How to conduct a meta-analysis in eight steps: a practical guide

  • Open access
  • Published: 30 November 2021
  • Volume 72 , pages 1–19, ( 2022 )

Cite this article

You have full access to this open access article

  • Christopher Hansen 1 ,
  • Holger Steinmetz 2 &
  • Jörn Block 3 , 4 , 5  

139k Accesses

43 Citations

157 Altmetric

Explore all metrics

Avoid common mistakes on your manuscript.

1 Introduction

“Scientists have known for centuries that a single study will not resolve a major issue. Indeed, a small sample study will not even resolve a minor issue. Thus, the foundation of science is the cumulation of knowledge from the results of many studies.” (Hunter et al. 1982 , p. 10)

Meta-analysis is a central method for knowledge accumulation in many scientific fields (Aguinis et al. 2011c ; Kepes et al. 2013 ). Similar to a narrative review, it serves as a synopsis of a research question or field. However, going beyond a narrative summary of key findings, a meta-analysis adds value in providing a quantitative assessment of the relationship between two target variables or the effectiveness of an intervention (Gurevitch et al. 2018 ). Also, it can be used to test competing theoretical assumptions against each other or to identify important moderators where the results of different primary studies differ from each other (Aguinis et al. 2011b ; Bergh et al. 2016 ). Rooted in the synthesis of the effectiveness of medical and psychological interventions in the 1970s (Glass 2015 ; Gurevitch et al. 2018 ), meta-analysis is nowadays also an established method in management research and related fields.

The increasing importance of meta-analysis in management research has resulted in the publication of guidelines in recent years that discuss the merits and best practices in various fields, such as general management (Bergh et al. 2016 ; Combs et al. 2019 ; Gonzalez-Mulé and Aguinis 2018 ), international business (Steel et al. 2021 ), economics and finance (Geyer-Klingeberg et al. 2020 ; Havranek et al. 2020 ), marketing (Eisend 2017 ; Grewal et al. 2018 ), and organizational studies (DeSimone et al. 2020 ; Rudolph et al. 2020 ). These articles discuss existing and trending methods and propose solutions for often experienced problems. This editorial briefly summarizes the insights of these papers; provides a workflow of the essential steps in conducting a meta-analysis; suggests state-of-the art methodological procedures; and points to other articles for in-depth investigation. Thus, this article has two goals: (1) based on the findings of previous editorials and methodological articles, it defines methodological recommendations for meta-analyses submitted to Management Review Quarterly (MRQ); and (2) it serves as a practical guide for researchers who have little experience with meta-analysis as a method but plan to conduct one in the future.

2 Eight steps in conducting a meta-analysis

2.1 step 1: defining the research question.

The first step in conducting a meta-analysis, as with any other empirical study, is the definition of the research question. Most importantly, the research question determines the realm of constructs to be considered or the type of interventions whose effects shall be analyzed. When defining the research question, two hurdles might develop. First, when defining an adequate study scope, researchers must consider that the number of publications has grown exponentially in many fields of research in recent decades (Fortunato et al. 2018 ). On the one hand, a larger number of studies increases the potentially relevant literature basis and enables researchers to conduct meta-analyses. Conversely, scanning a large amount of studies that could be potentially relevant for the meta-analysis results in a perhaps unmanageable workload. Thus, Steel et al. ( 2021 ) highlight the importance of balancing manageability and relevance when defining the research question. Second, similar to the number of primary studies also the number of meta-analyses in management research has grown strongly in recent years (Geyer-Klingeberg et al. 2020 ; Rauch 2020 ; Schwab 2015 ). Therefore, it is likely that one or several meta-analyses for many topics of high scholarly interest already exist. However, this should not deter researchers from investigating their research questions. One possibility is to consider moderators or mediators of a relationship that have previously been ignored. For example, a meta-analysis about startup performance could investigate the impact of different ways to measure the performance construct (e.g., growth vs. profitability vs. survival time) or certain characteristics of the founders as moderators. Another possibility is to replicate previous meta-analyses and test whether their findings can be confirmed with an updated sample of primary studies or newly developed methods. Frequent replications and updates of meta-analyses are important contributions to cumulative science and are increasingly called for by the research community (Anderson & Kichkha 2017 ; Steel et al. 2021 ). Consistent with its focus on replication studies (Block and Kuckertz 2018 ), MRQ therefore also invites authors to submit replication meta-analyses.

2.2 Step 2: literature search

2.2.1 search strategies.

