- Reference Manager
- Simple TEXT file

People also looked at
Field grand challenge article, revisiting the internet of things: new trends, opportunities and grand challenges.
- 1 IoT Research Lab, ECSE, Ontario Tech University, Oshawa, ON, Canada
- 2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, University of Melbourne, Parkville, VIC, Australia
1 Introduction
The Internet of Things (IoT) is a conceptual paradigm that connects billions of Internet-enabled devices to exchange data among themselves and their surroundings to enable smart interactions and connect the physical infrastructure to digital systems. IoT represents a revolutionary paradigm that started to affect our lives in many positive ways. The term Internet of Things was first coined in 1999 by Kevien Ashton ( Ashton, 2009 ) and was initially designed to support RFID technology. However, nowadays IoT has reached far beyond its designers’ vision and become much popular for the new applications it opens up in many vital domains like healthcare, intelligent transportation, public safety, home automation, smart city, asset monitoring, industrial automation and much more. The evolution of IoT presented the long-awaited promise of ubiquitous data access in which people wanted to have access to real-time data on the go anywhere and anytime.
Even though there are many other relevant paradigms/model that intersect with the purpose of IoT (e.g., M2M: Machine to Machine), Web of Things, Internet of Everything (IoE), pervasive computing, etc. ), there are fundamental differences between them and IoT. The core values of IoT lies in the promise of helping businesses to increase their productivity, enhance control over their assets, and make informed business decisions based on the inference resulting from the processing of the fusion of big raw data acquired from the surroundings, including people themselves. Recent research statistics reveal over 10 billion connected IoT devices in 2021. This number is anticipated to reach 41 billion in 2027, expecting over 152,000 IoT devices to connect to the Internet per minute in 2025. Considering the global IoT market size, there was a 22% increase in the market size of IoT in 2021, hitting $157.9 billion. Smart home devices are the dominant components of IoT. The penetration rate of IoT varies concerning the application domain. For example, IoT analytics ( Lueth, 2020 ) argues that industrial applications occupy 22% of the global IoT projects, with transportation, energy, and healthcare occupying 15%, 14%, and 9%, respectively.
The main two types of devices that make up the most of IoT are: Sensors and Actuators. Sensors are physical devices that can sense/measure a certain phenomena and can communicate the sensed values to other parties (i.e., collect data and report internal states). A GPS and an ECG device are examples of IoT sensors. The constituent sensor nodes usually utilize small-scale embedded systems to achieve the cost-effectiveness criteria of IoT solutions, increasing their deployment in various domains. Sensor nodes often use 8-bit microcontrollers and inhibit small storage capacity, lowering their power sizing and allowing them to run for years on batteries. Coupled with the diversified networking protocols available to match the existing infrastructure or the operational conditions, this highly promotes the deployment of IoT solutions in different domains. Actuators are also physical devices that can affect a change on the physical environments (i.e., take actions) in response to a command or a recommendation such as an AC thermostat and a valve. These devices need to be connected to the Internet and are able to communicate to send or receive data so they can qualify as IoT devices.
The convergence of IoT, advanced data analytics and artificial intelligence opened up the door for the next generation of applications that support real-time decision making such as improved user experience and predictive maintenance. As such, data analytics has become a core component of any IoT deployment and will continue to gain popularity and relevance to businesses as much as data collection continues to grow and support intelligent decision making. In industrial manufacturing, for example, predictive maintenance can predict when maintenance is required in advance through the measurement of vibration levels, heat and other parameters to avoid production disruption. IoT data can also reveal rich information about customer behaviors (e.g., driving habits and shopping preferences) to support improved customer experience. Machine learning models and artificial intelligence techniques can learn from observations (IoT data collection) and recommend actions that lead into smart decisions (IoT actuation).
Although IoT promises to support intelligence decision making, enable better quality of life to citizens and make transformative changes in their daily lives, there remain grand challenges that hinder IoT from reaching its full potential such as privacy and security concerns, data heterogeneity and device interoperability, unrestricted access control and deployment in the open access domain. The heterogeneity and small footprint of IoT of sensors for example, comes with two major shortcomings: 1) The constraints of resources available on the sensor nodes render it infeasible to apply the conventional security mechanisms typically involved in capable computer systems, exposing the sensor nodes as a weak security point for the whole IoT system. 2) The many networking protocols available to communicate sensed information among IoT devices result in interoperability issues between IoT systems utilizing different communication protocols.
The first shortcoming of incapable sensor nodes results in the notorious “vertical silos,” where an IoT system is, in fact, a set of subsystems that lack information sharing among each other. That did not represent a significant concern at the early ages of IoT since the applications were relatively limited, and the IoT had not reached its maturity and big vision yet. However, the advent of cloud computing in the last decade, coupled with the advancements in artificial intelligence and its subdomains, has vowed the prospect of IoT in various domains. This necessitates the ability of collaborative IoT systems to build better-informed business decisions based on the fusion of inferences coming from multiple systems. However, the second shortcoming of IoT impedes the scalability of IoT systems, confining the usability of sensed information by IoT systems to the managed networks of their users without exposing this information to public networks. This comes at the cost of increased IoT systems outlay, unwanted redundancy of the same information sensed by non-interoperable systems, expanded storage footprint, high network bandwidth utilization, risen processing cost, and more elevated system latency. This paper provides deep analytical views on many aspects of IoT technologies including standard architecture, stack protocols, value proposition, different IoT applications, trending technologies, and challenges.
The rest of the paper is structured as follows. Section 2 discusses the IoT standard architecture, enabling technologies and stack protocols. Section 3 describes the different domains of application for IoT with the most prevailing deployments. Section 4 sheds the light on rising trends in IoT and the convergence between IoT and data analytics. Section 5 discusses the grand challenges for IoT that remain open for further research and deemed to decelerate its wide scale adoption. Lastly, Section 6 offers concluding remarks.
2 IoT standard layered architecture and protocols
From the engineering perspective, IoT is witnessing an increasing number of enabling technologies. This high diversity of IoT enabling technologies stem from the proliferation of IoT devices, their heterogeneity and uncertainty of operational environments, the advancements in chip manufacturing, and variety of communication protocols ( Bouguettaya et al., 2021 ). Nonetheless, the advent of artificial intelligence (AI) and associated machine learning (ML) techniques leverage the serendipity of IoT by providing insightful information from the fusion of raw data collected by heterogeneous sensors to support decision making and change how people carry out their everyday business. This adds up to the enabling technologies of IoT. Therefore, abstracting IoT systems in terms of building blocks helps to contrast the hazy boundaries between different enabling technologies and enhance the agility and robustness to achieve a successful paradigm for IoT systems ( Lin et al., 2017 ). The core elements of a typical layered IoT architecture, as depicted on Figure 1 , can be summarized as follows.

FIGURE 1 . IoT layered architecture.
2.1 Perception layer
The first layer of the IoT architecture is the perception layer, also denoted by the hardware, physical, or infrastructure layer. This layer encompasses the constituent physical devices of an IoT system that are typically responsible for: 1) sensing the environment in their vicinity and sending the raw sensed data to the next upper layer for processing, such as environmental sensors; 2) transforming the logical decisions coming from the upper inference layer into physical actions applied to corresponding devices, such as actuators and servo motors. It is worth noting that, and as the name of IoT implies, the constituent devices that form an IoT system embed some form of communication by which they can be directly or indirectly, with the help of a gateway, connected to the Internet. Moreover, IoT devices typically include some form of identification that helps differentiate the data passed to the upper layers of the IoT architecture. This identification can be either burnt into the device firmware by the manufacturer [such as the unique identifier (UUID)], set up by the user through configurable menus or DIP switches, or provided by the communication subsystem that the devices utilize (like the MAC address or the Bluetooth identifier).
2.2 Transport layer
The transport layer, also denoted by the communication and network layer, and as its name implies, is responsible for connecting IoT devices in the perception layer to the upper layers of the IoT architecture, which are typically hosted over the Internet using cloud computing technologies. This layer utilizes a wide range of communication technologies, like cellular, Wi-Fi, Bluetooth, Zigbee, etc. Besides, the transport layer is responsible for maintaining the confidentiality of the data exchange between the perception layer and the upper layers. Nonetheless, with its potential promise and anticipated ubiquity and prevalence, IoT is the motivating force behind recent research in enabling communication technologies. For example, IPv6 has been identified such that it can provide network addresses to the anticipated enormous smart objects connected to the Internet, which exceeds the already depleted IPv4 addresses. Similarly, the 6LoWPAN communication standard has been mainly developed to enable IPv6 packet transmission for power-constrained smart objects communicating over IEEE 802.15.4.
The transport layer securities typically used for IP-based networking, namely Transport Layer Security (TLS) and Datagram TLS (DTLS), provide the essential means for secure end-to-end communication. However, these technologies are not always feasible for deployment in resource-constrained embedded IoT devices due to the induced increased processing, storage, and power consumption overhead associated with these security mechanisms. This, in turn, usually delegates the authentication and the data integrity tasks of exchanged information in IoT systems to be arbitrarily carried out by the application layer based on the required security level and device capabilities. Besides, it exposes these poorly-secured IoT devices as a weak point for malicious users to penetrate the underlying critical network infrastructure or exploit them for botnet attacks to prevent the availability of network resources, aka distributed denial of service (DDoS). Derived by the proliferation of IoT devices, recent statistics anticipate that more than %25 of all cyberattacks against businesses will be IoT-based by 2025. This slows down the adoption of IoT and makes businesses reluctant to expose the reachability of sensed information by their IoT systems beyond their managed networks, adding up to the “isolated islands” dilemma of IoT systems.
2.3 Processing layer
The processing layer, also denoted as the middleware layer, encompasses advanced features that could not be embedded within the inherently resource-constrained devices at the perception layer. This includes storage, processing, computing, and action-taking capabilities. Besides, the middleware layer facilitates IoT systems’ scalability and interoperability across the computing continuum from the edge to a remote cloud data centre. It typically provides interfaces, like APIs, for other systems and third-party services to leverage the gathered raw data from the IoT devices or the insight obtained by the middleware layer after data processing. Based on the agreed tradeoff between device loads and bandwidth during the system design phase, the middleware layer can be either embedded within an on-site capable embedded platform, sometimes denoted as an IoT gateway, or hosted over the cloud. The former requires utilizing a medium-to-large scale embedded device to act as a gateway. Nonetheless, it typically utilizes a Linux kernel-based OS to mask the complexity of the underlying hardware interfacing to the perception layer devices. The latter, however, depends on relaying the raw data from the perception layer to cloud-hosted servers. This comes at the cost of higher bandwidth utilization and increased latency.
The emergence of a cloud-hosted middleware layer for IoT systems represents a bottleneck considering the security concerns of IoT. Cloud computing is the only candidate to digest the enormous amount of IoT data coming from perception layer devices. However, cloud providers are also principal targets for cyberattacks and single points of failure for IoT systems. A successful cyberattack could expose an enormous amount of sensitive information to hackers and render the IoT system unfunctional. This puts system designers in a tradeoff of choosing between the capability, cost-effectiveness, and ease of access associated with cloud computing technologies on one hand and the panic of potential data leakage in case of a successful cloud attack on the other hand.
2.4 Application layer
The application layer defines the domains by which IoT systems are deployed. This includes smart homes, smart cities, smart agriculture, etc. The application layer manages the logical processes to be taken based on the inference coming from the middleware layer and the system requirements. This includes sending emails, activating alarms, turning a device on or off, setting parameters, etc. Therefore, the application layer represents the user interface to interact with the other layers below it, facilitating human-machine interactions. Since the application layer is meant to be used by people, it inhibits a wide surface area exposed to good actors and bad actors. The common vulnerabilities usually encountered in the application layer include distributed denial of service (DDoS), HTTP floods, SQL injections, and cross-site scripting. Although large-scale cybersecurity attacks are dangerous, the effect of small-scale cybersecurity attacks, usually encountered in IoT systems, can be even more dangerous. This is because they do not have unique ecosystems, their cyber defense has not yet reached maturity, and they can be gone unnoticed for a long time. The security mechanisms applied at the application layer are meant to fulfill the CIA triad, namely confidentiality, integrity, and availability. This implies keeping the secrecy of exchanged information between communicating parties, ensuring that no alterations have been maliciously carried out on the information from its source to destination, and making the information always available to authorized users requiring it.
In contrast to the vulnerabilities in the lower layers of the IoT architecture mentioned above which can also affect the upper layers, security breaches in the application layer do not affect the lower layers. In capable computer systems, however, security mechanisms are applied in parallel to different layers to tighten the system’s safety. Nevertheless, for a market usually biased towards the price and the convenience rather than the security, this is not usually valid for constrained embedded devices often encountered in IoT systems. Security practices for IoT systems often delegate the security measures to be applied at the application layer based on the system requirements or even delegated to the third-party firewall appliances managing the network. Security measures in IoT systems usually come at trade-offs regarding the capacity of the constituent IoT devices utilized by the system. Moreover, with the diverse application domains of IoT, security mechanisms can even affect the system’s effectiveness. For example, a VoIP-based IoT solution can be adversely affected by the induced latency of the security mechanism in action. On the other hand, this latency pales for confidentiality- and integrity-critical applications, like financial and medical applications, where the effect of a security breach would be catastrophic.
2.5 Business intelligence layer
A successful IoT system depends on the utilized enabling technologies and how inference is delivered to the user abstractly and efficiently. The business intelligence layer is meant to fulfill this task by providing the user with visualized representations of the information coming from the middleware layer, masking its complexity and making it easier for the user to make informed business decisions.
The business intelligence layer is not affected by the constituent embedded IoT devices utilized by the system. It does not deal directly with the constituent IoT devices. However, it deals with the inference from the middleware layer after processing the raw data from the IoT devices through the application layer protocols. Therefore, the security of the business intelligence layer depends on the typical user-level security mechanisms found in capable computer systems. The user-level security can be applied to different entities constructing the layer. This includes files, databases, or any other resources. The user-level security is meant to implement a fine-grained authorization control over accessible information to different users based on their credibility.
3 IoT applications
IoT can be seen in different real-world applications and services such as home automation, intelligent transportation, smart cities, digital healthcare, remote health monitoring, smart agriculture, and industrial automation ( Gubbi et al., 2013 ). In each application domain, several sensors are triggered to independently gather data, transmit information, and initiate and execute services with minimum human intervention ( Sarkar et al., 2014 ). The main objective of integrating IoT technology into real-world applications is to enhance the quality of life. For example, in the domain of smart city services, we find IoT applications used for increasing city safety, efficient mobility, and enhancing smart energy usage ( Weber and Podnar Žarko, 2019 ). On the other hand, IoT technology has introduced remote medical monitoring systems in the healthcare domain which empower physicians to provide superior care to patients ( Selvaraj and Sundaravaradhan, 2020 ). Numerous research proposes different IoT-based solutions and innovations under three application domains shown in Figure 2 ( Sarkar et al., 2014 ).

