Hypothesis Testing Calculator

Related: confidence interval calculator, type ii error.

The first step in hypothesis testing is to calculate the test statistic. The formula for the test statistic depends on whether the population standard deviation (σ) is known or unknown. If σ is known, our hypothesis test is known as a z test and we use the z distribution. If σ is unknown, our hypothesis test is known as a t test and we use the t distribution. Use of the t distribution relies on the degrees of freedom, which is equal to the sample size minus one. Furthermore, if the population standard deviation σ is unknown, the sample standard deviation s is used instead. To switch from σ known to σ unknown, click on $\boxed{\sigma}$ and select $\boxed{s}$ in the Hypothesis Testing Calculator.

Next, the test statistic is used to conduct the test using either the p-value approach or critical value approach. The particular steps taken in each approach largely depend on the form of the hypothesis test: lower tail, upper tail or two-tailed. The form can easily be identified by looking at the alternative hypothesis (H a ). If there is a less than sign in the alternative hypothesis then it is a lower tail test, greater than sign is an upper tail test and inequality is a two-tailed test. To switch from a lower tail test to an upper tail or two-tailed test, click on $\boxed{\geq}$ and select $\boxed{\leq}$ or $\boxed{=}$, respectively.

In the p-value approach, the test statistic is used to calculate a p-value. If the test is a lower tail test, the p-value is the probability of getting a value for the test statistic at least as small as the value from the sample. If the test is an upper tail test, the p-value is the probability of getting a value for the test statistic at least as large as the value from the sample. In a two-tailed test, the p-value is the probability of getting a value for the test statistic at least as unlikely as the value from the sample.

To test the hypothesis in the p-value approach, compare the p-value to the level of significance. If the p-value is less than or equal to the level of signifance, reject the null hypothesis. If the p-value is greater than the level of significance, do not reject the null hypothesis. This method remains unchanged regardless of whether it's a lower tail, upper tail or two-tailed test. To change the level of significance, click on $\boxed{.05}$. Note that if the test statistic is given, you can calculate the p-value from the test statistic by clicking on the switch symbol twice.

In the critical value approach, the level of significance ($\alpha$) is used to calculate the critical value. In a lower tail test, the critical value is the value of the test statistic providing an area of $\alpha$ in the lower tail of the sampling distribution of the test statistic. In an upper tail test, the critical value is the value of the test statistic providing an area of $\alpha$ in the upper tail of the sampling distribution of the test statistic. In a two-tailed test, the critical values are the values of the test statistic providing areas of $\alpha / 2$ in the lower and upper tail of the sampling distribution of the test statistic.

To test the hypothesis in the critical value approach, compare the critical value to the test statistic. Unlike the p-value approach, the method we use to decide whether to reject the null hypothesis depends on the form of the hypothesis test. In a lower tail test, if the test statistic is less than or equal to the critical value, reject the null hypothesis. In an upper tail test, if the test statistic is greater than or equal to the critical value, reject the null hypothesis. In a two-tailed test, if the test statistic is less than or equal the lower critical value or greater than or equal to the upper critical value, reject the null hypothesis.

When conducting a hypothesis test, there is always a chance that you come to the wrong conclusion. There are two types of errors you can make: Type I Error and Type II Error. A Type I Error is committed if you reject the null hypothesis when the null hypothesis is true. Ideally, we'd like to accept the null hypothesis when the null hypothesis is true. A Type II Error is committed if you accept the null hypothesis when the alternative hypothesis is true. Ideally, we'd like to reject the null hypothesis when the alternative hypothesis is true.

Hypothesis testing is closely related to the statistical area of confidence intervals. If the hypothesized value of the population mean is outside of the confidence interval, we can reject the null hypothesis. Confidence intervals can be found using the Confidence Interval Calculator . The calculator on this page does hypothesis tests for one population mean. Sometimes we're interest in hypothesis tests about two population means. These can be solved using the Two Population Calculator . The probability of a Type II Error can be calculated by clicking on the link at the bottom of the page.

Learning about Electronics

  • Programming
  • Calculators

Hypothesis Testing Calculator

Related Resources

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null & Alternative Hypotheses | Definitions, Templates & Examples

Published on May 6, 2022 by Shaun Turney . Revised on June 22, 2023.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis ( H 0 ): There’s no effect in the population .
  • Alternative hypothesis ( H a or H 1 ) : There’s an effect in the population.

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, similarities and differences between null and alternative hypotheses, how to write null and alternative hypotheses, other interesting articles, frequently asked questions.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”:

  • The null hypothesis ( H 0 ) answers “No, there’s no effect in the population.”
  • The alternative hypothesis ( H a ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample. It’s critical for your research to write strong hypotheses .

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept . Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect,” “no difference,” or “no relationship.” When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

You can never know with complete certainty whether there is an effect in the population. Some percentage of the time, your inference about the population will be incorrect. When you incorrectly reject the null hypothesis, it’s called a type I error . When you incorrectly fail to reject it, it’s a type II error.

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis ( H a ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect,” “a difference,” or “a relationship.” When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes < or >). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question.
  • They both make claims about the population.
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

General template sentences

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis ( H 0 ): Independent variable does not affect dependent variable.
  • Alternative hypothesis ( H a ): Independent variable affects dependent variable.

Test-specific template sentences

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (“ x affects y because …”).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses . In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Turney, S. (2023, June 22). Null & Alternative Hypotheses | Definitions, Templates & Examples. Scribbr. Retrieved April 11, 2024, from https://www.scribbr.com/statistics/null-and-alternative-hypotheses/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, inferential statistics | an easy introduction & examples, hypothesis testing | a step-by-step guide with easy examples, type i & type ii errors | differences, examples, visualizations, what is your plagiarism score.