Similar to conducting a literature review, the search process of a meta-analysis should be systematic, reproducible, and transparent, resulting in a sample that includes all relevant studies (Fisch and Block 2018 ; Gusenbauer and Haddaway 2020 ). There are several identification strategies for relevant primary studies when compiling meta-analytical datasets (Harari et al. 2020 ). First, previous meta-analyses on the same or a related topic may provide lists of included studies that offer a good starting point to identify and become familiar with the relevant literature. This practice is also applicable to topic-related literature reviews, which often summarize the central findings of the reviewed articles in systematic tables. Both article types likely include the most prominent studies of a research field. The most common and important search strategy, however, is a keyword search in electronic databases (Harari et al. 2020 ). This strategy will probably yield the largest number of relevant studies, particularly so-called ‘grey literature’, which may not be considered by literature reviews. Gusenbauer and Haddaway ( 2020 ) provide a detailed overview of 34 scientific databases, of which 18 are multidisciplinary or have a focus on management sciences, along with their suitability for literature synthesis. To prevent biased results due to the scope or journal coverage of one database, researchers should use at least two different databases (DeSimone et al. 2020 ; Martín-Martín et al. 2021 ; Mongeon & Paul-Hus 2016 ). However, a database search can easily lead to an overload of potentially relevant studies. For example, key term searches in Google Scholar for “entrepreneurial intention” and “firm diversification” resulted in more than 660,000 and 810,000 hits, respectively. Footnote 1 Therefore, a precise research question and precise search terms using Boolean operators are advisable (Gusenbauer and Haddaway 2020 ). Addressing the challenge of identifying relevant articles in the growing number of database publications, (semi)automated approaches using text mining and machine learning (Bosco et al. 2017 ; O’Mara-Eves et al. 2015 ; Ouzzani et al. 2016 ; Thomas et al. 2017 ) can also be promising and time-saving search tools in the future. Also, some electronic databases offer the possibility to track forward citations of influential studies and thereby identify further relevant articles. Finally, collecting unpublished or undetected studies through conferences, personal contact with (leading) scholars, or listservs can be strategies to increase the study sample size (Grewal et al. 2018 ; Harari et al. 2020 ; Pigott and Polanin 2020 ).

2.2.2 Study inclusion criteria and sample composition

Next, researchers must decide which studies to include in the meta-analysis. Some guidelines for literature reviews recommend limiting the sample to studies published in renowned academic journals to ensure the quality of findings (e.g., Kraus et al. 2020 ). For meta-analysis, however, Steel et al. ( 2021 ) advocate for the inclusion of all available studies, including grey literature, to prevent selection biases based on availability, cost, familiarity, and language (Rothstein et al. 2005 ), or the “Matthew effect”, which denotes the phenomenon that highly cited articles are found faster than less cited articles (Merton 1968 ). Harrison et al. ( 2017 ) find that the effects of published studies in management are inflated on average by 30% compared to unpublished studies. This so-called publication bias or “file drawer problem” (Rosenthal 1979 ) results from the preference of academia to publish more statistically significant and less statistically insignificant study results. Owen and Li ( 2020 ) showed that publication bias is particularly severe when variables of interest are used as key variables rather than control variables. To consider the true effect size of a target variable or relationship, the inclusion of all types of research outputs is therefore recommended (Polanin et al. 2016 ). Different test procedures to identify publication bias are discussed subsequently in Step 7.

In addition to the decision of whether to include certain study types (i.e., published vs. unpublished studies), there can be other reasons to exclude studies that are identified in the search process. These reasons can be manifold and are primarily related to the specific research question and methodological peculiarities. For example, studies identified by keyword search might not qualify thematically after all, may use unsuitable variable measurements, or may not report usable effect sizes. Furthermore, there might be multiple studies by the same authors using similar datasets. If they do not differ sufficiently in terms of their sample characteristics or variables used, only one of these studies should be included to prevent bias from duplicates (Wood 2008 ; see this article for a detection heuristic).

In general, the screening process should be conducted stepwise, beginning with a removal of duplicate citations from different databases, followed by abstract screening to exclude clearly unsuitable studies and a final full-text screening of the remaining articles (Pigott and Polanin 2020 ). A graphical tool to systematically document the sample selection process is the PRISMA flow diagram (Moher et al. 2009 ). Page et al. ( 2021 ) recently presented an updated version of the PRISMA statement, including an extended item checklist and flow diagram to report the study process and findings.

2.3 Step 3: choice of the effect size measure

2.3.1 types of effect sizes.

The two most common meta-analytical effect size measures in management studies are (z-transformed) correlation coefficients and standardized mean differences (Aguinis et al. 2011a ; Geyskens et al. 2009 ). However, meta-analyses in management science and related fields may not be limited to those two effect size measures but rather depend on the subfield of investigation (Borenstein 2009 ; Stanley and Doucouliagos 2012 ). In economics and finance, researchers are more interested in the examination of elasticities and marginal effects extracted from regression models than in pure bivariate correlations (Stanley and Doucouliagos 2012 ). Regression coefficients can also be converted to partial correlation coefficients based on their t-statistics to make regression results comparable across studies (Stanley and Doucouliagos 2012 ). Although some meta-analyses in management research have combined bivariate and partial correlations in their study samples, Aloe ( 2015 ) and Combs et al. ( 2019 ) advise researchers not to use this practice. Most importantly, they argue that the effect size strength of partial correlations depends on the other variables included in the regression model and is therefore incomparable to bivariate correlations (Schmidt and Hunter 2015 ), resulting in a possible bias of the meta-analytic results (Roth et al. 2018 ). We endorse this opinion. If at all, we recommend separate analyses for each measure. In addition to these measures, survival rates, risk ratios or odds ratios, which are common measures in medical research (Borenstein 2009 ), can be suitable effect sizes for specific management research questions, such as understanding the determinants of the survival of startup companies. To summarize, the choice of a suitable effect size is often taken away from the researcher because it is typically dependent on the investigated research question as well as the conventions of the specific research field (Cheung and Vijayakumar 2016 ).