FIGURE 2 . IoT application domains and related services.
3.1 Smart city
IoT technology assists cities to enhance mobility services, improve public safety, and control and automate household systems. Intelligent transportation, for example, focuses on solutions that manage road infrastructure and improve route planning for drivers. Furthermore, it provides innovative solutions to monitor and manage traffic systems using smart traffic signals and sensors, throughout the road network to smooth the traffic flow and reduce congestion. The concept of smart city services is not restricted to transportation, but also involves other aspects of human life, such as public safety, green and clean environment, smart grid, efficient delivery of municipal services and connecting the physical infrastructure to the digital world. In the following we shed the light on some of these aspects.
3.1.1 Traffic management
IoT-based traffic management systems mainly monitor road traffic conditions to solve the problem of increased traffic congestion and predict traffic status ( Poslad et al., 2015 ). These systems assist drivers by informing them about the traffic conditions at a given location and time. For example, an adaptive traffic signal control (ATSC) system that captures the traffic volume level can significantly reduce traffic congestion ( Saarika et al., 2017 ). Equipping roads with advanced sensors that capture real-time traffic data assists in determining the duration of traffic light signals across intersections. The ATSC system not only eases the traffic flow at intersections but also reduces travel time and fuel consumption, contributing positively to green environments. Research on IoT-based real-time ATSC systems at an intersection describes the coordinated approach as it is used to track the movements of vehicles and pedestrians ( Eom and Kim, 2020 ; Jamil et al., 2020 ). It also uses the deep reinforcement learning (DRL) method which is commonly used in ATSC systems to teach/educate traffic controllers how to make proper decisions. DRL simulates the effect of a traffic signal’s action and the resulting changes in traffic status. It would be classified as an appropriate action in that given situation if the action improved traffic conditions, and as a negative action otherwise ( Jamil et al., 2020 ). Furthermore, IoT-based traffic management systems can facilitate smart parking in public spaces such as on-street parking, and lot parking. According to Libelium company ( Dujić Rodić et al., 2020 ), parking spaces play critical roles in reducing traffic volume, and gas emissions. In smart parking, drivers can easily locate an empty parking place using smart parking maps. These smart maps use IoT sensors and cameras to detect and manage the likelihood of parking space in a given area. An example of a real-time traffic occupancy system for smart parking is called SplitParking which is managed by the city of Split in Croatia ( Weber and Podnar Žarko, 2019 ). The SplitParking system places sensors integrated with an IoT technology within its parking spaces to monitor space occupancy andlert the end user of the parking availability through a user-friendly mobile application ( Weber and Podnar Žarko, 2019 ).
3.1.2 Intelligent transportation
The emergence of IoT has provided a new perspective for intelligent traffic systems development. This is because the IoT paradigm satisfies the public’s demand towards an “always connected” model by relying on the interconnection of our daily physical objects using the Internet. Hence, allowing it to collect, process and transfer data creating smart intelligent systems without human intervention.
In the traffic domain, IoT requires every element such as roads, tunnels, bridges, traffic lights, vehicles and roadside infrastructures to be Internet-connected for identification and management purposes. This can be done using sensor-enabled devices, for instance, RFID devices, Infrared sensors, GPS and many others. Intelligent traffic systems that are IoT-based can efficiently improve traffic conditions, reduce traffic congestion and are unaffected by weather conditions. Moreover, IoT allows for dynamic real-time interactions, since it facilitates the incorporation of communication, control and data processing across the transportation systems. Beyond any doubt, IoT is causing a noticeable shift in the transportation sector.
The rapid advancements within information and communication technologies have also paved the way for developing more self-reliable and intelligent transportation systems. These include striding advancements in hardware, software, sensor-enabled and wireless communications technologies. Therefore, moving towards a new era of connected intelligent transportation systems, where the demand for on-going and future real-time traffic data continues to rise ( Abdelkader and Elgazzar, 2020 ). This enforces several challenging requirements on the traffic information systems. Among these requirements is broadcasting real-time, user-friendly, and precise traffic data for users. These traffic data including color-coded maps showing congestion, calculated traffic time intervals between arbitrary points on the road network. In addition to traffic density estimations that should be easily interpreted by users in a very short time. Moreover, demonstrating real-time routes for drivers based on the embedded navigation systems such as Global Positioning Systems (GPS). Another challenging requirement lies in storing huge amounts of traffic information generated from progressively complex networks of sensors, where Big data comes into play. However, collecting and storing this amount of traffic information is not enough. It is crucial to correlate based on game theory methodology, validate and make use of data in real-time. Hence providing valuable, relevant data extraction and insightful predictions of upcoming patterns and trends based on historical data. As an example, providing drivers with real-time traffic information to assist them in finding out the best road routes. This is why the subsequent role of predictive analytics for the whole transportation is needed. Consequently, traffic information systems require participation of all of the above components to interact and integrate through a common infrastructure. It allows immediate transmission of real time traffic information to any part of the system ( Abdelkader et al., 2021 ).
Even with the aforementioned benefits and challenges that come along with the integration of IoT into the transportation sector. IoT provides a paradigm shift that changes the transit services into intelligent groundbreaking systems, where numerous cutting edge technologies are incorporated. This creates a wide suite of intelligent transportation applications that have road users’ experience and safety at its core. A widely adopted IoT applications in the automotive industry include: the integration of sensors such as weight measurements and real-time fleet location sensors-based tracking to help fleet operators efficiently manage their fleets. Another use case that IoT technologies have shown great impact is predictive analytics. In this context, drivers are provided with early in advance vehicle maintenance alerts in cases of failure of a specific vehicle component. This is because these components are equipped with sensors that collect and share real-time information on the vehicle’s status with their vendors. It avoids any sudden or abrupt failure that can cause a life-hazard situation. Last, but not least with a precise focus on the integration of IoT with connected mobility. Figure 3 showcases a predictive maintenance scenario, where an in-vehicle monitoring system acquires IoT sensing data from the faulty in-vehicle sensor. The vehicular data is sent to the Diagnostics and Prognostics cloud services for analyzing and predicting maintenance issues. Repair recommendations are then sent back to the drivers ( Kshirsagar and Patil, 2021 ).

FIGURE 3 . An IoT-based predictive maintenance use-case scenario.
3.1.3 Emergency response
Crisis management is one of the critical situations that face many governments, first responders, emergency dispatchers and others who provide necessary first aid/assistance at the least possible time. In such situations, the design of the required infrastructure to handle emergencies becomes a critical requirement. With the introduction of IoT technologies to the safety systems where a suite of sensors are connected to provide real-time data to crisis management officials. This includes the use of sensors to monitor the water levels in cases of flood situations to provide insights that can support real-time data analytics to manage flooding crises. Real-time information can contribute to improving crisis management response time. Hence, reducing or eliminating the costs of crisis-related damages. Firefighting is considered a viable use case that finds value in IoT applications. Heat-proof sensors placed in indoor buildings can provide real-time information about the initial starting point of a fire, spreading patterns and intensity levels ( Mekni, 2022 ). It also extends to provide additional safety measures for firefighters as they use IoT-based safety alert devices that can accurately detect their motions. These devices are equipped with acoustic transmitters which act as beacons to allocate firefighters within the building and embedded sensors that can monitor their vital health conditions. Besides protecting firefighters, IoT-based sensors are employed to sustain indoors electrical systems and smartly pre-identify any active heat sources through abrupt temperature spikes. Immediate alerts are then subsequently sent for rapid and instant inspections. Fire systems based on IoT solutions can be actively intelligent to detect and promptly put off small fires through the use of smart sprinklers. Other emerging solutions that aid firefighters in fire crisis situations include computer-aided dispatch data such as precise fire locations, environmental conditions and others. Augmented reality-IoT based firefighter helmets ( Choi et al., 2021 ) are another innovative solution that can effectively guide firefighters to navigate in low-visibility conditions.
Emergency responders and dispatchers are leveraging the benefits of IoT-based solutions when dealing with daily traffic accidents. Numerous automotive industrial solutions such as GM OnStar provide a myriad of applications and services to assist first aid dispatchers. This could be achieved through utilizing cellular networks in conjunction with GPS and IoT technologies. Leveraging Vehicle to Infrastructure (V2I) communication-based technologies to provide critical information incases of traffic accidents. These include avoidance crash response, where drivers in crash situations can connect to OnStar call center by requesting the appropriate help to be provided to the vehicle’s location. The ecall can be activated manually (using a push-button) or automatically through data collected from on-board sensors. Other applications include stolen vehicle assistance which help the authorities in locating the stolen vehicle by activating several functionalities. This includes halting the restart option upon reactivation of the remote ignition block and transmitting a slowdown signal to let the vehicle come to a stop eventually ( Abboud et al., 2016 ). Other use cases include amber alert notifications sent to the public by integrating IoT and cellular network technologies. Amber alerts provide new means of aiding emergency responders and authority officials in risky situations such as child abduction. Officials collect crowdsourcing witness information from people within close event proximity to assist in their investigations. The alerts usually include event description (time and location). In addition to the Kidnappers’ detailed information (e.g, vehicle’s information, license plate number and their description) as well as child description. However, inability to correctly track the suspects’ vehicle or missed notifications by the public may contribute and lead to inefficient amber alert-based systems ( Zhang et al., 2018 ).
Traditionally, infrastructure failures and power outages are other use cases implying sudden and abrupt crisis situations that may be disruptive to emergency officials. Based on leveraging IoT technologies that aim at providing preventive and predictive maintenance. Hence, avoiding sudden breakdowns, anomalies and damages of the infrastructure. This could be achieved through continuous supervision and monitoring. For instance, smart bridges include a modular and IoT-sensor based system for monitoring, evaluating and recording any changes of the bridge structure in near real-time. Embedded sensors in the core structure of the bridge can then relay measurable information to management officials for further analysis. This includes humidity, temperature and corrosion status of the structure. Such data is considered valuable to constantly assess and evaluate the health structure and provide necessary measures such as intervention and predictive measures strategies ( Yang, 2003 ).
3.2 Home automation
Home automation and control systems are essential components of smart cities and have played a significant part in the advancement of our home environments. They have several applications for different usage at home, such as entertainment and smart living, surveillance, and safety management ( Alhafidh and Allen, 2016 ). Home automation is described as a standard home environment equipped with IoT technological infrastructure to provide a safe and comfortable lifestyle ( Khoa et al., 2020 ). Home automation is based on an intelligent, self-adaptive system that analyzes and evaluates stakeholder behaviors and has the capability to predict the stakeholder’s future actions and interact accordingly. Home automation systems use image detection and facial recognition models that are embedded in an intelligent control system connected to different sensors such as light sensors, motion sensors, water leak sensors, smoke sensors, and CCTV cameras ( Pavithra and Balakrishnan, 2015 ). These devices communicate with each other through a gateway that is distributed throughout a home area network. The home control system will connect different subsystems that cooperate in modeling the stakeholder’s actions and the environment’s information such as temperature, humidity, noise, visibility, and light intensity to enhance the learning process. For example, lights and AC temperature can be controlled and automated to adapt to the stakeholders’ needs and their movements in the home environment. This would conserve energy while also effectively monitoring energy consumption ( Vishwakarma et al., 2019 ). Research on home automation is not restricted to energy optimization; it involves health monitoring and security measures. By using innovative IoT technologies, we can connect to surveillance cameras in the home environment via a mobile device. Additionally, stakeholders can have access to doors and window sensors to maintain home safety and security remotely ( Alsuhaym et al., 2021 ).
3.3 Industrial sector
Industrial IoT leverages IoT capabilities in business and economic sectors to automate previously complex manual operations in order to satisfy consumer needs and reduce production costs. Warehouse operations, logistical services, supply chain management, and agricultural breeding can have machine-to-machine (M2M) intercommunication to ensure optimal industrial operations ( Pekar et al., 2020 ). Figure 4 illustrates a scenario of the IoT communication sensors in a smart agricultural system. This smart agriculture system monitors and analyzes the environmental parameters using soil moisture and harvesting sensors such as ZigBee, EnOcean, Z-wave and ANT ( Tang et al., 2018 ). These sensors are automated to diagnose the status of a plant and gather this data through an IoT platform to take the proper action such as when to irrigate in consultation with a weather forecasting service available in the Cloud; thus ensuring the efficient use of water resources.

FIGURE 4 . Illustration of a smart agriculture system.
3.4 Logistics and supply chain
Supply Chain Management (SCM) is a crucial service in our world. Since 1900 ( Lummus and Vokurka, 1999 ), humanity has evolved SCM to meet the market needs. Figure 5 highlights SCM milestones. Before 1900, SCM was restricted to the local areas. However, due to the revolution in railways, goods now can reach far beyond local borders. Between 1900 and 1950, global SCM attracted large players and organizations like UPS began providing their services in the SCM field. Industry leaders started to look for how we could improve the mechanization of the SCM process. From 1950 to 1970, the SCM community gained a superior experience by analyzing the military logistics of the First World War. DHL and FedEx were established as logistics enterprises, and IBM built the first computerized inventory management that was capable of handling complex inventory problems and making stock forecasts. In 1975, JCPenney designed the first Real-Time Warehouse Management System (WMS) that monitors the warehouse stock in real-time. Seven years later, Keith Oliver introduced the Supply Chain Management term. In the 90s, the technological revolution was triggered when many enterprises deployed computers to manage their processes and the internet to reach their customers through the World Wide Web. In the 90s, Amazon started running the e-commerce website. The 4.0 industrial revolution, including the internet of things, began growing in the last decade. Although the IoT looks like a promising technology to be adopted in the SCM field, deploying IoT in SCM faces many challenges. The main hindrance ( Haddud et al., 2017 ) is the integration of different supply chain processes due to The heterogeneity of technologies used in various supply chain stages.