Calculators24.com: Free Online Calculators – Math, Fitness, Finance, Science

Hypothesis Testing Calculator

Navigating hypothesis testing: unveiling the potential of the hypothesis testing calculator.

Embarking on the journey of statistical exploration, hypothesis testing stands out as an indispensable method for informed decision-making and drawing meaningful conclusions from data. Whether you find yourself in the academic realm, engaged in research endeavors, or navigating the professional landscape, having a trustworthy Hypothesis Testing Calculator in your statistical toolkit can prove to be a game-changer. Let’s delve into the intricacies of hypothesis testing and uncover how this calculator can be your ally in statistical analyses.

Demystifying Hypothesis Testing:

Null Hypothesis (H0): Positioned as the default assumption, the null hypothesis asserts the absence of any significant difference or effect and is commonly represented as H0.

Alternative Hypothesis (Ha): In direct contradiction to the null hypothesis, the alternative hypothesis posits the existence of a noteworthy difference or effect, denoted as Ha.

Significance Level (α): Acting as the predetermined threshold, typically set at 0.05 or 5%, the significance level plays a pivotal role in determining statistical significance. Should the calculated p-value fall below α, the null hypothesis is rejected.

p-value: Representing the likelihood of observing the results, or more extreme outcomes, under the assumption of the null hypothesis being true, a smaller p-value suggests the unlikelihood of the results occurring by chance.

Features that Define the Hypothesis Testing Calculator:

Input Parameters: The calculator demands input of sample data, selection of the test type (e.g., t-test, chi-square test), specification of null and alternative hypotheses, and determination of the significance level.

Calculations: Once armed with the requisite data and parameters, the calculator diligently executes statistical tests and computations. The output encompasses crucial details like the test statistic, degrees of freedom, and the all-important p-value.

Interpretation: Armed with the results, the calculator aids in the decision-making process, guiding whether to reject or accept the null hypothesis. An interpretation of the findings is provided, playing a pivotal role in drawing insightful conclusions.

Visual Representation: Some calculators go the extra mile by offering visual aids such as graphs or charts, facilitating a deeper understanding of data distribution and test outcomes.

Unveiling the Significance of the Hypothesis Testing Calculator:

In Scientific Research: Researchers spanning diverse fields leverage hypothesis testing to validate their hypotheses, thereby extracting meaningful insights from data.

In Quality Control: Industries rely on hypothesis testing as a quality assurance mechanism, ensuring the consistency and excellence of products and processes.

In Medical Studies: Within the realm of medical research, hypothesis testing serves as a critical tool for evaluating the effectiveness of treatments or interventions.

In Academics: Both students and educators find value in hypothesis testing as an educational tool, enabling the comprehension of statistical concepts and the conduct of experiments.

In Data-Driven Decision-Making: Businesses, keen on making decisions grounded in data, turn to hypothesis testing to navigate choices such as launching a new product based on comprehensive market research.

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 , the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 H a : More than 30 percent of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-1-null-and-alternative-hypotheses

© Jan 23, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Two Sample T Test Calculator

Statscalculator.com.

Free statistics calculators designed for data scientists. This Two Sample t test Calculator:

  • Compares the Mean of Two Data Samples
  • Assesses if Difference is Significant
  • Save & Recycle Data Between Projects

Using The Two Sample t test Calculator

For the details about designing your test, read the guidance below. To use the calculator, enter the data from your sample as a string of numbers, separated by commas. Adjust the calculator's settings (significance level, one or two tailed test) to match the test goals. Hit calculate. It will compute the t-statistic, p-value, and evaluate if we should accept or reject the proposed hypothesis.

For easy entry, you can copy and paste your data into the entry box from Excel. You can save your data for use with this calculator and other calculators on this site. Just hit the "save data" button. It will save the data in your browser (not on our server, it remains private). Saved data sets will appear on the list of saved datasets below the data entry panel. To retrieve it, click the "load data" button next to it.

Two Sample t test Calculator

  • Statistics and Histogram Graph
  • Save data sets in your browser
  • Easily Share results via email

Histogram of Samples

Test results, significance level, one or two tailed, observations.

Click To Clear; enter values seperated by commas or new lines. Cut & Paste from Excel also works.

Can be comma separated or one line per data point; you can also cut and paste from Excel.

Saved Data - Click to Restore

Saved in your browser; you can retrieve these and use them in other calculators on this site.

Sharing Results of The Two Sample t-test Calculator

Need to pass an answer to a friend? It's easy to link and share the results of this calculator. Hit calculate - then hit the share button (below). Simply cut and paste the url after hitting calculate - it will retain the values you enter so you can share them via email or social media. Share

Explore Single Series

  • Histogram Chart
  • Box & Whisker
  • Outlier Detection
  • Empirical Rule

Explore (X,Y) Pairs

  • Scatter Plot
  • Quadratic Regression
  • Correlation Coefficient

Test Single Sample

  • 1 Sample t-test

Compare Samples

  • 2 Sample t-test

Confidence Intervals

  • Proportions Test
  • Confidence Interval

Basic Probability

  • Critical Value Calculator (New!)
  • P From Z Score
  • P From T Score
  • Critical value of t
  • Critical value of Z
  • Binomial Distribution
  • Bernoulli Distribution
  • Chi Square Distribution
  • F Distribution

