Section 6.7. Integration by substitution

Calculus Tutorials

Computing integrals by substitution.

Many integrals are most easily computed by means of a change of variables, commonly called a $u$-substitution .

Let’s compute $\displaystyle\int\! 2x(x^2-1)^4\, dx$ by making the substitution \begin{eqnarray*} u&=&x^2-1\\ du&=&2x\, dx. \end{eqnarray*} Then \[ \int 2x(x^2-1)^4\, dx=\int (x^2-1)^4(2x\, dx)=\int u^4\, du=\frac{u^5}{5}+C=\frac{(x^2-1)^5}{5}+C.\] We may check this result by differentiating using the Chain Rule: \[\frac{d}{dx}\left(\frac{(x^2-1)^5}{5}+C\right)=\frac{5(x^2-1)^4}{5}(2x) =2x(x^2-1)^4.\qquad\qquad \surd\]

The substitution method amounts to applying the Chain Rule in reverse:

To compute $\displaystyle\int\! f(g(x))g'(x)\, dx$, we let \begin{eqnarray*} u&=&g(x)\\ du&=&g'(x)\, dx. \end{eqnarray*} Then \[\int f(g(x))g'(x)\, dx=\int f(u)\, du=F(u)=F(g(x))\] where $F$ is an antiderivative of $f$.

To compute $\displaystyle\int\! \sin (2x)\cos (2x)\, dx$, let \begin{eqnarray*} u&=&\sin (2x)\\ du&=&2\cos (2x)\, dx. \end{eqnarray*} Then \[\int \sin (2x)\cos (2x)\, dx=\int\frac{1}{2}\sin (2x)[2\cos (2x)\, dx]=\int \frac{1}{2}u\, du=\frac{1}{4}u^2+C=\frac{1}{4}\sin^2 (2x)+C.\]

With practice, you will often be able to write down the result immediately.

We can evaluate $\displaystyle\int\! \frac{dx}{(4x-3)^2}$ by letting \begin{eqnarray*} u&=&4x-3\\ du&=&4\, dx\quad\longrightarrow\quad dx=\frac{1}{4}\, du. \end{eqnarray*} Then \[\int \frac{dx}{(4x-3)^2}=\int \frac{\frac{1}{4}\, du}{u^2}=-\frac{1}{4u}+C=\frac{-1}{4(4x-3)}+C.\]

It is not always apparent until you try it whether or not a substitution will work.

To compute $\displaystyle\int\! x\sqrt{x-3}\, dx$, we will try \begin{eqnarray*} u&=&x-3\quad\longrightarrow\quad x=u+3\\ du&=&dx. \end{eqnarray*} So \begin{eqnarray*} \int x\sqrt{x-3}\, dx&=&\int (u+3)\sqrt{u}\, du=\int \left(u^{3/2}+3u^{1/2}\right)\, du\\ &=&\frac{2}{5}u^{5/2}+2u^{3/2}+C=\frac{2}{5}(x-3)^{5/2}+2(x-3)^{3/2}+C. \end{eqnarray*}

We can also compute a definite integral using a substitution.

Let’s evaluate $\displaystyle\int^2_0\! xe^{x^2}\, dx$. Let \begin{eqnarray*} u&=&x^2\\ du&=&2x\, dx. \end{eqnarray*} First, we will compute the indefinite integral: \[\int xe^{x^2}\, dx=\int \left(\frac{1}{2}e^{x^2}\right)(2x\, dx)=\int\frac{1}{2}e^u\, du=\frac{1}{2}e^u+C=\frac{1}{2}e^{x^2}+C.\] Now we have two approaches for the definite integral:

Thus, we find that \[\int^2_0 xe^{x^2}\, dx=\frac{1}{2}(e^4-1).\]

Approach 2 works provided certain conditions on $f$ and $g$ are met: \[\int^b_a f(g(x))\, dx=\int^{g(b)}_{g(a)} f(u)\, du\] if

  • $g’$ is continuous on $[a,b]$.
  • $f$ is continuous on the set of values taken by $g$ on $[a,b]$.

Substitutions are useful or necessary for a huge range of integrals. You will find yourself either implicitly or explicitly using a substitution in virtually every integral you compute!

Key Concepts

To compute $\displaystyle\int\! f(g(x))g'(x)\, dx$, we let $u = g(x)$ $du = g'(x) dx$.