2.3.2 Conversion of effect sizes to a common measure

After having defined the primary effect size measure for the meta-analysis, it might become necessary in the later coding process to convert study findings that are reported in effect sizes that are different from the chosen primary effect size. For example, a study might report only descriptive statistics for two study groups but no correlation coefficient, which is used as the primary effect size measure in the meta-analysis. Different effect size measures can be harmonized using conversion formulae, which are provided by standard method books such as Borenstein et al. ( 2009 ) or Lipsey and Wilson ( 2001 ). There also exist online effect size calculators for meta-analysis. Footnote 2

2.4 Step 4: choice of the analytical method used

Choosing which meta-analytical method to use is directly connected to the research question of the meta-analysis. Research questions in meta-analyses can address a relationship between constructs or an effect of an intervention in a general manner, or they can focus on moderating or mediating effects. There are four meta-analytical methods that are primarily used in contemporary management research (Combs et al. 2019 ; Geyer-Klingeberg et al. 2020 ), which allow the investigation of these different types of research questions: traditional univariate meta-analysis, meta-regression, meta-analytic structural equation modeling, and qualitative meta-analysis (Hoon 2013 ). While the first three are quantitative, the latter summarizes qualitative findings. Table 1 summarizes the key characteristics of the three quantitative methods.

2.4.1 Univariate meta-analysis

In its traditional form, a meta-analysis reports a weighted mean effect size for the relationship or intervention of investigation and provides information on the magnitude of variance among primary studies (Aguinis et al. 2011c ; Borenstein et al. 2009 ). Accordingly, it serves as a quantitative synthesis of a research field (Borenstein et al. 2009 ; Geyskens et al. 2009 ). Prominent traditional approaches have been developed, for example, by Hedges and Olkin ( 1985 ) or Hunter and Schmidt ( 1990 , 2004 ). However, going beyond its simple summary function, the traditional approach has limitations in explaining the observed variance among findings (Gonzalez-Mulé and Aguinis 2018 ). To identify moderators (or boundary conditions) of the relationship of interest, meta-analysts can create subgroups and investigate differences between those groups (Borenstein and Higgins 2013 ; Hunter and Schmidt 2004 ). Potential moderators can be study characteristics (e.g., whether a study is published vs. unpublished), sample characteristics (e.g., study country, industry focus, or type of survey/experiment participants), or measurement artifacts (e.g., different types of variable measurements). The univariate approach is thus suitable to identify the overall direction of a relationship and can serve as a good starting point for additional analyses. However, due to its limitations in examining boundary conditions and developing theory, the univariate approach on its own is currently oftentimes viewed as not sufficient (Rauch 2020 ; Shaw and Ertug 2017 ).

2.4.2 Meta-regression analysis

Meta-regression analysis (Hedges and Olkin 1985 ; Lipsey and Wilson 2001 ; Stanley and Jarrell 1989 ) aims to investigate the heterogeneity among observed effect sizes by testing multiple potential moderators simultaneously. In meta-regression, the coded effect size is used as the dependent variable and is regressed on a list of moderator variables. These moderator variables can be categorical variables as described previously in the traditional univariate approach or (semi)continuous variables such as country scores that are merged with the meta-analytical data. Thus, meta-regression analysis overcomes the disadvantages of the traditional approach, which only allows us to investigate moderators singularly using dichotomized subgroups (Combs et al. 2019 ; Gonzalez-Mulé and Aguinis 2018 ). These possibilities allow a more fine-grained analysis of research questions that are related to moderating effects. However, Schmidt ( 2017 ) critically notes that the number of effect sizes in the meta-analytical sample must be sufficiently large to produce reliable results when investigating multiple moderators simultaneously in a meta-regression. For further reading, Tipton et al. ( 2019 ) outline the technical, conceptual, and practical developments of meta-regression over the last decades. Gonzalez-Mulé and Aguinis ( 2018 ) provide an overview of methodological choices and develop evidence-based best practices for future meta-analyses in management using meta-regression.

2.4.3 Meta-analytic structural equation modeling (MASEM)

MASEM is a combination of meta-analysis and structural equation modeling and allows to simultaneously investigate the relationships among several constructs in a path model. Researchers can use MASEM to test several competing theoretical models against each other or to identify mediation mechanisms in a chain of relationships (Bergh et al. 2016 ). This method is typically performed in two steps (Cheung and Chan 2005 ): In Step 1, a pooled correlation matrix is derived, which includes the meta-analytical mean effect sizes for all variable combinations; Step 2 then uses this matrix to fit the path model. While MASEM was based primarily on traditional univariate meta-analysis to derive the pooled correlation matrix in its early years (Viswesvaran and Ones 1995 ), more advanced methods, such as the GLS approach (Becker 1992 , 1995 ) or the TSSEM approach (Cheung and Chan 2005 ), have been subsequently developed. Cheung ( 2015a ) and Jak ( 2015 ) provide an overview of these approaches in their books with exemplary code. For datasets with more complex data structures, Wilson et al. ( 2016 ) also developed a multilevel approach that is related to the TSSEM approach in the second step. Bergh et al. ( 2016 ) discuss nine decision points and develop best practices for MASEM studies.