Probability Distributions

  • Poisson Distribution
  • Hypergeometric Distribution
  • Beta Distribution
  • Gamma Distribution
  • Geometric Distribution
  • Negative Binomial
  • Lognormal Distribution
  • Pareto Distribution
  • Weibull Distribution

Classical Statistics

  • Sample Mean
  • Standard Deviation
  • Sum of Squares
  • Standard Error
  • Quartile & Range
  • Mode Calculator
  • Median Calculator
  • Decile Calculator
  • Quartile Calculator
  • Quintile Calculator
  • Coefficient of Variation Calculator
  • Mean Absolute Deviation Calculator

Interpreting Two Sample t test Results

This calculator is designed to evaluate statements comparing the mean of two separate samples. We refer to this statement as the null hypothesis, a claim we would accept in the absence of other evidence. This occurs by accepting the alternate hypothesis, which should be a mutually exclusive claim. For example, in quality control, we may test the hypothesis that two finished items came from the same batch of raw materials, by checking a property like weight or color.

One of the parameters in the calculator asks you to select if you want to run a one sided or two-sided test. A one sided test can be used to test if the sample mean is significantly below the expected mean for the population. The example above was a one-sample test. A two sided test looks for any significant deviation (up or down) relative to the null hypothesis. The two sided test is best when screening for differences, the one side test is useful if checking for a particular defect.

Two Sample T Test Calculator: How to Easily Compare Means

A two-sample t-test calculator is an essential tool for anyone who wants to determine if there is a significant difference between the means of two independent groups. This type of test is commonly used in scientific research, clinical trials, and quality control. The calculator works by comparing the means of the two groups and calculating the probability that the difference between them occurred by chance.

Using a two-sample t-test calculator is relatively straightforward. First, the user inputs the data for the two groups they want to compare. The calculator then computes the t-value and the corresponding p-value. If the p-value is less than the significance level (usually 0.05), the user can conclude that there is a significant difference between the means of the two groups. On the other hand, if the p-value is greater than the significance level, the user cannot reject the null hypothesis, and there is no evidence of a difference between the two groups.

Overall, a two-sample t-test calculator is a powerful tool that can help researchers and analysts make informed decisions based on data. By providing a quick and easy way to perform a two-sample t-test, these calculators can save time and increase accuracy, making them an essential resource for anyone working with independent groups.

Overview of the Two-Sample T-Test

The two-sample t-test is a statistical test used to determine whether two populations have different means. This test is particularly useful when comparing the means of two independent groups. The two-sample t-test can be used to determine whether there is a significant difference between the means of two groups, such as the test scores of two different classes or the heights of two different populations.

The two-sample t-test is a hypothesis test that compares the means of two independent samples. The null hypothesis is that there is no significant difference between the means of the two populations, while the alternative hypothesis is that there is a significant difference.

Assumptions

The two-sample t-test assumes that the populations are normally distributed and have equal variances. It also assumes that the samples are independent and that the sample sizes are large enough to satisfy the central limit theorem. If these assumptions are not met, the results of the test may not be reliable.

The formula for the two-sample t-test is:

t = (x1 - x2) / (s1^2/n1 + s2^2/n2)^0.5

where x1 and x2 are the sample means, s1 and s2 are the sample standard deviations, n1 and n2 are the sample sizes, and t is the test statistic.

Calculation

To perform a two-sample t-test, the following steps should be followed:

  • State the null and alternative hypotheses.
  • Determine the significance level.
  • Collect the data and calculate the sample means and standard deviations.
  • Calculate the test statistic using the formula above.
  • Determine the degrees of freedom and find the critical values.
  • Calculate the p-value.
  • Make a decision based on the p-value and the significance level.

The two-sample t-test is a statistical test used to compare the means of two independent samples. It is based on the t-distribution and requires that the populations be normally distributed with equal variances. The test can be used to determine whether there is a significant difference between the means of two groups, and it can be performed using a variety of statistical software or online calculators.

More About How to Use a Two-Sample T-Test Calculator

Step-by-step guide.

When conducting a two-sample t-test, it is important to have a reliable calculator to help you analyze your data. Here is a step-by-step guide on how to use a two-sample t-test calculator:

Input your data: Enter the data for both samples into the calculator. This can be done by typing in the values or by uploading a file containing the data.

Select the type of test: Choose whether you want to perform a one-tailed or two-tailed test, depending on your research question.

Set the significance level: Determine the level of significance for your test, typically set at 0.05.

Calculate the results: Click the "calculate" button to obtain the p-value, confidence interval, and other relevant statistics.

Interpreting Results

After calculating the results of your two-sample t-test, it is important to understand how to interpret them. Here are some key points to keep in mind:

P-value: The p-value represents the probability of obtaining a test statistic as extreme or more extreme than the one observed, assuming the null hypothesis is true. If the p-value is less than the significance level, then the null hypothesis can be rejected.

Confidence interval: The confidence interval gives a range of values that the true population mean is likely to fall within. A 95% confidence interval means that if the experiment were repeated many times, 95% of the intervals would contain the true population mean.

Average height: In the context of a two-sample t-test, average height refers to the mean height of the two samples being compared.

Men: If the two samples being compared are from different populations (e.g. men vs. women), then the two-sample t-test can be used to determine if there is a significant difference in the means of the two populations.

Zero: The null hypothesis in a two-sample t-test states that there is no significant difference between the means of the two populations being compared. If the p-value is less than the significance level, then the null hypothesis can be rejected and it can be concluded that there is a significant difference between the means.