Then $\displaystyle{\int f(g(x))g'(x)\, dx = \int f(u)\, du = F(u) = F(g(x))}$ where $F$ is an antiderivative of $f$.

[ I’m ready to take the quiz. ] [ I need to review more. ]

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Answer Key 6.7

  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{ccccc} \dfrac{20x^4}{4x^3}&+&\dfrac{x^3}{4x^3}&+&\dfrac{2x^2}{4x^3} \\ \\ 5x&+&\dfrac{1}{4}&+&\dfrac{1}{2x} \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{ccccc} \dfrac{5x^4}{9x}&+&\dfrac{45x^3}{9x}&+&\dfrac{4x^2}{9x} \\ \\ \dfrac{5}{9}x^3&+&5x^2&+&\dfrac{4}{9}x \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{ccccc} \dfrac{20n^4}{10n}&+&\dfrac{n^3}{10n}&+&\dfrac{40n^2}{10n} \\ \\ 2n^3&+&\dfrac{n^2}{10}&+&4n \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{ccccc} \dfrac{3k^3}{8k}&+&\dfrac{4k^2}{8k}&+&\dfrac{2k}{8k} \\ \\ \dfrac{3}{8}k^2&+&\dfrac{k}{2}&+&\dfrac{1}{4} \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{ccccc} \dfrac{12x^4}{6x}&+&\dfrac{24x^3}{6x}&+&\dfrac{3x^2}{6x} \\ \\ 2x^3&+&4x^2&+&\dfrac{x}{2} \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{ccccc} \dfrac{5p^4}{4p}&+&\dfrac{16p^3}{4p}&+&\dfrac{16p^2}{4p} \\ \\ \dfrac{5}{4}p^3&+&4p^2&+&4p \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{ccccc} \dfrac{10n^4}{10n^2}&+&\dfrac{50n^3}{10n^2}&+&\dfrac{2n^2}{10n^2} \\ \\ n^2&+&5n&+&\dfrac{1}{5} \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{ccccc} \dfrac{3m^4}{9m^2}&+&\dfrac{18m^3}{9m^2}&+&\dfrac{27m^2}{9m^2} \\ \\ \dfrac{m^2}{3}&+&2m&+&3 \end{array}[/latex]

5x+4 with no remainder

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

6.7 integration by substitution homework answer key

Integration by Substitution Calculator

Get detailed solutions to your math problems with our integration by substitution step-by-step calculator . practice your math skills and learn step by step with our math solver. check out all of our online calculators here .,  example,  solved problems,  difficult problems, struggling with math.

Access detailed step by step solutions to thousands of problems, growing every day!

 Related Calculators

 popular problems.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

6.8E: Exercises for Section 6.7

  • Last updated
  • Save as PDF
  • Page ID 104022

In exercises 1 - 3, find the derivative \(\dfrac{dy}{dx}\).

1) \(y=\ln(2x)\)

2) \(y=\ln(2x+1)\)

3) \(y=\dfrac{1}{\ln x}\)

In exercises 4 - 5, find the indefinite integral.

4) \(\displaystyle ∫\frac{dt}{3t}\)

5) \(\displaystyle ∫\frac{dx}{1+x}\)

In exercises 6 - 15, find the derivative \(\dfrac{dy}{dx}.\) (You can use a calculator to plot the function and the derivative to confirm that it is correct.)

6) [T] \(y=\dfrac{\ln x}{x}\)

7) [T] \(y=x\ln x\)

8) [T] \(y=\log_{10}x\)

9) [T] \(y=\ln(\sin x)\)

10) [T] \(y=\ln(\ln x)\)

11) [T] \(y=7\ln(4x)\)

12) [T] \(y=\ln\big((4x)^7\big)\)

13) [T] \(y=\ln(\tan x)\)

14) [T] \(y=\ln(\tan 3x)\)

15) [T] \(y=\ln(\cos^2x)\)

In exercises 16 - 25, find the definite or indefinite integral.