FIGURE 5 . Supply chain milestones.
COVID-19 ( de Vass et al., 2021 ) uncovered a new factor that magnifies the importance of relying on information and communications technology to run the SCM systems. Businesses had to switch to remote working due to the pandemic. The lockdown and physical distancing requirements imposed on suppliers reduced their labors in their plants and sometimes obliged to shut down to limit the virus spreading. As a result, consumers face product shortages due to reduced production volumes during the pandemic. To date ( Ozdemir et al., 2022 ), the world is still suffering from the devastating effects of COVID-19 on the supply chain. Therefore, decision-makers ( Baldwin and Di Mauro, 2020 ; Baldwin and Tomiura, 2020 ) started exploring how we could deploy new technologies, such as IoT, for managing remote operations.
3.5 Healthcare
IoT sensors and devices shifted the landscape of portable and wearable medical devices from fitness and wellness devices to medical-grade devices qualified for usage at hospitals and healthcare providers. This shift accelerated the integration of remote patient monitoring in hospitals to accommodate patients with chronic diseases ( Casale et al., 2021 ). Therefore, numerous efforts have been conducted to advance remote patient monitoring (RPM) systems with the help of well-established IoT infrastructures and standards in the healthcare domain ( El-Rashidy et al., 2021 ). The RPM systems are expected to match or exceed the performance of the existing monitoring and examinations administered at hospitals and healthcare facilities ( Casale et al., 2021 ). For example, continuous heart rate monitoring and immediate heartbeat detection necessitate patients to be hospitalized and/or connected to a Holter monitor or similar devices for long-term cardiac diagnosis. However, this setup would hinder patient mobility due to the limitations of the existing devices in terms of size and the number of attached wires. Moreover, hospitals dedicate significant resources to providing long-term cardiac monitoring that, in some cases, is unavailable, especially in low or middle-income countries. Therefore, RPM systems effectively reduce death from chronic diseases (e.g., heart diseases, diabetes). IoT platforms and devices significantly accelerated the development and integration of RPM systems into existing healthcare infrastructures. To that extent, a typical RPM implementation constitutes various services but is not limited to data acquisition, tracking, communication, automated analysis, diagnoses, and notification systems ( Miller et al., 2021 ).
4 Rising trends in sensor data analytics
In recent years, the IoT domain has witnessed increasing interest by the research community and rising demands from the industrial sector to embed real-time data analytics tools into the core of IoT standards. While the real value proposition of IoT is shifting from providing passive data monitoring and acquisition services to autonomous IoT applications with real-time decision-making services. Consequently, real-time data analytics is no longer an add-on service and has become integral to any IoT application rollout. For example, remote patient monitoring (RPM) and real-time data analytics have significantly contributed to enhancing ECG monitoring and enabling healthcare providers to gain 24/7 access to their patients remotely, especially for patients with coronary diseases ( Mohammed et al., 2019 ). However, sensor data acquisition and collections are mapped as the foundation of IoT applications yet are considered passive techniques due to the absence of intelligence or decision-making. The main goals of IoT application at the early stages were to collect and monitor significant information regarding specific applications as initially proposed in 1999 ( Butzin et al., 2016 ) while developing supply chain optimization at Procter & Gamble. Nearly after 2 decades, the goals of using IoT applications and their expectations are on the rise, demanding proactive and active decisions made on sensor data collected in real-time. Accordingly, data analytics permits various applications to focus on performing real-time diagnoses, predictive maintenance, automated decision-making, and theoretically improving the productivity and efficiency of the intended applications. Meanwhile, modern stream processing engines (e.g., Apache Kafka and Apache Pulsar) come with built-in APIs ready for data analytics integrations ( Martín et al., 2022 ). Moreover, most cloud services provide ready-made end-to-end event processing and real-time data analytics tools (i.e., Google DataFlow).
4.1 Real-time vs. offline data analytics: Differences, needs, and potential use
In an IoT-driven society, applications and services integrate smart learning approaches for analyzing insightful patterns and trends that result in improved decision-making. For more effectively optimized analytics, several IoT data-specification characteristics should be considered. These include dealing with huge volumes of data streamed from sensor-based devices deployed for IoT applications and services. It requires new means of big data analytics that can deal with huge volumes of sensor-generated data. In this context, conventional hardware/software methods for storage, data analytics and management purposes cannot handle such huge volumes of streaming data. Moreover, information collected from heterogeneous devices result in three significant common features among IoT Data. These features include data heterogeneity and association of time/space stamps based on the sensors’ locations. The third feature is the subjectivity of IoT data associated with the high noise levels during acquisition and transmission processes.
Beyond such characteristics that utilize big data analytics approaches, a new suite of applications and services arise that demand prompt actions in real-time analytics. This is primarily due to its time sensitive and fast streaming of IoT data that is generated within short time intervals for instant decision making and actions. These insightful decisions are time stringent, where IoT streaming data analytics need to be delivered within a range of hundreds of milliseconds to only a few seconds. As such, life-saving applications demand fast and continuous streams of incoming data associated in some cases with real-time multi-modal data sources for efficient decision making. For instance, connected and autonomous vehicles require data fusion of real-time sensor data from different sources (e.g., Lidars and cameras), V2X communication and road entities (e.g., traffic lights) for safe perception decision making. Transmitting traffic data to the cloud servers for real-time analytics will be liable to network and communication latency that are not well-suited for time sensitive applications, which may result in fatal traffic accidents. However, analyzing real-time streaming data on powerful cloud computing platforms that adopt data parallelism and incremental processing techniques can reduce the end-to-end delay associated with two-way data transmissions. A more optimized approach could reside in solutions such as edge computing, where data analytics are closer to the data sources (e.g., edge or IoT-based devices) for faster data analytics ( Goudarzi et al., 2021 ). However, these solutions are still prone to a number of limitations including limited computation, power and storage resources on IoT devices. The rising trends towards real-time data analytics are also striving in non-critical business applications.
4.2 Decision making
Leading IoT-based business sectors rely heavily on well-analyzed real-time data inferred from their IoT-enabled products. For critical and unbiased decision making, real-time data analysis by machine learning algorithms can assist in eliminating/reducing junk information and estimating learning useful patterns. Data-driven analytics will provide more in depth insights for optimizing customers’ experiences through daily behaviors and patterns analysis. As an example, Apple watches can monitor our daily exercises and sleeping patterns in real-time and assist in providing customized preference notifications. Uber can also make informed decisions based on analyzing real-time demands for traffic trips. This determines their pricing rates that proportionately increase in rush hours. Other examples may include placing sensors within oil tanks for real-time monitoring of oil fluid levels, temperature and humidity. This initiates automated decision making such as oil reordering and planning pre-scheduled maintenance ( Moh’d Ali et al., 2020 ).
Decision making-based systems can be classified according to the different levels of system complexity. This includes visual analytics systems that help business practitioners to analyze and interpret gathered IoT data. Business intelligence embedded dashboards aid in presenting the retrieved IoT information in a meaningful manner. Automated and warnings-based systems conduct a predefined data analysis that assists in highlighting risky situations through alerts and warnings. For example, IoT-based real-time environmental monitoring systems can track pollutants and chemicals’ levels in the air within an industrial city. Warning notifications are then subsequently sent to citizens within the affected geofenced area indicating health risk hazards. Reactive-based systems may take a step forward towards performing actions described through rule-based languages that are carried out when specific conditions are met. For instance, smart lighting IoT-based systems may switch off the lights in a specific building area if no one is present, which is indicated by infrared occupancy sensors ( Wang et al., 2017 ).
4.3 Predictive maintenance
Utilizing IoT applications has incredibly reduced maintenance costs, in particular in the industrial sector. For example, industrial equipment manufacturing that embed sensors in heavy machinery integrate with analytical tools to monitor the operational efficacy, detect faults or failures, and provide a full assessment of the operating condition ( Mobley, 2002 ). This comprehensive performance evaluation occurs on a regular basis to maintain the system’s efficiency and initiates maintenance if needed. This procedure is known as Predictive Maintenance (PdM), or condition-based maintenance, and it employs diagnostics and prognostics data to spot early signs of failure, allowing the system to operate as intended ( Zonta et al., 2020 ). Furthermore, PdM can estimate degradation of the equipment and predict the remaining useful life (RUL) of equipment, which reduces the maintenance costs to the minimum and assures service availability. According to Selcuk ( Selcuk, 2017 ), IoT-based predictive maintenance increases the return on investment by 10 times, where this approach increases the total production by 15%–70% and reduces the maintenance costs by 25%–30%. Although PdM successfully reduces the cost of production and maintenance, it is expensive to implement due to the high cost of the hardware and software required to effectively incorporate the PdM into the system. Moreover, the quality of the training services and the amount of data required to ensure the efficacy of the PdM performance can be challenging ( Compare et al., 2019 ).
4.4 Operation optimization and automation
Industry 4.0 is transitioning from a concept-based approach into a market reality. Through the integration of intelligent and computerized robotic devices into many aspects of industry verticals (e.g., 3D printing, E-sports) that can assist in automating and optimizing the manufacturing operations. This allows accurate, timely and cost effective completed manufacturing processes among a set of machines with minimal or no human interventions. In addition to decrease in cost-related operations through effective inventory management and energy consumption optimization. Effective inventory management in logistics and supply chain sectors is obtained through the integration of IoT with Radio Frequency Identification (RFID) ( Tan and Sidhu, 2022 ) and barcode scanners.
Furthermore, IoT technologies within business automation can efficiently be used for controlling and monitoring machines’ manufacturing operations, performance and rate of productivity through internet connectivity. Moreover, real-time analysis generated from onsite IoT-based sensors provides valuable insights to initiate more efficient ways for decreasing cost-related operational expenses and safety-related/unplanned maintenance issues. For example, incases of machine operational failures, an IoT-based system can promptly send a machine repair request to the maintenance department for handling the issue. Furthermore, with the introduction of IoT technologies, business revenues are subsequently expected to increase due to the incremental rise in operational productivity. This can be achieved through analyzing three critical aspects including operational data, timing and the reasons for any production issues. This allows business leaders to be focused on their high-level core business objectives with a well-defined automated workflow.
4.5 Enhanced customer experience
Connected environments enable businesses to adopt a user-centric approach which utilizes IoT technologies for enhanced overall customer experience and extend the customers’ loyalty towards their services and products. IoT-driven businesses are the gateway to futuristic enhanced digital customer experience and prolonged loyalty which are considered one of the primary laser-focus objectives by many brands. The drive towards more personalized services and applications by customers urge many enterprises to increase services for customer engagement through the use of artificial intelligence-based customer support systems for real-time assistance.
The aforementioned notion of providing level up services that incorporate personalized experiences initiated many innovative applications and services. As such, omnichannel customers’ applications and products such as smart-based home appliances and devices including Alexa-supported devices, Nest Thermostat and intelligent Ring Doorbell cameras that enable customers to use voice assisted technologies along with IoT to control various aspects of their home intelligently. Moreover, ubiquitous smart wearable devices such as fitness trackers that collect real-time health data related to customer behavior and daily routines to enhance customer experience. For instance, providing customers with real-time personalized notifications according to their daily activities. Figure 6 demonstrates the users-centric experience among various IoT services and applications.