Advantages and Limitations of the Two-Sample T-Test

The two-sample t-test is a commonly used statistical method that allows researchers to compare the means of two independent groups. One of the main advantages of using the two-sample t-test is that it is a simple and easy-to-use method that can be applied to a wide range of research questions. It is also a powerful tool that can detect differences between groups even when the sample sizes are small.

Another advantage of the two-sample t-test is that it is a parametric test, which means that it assumes that the data is normally distributed. This assumption allows researchers to make more accurate inferences about the population based on the sample data.

Limitations

Despite its many advantages, the two-sample t-test also has some limitations that researchers should be aware of when using this method. One of the main limitations is that it assumes that the variances of the two groups are equal. If the variances are not equal, the results of the t-test may not be reliable.

Another limitation of the two-sample t-test is that it is sensitive to outliers. Outliers are extreme values that are far from the rest of the data. If the data contains outliers, the results of the t-test may be skewed and may not accurately reflect the population.

Finally, the two-sample t-test is a hypothesis testing method, which means that it can only tell researchers whether there is a statistically significant difference between the two groups. It cannot tell researchers anything about the magnitude or practical significance of the difference.

Overall, the two-sample t-test is a useful statistical method that can provide valuable insights into the differences between two independent groups. However, researchers should be aware of its limitations and use it appropriately to ensure that their results are accurate and reliable.

Easy Calculator Tools

Hypothesis Testing Calculator

Understanding Hypothesis Testing: A Guide to the Hypothesis Testing Calculator

Hypothesis testing is a crucial statistical method used to make informed decisions about data and draw conclusions. Whether you’re a student, researcher, or professional, a Hypothesis Testing Calculator can be an invaluable tool in your statistical toolkit. Let’s explore what hypothesis testing is and how this calculator can assist you:

Hypothesis Testing Basics:

  • Null Hypothesis (H0): This is the default assumption or claim that there is no significant difference or effect. It’s often denoted as H0.
  • Alternative Hypothesis (Ha): This is the statement that contradicts the null hypothesis. It suggests that there is a significant difference or effect. It’s denoted as Ha.
  • Significance Level (α): This is the predetermined threshold (e.g., 0.05 or 5%) used to determine statistical significance. If the calculated p-value is less than α, you reject the null hypothesis.
  • p-value: This is the probability of observing the results (or more extreme results) if the null hypothesis is true. A small p-value suggests that the results are unlikely under the null hypothesis.

Key Features of the Hypothesis Testing Calculator:

  • Input Parameters: The calculator typically requires you to input sample data, choose the type of test (e.g., t-test, chi-square test), specify the null and alternative hypotheses, and set the significance level.
  • Calculations: Once you input the data and parameters, the calculator performs the necessary statistical tests and calculations. It generates results such as the test statistic, degrees of freedom, and the p-value.
  • Interpretation: Based on the results, the calculator helps you determine whether to reject or fail to reject the null hypothesis. It provides an interpretation of the findings, which is crucial for drawing conclusions.
  • Visual Representation: Some calculators may offer visual aids like graphs or charts to help you better understand the data distribution and test results.

Significance of the Hypothesis Testing Calculator:

  • Scientific Research: Researchers across various fields use hypothesis testing to validate their hypotheses and draw meaningful conclusions from data.
  • Quality Control: Industries use hypothesis testing to ensure the quality and consistency of products and processes.
  • Medical Studies: In medical research, hypothesis testing helps assess the effectiveness of treatments or interventions.
  • Academics: Students and educators use hypothesis testing to teach and learn statistical concepts and conduct experiments.
  • Data-Driven Decisions: Businesses use hypothesis testing to make data-driven decisions, such as whether to launch a new product based on market research.

Conclusion:

The Hypothesis Testing Calculator is a powerful tool that simplifies complex statistical analysis and enables data-driven decision-making. Whether you’re conducting experiments, analyzing survey data, or performing quality control, understanding hypothesis testing and using this calculator can help you make informed choices and contribute to evidence-based research and decision-making.

null and alternative hypothesis test calculator

  • Calculators
  • Descriptive Statistics
  • Merchandise
  • Which Statistics Test?

T-Test Calculator for 2 Independent Means

This simple t -test calculator, provides full details of the t-test calculation, including sample mean, sum of squares and standard deviation.

Further Information

A t -test is used when you're looking at a numerical variable - for example, height - and then comparing the averages of two separate populations or groups (e.g., males and females).

Requirements

  • Two independent samples
  • Data should be normally distributed
  • The two samples should have the same variance

Null Hypothesis

H0: u1 - u2 = 0, where u1 is the mean of first population and u2 the mean of the second.

As above, the null hypothesis tends to be that there is no difference between the means of the two populations; or, more formally, that the difference is zero (so, for example, that there is no difference between the average heights of two populations of males and females).

null and alternative hypothesis test calculator

Critical Value Calculator

How to use critical value calculator, what is a critical value, critical value definition, how to calculate critical values, z critical values, t critical values, chi-square critical values (χ²), f critical values, behind the scenes of the critical value calculator.

Welcome to the critical value calculator! Here you can quickly determine the critical value(s) for two-tailed tests, as well as for one-tailed tests. It works for most common distributions in statistical testing: the standard normal distribution N(0,1) (that is when you have a Z-score), t-Student, chi-square, and F-distribution .

What is a critical value? And what is the critical value formula? Scroll down – we provide you with the critical value definition and explain how to calculate critical values in order to use them to construct rejection regions (also known as critical regions).

The critical value calculator is your go-to tool for swiftly determining critical values in statistical tests, be it one-tailed or two-tailed. To effectively use the calculator, follow these steps:

In the first field, input the distribution of your test statistic under the null hypothesis: is it a standard normal N (0,1), t-Student, chi-squared, or Snedecor's F? If you are not sure, check the sections below devoted to those distributions, and try to localize the test you need to perform.