16) \(\displaystyle ∫^1_0\frac{dx}{3+x}\)

17) \(\displaystyle ∫^1_0\frac{dt}{3+2t}\)

18) \(\displaystyle ∫^2_0\frac{x}{x^2+1}\, dx\)

19) \(\displaystyle ∫^2_0\frac{x^3}{x^2+1}\,dx\)

20) \(\displaystyle ∫^e_2\frac{dx}{x\ln x}\)

21) \(\displaystyle ∫^e_2\frac{dx}{(x\ln x)^2}\)

22) \(\displaystyle ∫\frac{\cos x}{\sin x}\, dx\)

23) \(\displaystyle ∫^{π/4}_0\tan x\,dx\)

24) \(\displaystyle ∫\cot(3x)\,dx\)

25) \(\displaystyle ∫\frac{(\ln x)^2}{x}\, dx\)

In exercises 26 - 35, compute \(\dfrac{dy}{dx}\) by differentiating \(\ln y\).

26) \(y=\sqrt{x^2+1}\)

27) \(y=\sqrt{x^2+1}\sqrt{x^2−1}\)

28) \(y=e^{\sin x}\)

29) \(y=x^{−1/x}\)

30) \(y=e^{ex}\)

31) \(y=x^e\)

32) \(y=x^{(ex)}\)

33) \(y=\sqrt{x}\sqrt[3]{x}\sqrt[6]{x}\)

34) \(y=x^{−1/\ln x}\)

35) \(y=e^{−\ln x}\)

In exercises 36 - 40, evaluate by any method.

36) \(\displaystyle ∫^{10}_5\dfrac{dt}{t}−∫^{10x}_{5x}\dfrac{dt}{t}\)

37) \(\displaystyle ∫^{e^π}_1\dfrac{dx}{x}+∫^{−1}_{−2}\dfrac{dx}{x}\)

38) \(\dfrac{d}{dx}\left[\displaystyle ∫^1_x\dfrac{dt}{t}\right]\)

39) \(\dfrac{d}{dx}\left[\displaystyle ∫^{x^2}_x\dfrac{dt}{t}\right]\)

40) \(\dfrac{d}{dx}\Big[\ln(\sec x+\tan x)\Big]\)

In exercises 41 - 44, use the function \(\ln x\). If you are unable to find intersection points analytically, use a calculator.

41) Find the area of the region enclosed by \(x=1\) and \(y=5\) above \(y=\ln x\).

42) [T] Find the arc length of \(\ln x\) from \(x=1\) to \(x=2\).

43) Find the area between \(\ln x\) and the \(x\)-axis from \(x=1\) to \(x=2\).

44) Find the volume of the shape created when rotating this curve from \(x=1\) to \(x=2\) around the \(x\)-axis, as pictured here.

This figure is a surface. It has been generated by revolving the curve ln x about the x-axis. The surface is inside of a cube showing it is 3-dimensinal.

45) [T] Find the surface area of the shape created when rotating the curve in the previous exercise from \(x=1\) to \(x=2\) around the \(x\)-axis.

If you are unable to find intersection points analytically in the following exercises, use a calculator.

46) Find the area of the hyperbolic quarter-circle enclosed by \(x=2\) and \(y=2\) above \(y=1/x.\)

47) [T] Find the arc length of \(y=1/x\) from \(x=1\) to \(x=4\).

48) Find the area under \(y=1/x\) and above the \(x\)-axis from \(x=1\) to \(x=4\).

In exercises 49 - 53, verify the derivatives and antiderivatives.

49) \(\dfrac{d}{dx}\Big[\ln(x+\sqrt{x^2+1})\Big]=\dfrac{1}{\sqrt{1+x^2}}\)

50) \(\dfrac{d}{dx}\Big[\ln\left(\frac{x−a}{x+a}\right)\Big]=\dfrac{2a}{(x^2−a^2)}\)

51) \(\dfrac{d}{dx}\Big[\ln\left(\frac{1+\sqrt{1−x^2}}{x}\right)\Big]=−\dfrac{1}{x\sqrt{1−x^2}}\)

52) \(\dfrac{d}{dx}\Big[\ln(x+\sqrt{x^2−a^2})\Big]=\dfrac{1}{\sqrt{x^2−a^2}}\)

53) \(\displaystyle ∫\frac{dx}{x\ln(x)\ln(\ln x)}=\ln|\ln(\ln x)|+C\)

Contributors

Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org .