2.4.4 Qualitative meta-analysis

While the approaches explained above focus on quantitative outcomes of empirical studies, qualitative meta-analysis aims to synthesize qualitative findings from case studies (Hoon 2013 ; Rauch et al. 2014 ). The distinctive feature of qualitative case studies is their potential to provide in-depth information about specific contextual factors or to shed light on reasons for certain phenomena that cannot usually be investigated by quantitative studies (Rauch 2020 ; Rauch et al. 2014 ). In a qualitative meta-analysis, the identified case studies are systematically coded in a meta-synthesis protocol, which is then used to identify influential variables or patterns and to derive a meta-causal network (Hoon 2013 ). Thus, the insights of contextualized and typically nongeneralizable single studies are aggregated to a larger, more generalizable picture (Habersang et al. 2019 ). Although still the exception, this method can thus provide important contributions for academics in terms of theory development (Combs et al., 2019 ; Hoon 2013 ) and for practitioners in terms of evidence-based management or entrepreneurship (Rauch et al. 2014 ). Levitt ( 2018 ) provides a guide and discusses conceptual issues for conducting qualitative meta-analysis in psychology, which is also useful for management researchers.

2.5 Step 5: choice of software

Software solutions to perform meta-analyses range from built-in functions or additional packages of statistical software to software purely focused on meta-analyses and from commercial to open-source solutions. However, in addition to personal preferences, the choice of the most suitable software depends on the complexity of the methods used and the dataset itself (Cheung and Vijayakumar 2016 ). Meta-analysts therefore must carefully check if their preferred software is capable of performing the intended analysis.

Among commercial software providers, Stata (from version 16 on) offers built-in functions to perform various meta-analytical analyses or to produce various plots (Palmer and Sterne 2016 ). For SPSS and SAS, there exist several macros for meta-analyses provided by scholars, such as David B. Wilson or Andy P. Field and Raphael Gillet (Field and Gillett 2010 ). Footnote 3 Footnote 4 For researchers using the open-source software R (R Core Team 2021 ), Polanin et al. ( 2017 ) provide an overview of 63 meta-analysis packages and their functionalities. For new users, they recommend the package metafor (Viechtbauer 2010 ), which includes most necessary functions and for which the author Wolfgang Viechtbauer provides tutorials on his project website. Footnote 5 Footnote 6 In addition to packages and macros for statistical software, templates for Microsoft Excel have also been developed to conduct simple meta-analyses, such as Meta-Essentials by Suurmond et al. ( 2017 ). Footnote 7 Finally, programs purely dedicated to meta-analysis also exist, such as Comprehensive Meta-Analysis (Borenstein et al. 2013 ) or RevMan by The Cochrane Collaboration ( 2020 ).

2.6 Step 6: coding of effect sizes

2.6.1 coding sheet.

The first step in the coding process is the design of the coding sheet. A universal template does not exist because the design of the coding sheet depends on the methods used, the respective software, and the complexity of the research design. For univariate meta-analysis or meta-regression, data are typically coded in wide format. In its simplest form, when investigating a correlational relationship between two variables using the univariate approach, the coding sheet would contain a column for the study name or identifier, the effect size coded from the primary study, and the study sample size. However, such simple relationships are unlikely in management research because the included studies are typically not identical but differ in several respects. With more complex data structures or moderator variables being investigated, additional columns are added to the coding sheet to reflect the data characteristics. These variables can be coded as dummy, factor, or (semi)continuous variables and later used to perform a subgroup analysis or meta regression. For MASEM, the required data input format can deviate depending on the method used (e.g., TSSEM requires a list of correlation matrices as data input). For qualitative meta-analysis, the coding scheme typically summarizes the key qualitative findings and important contextual and conceptual information (see Hoon ( 2013 ) for a coding scheme for qualitative meta-analysis). Figure  1 shows an exemplary coding scheme for a quantitative meta-analysis on the correlational relationship between top-management team diversity and profitability. In addition to effect and sample sizes, information about the study country, firm type, and variable operationalizations are coded. The list could be extended by further study and sample characteristics.

figure 1

Exemplary coding sheet for a meta-analysis on the relationship (correlation) between top-management team diversity and profitability

2.6.2 Inclusion of moderator or control variables

It is generally important to consider the intended research model and relevant nontarget variables before coding a meta-analytic dataset. For example, study characteristics can be important moderators or function as control variables in a meta-regression model. Similarly, control variables may be relevant in a MASEM approach to reduce confounding bias. Coding additional variables or constructs subsequently can be arduous if the sample of primary studies is large. However, the decision to include respective moderator or control variables, as in any empirical analysis, should always be based on strong (theoretical) rationales about how these variables can impact the investigated effect (Bernerth and Aguinis 2016 ; Bernerth et al. 2018 ; Thompson and Higgins 2002 ). While substantive moderators refer to theoretical constructs that act as buffers or enhancers of a supposed causal process, methodological moderators are features of the respective research designs that denote the methodological context of the observations and are important to control for systematic statistical particularities (Rudolph et al. 2020 ). Havranek et al. ( 2020 ) provide a list of recommended variables to code as potential moderators. While researchers may have clear expectations about the effects for some of these moderators, the concerns for other moderators may be tentative, and moderator analysis may be approached in a rather exploratory fashion. Thus, we argue that researchers should make full use of the meta-analytical design to obtain insights about potential context dependence that a primary study cannot achieve.