FIGURE 6 . User-centric IoT application scenarios.
However, privacy and security data leakage are still considered a major challenge that many researchers and developers are trying to find innovative and tangible solutions to secure personal information when shared for improved service and application experiences.
4.6 Asset tracking and monitoring
Introducing artificial intelligence (AI) into IoT applications has created significant opportunities for innovations in automation and asset tracking domains. Companies and labour-intensive corporations are investing in autonomous working environments with less human interaction, and the demand for AI and context-aware systems has drastically increased. Whereas in times similar to the coronavirus pandemic, factories and workplaces have entirely shut down because of lockdown measures to prevent human interactions. The fusion between AI and IoT transitioned traditional industry models to the industry 5.0 revolution. AI and IoT as core technologies to industry 5.0 along with wireless sensor networks result in more benefits to industries like using analytical techniques to provide predictive maintenance notifications directly affecting downtime, improving workforce and increasing production efficiency. IoT sensors and devices can perceive and sense their environment through high-level technologies, such as laser scanners, cameras and image processing, movement and proximity. Therefore, real-time decisions are made autonomously regarding object identification and asset tracking by coupling these technologies (i.e., image-recognition software). Similarly, IoT applications based on AI algorithms can learn and think logically about different operations that require problem-solving schemes. Autonomous applications operate based on the receding-strategy approach, where new and old control inputs are carried out simultaneously through computing the new control inputs and executing the old ones. The application creates these control inputs to provide real-time performance based on three hierarchical levels. The higher level is concerned with defining complex operations, for example, GPS waypoints for an autonomous device (e.g., robot) to follow. The other two (mid and lower) levels are precisely related to creating and tracking a reference trajectory for this course, respectively. The safety of the robot is the responsibility of the mid-level controller ( Vaskov et al., 2019 ). More concisely, safety concerning collision avoidance among a group of automated robots performing a specific task can be avoided by sharing their perceived data. Other communications that involve Human-Robotic communication are based on the models, such as imitative learning and artificial neural networks.
5 Open challenges
5.1 device and data heterogeneity.
The versatility of IoT devices and sensor nodes in various fields has given rise to many applications. While deep learning, AI, and many other enabling technologies assist IoT devices in learning by experience and adapting to new environmental inputs to be able to conduct complex operations. However, the reliance on receiving data representing the context of the environment surroundings specific to the IoT application requires a significant number of different sensors and devices. Individual sensors or applications provide limited cognition and visibility of the surrounding environments. Therefore, integrating various sensors is essential in context-aware applications. Furthermore, the diversification of sensor nodes and devices raised numerous challenges in the research community and the industry with respect to unification and standardization. In public sensing, different types of sensors are used (e.g., RFID, Ultrasonic, Cameras, Lidars, etc. ) to solve designated issues like real-time counting of people waiting to be served at a specific service provider. The same extends to IoT applications similar to the public sensing domain like traffic management and predictions. Therefore, the demand for modular platforms with unified application programming interfaces (APIs), transmission protocols, data transformation and storage is growing. Moreover, data conversion and normalization operations carried out in applications with heterogeneous devices increase exponentially due to the diversified number of sensors utilized just for one application (e.g., autonomous vehicles).
Behmann ( Behmann and Wu, 2015 ) described current IoT solutions as point solutions where they are isolated and cannot interact with each other. Collaborative IoT (C-IoT) ( Behmann and Wu, 2015 ) is a recent trend that is still unsaturated and needs more effort to be deployed in real-world scenarios. Sharing the infrastructure and data becomes inevitable to pave the way for C-IoT systems. C-IoT can create an expandable ecosystem, and the IoT community will solve complicated problems by relying on the collaboration between IoT systems. For instance, an ambulance in the emergency state can always have a green light on its way if the emergency service can share the ambulance’s route with the city’s intelligent traffic system using the shared infrastructure of C-IoT. Recently, an active movement to have a unified standard in different IoT layers has been raised for a few years to mitigate incompatibility challenges faced by the C-IoT trend.
5.2 Interoperability
The diversity of IoT devices in the perception layer brings the flexibility to build customized IoT solutions and cherrypick the appropriate device for a specific task that matches constraints regarding the accuracy, cost, compatibility with the existing infrastructure, etc. However, this also comes at the cost of the absence of a unified ecosystem for IoT. This results in interoperability issues between different IoT systems and increased development time to get diverse IoT devices to act as a coherent system. Besides, it leads to the notorious “isolated islands” of miniature IoT subsystems based on the brand of devices or their enabling technologies, hindering the utilization of sensed information by different systems to its maximum and impeding the potential promise of IoT.
5.3 User and data privacy
The constituent IoT gadgets of an IoT system typically consist of consumer electronics (e.g., smart TVs) and wearable devices (e.g., smart watches) that gather a lot of information about people, which was previously hard to collect. Gathered data by IoT devices may include personal information of the users (e.g., name, birthdate, etc. ), their biometric information (e.g., fingerprint, voice recognition, etc. ), and their preferences (e.g., eating habits, preferred movie genres, etc. ), which are usually part of the device’s initial setup, registration to its cloud platform, or for the device to be able to perform its smart designated task efficiently. Moreover, advanced IoT systems typically involve the aggregation of numerous pieces of information from heterogeneous smart objects, which is known as “sensor fusion” ( Abdelmoneem et al., 2018 ) to provide accurate and comprehensive data about the environment, including people themselves, to help make better informed decisions. Thanks to the advancements in artificial intelligence (AI) domain technologies which can leverage granular data collected by smart objects to generate inferences that would not be achievable with coarser data from individual smart objects. This intelligence imparted to IoT catalyzes its wide adaption and makes it quite useful in different application domains. However, user privacy concerns are still an open challenge to IoT that impedes its widespread adoption and limits its potential promise. IoT systems can disclose identifiable information about people without their consent. Therefore, amidst the potential promise of IoT to change the way we deal with our surroundings, users are mostly worried about the potential of private information leakage ( Chanal and Kakkasageri, 2020 ). They are worried about who owns their data and how it is utilized. Nonetheless, the notorious correlation between service providers and device vendors on one hand, and data brokers on the other hand, raises concerns about the possibility of their personal information being disclosed for non-public interest objectives. People frequently alter their behavior when they suspect that their identifiable information and activity footprints are being monitored, which reduces their freedom, changes their lifestyle, and makes them sceptical of IoT. In the following subsections, we review data privacy concerns that are associated with IoT.
5.3.1 De-identification of IoT data
Generally, it is prohibited to make datasets that include identifiable personal information publicly accessible. One common way to prevent exposing personal information in datasets is to avoid gathering information that could be used to identify people in the first place and whenever possible. For example, PIR sensors could be used for occupancy detection rather than surveillance cameras. However, given the penetration of IoT in a lot of domains with differentiated requirements, it is usually hard, or even impossible, to preclude the inclusion of identifiable information in gathered datasets by IoT. In this context, de-identification ( Kim and Park, 2022 ) is the process used to anonymize identifiable personal information from datasets, which is quite challenging. Hashing algorithms are commonly used to pseudonymize identifiable information in datasets by replacing identified people in a dataset with their unique hash token. However, since different datasets often have a lot in common, it is usually easy to figure out who the hashed information belongs to using inference techniques.
5.3.2 Consent
Consent ( O’Connor et al., 2017 ) is the typical justification for businesses to collect, use, and disclose personal information. However, consent often matters more than just unconsciously clicking the “I agree” button by the end user on the “Terms and Conditions” statement page of a device. Rather, consent that is meaningful and effective requires well-defined and finely-grained structured objectives that the user should be able to choose from. Moreover, one can not presume that consent will last forever. Therefore, consent methods should represent a single acceptance at a single moment in time, which may not be suitable for the continual nature of IoT. Also, given the interoperability nature of the IoT, where a smart sensor node may be utilised by different systems with different privacy policies, an individual can not grant meaningful permission for the use of their personal data for vague or broad purposes.
5.4 Vendor lock-in
IoT vendors and service providers typically maintain the security of their active devices or services by regularly providing firmware patches and system updates that address security vulnerability issues that continually emerge. However, they often have different expectations about how long their products or services will last than the people who buy them. For instance, vendors may terminate technical support or firmware maintainability of a device, or the service provider may discontinue the service that the device relies on to operate, far before the end user plans to retire the device. This usually comes at the cost of possible security holes, privacy issues, and vendor lock-in ( Fantacci et al., 2014 ). Therefore, customers would have to stick with their active line of products and services to keep their systems safe and operational because suppliers would no longer care about security and privacy issues with their retired devices or have the skills to deal with them.
5.5 Device management
The “plug and play” feature that usually accompanies IoT devices makes them user-friendly since customers can seamlessly get them up and running effortlessly without the need for complicated setup procedures. However, this sometimes comes at the cost of potential user privacy exposure since the default setup of devices usually comes with insufficient privacy and security precautions. Nonetheless, the fact that a gadget is an IoT device that can collect personal information and send it to third parties over the cloud may not be even realized by the majority of non-technically savvy customers by default. In addition, most IoT customers find it hard and time-consuming to adjust the privacy settings for each device in the system. This is because IoT does not have a standard ecosystem and is often made up of many devices from different manufacturers, each with their own user experience interface.
5.6 Accountability
The extensive and distributed nature of IoT systems, which typically include different service providers that handle the collected data to achieve the designated task of the system, makes it challenging to precisely determine who is responsible for what. In order to achieve a robust and highly reliable IoT system architecture, system designers usually follow a common system architectural model that is known as “microservices” ( Butzin et al., 2016 ). They divide the ultimate task of the system into small independent tasks, each of which may utilize numerous services from different service providers that communicate over well-defined APIs. However, this raises privacy concerns because the collected data, which may contain personally identifiable information about users, is now handled and commonly stored by various third-party organizations with hazy boundaries that may apply different privacy policies.
5.7 Transparency
The tiny size of most IoT devices in use today without a screen, or at least an adequate screen size to display a lot of textual information, makes it difficult for users to review their privacy policies before they start using them. In order to review the privacy policies of these devices, however, users should login to the website of the manufacturer of the device or use a proprietary software or a mobile application for the device. However, in either case, given the heterogeneous nature of the IoT and the anticipated large number of IoT devices people use on a daily basis, it looks extremely challenging to follow the privacy policy of each encountered device. Also, a lot of privacy policies for IoT devices seem vague to the majority of people. Moreover, some IoT devices that exist in organizations and public settings are usually anonymous without details about the type of information they collect or how this information is utilized and for which objectives. Also, most of the time, users do not have the option to stop the collection.
5.8 Security (data and device vulnerability)
IoT devices exchange data with millions of devices through the internet which implicitly exposes the IoT devices to the vulnerabilities and security threats of the Internet protocol stack ( Ilyas et al., 2020 ). The amount of data collected, stored and shared between IoT devices and the service providers are expected to grow significantly. Besides the extraordinary amount of data produced by IoT devices, they induce evidently high-security risks and potential cyberattacks destabilizing many applications and industries.
IoT networks come with their unique security challenges ( Khanam et al., 2020 ), where each layer is exposed to certain types of attacks ( Hassija et al., 2019 ), like Distributed Denial of Service attacks (DDoS) on the network layer. To that extent, a multitude of surveys citerefs2 and studies have been conducted to expose existing security threats and vulnerabilities in current IoT applications. Recent surveys on IoT data and device security emphasize that the gap between applying existing security techniques to emerging IoT applications is growing significantly. The security gaps in IoT applications are categorized into vendor-related security issues and available resources or capabilities on the IoT nodes. IoT vendors for sensors and devices are moving towards low-cost manufacturing that lack security features. Similarly, the heterogeneity of the IoT applications, protocols, and hardware increases the security scope of threats in IoT applications ( Hassija et al., 2019 ). On the other hand, IoT applications are inherently constrained by the limited processing and storage capabilities of devices to carry out sophisticated security techniques. Therefore, new security measures are introduced for IoT resource-constrained devices using robust ML techniques like the TinyML framework. The concepts introduced behind the integration of ML is to increase the flexibility of IoT nodes in defending against emerging security threats ( Dutta and Kant, 2021 ). IoT devices can then train the deployed ML models to work against new security threats.
5.9 Open deployments and access control
Mentioning the access control usually flashed RFID (Radio-frequency identification) cards. RFID technology sparked the existence of the IoT term coined by Kevin Ashton, who considered RFID a vital component in The IoT systems. Access control as an open challenge is a multifaceted challenge that has been raised due to other issues. In this section, we use a wallet holding many RFID cards as an example to discuss the access control issues:
• Heterogeneity: Having many cards to access different purposes itself is due to the heterogeneity of the systems. There are chances to have a consensus among some corporations to unify their access cards to mitigate this challenge. For instance, Google Pay is an android application that offers contactless purchases on the smartphone with a built-in Near Field Communication NFC module. Users can register debit or credit cards and use them in their daily in-person shopping instead of holding many bank cards in wallets. Due to systems heterogeneity, we still face a challenge in making all services accessible from unified access.
• Security: Giving accessibility to banks a counting using contactless RFID bank cards looks a very smooth user experience in transactions instead of writing sixteen digits in card readers. However, card skimming devices can clone contactless bank cards.
To discuss the other issues in access control, we use a smart home application as another example facing access control challenges:
• Interoperability: Recently, users can simply control their IoT devices in their houses, such as smart TV, fridge, coffee machine, and adapted light systems. The interoperability between these devices is still very challenging due to the lack of standardization. For instance, a coffee machine starts pouring coffee on a cup if the adapted light senses a motion in the living room, and there is a collaborative integration between these devices. ThingsDriver ( Elewah et al., 2022 ) is a beginning to have A Unified Interoperable messaging protocol that, if adopted by cooperates, can pave the way to have a collaborative environment.
• Privacy: All these smart home devices become remotely accessible through user-friendly user interfaces such as a smartwatch or phone. On the other side, the flexibility of accessibility raises privacy concerns. Residents’ data are highly vulnerable to being breached by unauthorized access.
6 Conclusion
In this paper, we review the Internet of Things technology from different architectural, technological, operational and value-proposition perspectives. We first shed the light on the definition, acclaimed value and potential, and unique features and characteristics compared to similar previous technologies and standard layered architecture. We then highlight the different applications of IoT in various life domains that primarily benefit from its realization as a novel computing paradigm. We outlined the grand challenges facing IoT which may cause slowdown in its widespread adoption at the individual, organizational and governmental levels.
We believe the IoT will continue to grow as a disruptive technology that changed the world and it will never be the same again. There is a continuously increasing reliance on IoT technology in different sectors of our life for its convenience and innovative applications stemming out of it. Individuals and enterprises started to gain confidence in the technology and overlook or ignore the downsides of its security and privacy aspects. However, we also believe that the emergence of Edge computing in its different forms and shapes has contributed to lower the adoption barriers of IoT and increased interest in its technology and smart services. We anticipate that in the next few years IoT will continue to penetrate deeper in various sectors and tape into more industrial and governmental settings.
Author contributions
All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Abboud, K., Omar, H. A., and Zhuang, W. (2016). Interworking of dsrc and cellular network technologies for V2X communications: A survey. IEEE Trans. Veh. Technol. 65, 9457–9470. doi:10.1109/tvt.2016.2591558
CrossRef Full Text | Google Scholar
Abdelkader, G., and Elgazzar, K. (2020). “Connected vehicles: Towards accident-free intersections,” in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) ( IEEE ), 1–2.
Abdelkader, G., Elgazzar, K., and Khamis, A. (2021). Connected vehicles: Technology review, state of the art, challenges and opportunities. Sensors 21, 7712. doi:10.3390/s21227712
PubMed Abstract | CrossRef Full Text | Google Scholar
Abdelmoneem, R. M., Shaaban, E., and Benslimane, A. (2018). “A survey on multi-sensor fusion techniques in IoT for healthcare,” in 2018 13th International Conference on Computer Engineering and Systems (ICCES) ( IEEE ), 157–162.
Alhafidh, B., and Allen, W. (2016). Design and simulation of a smart home managed by an intelligent self-adaptive system. Int. J. Eng. Res. Appl. 6, 64–90.
Google Scholar
Alsuhaym, F., Al-Hadhrami, T., Saeed, F., and Awuson-David, K. (2021). “Toward home automation: An IoT based home automation system control and security,” in 2021 International Congress of Advanced Technology and Engineering (ICOTEN) ( IEEE ), 1–11.
Ashton, K. (2009). That ‘internet of things’ thing. RFID J.
Baldwin, R., and Di Mauro, B. W. (2020). Economics in the time of COVID-19: A new eBook , 2–3. London: VOX CEPR Policy Portal .
Baldwin, R., and Tomiura, E. (2020). Thinking ahead about the trade impact of COVID-19. Econ. Time COVID- 19 59, 59–71.
Behmann, F., and Wu, K. (2015). Collaborative internet of things (C-IoT): For future smart connected life and business . John Wiley & Sons .
Bouguettaya, A., Sheng, Q. Z., Benatallah, B., Neiat, A. G., Mistry, S., Ghose, A., et al. (2021). An internet of things service roadmap. Commun. ACM 64, 86–95. doi:10.1145/3464960
Butzin, B., Golatowski, F., and Timmermann, D. (2016). “Microservices approach for the internet of things,” in 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) ( IEEE ), 1–6.
Casale, P. N., Vyavahare, M., Coyne, S., Kronish, I., Greenwald, P., Ye, S., et al. (2021). The promise of remote patient monitoring: Lessons learned during the COVID-19 surge in New York city. Am. J. Med. Qual. 36, 139–144. doi:10.1097/01.jmq.0000741968.61211.2b
Chanal, P. M., and Kakkasageri, M. S. (2020). Security and privacy in iot: A survey. Wirel. Pers. Commun. 115, 1667–1693. doi:10.1007/s11277-020-07649-9
Choi, M., Li, G., Todrzak, R., Zhao, Q., Raiti, J., and Albee, P. (2021). “Designing a LoRa-based smart helmet to aid in emergency detection by monitoring bio-signals,” in 2021 IEEE Global Humanitarian Technology Conference (GHTC) ( IEEE ), 72–75.
Compare, M., Baraldi, P., and Zio, E. (2019). Challenges to IoT-enabled predictive maintenance for industry 4.0. IEEE Internet Things J. 7, 4585–4597. doi:10.1109/jiot.2019.2957029
de Vass, T., Shee, H., and Miah, S. J. (2021). IoT in supply chain management: Opportunities and challenges for businesses in early industry 4.0 context. OSCM. Int. J. 14, 148–161. doi:10.31387/oscm0450293
Dujić Rodić, L., Perković, T., Županović, T., and Šolić, P. (2020). Sensing occupancy through software: Smart parking proof of concept. Electronics 9, 2207. doi:10.3390/electronics9122207
Dutta, A., and Kant, S. (2021). “Implementation of cyber threat intelligence platform on internet of things (IoT) using TinyML approach for deceiving cyber invasion,” in 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) ( IEEE ), 1–6.
El-Rashidy, N., El-Sappagh, S., Islam, S. R., El-Bakry, H., and Abdelrazek, S. (2021). Mobile health in remote patient monitoring for chronic diseases: Principles, trends, and challenges. Diagnostics 11, 607. doi:10.3390/diagnostics11040607
Elewah, A., Ibrahim, W. M., Rafıkl, A., and Elgazzar, K. (2022). “ThingsDriver: A unified interoperable driver for IoT nodes,” in 2022 International Wireless Communications and Mobile Computing (IWCMC) ( IEEE ), 877–882.
Eom, M., and Kim, B.-I. (2020). The traffic signal control problem for intersections: A review. Eur. Transp. Res. Rev. 12, 50–20. doi:10.1186/s12544-020-00440-8
Fantacci, R., Pecorella, T., Viti, R., and Carlini, C. (2014). A network architecture solution for efficient IoT WSN backhauling: Challenges and opportunities. IEEE Wirel. Commun. 21, 113–119. doi:10.1109/mwc.2014.6882303
Goudarzi, M., Wu, H., Palaniswami, M., and Buyya, R. (2021). An application placement technique for concurrent IoT applications in edge and fog computing environments. IEEE Trans. Mob. Comput. 20, 1298–1311. doi:10.1109/tmc.2020.2967041
Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660. doi:10.1016/j.future.2013.01.010
Haddud, A., DeSouza, A., Khare, A., and Lee, H. (2017). Examining potential benefits and challenges associated with the internet of things integration in supply chains. J. Manuf. Technol. Manag. 28, 1055–1085. doi:10.1108/jmtm-05-2017-0094
Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., and Sikdar, B. (2019). A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access 7, 82721–82743. doi:10.1109/access.2019.2924045
Ilyas, M. U., Ahmad, M., and Saleem, S. (2020). Internet-of-Things-Infrastructure-as-a-Service: The democratization of access to public internet-of-things infrastructure. Int. J. Commun. Syst. 33, e4562. doi:10.1002/dac.4562
Jamil, A. R. M., Ganguly, K. K., and Nower, N. (2020). Adaptive traffic signal control system using composite reward architecture based deep reinforcement learning. IET Intell. Transp. Syst. 14, 2030–2041. doi:10.1049/iet-its.2020.0443
Khanam, S., Ahmedy, I. B., Idris, M. Y. I., Jaward, M. H., and Sabri, A. Q. B. M. (2020). A survey of security challenges, attacks taxonomy and advanced countermeasures in the internet of things. IEEE Access 8, 219709–219743. doi:10.1109/access.2020.3037359
Khoa, T. A., Nhu, L. M. B., Son, H. H., Trong, N. M., Phuc, C. H., Phuong, N. T. H., et al. (2020). Designing efficient smart home management with IoT smart lighting: A case study. Wireless Communications and mobile computing 2020 .
Kim, J., and Park, N. (2022). De-identification mechanism of user data in video systems according to risk level for preventing leakage of personal healthcare information. Sensors 22, 2589. doi:10.3390/s22072589
Kshirsagar, A., and Patil, N. (2021). “IoT based smart lock with predictive maintenance,” in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) ( IEEE ), 1–6.
Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., and Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4, 1125–1142. doi:10.1109/jiot.2017.2683200
Lueth, K. L. (2020). Top 10 IoT applications in 2020. IoT analytics .
Lummus, R. R., and Vokurka, R. J. (1999). Defining supply chain management: A historical perspective and practical guidelines . Bingley, United Kingdom: Industrial Management & Data Systems .
Martín, C., Langendoerfer, P., Zarrin, P. S., Díaz, M., and Rubio, B. (2022). Kafka-ML: Connecting the data stream with ML/AI frameworks. Future Gener. Comput. Syst. 126, 15–33. doi:10.1016/j.future.2021.07.037
Mekni, S. K. (2022). “Design and implementation of a smart fire detection and monitoring system based on IoT,” in 2022 4th International Conference on Applied Automation and Industrial Diagnostics (ICAAID) ( IEEE ), 1, 1–5.
Miller, J. C., Skoll, D., and Saxon, L. A. (2021). Home monitoring of cardiac devices in the era of COVID-19. Curr. Cardiol. Rep. 23, 1–9. doi:10.1007/s11886-020-01431-w
Mobley, R. K. (2002). An introduction to predictive maintenance . Elsevier .
Mohammed, K., Zaidan, A., Zaidan, B., Albahri, O. S., Alsalem, M., Albahri, A. S., et al. (2019). Real-time remote-health monitoring systems: A review on patients prioritisation for multiple-chronic diseases, taxonomy analysis, concerns and solution procedure. J. Med. Syst. 43 (7), 1–21. doi:10.1007/s10916-019-1362-x
Moh’d Ali, M. A., Basahr, A., Rabbani, M. R., and Abdulla, Y. (2020). “Transforming business decision making with internet of things (IoT) and machine learning (ML),” in 2020 International Conference on Decision Aid Sciences and Application (DASA) ( IEEE ), 674–679.
O’Connor, Y., Rowan, W., Lynch, L., and Heavin, C. (2017). Privacy by design: Informed consent and internet of things for smart health. Procedia Comput. Sci. 113, 653–658. doi:10.1016/j.procs.2017.08.329
Ozdemir, D., Sharma, M., Dhir, A., and Daim, T. (2022). Supply chain resilience during the COVID-19 pandemic. Technol. Soc. 68, 101847. doi:10.1016/j.techsoc.2021.101847
Pavithra, D., and Balakrishnan, R. (2015). “IoT based monitoring and control system for home automation,” in 2015 Global Conference on Communication Technologies (GCCT) ( IEEE ), 169–173.
Pekar, A., Mocnej, J., Seah, W. K., and Zolotova, I. (2020). Application domain-based overview of IoT network traffic characteristics. ACM Comput. Surv. 53, 1–33. doi:10.1145/3399669
Poslad, S., Ma, A., Wang, Z., and Mei, H. (2015). Using a smart city IoT to incentivise and target shifts in mobility behaviour—is it a piece of pie? Sensors 15, 13069–13096. doi:10.3390/s150613069
Saarika, P., Sandhya, K., and Sudha, T. (2017). “Smart transportation system using IoT,” in 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon) ( IEEE ), 1104–1107.
Sarkar, C., Nambi, S. A. U., Prasad, R. V., and Rahim, A. (2014). “A scalable distributed architecture towards unifying IoT applications,” in 2014 IEEE World Forum on Internet of Things (WF-IoT) ( IEEE ), 508–513.
Selcuk, S. (2017). “Predictive maintenance, its implementation and latest trends,” in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture , 231, 1670–1679. doi:10.1177/0954405415601640
Selvaraj, S., and Sundaravaradhan, S. (2020). Challenges and opportunities in IoT healthcare systems: A systematic review. SN Appl. Sci. 2, 139–148. doi:10.1007/s42452-019-1925-y
Tan, W. C., and Sidhu, M. S. (2022). Review of RFID and IoT integration in supply chain management . Amsterdam, Netherlands: Operations Research Perspectives , 100229.
Tang, X., Wang, X., Cattley, R., Gu, F., and Ball, A. D. (2018). Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: A review. Sensors 18, 4113. doi:10.3390/s18124113
Vaskov, S., Kousik, S., Larson, H., Bu, F., Ward, J., Worrall, S., et al. (2019). Towards provably not-at-fault control of autonomous robots in arbitrary dynamic environments. arXiv Preprint arXiv:1902.02851
Vishwakarma, S. K., Upadhyaya, P., Kumari, B., and Mishra, A. K. (2019). “Smart energy efficient home automation system using IoT,” in 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU) ( IEEE ), 1–4.
Wang, X., Tjalkens, T., and Linnartz, J.-P. (2017). “Smart office lighting control using occupancy sensors,” in 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC) ( IEEE ), 453–458.
Weber, M., and Podnar Žarko, I. (2019). A regulatory view on smart city services. Sensors 19, 415. doi:10.3390/s19020415
Yang, S. (2003). A condition-based failure-prediction and processing-scheme for preventive maintenance. IEEE Trans. Reliab. 52, 373–383. doi:10.1109/tr.2003.816402
Zhang, Q., Zhang, Q., Shi, W., and Zhong, H. (2018). Distributed collaborative execution on the edges and its application to amber alerts. IEEE Internet Things J. 5, 3580–3593. doi:10.1109/jiot.2018.2845898
Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., and Li, G. P. (2020). Predictive maintenance in the industry 4.0: A systematic literature review. Comput. Industrial Eng. 150, 106889. doi:10.1016/j.cie.2020.106889
Keywords: internet of things, IoT challenges, IoT new trends, IoT applications, IoT grand vision
Citation: Elgazzar K, Khalil H, Alghamdi T, Badr A, Abdelkader G, Elewah A and Buyya R (2022) Revisiting the internet of things: New trends, opportunities and grand challenges. Front. Internet. Things 1:1073780. doi: 10.3389/friot.2022.1073780
Received: 18 October 2022; Accepted: 07 November 2022; Published: 21 November 2022.
Edited and reviewed by:
Copyright © 2022 Elgazzar, Khalil, Alghamdi, Badr, Abdelkader, Elewah and Buyya. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Khalid Elgazzar, [email protected]