In the field What type of test? choose the alternative hypothesis : two-tailed, right-tailed, or left-tailed.

If needed, specify the degrees of freedom of the test statistic's distribution. If you need more clarification, check the description of the test you are performing. You can learn more about the meaning of this quantity in statistics from the degrees of freedom calculator .

Set the significance level, α \alpha α . By default, we pre-set it to the most common value, 0.05, but you can adjust it to your needs.

The critical value calculator will display your critical value(s) and the rejection region(s).

Click the advanced mode if you need to increase the precision with which the critical values are computed.

For example, let's envision a scenario where you are conducting a one-tailed hypothesis test using a t-Student distribution with 15 degrees of freedom. You have opted for a right-tailed test and set a significance level (α) of 0.05. The results indicate that the critical value is 1.7531, and the critical region is (1.7531, ∞). This implies that if your test statistic exceeds 1.7531, you will reject the null hypothesis at the 0.05 significance level.

👩‍🏫 Want to learn more about critical values? Keep reading!

In hypothesis testing, critical values are one of the two approaches which allow you to decide whether to retain or reject the null hypothesis. The other approach is to calculate the p-value (for example, using the p-value calculator ).

The critical value approach consists of checking if the value of the test statistic generated by your sample belongs to the so-called rejection region , or critical region , which is the region where the test statistic is highly improbable to lie . A critical value is a cut-off value (or two cut-off values in the case of a two-tailed test) that constitutes the boundary of the rejection region(s). In other words, critical values divide the scale of your test statistic into the rejection region and the non-rejection region.

Once you have found the rejection region, check if the value of the test statistic generated by your sample belongs to it :

  • If so, it means that you can reject the null hypothesis and accept the alternative hypothesis; and
  • If not, then there is not enough evidence to reject H 0 .

But how to calculate critical values? First of all, you need to set a significance level , α \alpha α , which quantifies the probability of rejecting the null hypothesis when it is actually correct. The choice of α is arbitrary; in practice, we most often use a value of 0.05 or 0.01. Critical values also depend on the alternative hypothesis you choose for your test , elucidated in the next section .

To determine critical values, you need to know the distribution of your test statistic under the assumption that the null hypothesis holds. Critical values are then points with the property that the probability of your test statistic assuming values at least as extreme at those critical values is equal to the significance level α . Wow, quite a definition, isn't it? Don't worry, we'll explain what it all means.

First, let us point out it is the alternative hypothesis that determines what "extreme" means. In particular, if the test is one-sided, then there will be just one critical value; if it is two-sided, then there will be two of them: one to the left and the other to the right of the median value of the distribution.

Critical values can be conveniently depicted as the points with the property that the area under the density curve of the test statistic from those points to the tails is equal to α \alpha α :

Left-tailed test: the area under the density curve from the critical value to the left is equal to α \alpha α ;

Right-tailed test: the area under the density curve from the critical value to the right is equal to α \alpha α ; and

Two-tailed test: the area under the density curve from the left critical value to the left is equal to α / 2 \alpha/2 α /2 , and the area under the curve from the right critical value to the right is equal to α / 2 \alpha/2 α /2 as well; thus, total area equals α \alpha α .

Critical values for symmetric distribution

As you can see, finding the critical values for a two-tailed test with significance α \alpha α boils down to finding both one-tailed critical values with a significance level of α / 2 \alpha/2 α /2 .

The formulae for the critical values involve the quantile function , Q Q Q , which is the inverse of the cumulative distribution function ( c d f \mathrm{cdf} cdf ) for the test statistic distribution (calculated under the assumption that H 0 holds!): Q = c d f − 1 Q = \mathrm{cdf}^{-1} Q = cdf − 1 .

Once we have agreed upon the value of α \alpha α , the critical value formulae are the following:

  • Left-tailed test :
  • Right-tailed test :
  • Two-tailed test :

In the case of a distribution symmetric about 0 , the critical values for the two-tailed test are symmetric as well:

Unfortunately, the probability distributions that are the most widespread in hypothesis testing have somewhat complicated c d f \mathrm{cdf} cdf formulae. To find critical values by hand, you would need to use specialized software or statistical tables. In these cases, the best option is, of course, our critical value calculator! 😁

Use the Z (standard normal) option if your test statistic follows (at least approximately) the standard normal distribution N(0,1) .

In the formulae below, u u u denotes the quantile function of the standard normal distribution N(0,1):

Left-tailed Z critical value: u ( α ) u(\alpha) u ( α )

Right-tailed Z critical value: u ( 1 − α ) u(1-\alpha) u ( 1 − α )

Two-tailed Z critical value: ± u ( 1 − α / 2 ) \pm u(1- \alpha/2) ± u ( 1 − α /2 )

Check out Z-test calculator to learn more about the most common Z-test used on the population mean. There are also Z-tests for the difference between two population means, in particular, one between two proportions.