2.6.3 Treatment of multiple effect sizes in a study

A long-debated issue in conducting meta-analyses is whether to use only one or all available effect sizes for the same construct within a single primary study. For meta-analyses in management research, this question is fundamental because many empirical studies, particularly those relying on company databases, use multiple variables for the same construct to perform sensitivity analyses, resulting in multiple relevant effect sizes. In this case, researchers can either (randomly) select a single value, calculate a study average, or use the complete set of effect sizes (Bijmolt and Pieters 2001 ; López-López et al. 2018 ). Multiple effect sizes from the same study enrich the meta-analytic dataset and allow us to investigate the heterogeneity of the relationship of interest, such as different variable operationalizations (López-López et al. 2018 ; Moeyaert et al. 2017 ). However, including more than one effect size from the same study violates the independency assumption of observations (Cheung 2019 ; López-López et al. 2018 ), which can lead to biased results and erroneous conclusions (Gooty et al. 2021 ). We follow the recommendation of current best practice guides to take advantage of using all available effect size observations but to carefully consider interdependencies using appropriate methods such as multilevel models, panel regression models, or robust variance estimation (Cheung 2019 ; Geyer-Klingeberg et al. 2020 ; Gooty et al. 2021 ; López-López et al. 2018 ; Moeyaert et al. 2017 ).

2.7 Step 7: analysis

2.7.1 outlier analysis and tests for publication bias.

Before conducting the primary analysis, some preliminary sensitivity analyses might be necessary, which should ensure the robustness of the meta-analytical findings (Rudolph et al. 2020 ). First, influential outlier observations could potentially bias the observed results, particularly if the number of total effect sizes is small. Several statistical methods can be used to identify outliers in meta-analytical datasets (Aguinis et al. 2013 ; Viechtbauer and Cheung 2010 ). However, there is a debate about whether to keep or omit these observations. Anyhow, relevant studies should be closely inspected to infer an explanation about their deviating results. As in any other primary study, outliers can be a valid representation, albeit representing a different population, measure, construct, design or procedure. Thus, inferences about outliers can provide the basis to infer potential moderators (Aguinis et al. 2013 ; Steel et al. 2021 ). On the other hand, outliers can indicate invalid research, for instance, when unrealistically strong correlations are due to construct overlap (i.e., lack of a clear demarcation between independent and dependent variables), invalid measures, or simply typing errors when coding effect sizes. An advisable step is therefore to compare the results both with and without outliers and base the decision on whether to exclude outlier observations with careful consideration (Geyskens et al. 2009 ; Grewal et al. 2018 ; Kepes et al. 2013 ). However, instead of simply focusing on the size of the outlier, its leverage should be considered. Thus, Viechtbauer and Cheung ( 2010 ) propose considering a combination of standardized deviation and a study’s leverage.

Second, as mentioned in the context of a literature search, potential publication bias may be an issue. Publication bias can be examined in multiple ways (Rothstein et al. 2005 ). First, the funnel plot is a simple graphical tool that can provide an overview of the effect size distribution and help to detect publication bias (Stanley and Doucouliagos 2010 ). A funnel plot can also support in identifying potential outliers. As mentioned above, a graphical display of deviation (e.g., studentized residuals) and leverage (Cook’s distance) can help detect the presence of outliers and evaluate their influence (Viechtbauer and Cheung 2010 ). Moreover, several statistical procedures can be used to test for publication bias (Harrison et al. 2017 ; Kepes et al. 2012 ), including subgroup comparisons between published and unpublished studies, Begg and Mazumdar’s ( 1994 ) rank correlation test, cumulative meta-analysis (Borenstein et al. 2009 ), the trim and fill method (Duval and Tweedie 2000a , b ), Egger et al.’s ( 1997 ) regression test, failsafe N (Rosenthal 1979 ), or selection models (Hedges and Vevea 2005 ; Vevea and Woods 2005 ). In examining potential publication bias, Kepes et al. ( 2012 ) and Harrison et al. ( 2017 ) both recommend not relying only on a single test but rather using multiple conceptionally different test procedures (i.e., the so-called “triangulation approach”).

2.7.2 Model choice

After controlling and correcting for the potential presence of impactful outliers or publication bias, the next step in meta-analysis is the primary analysis, where meta-analysts must decide between two different types of models that are based on different assumptions: fixed-effects and random-effects (Borenstein et al. 2010 ). Fixed-effects models assume that all observations share a common mean effect size, which means that differences are only due to sampling error, while random-effects models assume heterogeneity and allow for a variation of the true effect sizes across studies (Borenstein et al. 2010 ; Cheung and Vijayakumar 2016 ; Hunter and Schmidt 2004 ). Both models are explained in detail in standard textbooks (e.g., Borenstein et al. 2009 ; Hunter and Schmidt 2004 ; Lipsey and Wilson 2001 ).

In general, the presence of heterogeneity is likely in management meta-analyses because most studies do not have identical empirical settings, which can yield different effect size strengths or directions for the same investigated phenomenon. For example, the identified studies have been conducted in different countries with different institutional settings, or the type of study participants varies (e.g., students vs. employees, blue-collar vs. white-collar workers, or manufacturing vs. service firms). Thus, the vast majority of meta-analyses in management research and related fields use random-effects models (Aguinis et al. 2011a ). In a meta-regression, the random-effects model turns into a so-called mixed-effects model because moderator variables are added as fixed effects to explain the impact of observed study characteristics on effect size variations (Raudenbush 2009 ).

2.8 Step 8: reporting results

2.8.1 reporting in the article.

The final step in performing a meta-analysis is reporting its results. Most importantly, all steps and methodological decisions should be comprehensible to the reader. DeSimone et al. ( 2020 ) provide an extensive checklist for journal reviewers of meta-analytical studies. This checklist can also be used by authors when performing their analyses and reporting their results to ensure that all important aspects have been addressed. Alternative checklists are provided, for example, by Appelbaum et al. ( 2018 ) or Page et al. ( 2021 ). Similarly, Levitt et al. ( 2018 ) provide a detailed guide for qualitative meta-analysis reporting standards.