Information
- Author Services
Initiatives
You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.
All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

- Active Journals
- Find a Journal
- Proceedings Series
- For Authors
- For Reviewers
- For Editors
- For Librarians
- For Publishers
- For Societies
- For Conference Organizers
- Open Access Policy
- Institutional Open Access Program
- Special Issues Guidelines
- Editorial Process
- Research and Publication Ethics
- Article Processing Charges
- Testimonials
- SciProfiles
- Encyclopedia

Journal Menu
- Aims & Scope
- Editorial Board
- Instructions for Authors
- Special Issues
- Article Processing Charge
- Indexing & Archiving
- Most Cited & Viewed
- Journal History
- Editorial Office
Journal Browser
- arrow_forward_ios Forthcoming issue arrow_forward_ios Current issue
- Vol. 4 (2023)
- Vol. 3 (2022)
- Vol. 2 (2021)
- Vol. 1 (2020)
Find support for a specific problem in the support section of our website.
Please let us know what you think of our products and services.
Visit our dedicated information section to learn more about MDPI.
IoT , Volume 3, Issue 1 (March 2022) – 14 articles

- Issues are regarded as officially published after their release is announced to the table of contents alert mailing list .
- You may sign up for e-mail alerts to receive table of contents of newly released issues.

Further Information
Mdpi initiatives, follow mdpi.