Use the t-Student option if your test statistic follows the t-Student distribution . This distribution is similar to N(0,1) , but its tails are fatter – the exact shape depends on the number of degrees of freedom . If this number is large (>30), which generically happens for large samples, then the t-Student distribution is practically indistinguishable from N(0,1). Check our t-statistic calculator to compute the related test statistic.

t-Student distribution densities

In the formulae below, Q t , d Q_{\text{t}, d} Q t , d ​ is the quantile function of the t-Student distribution with d d d degrees of freedom:

Left-tailed t critical value: Q t , d ( α ) Q_{\text{t}, d}(\alpha) Q t , d ​ ( α )

Right-tailed t critical value: Q t , d ( 1 − α ) Q_{\text{t}, d}(1 - \alpha) Q t , d ​ ( 1 − α )

Two-tailed t critical values: ± Q t , d ( 1 − α / 2 ) \pm Q_{\text{t}, d}(1 - \alpha/2) ± Q t , d ​ ( 1 − α /2 )

Visit the t-test calculator to learn more about various t-tests: the one for a population mean with an unknown population standard deviation , those for the difference between the means of two populations (with either equal or unequal population standard deviations), as well as about the t-test for paired samples .

Use the χ² (chi-square) option when performing a test in which the test statistic follows the χ²-distribution .

You need to determine the number of degrees of freedom of the χ²-distribution of your test statistic – below, we list them for the most commonly used χ²-tests.

Here we give the formulae for chi square critical values; Q χ 2 , d Q_{\chi^2, d} Q χ 2 , d ​ is the quantile function of the χ²-distribution with d d d degrees of freedom:

Left-tailed χ² critical value: Q χ 2 , d ( α ) Q_{\chi^2, d}(\alpha) Q χ 2 , d ​ ( α )

Right-tailed χ² critical value: Q χ 2 , d ( 1 − α ) Q_{\chi^2, d}(1 - \alpha) Q χ 2 , d ​ ( 1 − α )

Two-tailed χ² critical values: Q χ 2 , d ( α / 2 ) Q_{\chi^2, d}(\alpha/2) Q χ 2 , d ​ ( α /2 ) and Q χ 2 , d ( 1 − α / 2 ) Q_{\chi^2, d}(1 - \alpha/2) Q χ 2 , d ​ ( 1 − α /2 )

Several different tests lead to a χ²-score:

Goodness-of-fit test : does the empirical distribution agree with the expected distribution?

This test is right-tailed . Its test statistic follows the χ²-distribution with k − 1 k - 1 k − 1 degrees of freedom, where k k k is the number of classes into which the sample is divided.

Independence test : is there a statistically significant relationship between two variables?

This test is also right-tailed , and its test statistic is computed from the contingency table. There are ( r − 1 ) ( c − 1 ) (r - 1)(c - 1) ( r − 1 ) ( c − 1 ) degrees of freedom, where r r r is the number of rows, and c c c is the number of columns in the contingency table.

Test for the variance of normally distributed data : does this variance have some pre-determined value?

This test can be one- or two-tailed! Its test statistic has the χ²-distribution with n − 1 n - 1 n − 1 degrees of freedom, where n n n is the sample size.

Finally, choose F (Fisher-Snedecor) if your test statistic follows the F-distribution . This distribution has a pair of degrees of freedom .

Let us see how those degrees of freedom arise. Assume that you have two independent random variables, X X X and Y Y Y , that follow χ²-distributions with d 1 d_1 d 1 ​ and d 2 d_2 d 2 ​ degrees of freedom, respectively. If you now consider the ratio ( X d 1 ) : ( Y d 2 ) (\frac{X}{d_1}):(\frac{Y}{d_2}) ( d 1 ​ X ​ ) : ( d 2 ​ Y ​ ) , it turns out it follows the F-distribution with ( d 1 , d 2 ) (d_1, d_2) ( d 1 ​ , d 2 ​ ) degrees of freedom. That's the reason why we call d 1 d_1 d 1 ​ and d 2 d_2 d 2 ​ the numerator and denominator degrees of freedom , respectively.

In the formulae below, Q F , d 1 , d 2 Q_{\text{F}, d_1, d_2} Q F , d 1 ​ , d 2 ​ ​ stands for the quantile function of the F-distribution with ( d 1 , d 2 ) (d_1, d_2) ( d 1 ​ , d 2 ​ ) degrees of freedom:

Left-tailed F critical value: Q F , d 1 , d 2 ( α ) Q_{\text{F}, d_1, d_2}(\alpha) Q F , d 1 ​ , d 2 ​ ​ ( α )

Right-tailed F critical value: Q F , d 1 , d 2 ( 1 − α ) Q_{\text{F}, d_1, d_2}(1 - \alpha) Q F , d 1 ​ , d 2 ​ ​ ( 1 − α )

Two-tailed F critical values: Q F , d 1 , d 2 ( α / 2 ) Q_{\text{F}, d_1, d_2}(\alpha/2) Q F , d 1 ​ , d 2 ​ ​ ( α /2 ) and Q F , d 1 , d 2 ( 1 − α / 2 ) Q_{\text{F}, d_1, d_2}(1 -\alpha/2) Q F , d 1 ​ , d 2 ​ ​ ( 1 − α /2 )

Here we list the most important tests that produce F-scores: each of them is right-tailed .

ANOVA : tests the equality of means in three or more groups that come from normally distributed populations with equal variances. There are ( k − 1 , n − k ) (k - 1, n - k) ( k − 1 , n − k ) degrees of freedom, where k k k is the number of groups, and n n n is the total sample size (across every group).

Overall significance in regression analysis . The test statistic has ( k − 1 , n − k ) (k - 1, n - k) ( k − 1 , n − k ) degrees of freedom, where n n n is the sample size, and k k k is the number of variables (including the intercept).

Compare two nested regression models . The test statistic follows the F-distribution with ( k 2 − k 1 , n − k 2 ) (k_2 - k_1, n - k_2) ( k 2 ​ − k 1 ​ , n − k 2 ​ ) degrees of freedom, where k 1 k_1 k 1 ​ and k 2 k_2 k 2 ​ are the number of variables in the smaller and bigger models, respectively, and n n n is the sample size.