For quantitative meta-analyses, tables reporting results should include all important information and test statistics, including mean effect sizes; standard errors and confidence intervals; the number of observations and study samples included; and heterogeneity measures. If the meta-analytic sample is rather small, a forest plot provides a good overview of the different findings and their accuracy. However, this figure will be less feasible for meta-analyses with several hundred effect sizes included. Also, results displayed in the tables and figures must be explained verbally in the results and discussion sections. Most importantly, authors must answer the primary research question, i.e., whether there is a positive, negative, or no relationship between the variables of interest, or whether the examined intervention has a certain effect. These results should be interpreted with regard to their magnitude (or significance), both economically and statistically. However, when discussing meta-analytical results, authors must describe the complexity of the results, including the identified heterogeneity and important moderators, future research directions, and theoretical relevance (DeSimone et al. 2019 ). In particular, the discussion of identified heterogeneity and underlying moderator effects is critical; not including this information can lead to false conclusions among readers, who interpret the reported mean effect size as universal for all included primary studies and ignore the variability of findings when citing the meta-analytic results in their research (Aytug et al. 2012 ; DeSimone et al. 2019 ).

2.8.2 Open-science practices

Another increasingly important topic is the public provision of meta-analytical datasets and statistical codes via open-source repositories. Open-science practices allow for results validation and for the use of coded data in subsequent meta-analyses ( Polanin et al. 2020 ), contributing to the development of cumulative science. Steel et al. ( 2021 ) refer to open science meta-analyses as a step towards “living systematic reviews” (Elliott et al. 2017 ) with continuous updates in real time. MRQ supports this development and encourages authors to make their datasets publicly available. Moreau and Gamble ( 2020 ), for example, provide various templates and video tutorials to conduct open science meta-analyses. There exist several open science repositories, such as the Open Science Foundation (OSF; for a tutorial, see Soderberg 2018 ), to preregister and make documents publicly available. Furthermore, several initiatives in the social sciences have been established to develop dynamic meta-analyses, such as metaBUS (Bosco et al. 2015 , 2017 ), MetaLab (Bergmann et al. 2018 ), or PsychOpen CAMA (Burgard et al. 2021 ).

3 Conclusion

This editorial provides a comprehensive overview of the essential steps in conducting and reporting a meta-analysis with references to more in-depth methodological articles. It also serves as a guide for meta-analyses submitted to MRQ and other management journals. MRQ welcomes all types of meta-analyses from all subfields and disciplines of management research.

Gusenbauer and Haddaway ( 2020 ), however, point out that Google Scholar is not appropriate as a primary search engine due to a lack of reproducibility of search results.

One effect size calculator by David B. Wilson is accessible via: https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php .

The macros of David B. Wilson can be downloaded from: http://mason.gmu.edu/~dwilsonb/ .

The macros of Field and Gillet ( 2010 ) can be downloaded from: https://www.discoveringstatistics.com/repository/fieldgillett/how_to_do_a_meta_analysis.html .

The tutorials can be found via: https://www.metafor-project.org/doku.php .

Metafor does currently not provide functions to conduct MASEM. For MASEM, users can, for instance, use the package metaSEM (Cheung 2015b ).

The workbooks can be downloaded from: https://www.erim.eur.nl/research-support/meta-essentials/ .

Aguinis H, Dalton DR, Bosco FA, Pierce CA, Dalton CM (2011a) Meta-analytic choices and judgment calls: Implications for theory building and testing, obtained effect sizes, and scholarly impact. J Manag 37(1):5–38

Google Scholar  

Aguinis H, Gottfredson RK, Joo H (2013) Best-practice recommendations for defining, identifying, and handling outliers. Organ Res Methods 16(2):270–301

Article   Google Scholar  

Aguinis H, Gottfredson RK, Wright TA (2011b) Best-practice recommendations for estimating interaction effects using meta-analysis. J Organ Behav 32(8):1033–1043

Aguinis H, Pierce CA, Bosco FA, Dalton DR, Dalton CM (2011c) Debunking myths and urban legends about meta-analysis. Organ Res Methods 14(2):306–331

Aloe AM (2015) Inaccuracy of regression results in replacing bivariate correlations. Res Synth Methods 6(1):21–27

Anderson RG, Kichkha A (2017) Replication, meta-analysis, and research synthesis in economics. Am Econ Rev 107(5):56–59

Appelbaum M, Cooper H, Kline RB, Mayo-Wilson E, Nezu AM, Rao SM (2018) Journal article reporting standards for quantitative research in psychology: the APA publications and communications BOARD task force report. Am Psychol 73(1):3–25

Aytug ZG, Rothstein HR, Zhou W, Kern MC (2012) Revealed or concealed? Transparency of procedures, decisions, and judgment calls in meta-analyses. Organ Res Methods 15(1):103–133

Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101. https://doi.org/10.2307/2533446

Bergh DD, Aguinis H, Heavey C, Ketchen DJ, Boyd BK, Su P, Lau CLL, Joo H (2016) Using meta-analytic structural equation modeling to advance strategic management research: Guidelines and an empirical illustration via the strategic leadership-performance relationship. Strateg Manag J 37(3):477–497