Subscribe to receive issue release notifications and newsletters from MDPI journals
Internet of Things
Actions for selected articles.
Select all / Deselect all
Research articles
Review articles, open software and data, front matter 2 - editorial board, tui model for data privacy assessment in iot networks, is the internet of things a helpful employee an exploratory study of discourses of canadian farmers, a jamming attack detection technique for opportunistic networks, federated learning with hyperparameter-based clustering for electrical load forecasting, performance evaluation of focused beam routing for iot applications in underwater environment, healthcloud: a system for monitoring health status of heart patients using machine learning and cloud computing, deep unsupervised methods towards behavior analysis in ubiquitous sensor data, dfinder —an efficient differencing algorithm for incremental programming of constrained iot devices, detection of moving objects using thermal imaging sensors for occupancy estimation, a real-time tennis level evaluation and strokes classification system based on the internet of things, a new dtn routing strategies ensuring high message delivery ratio while keeping low power consumption, design and architecture of smart belt for real time posture monitoring, implementation of a teleimmersion homecoming support system for supporting inpatients, a mesh network case study for digital audio signal processing in smart farm.
ISSN: 2542-6605
Copyright © 2023 Elsevier B.V. All rights reserved
iot IEEE PAPER 2022
Iot internet of things ieee paper 2021.
Real Time System Monitoring and Analysis-Based Internet of Things ( IoT ) Technology in Measuring Outdoor Air Quality. free download The presence of large peatland in Riau, Indonesia, could cause air pollution due to peatland fires which causes the presence of thick smoke every year in Riau, disrupting human activities. In order to monitor the air quality, in this paper, the main advantage of the Internet With the rapid development in computer vision domain, research on object tracking has directed more attention by scholars. Out of view (OV) is an important challenge often encountered in the tracking process of objects, especially in Internet of Things surveillance
A Design of IoTBased Medicine Case For The Multi-User Medication Management Using Drone In Elderly Centre free download The elderly community has their particular needs and challenges with different routines. In the care institution, the elderly demand reliable medication services because of geriatric issues. However, the fact is medicine mismanagement potentially troubles them in terms of
Highly Isolated Self-Multiplexing 5G Antenna for IoT Applications free download The advanced automation in manufacturing is now a reality, so are the advances in health monitoring, fleet management, system maintenance tracking all this and many more thanks to Internet of Things ( IoT ) . The IoT systems play an essential role in enhancing peoples In the coming few years, there is going to be rapid advancement in terms of technology like 5G, 6G, etc. When we think about 5G, the performance of the internet is going to increase multifold. The 5G ie fifth-generation network is going to be very heterogeneous. There is a
IoT based implemented comparison analysis of two well-known network platforms for smart home automation. free download The developments of the internet of things ( IoT ) technologies fascinated the universe and provided great opportunities to introduce these innovations in smart house networks. Smart home automation is highly required these days. Smart home automation is a collection of With the rapid development of Internet of Things ( IoT ), more and more devices are connected to IoT leading to an exponential increase in IoT data. However, two problems stand in the way of the further development of IoT . First, IoT data is uploaded directly to the Higher education institutions are passing through a fast digital transformation process that has the potential to enable frictionless, touchless, and more intuitive experiences in academia. Moreover, students are now digital natives and demand from higher educationThese days, the Internet of Things applications are growing progressively. However, the existing frameworks for IoT applications are not satisfied the security, allocation, and provisioning requirements. We propose a novel secure IoT application framework. Fog cloud
Wearable IoT based Distributed Framework for Ubiquitous Computing free download In Internet of Things ( IoT ) based systems, the multi-level user requirements are satisfied by the integration of communication technology with distributed homogeneous networks termed as the ubiquitous computing systems (UCS). The PCS demands openness in heterogeneityNowadays, the widespread use of the Internet of Things in real life has paved the way for the emergence of systems such as Smart Homes, Smart Cities, and Smart Industries. They are called smart because of their ability to work autonomously. That is, smart systems have the
Development of an IoTbased water and power monitoring system for residential building free download This study provides information between tenants and landlords on the use of Internet of Things for power and water monitoring system. It is one way to make reading meters and water meters easier to access using the available internet connection. The developed
Toward a deep learning-based intrusion detection system for IoT against botnet attacks free download The massive network traffic data between connected devices in the internet of things have taken a big challenge to many traditional intrusion detection systems (IDS) to find probable security breaches. However, security attacks lean towards unpredictability. There are
Collision Observation-Based Optimization of Low-Power and Lossy IoT Network Using Reinforcement Learning free download The Internet of Things ( IoT ) has numerous applications in every domain, eg, smart cities to provide intelligent services to sustainable cities. The next-generation of IoT networks is expected to be densely deployed in a resource-constrained and lossy environment. The
VergeDB: A Database for IoT Analytics on Edge Devices. free download The proliferation of Internet-of-Things ( IoT ) applications requires new systems to collect, store, and analyze time-series data at an enormous scale. We believe that meeting these scaling demands will require a significant amount of data processing to happen on edgeThis paper presents a new method of detection Covid-19 fever symptoms depending on IoT cloud services to solve the higher time delay of checking the crowded clients that enter public or private agencies which can lead to a dangerous field to spread the disease. An
A Performance Study of Crypto-Hardware in the Low-end IoT . free download In this paper, we contribute a comprehensive resource analysis for widely used cryptographic primitives across different off-the-shelf IoT platforms, and quantify the performance impact of crypto-hardware. This work builds on the newly designed crypto
Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications free download In the past few years, triboelectric nanogenerator-based (TENG-based) hybrid generators and systems have experienced a widespread and flourishing development, ranging among almost every aspect of our lives, eg, from industry to consumer, outdoor to indoor, and
Certain Investigation On Iot Therapeutic Image Recognition And Rivaroxabanpreclude Thrombosis In Patients free download The most commonly recognized cardiac arrhythmias are atrial fibrillation, and the risk of stroke and thromboembolism is associated with increased confusion. Atrial fibrillation patients exhibiting electrical and pharmacological cardiac function and emotional control
Analysis of attacks on components of IoT systems and cybersecurity technologies free download This article presents the results of IoT analysis, methods and ways of their protection, prospects of using edge computing to minimize traffic transmission, decentralization of decision-making systems, and information protection. A detailed analysis of attacks on IoT
Comment on ElGamal cryptosystem‐based secure authentication system for cloud‐based IoT applications free download This comment is presented to identify the drawbacks in a recently demonstrated scheme by Maitra et al., SAS‐Cloud: doi: 10.1049/iet-net. 2019.000 which adopted an ElGamal cryptosystem‐based technique for biometric authentication in cloud‐based IoT applications
Survey of DoS/DDoS attacks in IoT free download The term internet of thing ( IoT ) has gained much popularity in the last decade, which can be defined as various connected devices over the internet. IoT has rapidly spread to include all aspects of our lives. For instance, smart houses, smart cities, and variant wearable devices
Comparison of Path Loss Prediction Models for UAV and IoT Air-to-Ground Communication System in Rural Precision Farming Environment. free download The comparison of path loss model for the unmanned aerial vehicle (UAV) and Internet of Things ( IoT ) air-to-ground communication system was proposed for rural precision farming. Due to the uncertainty of propagation channel in rural precision farming environment, the
Edge AI for Industrial IoT Applications free download In this paper, we study the edge artificial intelligence (AI) for industrial internet of things (IIoT) applications. We discuss about the edge AI technology that is considered the combination of AI with edge computing and provide an overview of edge AI applications for IIoT networks
LBC- IoT : Lightweight Block Cipher for IoT Constraint Devices free download With the new era of the Internet of Things ( IoT ) technology, many devices with limited resources are utilized. Those devices are susceptible to a significant number of new malware and other risks emerging rapidly. One of the most appropriate methods for securing
IoT Technologies for Tackling COVID-19 in Malaysia and Worldwide: Challenges, Recommendations, and Proposed Framework free download The Coronavirus (COVID-19) pandemic is considered as a global public health challenge. To contain this pandemic, different measures are being taken globally. The Internet of Things ( IoT ) has been represented as one of the most important schemes that has been
IoT Dynamic Log File Analysis: Security Approach for Anomaly Detection In Multi Sensor Environment free download In the Multisensory environment, the valuable information like: how users interact with smart IoT devices web servers, are stored in log files. Here web access logs play important role in terms of security and privacy of users. Fetching of needed information, mining of logs
Transmit power pool design for uplink IoT networks with grant-free NOMA free download Grant-free non-orthogonal multiple access (GFNOMA) is a potential multiple access framework for internetof-things ( IoT ) networks to enhance connectivity. However, the resource allocation problem in GF-NOMA is challenging and the effectiveness of such a
Preamble and Introduction of IoT and Applications free download This paper provides an introduction to Internet of Things ( IoT ). The Internet concept of things has developed because of the integration of various technologies. In the consumption realms, the internet is enabled by analogue structures, wireless sensor networks and
Machine Learning Based Intrusion Detection for IoT Botnet free download In this article, we analyzed botnet traffic in an IoT environment using three machine learning classifiers: Logistic Regression, Support-Vector Machine and Random Forest. We classified each attack in each botnet for nine devices. We calculated the Accuracy, True Positive, False
IoT based on secure personal healthcare using RFID technology and steganography. free download Internet of things ( IoT ) makes it attainable for connecting different various smart objects together with the internet. The evolutionary medical model towards medicine can be boosted by IoT with involving sensors such as environmental sensors inside the internal environment
Leveraging IOT and AI for delivering tailor-made customer experiences in Indian petro retailing free download Objectives: To explore the applicability and impact of deploying an IOT AI solution (CCTV- based solution) on customer experience at a fuel retail outlet. Method: CCTV-based IOT AI solution is used for capturing customer details, ensuring safety and service protocol
Customer Relationship Management Improvement using IoT Data free download The Internet of Things ( IoT ) increasingly gains importance and costumers ale willing to pay for. Studies show that by 20 more than 30 billion devices will be connected and the IoT platform market will grow to $7.6 billion in 2024. The purpose of this paper is to determineStreetlight is an important utility which consumes large amount of energy, and a big part of energy is wasted due to improper usage. In this paper, a streetlight system has been proposed which controls the illuminance of street lamp according to traffic flow. It will
The IoT Meta-Control Firewall free download Internet of Things ( IoT ) devices have penetrated massively into smart environments (eg, smart-homes, smartcars or more generally smart-anything). Besides data collection, many IoT devices also enable the execution of Rule Automation Workflows (RAW), which span The resource constrained wireless sensor embedded devices are deployed in the edge of the Internet of Things ( IoT ) system for smart monitoring and control of large scale Wireless Sensor Network (WSN) applications. A joint hybrid corona based Opportunistic Routing (OR)
IOT BASED HEALTH MONITORING SYSTEM free download AN Al-sheriqi, KS Al-Ismaili, ZR Al-Hinai, P Ganesan ir4-era.ict.edu.om Healthcare is given the extreme importance now a-days by each country with the advent of the novel corona virus. So in this aspect, an IoT based health monitoring system is the best solution for such an epidemic. Internet of Things ( IoT ) is the new revolution of internet which
IoT Platform with Distributed Brokers on MQTT free download Various wide-area Internet of Things services have been deployed. In most of these IoT services, a significant number of tiny data blocks are transferred across wide-area networks. Therefore, the transfer mechanisms should be simplified. One promising candidate for use The explosion of IoT gadgets which be able to more effortlessly conceded than PCs has prompted an expansion in the existence of IoTdependent botnet attacks. So as to alleviate this newfangled danger there remains a necessity to grow innovative techniques designed
Deep Neural Network Based Real Time Multi-Class Arrhythmia Classification in IoTCloud Platform free download An arrhythmia is a condition which represents irregular beating of the heart, beating of the heart too fast, too slow, or too early compared to a normal heartbeat. Diagnosis of various cardiac conditions can be done by the proper analysis, detection, and classification of life
IEEE PROJECTS 2022
Seminar reports, free ieee projects ieee papers.
Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser .
Enter the email address you signed up with and we'll email you a reset link.
- We're Hiring!
- Help Center

Internet of Things (IOT): Research Challenges and Future Applications

2022, International Journal for Research in Applied Science & Engineering Technology (IJRASET)
With the Internet of Things (IoT) gradually evolving as the subsequent phase of the evolution of the Internet, it becomes crucial to recognize the various potential domains for application of IoT, and the research challenges that are associated with these applications. Ranging from smart cities, to health care, smart agriculture, logistics and retail, to even smart living and smart environments IoT is expected to infiltrate into virtually all aspects of daily life. Even though the current IoT enabling technologies have greatly improved in the recent years, there are still numerous problems that require attention. Since the IoT concept ensues from heterogeneous technologies, many research challenges are bound to arise. The fact that IoT is so expansive and affects practically all areas of our lives, makes it a significant research topic for studies in various related fields such as information technology and computer science. Thus, IoT is paving the way for new dimensions of research to be carried out. This paper presents the recent development of IoT technologies and discusses future applications and research challenges. I.
Related Papers
International Journal for Research in Applied Science & Engineering Technology (IJRASET)
IJRASET Publication
In this paper, an IoT based automated water irrigation system is proposed. This system is used to increase the production rate of agriculture based on the internet of things (IoT) and cloud computing. Sensor technology has been developed and various kinds of sensor such as humidity, temperature, soil moisture sensor, and pH sensors are used to collect information about the condition of the soil. By using the advanced technologies, the farmers get benefitted for better production in agriculture.