The equality of variances in two normally distributed populations . There are ( n − 1 , m − 1 ) (n - 1, m - 1) ( n − 1 , m − 1 ) degrees of freedom, where n n n and m m m are the respective sample sizes.

I'm Anna, the mastermind behind the critical value calculator and a PhD in mathematics from Jagiellonian University .

The idea for creating the tool originated from my experiences in teaching and research. Recognizing the need for a tool that simplifies the critical value determination process across various statistical distributions, I built a user-friendly calculator accessible to both students and professionals. After publishing the tool, I soon found myself using the calculator in my research and as a teaching aid.

Trust in this calculator is paramount to me. Each tool undergoes a rigorous review process , with peer-reviewed insights from experts and meticulous proofreading by native speakers. This commitment to accuracy and reliability ensures that users can be confident in the content. Please check the Editorial Policies page for more details on our standards.

What is a Z critical value?

A Z critical value is the value that defines the critical region in hypothesis testing when the test statistic follows the standard normal distribution . If the value of the test statistic falls into the critical region, you should reject the null hypothesis and accept the alternative hypothesis.

How do I calculate Z critical value?

To find a Z critical value for a given confidence level α :

Check if you perform a one- or two-tailed test .

For a one-tailed test:

Left -tailed: critical value is the α -th quantile of the standard normal distribution N(0,1).

Right -tailed: critical value is the (1-α) -th quantile.

Two-tailed test: critical value equals ±(1-α/2) -th quantile of N(0,1).

No quantile tables ? Use CDF tables! (The quantile function is the inverse of the CDF.)

Verify your answer with an online critical value calculator.

Is a t critical value the same as Z critical value?

In theory, no . In practice, very often, yes . The t-Student distribution is similar to the standard normal distribution, but it is not the same . However, if the number of degrees of freedom (which is, roughly speaking, the size of your sample) is large enough (>30), then the two distributions are practically indistinguishable , and so the t critical value has practically the same value as the Z critical value.

What is the Z critical value for 95% confidence?

The Z critical value for a 95% confidence interval is:

  • 1.96 for a two-tailed test;
  • 1.64 for a right-tailed test; and
  • -1.64 for a left-tailed test.

99% confidence interval

Chilled drink, grams to cups, stem and leaf plot.

  • Biology (100)
  • Chemistry (100)
  • Construction (144)
  • Conversion (294)
  • Ecology (30)
  • Everyday life (262)
  • Finance (569)
  • Health (440)
  • Physics (509)
  • Sports (104)
  • Statistics (182)
  • Other (181)
  • Discover Omni (40)

Statology

Statistics Made Easy

Decision Rule Calculator

One-tailed or two-tailed hypothesis?

Significance level

Z-statistic or t-statistic?

Decision Rule: fail to reject the null hypothesis

Explanation:

The p-value for a Z-statistic of 1.34 for a two-tailed test is 0.18025 . Since this p-value is greater than 0.05 , we fail to reject the null hypothesis .

' src=

Published by Zach

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

10.2: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 100392

The actual test begins by considering two hypotheses. They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints.

  • The null hypothesis (\(H_{0}\)) is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.
  • The alternative hypothesis (\(H_{a}\)) is a claim about the population that is contradictory to \(H_{0}\) and what we conclude when we reject \(H_{0}\).

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data. After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_{0}\)" if the sample information favors the alternative hypothesis or "do not reject \(H_{0}\)" or "decline to reject \(H_{0}\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu \  \_ \  66\)
  • \(H_{a}: \mu \  \_ \  66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 5\)
  • \(H_{a}: \mu < 5\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu \  \_ \  45\)
  • \(H_{a}: \mu \  \_ \  45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p \  \_ \  0.40\)
  • \(H_{a}: p \  \_ \  0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

Chapter Review

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

Contributors

Barbara Illowsky and Susan Dean (De Anza College) with many other contributing authors. Content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/[email protected] .

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

9.2: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 20408

The actual test begins by considering two hypotheses. They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints.

  • The null hypothesis (\(H_{0}\)) is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.
  • The alternative hypothesis (\(H_{a}\)) is a claim about the population that is contradictory to \(H_{0}\) and what we conclude when we reject \(H_{0}\).

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data. After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_{0}\)" if the sample information favors the alternative hypothesis or "do not reject \(H_{0}\)" or "decline to reject \(H_{0}\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu \  \_ \  66\)
  • \(H_{a}: \mu \  \_ \  66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 5\)
  • \(H_{a}: \mu < 5\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu \  \_ \  45\)
  • \(H_{a}: \mu \  \_ \  45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p \  \_ \  0.40\)
  • \(H_{a}: p \  \_ \  0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

Chapter Review

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

Contributors

Barbara Illowsky and Susan Dean (De Anza College) with many other contributing authors. Content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/[email protected] .