Becker BJ (1992) Using results from replicated studies to estimate linear models. J Educ Stat 17(4):341–362

Becker BJ (1995) Corrections to “Using results from replicated studies to estimate linear models.” J Edu Behav Stat 20(1):100–102

Bergmann C, Tsuji S, Piccinini PE, Lewis ML, Braginsky M, Frank MC, Cristia A (2018) Promoting replicability in developmental research through meta-analyses: Insights from language acquisition research. Child Dev 89(6):1996–2009

Bernerth JB, Aguinis H (2016) A critical review and best-practice recommendations for control variable usage. Pers Psychol 69(1):229–283

Bernerth JB, Cole MS, Taylor EC, Walker HJ (2018) Control variables in leadership research: A qualitative and quantitative review. J Manag 44(1):131–160

Bijmolt TH, Pieters RG (2001) Meta-analysis in marketing when studies contain multiple measurements. Mark Lett 12(2):157–169

Block J, Kuckertz A (2018) Seven principles of effective replication studies: Strengthening the evidence base of management research. Manag Rev Quart 68:355–359

Borenstein M (2009) Effect sizes for continuous data. In: Cooper H, Hedges LV, Valentine JC (eds) The handbook of research synthesis and meta-analysis. Russell Sage Foundation, pp 221–235

Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. John Wiley, Chichester

Book   Google Scholar  

Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2010) A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods 1(2):97–111

Borenstein M, Hedges L, Higgins J, Rothstein H (2013) Comprehensive meta-analysis (version 3). Biostat, Englewood, NJ

Borenstein M, Higgins JP (2013) Meta-analysis and subgroups. Prev Sci 14(2):134–143

Bosco FA, Steel P, Oswald FL, Uggerslev K, Field JG (2015) Cloud-based meta-analysis to bridge science and practice: Welcome to metaBUS. Person Assess Decis 1(1):3–17

Bosco FA, Uggerslev KL, Steel P (2017) MetaBUS as a vehicle for facilitating meta-analysis. Hum Resour Manag Rev 27(1):237–254

Burgard T, Bošnjak M, Studtrucker R (2021) Community-augmented meta-analyses (CAMAs) in psychology: potentials and current systems. Zeitschrift Für Psychologie 229(1):15–23

Cheung MWL (2015a) Meta-analysis: A structural equation modeling approach. John Wiley & Sons, Chichester

Cheung MWL (2015b) metaSEM: An R package for meta-analysis using structural equation modeling. Front Psychol 5:1521

Cheung MWL (2019) A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychol Rev 29(4):387–396

Cheung MWL, Chan W (2005) Meta-analytic structural equation modeling: a two-stage approach. Psychol Methods 10(1):40–64

Cheung MWL, Vijayakumar R (2016) A guide to conducting a meta-analysis. Neuropsychol Rev 26(2):121–128

Combs JG, Crook TR, Rauch A (2019) Meta-analytic research in management: contemporary approaches unresolved controversies and rising standards. J Manag Stud 56(1):1–18. https://doi.org/10.1111/joms.12427

DeSimone JA, Köhler T, Schoen JL (2019) If it were only that easy: the use of meta-analytic research by organizational scholars. Organ Res Methods 22(4):867–891. https://doi.org/10.1177/1094428118756743

DeSimone JA, Brannick MT, O’Boyle EH, Ryu JW (2020) Recommendations for reviewing meta-analyses in organizational research. Organ Res Methods 56:455–463

Duval S, Tweedie R (2000a) Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463

Duval S, Tweedie R (2000b) A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J Am Stat Assoc 95(449):89–98

Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

Eisend M (2017) Meta-Analysis in advertising research. J Advert 46(1):21–35

Elliott JH, Synnot A, Turner T, Simmons M, Akl EA, McDonald S, Salanti G, Meerpohl J, MacLehose H, Hilton J, Tovey D, Shemilt I, Thomas J (2017) Living systematic review: 1. Introduction—the why, what, when, and how. J Clin Epidemiol 91:2330. https://doi.org/10.1016/j.jclinepi.2017.08.010

Field AP, Gillett R (2010) How to do a meta-analysis. Br J Math Stat Psychol 63(3):665–694

Fisch C, Block J (2018) Six tips for your (systematic) literature review in business and management research. Manag Rev Quart 68:103–106

Fortunato S, Bergstrom CT, Börner K, Evans JA, Helbing D, Milojević S, Petersen AM, Radicchi F, Sinatra R, Uzzi B, Vespignani A (2018) Science of science. Science 359(6379). https://doi.org/10.1126/science.aao0185

Geyer-Klingeberg J, Hang M, Rathgeber A (2020) Meta-analysis in finance research: Opportunities, challenges, and contemporary applications. Int Rev Finan Anal 71:101524

Geyskens I, Krishnan R, Steenkamp JBE, Cunha PV (2009) A review and evaluation of meta-analysis practices in management research. J Manag 35(2):393–419

Glass GV (2015) Meta-analysis at middle age: a personal history. Res Synth Methods 6(3):221–231

Gonzalez-Mulé E, Aguinis H (2018) Advancing theory by assessing boundary conditions with metaregression: a critical review and best-practice recommendations. J Manag 44(6):2246–2273

Gooty J, Banks GC, Loignon AC, Tonidandel S, Williams CE (2021) Meta-analyses as a multi-level model. Organ Res Methods 24(2):389–411. https://doi.org/10.1177/1094428119857471

