a clear account of how the research ...

  16. Statistics PhD theses

    DStat thesis: Challenges in modelling pharmacogenetic data: Investigating biomarker and clinical response simultaneously for optimal dose prediction. Rungruttikarn Moungmai. Family-based genetic association studies in a likelihood framework. Michael Dunbar. Multiple hydro-ecological stressor interactions assessed using statistical models.

  17. Research topics in Probability and Statistics

    Examples of themes for undergraduate research projects: Discovering which genes can discriminate between diseased and healthy patients. Modelling and detecting asset price bubbles while they are happening and before they burst. Modelling infectious diseases and identifying localized outbreaks. Developing a fast algorithm through probabilistic ...

  18. Thesis Life: 7 ways to tackle statistics in your thesis

    Apart from these seven ways to make your statistical journey pleasant, you should always engage in reading, watching, listening to stuff relevant to your thesis topic and talking about it to those who are interested. Most questions have solutions in the ether realm of communication. So, best of luck and break a leg!!!

  19. Doctoral Program

    The thesis proposal meeting is intended to demonstrate a student's depth in some areas of statistics, and to examine the general plan for their research. In the meeting the student gives a 60-minute presentation involving ideas developed to date and plans for completing a PhD dissertation, and for another 60 minutes answers questions posed by ...

  20. Browsing FAS Theses and Dissertations by FAS Department "Statistics"

    Advances in Statistical Network Modeling and Nonlinear Time Series Modeling . Han, Qiuyi (2018-05-11) The thesis is composed of two independent topics: statistical network modeling and nonlinear time series modeling. With the increasing demand of network data analysis, we present two statistical network models and inferences, ...

  21. Math/Stats Thesis and Colloquium Topics

    Updated: April 2024 Math/Stats Thesis and Colloquium Topics 2024- 2025 The degree with honors in Mathematics or Statistics is awarded to the student who has demonstrated outstanding intellectual achievement in a program of study which extends beyond the requirements of the major. The principal considerations for recommending a student for the degree with honors will be: Mastery of core ...

  22. [Q] What could be good master's thesis ideas that include statistics

    I have a solid background in statistics, econometrics and economics from my bachelor studies, and I will be focusing on my master's thesis in the following year. I am also working as data analyst at one company that provides financial services, where I work with data and use R on a daily basis.

  23. Statistics Project Topics: From Data to Discovery

    1.2 Statistics Project Topics for High School Students. 1.3 Statistical Survey Topics. 1.4 Statistical Experiment Ideas. 1.5 Easy Stats Project Ideas. 1.6 Business Ideas for Statistics Project. 1.7 Socio-Economic Easy Statistics Project Ideas. 1.8 Experiment Ideas for Statistics and Analysis. 2 Conclusion: Navigating the World of Data Through ...

  24. Information for NEW graduate students in Actuarial Science, Data

    This orientation helps new teaching assistants understand the culture of the U.S. classroom and treats topics such as student expectations, teacher-student relationships, and understanding and answering student questions. ... 335-0821.Professor Boxiang Wang (beginning July 1, 2024)Director of Graduate Studies, Statistics and Data Science ...

  25. Climate Change Added a Month's Worth of Extra-Hot Days in Past Year

    May 28, 2024. Leer en español. Over the past year of record-shattering warmth, the average person on Earth experienced 26 more days of abnormally high temperatures than they otherwise would have ...

  26. Drugs can reduce recurrence after bowel cancer surgery, new thesis suggests

    A thesis at Umeå University shows that certain non-steroidal anti-inflammatory drugs, known as NSAIDs, can help patients who have undergone surgery for colorectal cancer. These patients suffer ...

  27. Global Purchasing Power Parities Data Released for 2021

    WASHINGTON, May 30, 2024 — New purchasing power parities (PPPs), which provide a standardized way to assess the relative buying power of different economies, were released today by the International Comparison Program (ICP) for the reference year 2021. PPPs adjust for price-level differences across economies, enabling comparison of key metrics such as gross domestic product (GDP) and ...

  28. Statistical Tables

    This report summarizes data on populations supervised by probation or parole agencies and those incarcerated in state or federal prisons or in the custody of local jails. It presents data on the number of persons supervised by adult correctional systems from 2012 to 2022 and on their correctional status (i.e., in prison, in local jail, on parole, or on probation).

  29. Homicides related to organized crime Costa Rica 2023

    Share of homicides related to organized crime in Costa Rica 2023. Published by Statista Research Department , May 31, 2024. During 2023, only 29 percent of the homicides commited in Costa Rica ...

  30. Topics addressed during health and safety training in Poland 2023

    Published by Statista Research Department , May 29, 2024. In 2023, one of the most commonly addressed issues during health and safety training in Polish companies was working conditions such as ...