Cyber-physical systems are the systems that combine the physical world with the world of information processing. CPS involves interaction between heterogeneous components that include electronic chips, software systems, sensors and actuators. It makes the CPS vulnerable to attacks. How to deal with the attacks in CPSs has become a research hotspot. In this paper we have study the Architecture of CPS and various security threats at each layer of the archicture of CPS. We have also developed attack taxonomy for CPS.
A chain of blocks that contains information is the definition of Blockchain. The technique is intended to timestamp digital documents so that it is not possible to temper them. The purpose of blockchain is to solve the double records problem without the need of a central server. Blockchain provides a creative approach to storing information, executing transactions, conducting tasks and trust building. Blockchain is an emerging technology for the applications Smart Cities, Smart Grids, Healthcare, Education, Crypto-currency and Supply chain. This research work would offer a detailed analysis of Blockchain in the Educational domain. It also studies the various applications of Blockchain technology.
The future of cities lies in blending new technologies with existing infrastructure to tackle tangible, pressing issues such as environmental sustainability and economic opportunities. The enormous pressure towards efficient city initiatives by both government and private sector businesses to invest in Information and Communication Technologies to find sustainable solutions to diverse opportunities and challenges (e.g., waste management). Future smart cities are the key to fulfill the ever growing demands of citizens. Successful smart cities will build a strong, flexible, digital infrastructure that integrates new technology into existing structures. The main goal of a smart city is to optimize city functions and promote economic growth while also improving the quality of life for citizens by using smart technologies and data analysis. According to a new report from @NavigantRSRCH, there are more than 250 smart city projects from178 cities around the world, and the majority focus on government and energy, initiatives, followed by transportation.
In recent years, the safety constitutes the foremost necessary section of the human life. At this point, the price is that the greatest issue. This technique is incredibly helpful for reducing the price of watching the movement from outside. During this paper, a period of time recognition system is planned which will equip for handling pictures terribly quickly. The most objective of this paper is to safeguard home, workplace by recognizing individuals. The face is that the foremost distinctive a part of human's body. So, it will replicate several emotions of associate degree Expression. A few years past, humans were mistreatment the non-living things like good cards, plastic cards, PINS, tokens and keys for authentication, and to urge grant access in restricted areas like ISRO, National Aeronautics and Space Administration and DRDO. The most necessary options of the face image are Eyes, Nose and mouth. Face detection and recognition system is simpler, cheaper, a lot of accurate, process. The system under two categories one is face detection and face recognition. Throughout this case, among the paper, the Raspberry Pi single-board computer is also a heart of the embedded face recognition system.
Agriculture plays a significant role in the Indian economy. Agriculture employs more than 60% of India's population, and agriculture generates one-third of the country's revenue. As a result, it plays a vital part in the country's development. A variety of agricultural difficulties continue to hamper the country's progress. Choosing modern agriculture that integrates modern styles could be one solution to these issues. As a result, Agriculture Cyber Physical Systems, which combine IoT with other technologies such as Artificial Intelligence and Machine Learning, can make agriculture smarter. The Agriculture Cyber Physical System can help in increasing crop yields, reducing water waste, and reducing fertilizers overuse, among other things. This study is different in that it measures variety of aspects of the agricultural field that have a direct impact on crop choices. Second, it sends this information to a server, which then uses it to forecast farm-ready yields.
The number of new vehicles on the road is increasing rapidly, which in turn causes highly congested roads and due to the long awaiting red signals, few vehicle drivers ignore traffic rules by violating traffic signals. This leads to a high number of road accidents and hence it is essential to detect the signal violated vehicles automatically. Traffic violation detection systems using IOT technology can able to send violated vehicle information to the concern traffic police station automatically by which the vehicle can be penalized immediately. The proposed system can be implemented using vehicle ID card installed in the vehicle itself such that if the vehicle moves further during presence of red signal, automatically, vehicle information in the form of vehicle registration number, type of vehicle (weather it is two-wheeler, car, truck, auto, etc.), owner name, vehicle colour, etc, can be forwarded to the concern authorities through concern mobile phones. To prove the concept practically, all vehicles must be equipped with these low-cost wireless ID cards such that the vehicle data can be transmitted continuously. The demo module contains a mini automatic traffic signal post along with simulated road. The system is designed such that when red signal is energized and during this period, if any vehicle crosses the zebra lines, the system receives the vehicle data and transmits the same through Wi-Fi module. If anybody violates the traffic signal, immediately alarm will be energized to alert the nearest traffic police. The main processor must be installed near the traffic signals, which regrets to acquire vehicle information during the presence of yellow and green signals. The demo module contains one toy car which will be equipped with its wireless ID card. Major building blocks: Simulation of single lane road constructed with traffic signal post & zebra crossing, main processor designed with Arduino MCU, wireless ID card designed with 89C2051 controller chip, IR signal decoder (TSOP1738), Wi-Fi module, Alarm, IR LED, 5v Power supply unit, Toy car, etc. I.
The aim of this paper is to develop, implement and test an effective and practical working solution to a smart motion detector for LPWAN technologies using appropriate software and hardware platform. The smart motion detection system consists of a Raspberry Pi, an LCD display, PIR sensors, and wires. The hardware design collaborates with Python programming by being installed on a Raspberry Pi, and it is a key function to detect who is entering a room. The proposed smart motion detector will be able to detect whether a person is leaving or entering a room by analyzing signals from multiple motion sensors. The research carried out a comparative analysis of LoRA, SigFox, NB-IOT Low Power Wide Area Network technologies which include the principle of operation, characteristics, hardware, and make recommendation for the most suitable technology. The remote status update function implementation was done where the system sends the motion events to the cloud over a wireless interface using MQTT protocol. The evaluation which was based on extensive simulation demonstrated the detection of each sensor.
Mumbai being the largest city of India, capital of Maharashtra and one of the most populous cities in the world with current estimated population of about 12.4 million it is the world's 37 th largest city by Gross Domestic Product (GDP). As of 2019, recent estimates of the economy of the Mumbai Metropolitan Region have ranged from 3.16 lakh crore (US$44 billion) (2019-20 est.) 4.04 lakh crore (US$57 billion) (2019-20 est.) ranking it either the most or second-most productive metro area of India. In the year 2015, a government led by Bharatiya Janta Party (BJP) launched a program called "Smart City Mission" in the country to develop 100 smart cities for urban renewal and redevelopment of older system by adding the flavour of new technologies. In the recent budget speech of the Finance Minister in February 2020, the move to set up 5 new smart cities has been proposed which will be developed under the public private partnership (PPP) mode. The main focus to develop smart city is to provide with high end infrastructure, excellent services and access to these services is governed based on connectivity at different levels between the administration and the end user. In context to the Smart Cities Mission, the objective is to bring up the best cities from the country by competing them with each other based on the core infrastructure, standard quality of life to its citizens, a clean sustainable environment and application of 'Smart Solutions'. The research article is the study on Mumbai as an aspiration to become a smart city by focusing on number of aspects of smart cities: smart mobility, smart living, smart healthcare, smart environment, smart citizens, smart government, and smart architecture as well as related technologies and concepts. The Internet of Things plays a major role as building block for transforming cities into smart cities by improving quality, performance and interactivity of urban services, optimize resources and reduce costs.
In those days with the growing influx of population into developed, industrially and technologically sound urban cities, the urgent need to make cities smart is becoming obsolete. Cities are being made intelligent through data sharing, artificial intelligence, machine learning, analytics and thousands of RFIDs. Tags and sensors. There are billions of motor vehicles in the world. Vehicles can only enter if the reader detects a valid RFID tag on the door. An account is kept in the central database for each valid RFID tag. It allows us to monitor and save the time of entry and exit of the vehicle. An Android app is provided to guide the user. This database can also be analyzed to find patterns of days when there was parking demand.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
RELATED PAPERS
Jurnal Ilmu Pendidikan (JIP) STKIP Kusuma Negara
Almuhardi Safarman
International Journal for Research in Applied Science and Engineering Technology
Abhishek Upmanyu
RELATED TOPICS
- We're Hiring!
- Help Center
- Find new research papers in:
- Health Sciences
- Earth Sciences
- Cognitive Science
- Mathematics
- Computer Science
- Academia ©2023
- IEEE Xplore Digital Library
- IEEE Standards
- IEEE Spectrum

IEEE Internet of Things

Join the IoT Technical Community
- January 2022
IEEE IoT Newsletter - January 2022

Generating Data Traces for Intrusion Detection in Low-power IoT Mesh Networks
Niclas Finne, JeongGil Ko, and Thiemo Voigt
Given their remote deployment and distributed operational characteristics, low-power IoT mesh networks are prone to various attacks. Furthermore, since many of these networks carry user-sensitive data, such attacks must be captured early before compromising user privacy. Machine learning algorithms hold the potential to effectively model and capture various attack scenarios.

Giving Power to the Edge: How to Improve IoT Performance and Keep Security
Francesca Cuomo, Ioannis Chatzigiannakis, Ilenia Tinnirello, Domenico Garlisi, and Pietro Spadaccino
Low-Power Wide-Area Network (LPWAN) technologies deliver scalable and long-term networks of devices that integrate sensing, computation, and wireless communication that are embedded in complex physical indoor and outdoor environments. LPWAN technologies allow embedded devices to communicate directly to network gateways over distances in the range of several Kilometers.
The Metaverse: A Different Perspective
Ahmed Banafa
The term Metaverse has been a hot topic of conversation recently, with many tech giants like Facebook and Microsoft staking claims. But what is The Metaverse?
EVENTS & ANNOUNCEMENTS

IEEE Internet of Things Initiative - Upcoming Events
IEEE 8th World Forum on Internet of Things 2022 3–18 November 2022 // Yokohama, Japan // Hybrid: In-Person and Virtual Conference

IEEE Internet of Things Magazine

Future issues - Call for Articles! Become an author - Submit an article today! Never miss a copy - Subscribe today!
Upcoming Call for Special Issue Articles: The Internet of Time-Critical Things: Advances and Challenges in Computing and Communications : 30 March 2022 View More
This Month's Contributors
Niclas Finne is a senior researcher at RISE Computer Science. Read More >>
JeongGil Ko is an associate professor in the School of Integrated Technology, College of Engineering at Yonsei University. Read More >>
Thiemo Voigt received the Ph.D. degree from Uppsala University, Sweden, in 2002. Read More >>
Francesca Cuomo is a Professor at the University of Rome La Sapienza, and a research associate with CNIT. Read More >>
Ioannis Chatzigiannakis holds a Ph.D. from the University of Patras (2003) in the area of ad-hoc wireless mobile networks and a BEng from the University of Kent (1997) in Computer Systems Engineering. Read More >>
Ilenia Tinnirello is a Professor at the University of Palermo. Read More >>
Domenico Garlisi is a CNIT researcher working at the Palermo research unit. Read More >>
Pietro Spadaccino is a PhD student at Sapienza Università di Roma in Information and Telecommunication Engineering (ICT). Read More >>
Ahmed Banafa has extensive experience in research, operations, and management, with a focus on IoT, Blockchain, Cybersecurity, and AI. Read More >>
Contributions Welcomed Click Here for Author's Guidelines >>
Would you like more information? Have any questions? Please contact: Raffaele Giaffreda, Editor-in-Chief [email protected] Massimo Vecchio , Managing Editor [email protected]
About the IoT eNewsletter
The IEEE Internet of Things (IoT) eNewsletter is a bi-monthly online publication that features practical and timely technical information and forward-looking commentary on IoT developments and deployments around the world. Designed to bring clarity to global IoT-related activities and developments and foster greater understanding and collaboration between diverse stakeholders, the IEEE IoT eNewsletter provides a broad view by bringing together diverse experts, thought leaders, and decision-makers to exchange information and discuss IoT-related issues.
IEEE IoT Newsletter Editorial Board

Sign Up for IoT Technical Community Updates
Subscribe Now
Calendar of Events
IEEE 8th World Forum on Internet of Things (WF-IoT) 2022 26 October-11 November 2022
See More Events
Call for Papers
IEEE Internet of Things Journal
Special issue on Towards Intelligence for Space-Air-Ground Integrated Internet of Things Submission Deadline: 1 November 2022 Special issue on Smart Blockchain for IoT Trust, Security and Privacy Submission Deadline: 15 November 2022
See More IoTJ Call for Papers
Past Issues September 2022 July 2022 March 2022 January 2022 November 2021 September 2021 July 2021 May 2021 March 2021 January 2021 November 2020 July 2020 May 2020 March 2020 January 2020 November 2019 September 2019 July 2019 May 2019 March 2019 January 2019 November 2018 September 2018 July 2018 May 2018 March 2018 January 2018 November 2017 September 2017 July 2017 May 2017 March 2017 January 2017 November 2016 September 2016 July 2016 May 2016 March 2016 January 2016 November 2015 September 2015 July 2015 May 2015 March 2015 January 2015 November 2014 September 2014
Internet of Things (IoT) in Healthcare Market Research Report 2022
Dublin, IRELAND
Dublin, Nov. 28, 2022 (GLOBE NEWSWIRE) -- The "Internet of Things (IoT) in Healthcare" report has been added to ResearchAndMarkets.com's offering. This market report has been segmented by solution, application, connectivity, end user and region. The report provides an overview of the global IoT in healthcare market and analyzes market trends. Using 2020 as the base year, the report provides estimated market data for the forecast period, from 2021 to 2026.
The healthcare sector rapidly adopted various IoT solutions by creating the Internet of Medical Things (IoMT). Devices like heart monitors and pacemakers collect and send patient health statistics over various networks to healthcare providers for monitoring, analysis and remote configuration. Although many of these devices are being used in the industry, FDA approval has been a key hurdle for widespread adoption. Another hurdle is insurance, which plays a key role in the healthcare industry.
Some major factors driving investment into IoT include advanced and precise results, growing cloud-based infrastructure, and the availability of more cost-effective smart devices. However, market growth for IoT in healthcare is restrained by factors such as lack of funding and business model and data security and privacy issues. In this report, the market has been segmented based on component, application, connectivity, end-user and geography. Based on component, the IoT in healthcare market has been categorized into medical devices, systems and software, services, and technology.
Service providers in the healthcare IoT market deliver customized and integrated programs that help companies generate consistent and improved business results and handle the entire life cycle of services. Integration of IoT medical devices involves several smart, connected devices that can be used to track patient health and alert physicians before any infection occurs.
The focus of IoT healthcare systems and networks is to minimize project delivery times and costs through device management and deployment, data security, data collection, and data analytics. Processes and software include remote device management, management of bandwidth use, data science, privacy applications and information security strategies. The global IoT in healthcare market based on connectivity has been categorized into Wi-Fi, Bluetooth, Zigbee and other connectivity types. The Wi-Fi connectivity-type segment dominated the market in 2020. Some of the major connectivity types under the other connectivity-type segment include Loran and LTE-M. LTE-M is the wireless network of a cellular carrier, endorsed by the industry group GSMA and by the group of standards 3GPP.
It offers cell-tower, tracking-based location services without the need to use satellite-based systems like GPS or Galileo. This feature provides a significant cost reduction for OEMs that require devices to have a fundamental location system. Also, LoRa is a widely used connectivity choice for the deployment of IoT in large areas with many non-critical sensors and control devices.
Its use of unlicensed radio makes LoRa the best option for city-wide environmental sensors, streetlamp regulation and surveillance, simple agricultural field control units, and tracking of small objects. The fastest-growing connectivity type in the healthcare IoT market is Zigbee.
Revenue forecasts for this period are segmented based on solution, application, connectivity, end user and geography. Market values have been estimated based on the total revenue of IoT in healthcare solution providers. This report covers the market for IoT in healthcare with regards to applications in various end-use industries across different regions.
It also focuses on the major trends and challenges affecting the market and the vendor landscape. This report estimates the global market for IoT in healthcare in 2020 and provides projections on the expected market size through 2026. Report Includes
- 70 data tables and 25 additional tables
- An up-to-date review and analysis of the global market for Internet of Things (IoT) in healthcare specific applications
- Analyses of the global market trends, with historic market revenue (sales data) for 2020 and 2021, estimates for 2022 and 2024, and projections of compound annual growth rates (CAGRs) through 2026
- Highlights of the market potential for IoT in healthcare, and areas to forecast this market into various segments and sub-segments
- Evaluation and forecast the global IoT in healthcare market size, projected growth trends, and corresponding market share analysis by component, solution, device type, connectivity, application, end-user vertical, and geographic region
- Discussion on evolution and various applications of IoT solutions across different healthcare verticals, medical connected devices, and updated information on latest market developments
- Assessment of viable technology drivers through a holistic review of various healthcare specific applications for new and existing IoT technologies and cloud architecture
- Discussion of the industry value chain analysis providing a systematic study of the key intermediaries involved, along with a PESTEL analysis for IoT in healthcare
- In-depth information on increasing investments on R&D activities, key technology issues, industry specific challenges, major types of end-user markets, and COVID-19 implications on the progress of this market
- Analysis of patents granted for IoT in healthcare devices between 2018 to Mar 2022 across each major category
- Descriptive company profiles of the leading global players, including Cisco Systems Inc., IBM Corp., GE Healthcare, Medtronic plc, Koninklijke Philips N.V, and Siemens Healthcare
IoT in Healthcare Market Overview
Market Drivers
- Advanced, Precise Result
- Iot for Elder Care
- Improving Cloud Infrastructure in Healthcare
- Increasing Demand for Smart Devices in Healthcare
Market Restraints
- Funding and Lack of Business Model
- Growing Vulnerability of Device and Data Security
Market Opportunities
- Government Initiatives Promoting Digital Health
- Emergence of Tele-Health
Applications of IoT in Healthcare
- Ecg Monitoring
- Temperature Monitoring
- Blood Glucose (Bg) Monitoring
- Asthma Monitoring
- Mood Monitoring
- Oxygen Saturation Monitoring
- Rehabilitation Systems
- Wheelchair Management
- Medication Adherence
- Drug Management
- Chronic Disease Management
- Smartphone Solutions
- Trends in Healthcare IoT Market
- Electronic Health Record (Her) Systems for Multi-Specialty Applications
- Patient Portal and Self-Service Software
- Blockchain Technologies
- Enterprise Software Design
- Advanced Analytics
- Healthcare Emerging Technologies
- Cloud Computing
- Grid Computing
- Big Data and Related Networks
- Augmented Reality
Company Profiles
- Abbott Laboratories
- Agamatrix Inc.
- Armis, Inc.
- Biotronik Se & Co. Kg
- Boston Scientific Corp.
- Capsule Technologies, Inc.
- Cisco Systems, Inc.
- Ge Healthcare
- Intel Corp.
- Irhythm Technologies
- International Business Machines Corp. (Ibm)
- Johnson & Johnson Services Inc.
- Koninklijke Philips N.V.
- Medtronic plc
- Microsoft Corp.
- Omron Healthcare Inc.
- Resideo Technologies, Inc.
- Stanley Healthcare
For more information about this report visit https://www.researchandmarkets.com/r/w4s40z
- Global IoT in Healthcare Market