IMAGES

  1. 6 7 Homework.pdf

    6.7 integration by substitution homework answer key

  2. 6.2 Solving Systems By Substitution Worksheet Answer Key

    6.7 integration by substitution homework answer key

  3. Integration by Substitution Homework Examples Part I

    6.7 integration by substitution homework answer key

  4. Lesson 28: Integration by Substitution (worksheet solutions)

    6.7 integration by substitution homework answer key

  5. Indefinite Integration Homework Help

    6.7 integration by substitution homework answer key

  6. Lesson 27: Integration by Substitution (worksheet)

    6.7 integration by substitution homework answer key

VIDEO

  1. Substitution Homework Problems

  2. Calculus 2

  3. 5.5 Homework-Substitution Rule (Homework)

  4. CBSE integration solved key answer of previous year paper

  5. Integration by method of substitution

  6. How to Use the Substitution Rule for Integrals #shorts

COMMENTS

  1. Solved Name 6.7 Integration by Substitution Homework Date

    Step 1. Name 6.7 Integration by Substitution Homework Date Period Problems 1-10, Find the indefinite integral. 1. [x (x2-1)dx 2 / ( \x {2x2 + 3)" dx 3. x2 3x3 +7 dx 4. dx V1 - 2x2 t-2 5. Sce2-48 +3); dt « 3 | 3 sin 4x dx 7. { x² e 7" dx 8. - p2x e2x dx 9. secosm COS IX sin ax dx 10. ſx (3-**) dx Problems 11-24, Evaluate the definite integral ...

  2. PDF U-SUBSTITUTION-INDEFINITE-ANSWERS

    Title: U-SUBSTITUTION-INDEFINITE-ANSWERS.jnt Author: mcisnero Created Date: 11/19/2011 6:52:29 PM

  3. Section 6.7. Integration by substitution

    Then work the Interactive Examples to practice the concepts and techniques before you start the Exercises. TOPICS IN THIS SECTION. 1 Overview. 2 Theorem 1: Integrals of 1/x. 3 An example. 4 A rate of change problem. 5 Theorem 2: Integrals of exponential functions. 6 Finding an area. 7 Theorem 3: Integrals of the hyperbolic cosine and sine.

  4. Integration by Substitution Homework 6.7...

    View 6.7 HW.pdf from LAW 210 at Hudson County Community College. Integration by Substitution Homework 6.7 Problems 1- 10, Find the indefinite integral. 2 − 1 1. 3 0=112 do 1*413

  5. 1.6: Substitution

    In this section we examine a technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us find antiderivatives when the integrand is the result of a chain-rule derivative. At first, the approach to the substitution procedure may not appear very obvious.

  6. Calculus AB Homework 6.7 U-Substitution

    Download Packet: https://goo.gl/xeg85Y=====AP Calculus AB / IB Math SLUnit 6: IntegrationLesson 7: U-Substitution=====...

  7. 6.7E: Exercises for Section 6.7

    In exercises 1 - 3, find the derivative dy dx. 1) y = ln(2x) 2) y = ln(2x + 1) 3) y = 1 lnx. In exercises 4 - 5, find the indefinite integral. 4) ∫dt 3t. 5) ∫ dx 1 + x. In exercises 6 - 15, find the derivative dy dx. (You can use a calculator to plot the function and the derivative to confirm that it is correct.)

  8. 6 7 Homework.pdf

    View 6_7_Homework.pdf from MATH 104 at Marvin Ridge High. Integration by Substitution Homework 6.7 Problems 1- 10, Find the indefinite integral. 1. 2. 1 3. 3 +7 2 4. 1 5. ( 2 + 3) +3 6. 3 ... View Notes - M2263S05Key from MATH 2263 at University of Minnesota-Twin Cities. Answer... notes. Review12. Santa Fe College. MAT 1033. Algebra. Rational ...

  9. PDF Homework 01: Integration by Substitution

    Homework 01: Integration by Substitution. Homework 01: Integration by Substitution. Instructor: Joseph Wells Arizona State University Due: (Wed) January 22, 2014/ (Fri) January 24, 2014. Instructions: Complete ALL the problems on this worksheet (and staple on any additional pages used). Show ALL your work in the spaces provided.