IMAGES

  1. Null and alternative hypothesis test calculator

    null and alternative hypothesis test calculator

  2. Hypothesis Testing

    null and alternative hypothesis test calculator

  3. Null and alternative hypothesis test calculator

    null and alternative hypothesis test calculator

  4. Null and alternative hypothesis test calculator

    null and alternative hypothesis test calculator

  5. Null and alternative hypothesis test calculator

    null and alternative hypothesis test calculator

  6. Hypothesis Testing Formula

    null and alternative hypothesis test calculator

VIDEO

  1. Testing of Hypothesis,Null, alternative hypothesis, type-I & -II Error etc @VATAMBEDUSRAVANKUMAR

  2. Null Hypothesis vs Alternate Hypothesis

  3. Hypothesis

  4. Part 1: Hypothesis testing (Null & Alternative hypothesis)

  5. Null Hypothesis, Alternative Hypothesis, Test Stat, P Value, given n and x Math 160 Stats Final 14A

  6. Null Hypothesis vs Alternate Hypothesis

COMMENTS

  1. Hypothesis Testing Calculator with Steps

    Hypothesis Testing Calculator. The first step in hypothesis testing is to calculate the test statistic. The formula for the test statistic depends on whether the population standard deviation (σ) is known or unknown. If σ is known, our hypothesis test is known as a z test and we use the z distribution. If σ is unknown, our hypothesis test is ...

  2. t-test Calculator

    The null hypothesis is that the true difference between the means of pre- and post-populations is equal to some pre-set value, Δ \Delta Δ. The alternative hypothesis is that the actual difference between these means is: Different from Δ \Delta Δ; Smaller than Δ \Delta Δ; or; Greater than Δ \Delta Δ. Typically, this pre-determined ...

  3. Hypothesis Test Calculator

    Calculation Example: There are six steps you would follow in hypothesis testing: Formulate the null and alternative hypotheses in three different ways: H 0: θ = θ 0 v e r s u s H 1: θ ≠ θ 0. H 0: θ ≤ θ 0 v e r s u s H 1: θ > θ 0. H 0: θ ≥ θ 0 v e r s u s H 1: θ < θ 0.

  4. Hypothesis Testing Calculator

    Result: . This Hypothesis Testing Calculator determines whether an alternative hypothesis is true or not. Based on whether it is true or not determines whether we accept or reject the hypothesis. We accept true hypotheses and reject false hypotheses. The null hypothesis is the hypothesis that is claimed and that we will test against.

  5. Null & Alternative Hypotheses

    The null hypothesis (H 0) answers "No, there's no effect in the population." The alternative hypothesis (H a) answers "Yes, there is an effect in the population." The null and alternative are always claims about the population. That's because the goal of hypothesis testing is to make inferences about a population based on a sample.

  6. Hypothesis Testing Calculator

    Features that Define the Hypothesis Testing Calculator: Input Parameters: The calculator demands input of sample data, selection of the test type (e.g., t-test, chi-square test), specification of null and alternative hypotheses, and determination of the significance level.

  7. p-value Calculator

    To determine the p-value, you need to know the distribution of your test statistic under the assumption that the null hypothesis is true.Then, with the help of the cumulative distribution function (cdf) of this distribution, we can express the probability of the test statistics being at least as extreme as its value x for the sample:Left-tailed test:

  8. P-value Calculator

    A P-value calculator is used to determine the statistical significance of an observed result in hypothesis testing. It takes as input the observed test statistic, the null hypothesis, and the relevant parameters of the statistical test (such as degrees of freedom), and computes the p-value. The p-value represents the probability of obtaining ...

  9. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0, the —null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  10. Statscalculator.com

    The example above was a one-sample test. A two sided test looks for any significant deviation (up or down) relative to the null hypothesis. The two sided test is best when screening for differences, the one side test is useful if checking for a particular defect. Two Sample T Test Calculator: How to Easily Compare Means

  11. 8.1.1: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. \(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  12. Hypothesis Testing Calculator

    Calculations: Once you input the data and parameters, the calculator performs the necessary statistical tests and calculations. It generates results such as the test statistic, degrees of freedom, and the p-value. Interpretation: Based on the results, the calculator helps you determine whether to reject or fail to reject the null hypothesis.

  13. T-Test Calculator for 2 Independent Means

    This simple t -test calculator, provides full details of the t-test calculation, including sample mean, sum of squares and standard deviation. A t -test is used when you're looking at a numerical variable - for example, height - and then comparing the averages of two separate populations or groups (e.g., males and females).

  14. 10.2: Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. \(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

  15. Critical Value Calculator

    A Z critical value is the value that defines the critical region in hypothesis testing when the test statistic follows the standard normal distribution. If the value of the test statistic falls into the critical region, you should reject the null hypothesis and accept the alternative hypothesis.

  16. 8.2: Null and Alternative Hypotheses

    Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\).The null is not rejected unless the hypothesis test shows otherwise.

  17. Decision Rule Calculator

    Decision Rule Calculator. In hypothesis testing, we want to know whether we should reject or fail to reject some statistical hypothesis. To make this decision, we compare the p-value of the test statistic to a significance level we have chosen to use for the test. If the p-value is less than the significance level, we reject the null hypothesis ...

  18. 10.2: Null and Alternative Hypotheses

    In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis ...

  19. How to Find P Value from a Test Statistic

    Hypothesis tests are used to test the validity of a claim that is made about a population. This claim that's on trial, in essence, is called the null hypothesis (H 0).The alternative hypothesis (H a) is the one you would believe if the null hypothesis is concluded to be untrue.Learning how to find the p-value in statistics is a fundamental skill in testing, helping you weigh the evidence ...

  20. 9.2: Null and Alternative Hypotheses

    The alternative hypothesis ( Ha H a) is a claim about the population that is contradictory to H0 H 0 and what we conclude when we reject H0 H 0. Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample ...

  21. Solved In a test of hypothesis, the null hypothesis is that

    In a test of hypothesis, the null hypothesis is that the population mean is greater than or equal to 7 4 and the alternative hypothesis is that the population mean is less than 7 4. A sample of 3 5 elements selected from this population produced a mean of 7 2. 4 and a standard deviation of 6. 4. The significance level is 1 % ...