Contact Data
Scientific Programming
Scientific programming for smart internet of things 2022.
1 Abdul Wali Khan University, Mardan, Pakistan
2 Embry-Riddle Aeronautical University, Daytona Beach, USA
3 Botswana International University of Science & Technology, Palapye, Botswana
4 Iqra University, Islamabad, Pakistan
Description
In recent years, software applications for smart environments (e.g., smart healthcare systems, smart farming, smart industrial automation and smart surveillance systems) have become a major trend in computing. All these smart applications of the Internet of Things (IoT) need intelligent and scientific control for smooth integration of sensor-gathered data. For example, in smart industrial automation, scientific programming can help diagnose faulty sensors that generate erroneous data. Scientific programming can also help identify sensor-embedded pipes in industrial automation that need prioritizing in terms of data. This ensures a smoother operation of the chosen application.
Similar to industrial automation, the role of scientific programming is undeniable in almost every application of IoT. All these applications of IoT have seen phenomenal growth due to the convergence of smart sensing technology, edge intelligence, cloud computing, and advanced artificial intelligence (AI) techniques. This convergence can further be augmented with the advancement in scientific programming by designing software models, mobile applications and scalable platforms. The interplay of scientific programming and these advanced technological trends can help IoT applications grow on a massive scale. There is a need to explore and identify new models and new methods of programming to incorporate demanding features into classical programming techniques.
The aim of this Special Issue is to bring together academic and industrial practitioners to exchange and discuss the latest innovations in programming aspects by focusing on modelling and system design for various IoT applications. Original research and review articles are welcome.
Potential topics include but are not limited to the following:
- Theoretical frameworks and models for IoT applications
- Advanced programming techniques for diagnosing faulty sensors for IoT applications
- System modelling and design for a novel application of IoT
- AI-enabled programming platform for smart applications of IoT
- Machine/deep learning algorithms for IoT applications
- Programming challenges for interoperability in IoT
- Advanced security and privacy algorithms for IoT applications
- Scalable models and platforms for heterogeneous applications of IoT
- Scientific programming approaches for fusing heterogeneous data for IoT applications
- Scientific programming approaches for novel web-based applications
- Scientific programming for next generation industrial applications and cyber physical systems
- Special Issue
- - Volume 2022
- - Article ID 6217325
- - Research Article
Creation of Drama Art Based on Deep Learning and Evolution Strategy
- 10 Aug 2022
- PDF Download PDF
- Citation Download citation
- - Article ID 3529311
Evaluating Teaching Quality in Colleges and Universities of Public Art Education Using the AHP Fuzzy Comprehensive Method
- 09 Aug 2022
- - Article ID 6795206
Measurement and Parity of Low-Carbon Economic Development Level for Guangzhou Using the SEM Model
- - Article ID 9441002
Evaluation of Economic Benefits and Ecological Environment Impact of Export Trade in Anhui Free Trade Zone
- - Article ID 2901812
A Human Motion Function Rehabilitation Monitoring System Based on Data Mining
- 04 Aug 2022
- - Article ID 7931328
Designing an Accounting Information Management System Using Big Data and Cloud Technology
- 03 Aug 2022
- - Article ID 3610081
Designing an Intelligent Teaching System of Chinese as a Foreign Language under the Internet Background
- 30 Jul 2022
- - Article ID 9882113
Development and Application of MOOC System for English Intercultural Communication Courses Using Neural Network
- 20 Jul 2022
- - Article ID 3187403
Prediction of Cognitive-Behavioral Therapy using Deep Learning for the Treatment of Adolescent Social Anxiety and Mental Health Conditions
- 19 Jul 2022
- - Article ID 6862999
Digital Transformation Path for Manufacturing Enterprises Using Internet of Things and Data Encryption Technology
- 18 Jul 2022

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles .
More From Forbes
The 5 Biggest Internet Of Things (IoT) Trends In 2022
- Share to Facebook
- Share to Twitter
- Share to Linkedin
The Internet of Things (IoT) is a term that describes the increasingly sophisticated ecosystems of online, connected devices we share our world with. The slightly odd name refers to the fact that the first iteration of the internet was simply a network of connected computers. As the internet grew, phones, office equipment like printers and scanners, and industrial machinery were added to the internet. Today, just about any device we use in our homes, offices, factories, or simply wear on our bodies can be online and connected, hence the internet of "things."
IoT is a trend that is driving the ongoing digitization and datafication of society in many new and amazing ways. Self-driving cars, autonomous manufacturing robots, and remote medical devices that let doctors diagnose patients and even carry out surgery are all possible due to these networks of connected things. In fact, Ericsson predicts that by 2022, there will be around 29 billion of these devices connected to the internet globally. So let’s take a look at what are likely to be some of the most important drivers and innovations in this field during 2022:
IoT in healthcare
With everything that’s been going on in the world for the last two years, it isn’t surprising that healthcare has been one of the most active areas of IoT development. Of course, it’s a broad use case – covering everything from the use of cameras in public areas to monitor social distancing , fitness bands and trackers to monitor lifestyles and the increase in adoption of telemedicine and remote healthcare. Specialized medical equipment, including blood pressure and heart rate monitors, insulin pumps, wheelchairs , defibrillators, and oxygen pumps, are all frequently connected now, allowing them to collect data to help doctors understand conditions and patient lifestyles better, as well as work autonomously to improve user quality-of-life.
Healthcare IoT devices allow medical professionals to collect data on the condition of patients without the risks that come with bringing large numbers of potentially infectious people together in close proximity. Beyond pandemic response use cases, though, they also allow doctors to potentially examine, diagnose and treat larger numbers of patients, as well as expand healthcare to regions where physical access to doctors or hospitals is difficult due to remoteness or difficulty of access.
Best Travel Insurance Companies
Best covid-19 travel insurance plans.
THe huge growth in the number of devices connected to the internet inevitably means there is an ever-increasing number of ways our technology can be hacked or exploited by those with bad intentions towards us. The number and size of cyber-attacks are increasing every year – security researchers at Kaspersky say there were 1.5 billion attacks against IoT devices during the first half of 2021 - and during 2022, it's certain we will see this trend accelerate. IoT devices provide access points to our personal networks because they are often not as secure as devices that are traditionally used to store sensitive data, such as computers or smartphones. Another threat vector comes from the fact that because the IoT is made up of “things”- sometimes very small, light things – those things can sometimes be lost or stolen, requiring an additional layer of security to protect against unauthorized users who have gained physical possession of your devices. Things are starting to change, though, with signs that manufacturers are tidying up their act when it comes to shipping devices with default passwords, and consumers are developing a better understanding of the risks. Common attacks involve attempting denial-of-service (DDOS) by overloading systems with connection requests, causing them to break and possibly expose data, or “hijacking” compute power from devices, which can be used to create botnets that attack other systems, or simply to mine cryptocurrencies . IoT isn't just a security threat, though – by gathering data on network traffic and usage, connected devices provide fuel for algorithms that are used to predict and prevent cyber attacks.
Edge computing and the IoT go hand-in-hand. Put simply; it means building devices with on-board analytics capabilities, so the computing is carried out as close as possible to the source of the data that's being analyzed. This really only makes sense in the context of cloud computing, where data is collected by essentially “dumb” sensors, such as basic cameras or microphones, and sent to the cloud to be analyzed. Edge devices use smart sensors such as cameras equipped with computer vision capabilities or microphones with natural language processing functions. The obvious advantage is that this means computation can take place much more quickly, and another advantage is that reducing the amount of data being transmitted to the cloud and back relieves network congestion. Yet another advantage becomes clear when we consider the privacy implications of widespread IoT – if a device is collecting personal data, then users have the peace of mind of knowing that they can get at the insights it contains without it even having to leave their individual custody. A key driver here is the increasing amount of computer power becoming deliverable in ever smaller and more power-efficient devices, thanks to more efficient battery and user interface designs. In 2022, as more organizations continue to look towards hybrid cloud ecosystems to deliver IoT services to their customers, edge computing will become an increasingly important part of the solution when there’s a requirement to deliver fast, secure insights.
IoT in Business and Industry
Sometimes referred to as the "industrial internet," the IoT has huge implications for the way we manufacture goods, provide services, sell to customers and follow up with support. Smart factories and logistics plants are increasingly automated, and the availability of robotics and IoT infrastructure “as-a-service” means more and more smaller companies will start to take advantage of the opportunities this offers in 2022. Building IoT automation into business models gives companies the ability to benefit from increased efficiency, gaining a data-driven understanding of their operations and processes. Wearable devices such as augmented reality (AR) and virtual reality (VR) headsets will increasingly be used for a number of use cases, including training, maintenance of equipment, and simulating processes via “ digital twin ” methodologies. In manufacturing operations, IoT technology includes sensors fitted to machinery in order to measure performance and enable predictive maintenance – predicting where failures and breakdowns will happen before they occur in order to more efficiently replace and repair faulty equipment. IoT tools also cover the emerging field of additive manufacturing techniques, such as 3D printing , which will provide increasingly innovative ways to build and create products, and allow greater levels of customization and personalization, while also minimizing waste.
IoT for Resilient Organisations
Resilience is high on the agenda following the unprecedented disruption of the past two years, and IoT technology provides great opportunities to build more robust and disaster-resistant organizations. This encompasses more than just security (covered above) as it also includes provisions such as ensuring a business has the right skills for coping with widespread change such as the shift to home and remote working we saw in 2020 and 2021, as well as ensuring it doesn’t lose out due to activity of competitors or markets.
Supply chain resilience can be bolstered through IoT, for example, by tracking the movement of inventory between a business, its suppliers, and its customers to anticipate where delays may occur and provide contingency in the face of global issues . Monitoring tools that track movements of staff around facilities and monitor the efficiency of workforces can be used to understand workplace churn and anticipate where shortages, or skills shortages, may mean a business is heading for problems. IoT solutions designed to help companies predict and react to disruption from many different sources will undoubtedly continue to be a source of major innovation throughout 2022 and beyond.
Read more about these and other future trends in my books, Business Trends in Practice: The 25+ Trends That are Redefining Organizations and Tech Trends In Practice: The 25 Technologies That Are Driving The 4 th Industrial Revolution .

- Editorial Standards
- Reprints & Permissions

IMAGES
VIDEO
COMMENTS
Volume 1 - 2022 | https://doi.org/10.3389/friot.2022.1073780 ... 1IoT Research Lab, ECSE, Ontario Tech University, Oshawa, ON, Canada
The Internet of Things (IoT) is a complex ecosystem of connected devices that exchange data over a wired or wireless network and whose final aim is to provide
The Internet of Things (IoT) brings Internet connectivity to devices and everyday objects. This huge volume of connected devices has to be managed taking into
Volume 17 · Research articles · Review articles · Open Software and Data.
iot IEEE PAPER 2022 ... Critical Factors Influencing Pre-Service Teachers Use of the Internet of Things ( IoT ) in Classrooms. ... that the components of an IoT
2022, International Journal for Research in Applied Science & Engineering Technology ... This paper presents the recent development of IoT technologies and
The IEEE Internet of Things Magazine solicits high quality articles that: a) ... state-of-the-art multi-disciplinary IoT-centric research and deployments
Dublin, Nov. 28, 2022 (GLOBE NEWSWIRE) -- The "Internet of Things (IoT) in Healthcare" report has been added to ResearchAndMarkets.com's
Original research and review articles are welcome. Potential topics include but are not limited to the following: Theoretical frameworks and models for IoT
A lot of things are happening in the Internet of Things (IoT) world. In 2022, we will see an ever-growing number of devices become smart and