  10. PDF Integrating Using Substitution CA #2 Name: Find the ...

    9. ì 5 ë j l ë Ø 𝑑𝑥 Ø 10. ì a m q : 6 ë ; q g l : 6 ë ; > 5 𝑑𝑥 - . 4 Answers to 6.9 CA #2 1. 5 6 sin :2𝑥1 ;𝐶 2. 5 7 𝑒 7 ë .𝐶 3.5 8 :2𝑥 7𝑥 ; 8𝐶 4.5 9 sec :5𝑥

  11. Unit 6

    Unit 6 - Integration and Accumulation of Change 6.1 Exploring Accumulation of Change 6.2 Approximating Areas with Riemann Sums 6.3 Riemann Sums, Summation Notation, and Definite ... 6.9 Integrating Using Substitution 6.10 Integrating Functions Using Long Division and Completing the Square 6.11 Integrating Using Integration by Parts (BC topic) 6 ...

  12. PDF 06

    ©5 m2n0x1 f37 qK qu PtEa U iS 5oLfHt gwKa7r qeI wLWLJC 3.V W OAFl3lI Jr Fi Jg 8h6t 5sb Qr0ewspe sr 2vSeTdr. J b SMsa7d7e r nwaiqtmh5 SICnJf ti YnwimtFeW ECoa 2lxcQuVlLu qsi.N Worksheet by Kuta Software LLC

  13. Computing Integrals by Substitution

    We can also compute a definite integral using a substitution. Let's evaluate ∫2 0xex2dx. Let u = x2 du = 2xdx. First, we will compute the indefinite integral: ∫xex2dx = ∫(1 2ex2)(2xdx) = ∫1 2eudu = 1 2eu + C = 1 2ex2 + C. Now we have two approaches for the definite integral: Thus, we find that ∫2 0xex2dx = 1 2(e4 − 1).

  14. Answer Key 6.7

    Answer Key 6.7. a a. 20x4 4x3 + x3 4x3 + 2x2 4x3 5x + 1 4 + 1 2x 20 x 4 4 x 3 + x 3 4 x 3 + 2 x 2 4 x 3 5 x + 1 4 + 1 2 x. a a. 5x4 9x + 45x3 9x + 4x2 9x 5 9x3 + 5x2 + 4 9 x 5 x 4 9 x + 45 x 3 9 x + 4 x 2 9 x 5 9 x 3 + 5 x 2 + 4 9 x. a a. 20n4 10n + n3 10n + 40n2 10n 2n3 + n2 10 + 4n 20 n 4 10 n + n 3 10 n + 40 n 2 10 n 2 n 3 + n 2 10 + 4 n. a a.

  15. Solved Name 6.7 Integration by Substitution Homework Date

    Calculus. Calculus questions and answers. Name 6.7 Integration by Substitution Homework Date Period Problems 1-10, Find the indefinite integral. 1. (x (x2-1)dx 2 | x (2x2 + 3)" dx 2. 3. | x2 13x3 +7 dx * SV1-2017 dx 5. t-2 (t2-4t+3) dt 6. S 3 sin 4x dx 7. { x² e 7" dx 8. - p2x e2x dx 9. secosm COS IX sin ax dx 10. ſx (3-**) dx Problems 11-24 ...

  16. 6.E: Applications of Antidifferentiation (Exercises)

    Do not just refer to Theorem 45 for the answer; justify it through Substitution. In Exercises 24-30, use Substitution to evaluate the indefinite integral involving exponential functions. 24. \(\int e^{3x-1}\,dx\)

  17. Solved Problems

    Integration by Substitution Calculator. Get detailed solutions to your math problems with our Integration by Substitution step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here. ∫ ( x · cos ( 2x2 + 3)) dx.

  18. PDF Calculus 6.7 Definite Integrals Notes

    The area under the curve is represented by an antiderivative! What?! Power Rule for finding a derivative. Antiderivative is the reverse order. Step one: Multiply by the old exponent. Step two: Subtract one from the exponent. Step one: Add one to the exponent. Step two: Divide by the new exponent.

  19. 6.7 The Fundamental Theorem of Calculus and Definite Integrals

    calc_6.7_packet.pdf. File Size: 290 kb. File Type: pdf. Download File. Want to save money on printing? Support us and buy the Calculus workbook with all the packets in one nice spiral bound book. Solution manuals are also available.

  20. 6.8E: Exercises for Section 6.7

    In exercises 1 - 3, find the derivative dy dx. 1) y = ln(2x) 2) y = ln(2x + 1) 3) y = 1 lnx. In exercises 4 - 5, find the indefinite integral. 4) ∫dt 3t. 5) ∫ dx 1 + x. In exercises 6 - 15, find the derivative dy dx. (You can use a calculator to plot the function and the derivative to confirm that it is correct.)