Grewal D, Puccinelli N, Monroe KB (2018) Meta-analysis: integrating accumulated knowledge. J Acad Mark Sci 46(1):9–30

Gurevitch J, Koricheva J, Nakagawa S, Stewart G (2018) Meta-analysis and the science of research synthesis. Nature 555(7695):175–182

Gusenbauer M, Haddaway NR (2020) Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res Synth Methods 11(2):181–217

Habersang S, Küberling-Jost J, Reihlen M, Seckler C (2019) A process perspective on organizational failure: a qualitative meta-analysis. J Manage Stud 56(1):19–56

Harari MB, Parola HR, Hartwell CJ, Riegelman A (2020) Literature searches in systematic reviews and meta-analyses: A review, evaluation, and recommendations. J Vocat Behav 118:103377

Harrison JS, Banks GC, Pollack JM, O’Boyle EH, Short J (2017) Publication bias in strategic management research. J Manag 43(2):400–425

Havránek T, Stanley TD, Doucouliagos H, Bom P, Geyer-Klingeberg J, Iwasaki I, Reed WR, Rost K, Van Aert RCM (2020) Reporting guidelines for meta-analysis in economics. J Econ Surveys 34(3):469–475

Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, Orlando

Hedges LV, Vevea JL (2005) Selection methods approaches. In: Rothstein HR, Sutton A, Borenstein M (eds) Publication bias in meta-analysis: prevention, assessment, and adjustments. Wiley, Chichester, pp 145–174

Hoon C (2013) Meta-synthesis of qualitative case studies: an approach to theory building. Organ Res Methods 16(4):522–556

Hunter JE, Schmidt FL (1990) Methods of meta-analysis: correcting error and bias in research findings. Sage, Newbury Park

Hunter JE, Schmidt FL (2004) Methods of meta-analysis: correcting error and bias in research findings, 2nd edn. Sage, Thousand Oaks

Hunter JE, Schmidt FL, Jackson GB (1982) Meta-analysis: cumulating research findings across studies. Sage Publications, Beverly Hills

Jak S (2015) Meta-analytic structural equation modelling. Springer, New York, NY

Kepes S, Banks GC, McDaniel M, Whetzel DL (2012) Publication bias in the organizational sciences. Organ Res Methods 15(4):624–662

Kepes S, McDaniel MA, Brannick MT, Banks GC (2013) Meta-analytic reviews in the organizational sciences: Two meta-analytic schools on the way to MARS (the Meta-Analytic Reporting Standards). J Bus Psychol 28(2):123–143

Kraus S, Breier M, Dasí-Rodríguez S (2020) The art of crafting a systematic literature review in entrepreneurship research. Int Entrepreneur Manag J 16(3):1023–1042

Levitt HM (2018) How to conduct a qualitative meta-analysis: tailoring methods to enhance methodological integrity. Psychother Res 28(3):367–378

Levitt HM, Bamberg M, Creswell JW, Frost DM, Josselson R, Suárez-Orozco C (2018) Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: the APA publications and communications board task force report. Am Psychol 73(1):26

Lipsey MW, Wilson DB (2001) Practical meta-analysis. Sage Publications, Inc.

López-López JA, Page MJ, Lipsey MW, Higgins JP (2018) Dealing with effect size multiplicity in systematic reviews and meta-analyses. Res Synth Methods 9(3):336–351

Martín-Martín A, Thelwall M, Orduna-Malea E, López-Cózar ED (2021) Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics 126(1):871–906

Merton RK (1968) The Matthew effect in science: the reward and communication systems of science are considered. Science 159(3810):56–63

Moeyaert M, Ugille M, Natasha Beretvas S, Ferron J, Bunuan R, Van den Noortgate W (2017) Methods for dealing with multiple outcomes in meta-analysis: a comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. Int J Soc Res Methodol 20(6):559–572

Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine. 6(7):e1000097

Mongeon P, Paul-Hus A (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics 106(1):213–228

Moreau D, Gamble B (2020) Conducting a meta-analysis in the age of open science: Tools, tips, and practical recommendations. Psychol Methods. https://doi.org/10.1037/met0000351

O’Mara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S (2015) Using text mining for study identification in systematic reviews: a systematic review of current approaches. Syst Rev 4(1):1–22

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5(1):1–10

Owen E, Li Q (2021) The conditional nature of publication bias: a meta-regression analysis. Polit Sci Res Methods 9(4):867–877

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E,McDonald S,McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372. https://doi.org/10.1136/bmj.n71

Palmer TM, Sterne JAC (eds) (2016) Meta-analysis in stata: an updated collection from the stata journal, 2nd edn. Stata Press, College Station, TX

Pigott TD, Polanin JR (2020) Methodological guidance paper: High-quality meta-analysis in a systematic review. Rev Educ Res 90(1):24–46

Polanin JR, Tanner-Smith EE, Hennessy EA (2016) Estimating the difference between published and unpublished effect sizes: a meta-review. Rev Educ Res 86(1):207–236

Polanin JR, Hennessy EA, Tanner-Smith EE (2017) A review of meta-analysis packages in R. J Edu Behav Stat 42(2):206–242

Polanin JR, Hennessy EA, Tsuji S (2020) Transparency and reproducibility of meta-analyses in psychology: a meta-review. Perspect Psychol Sci 15(4):1026–1041. https://doi.org/10.1177/17456916209064

R Core Team (2021). R: A language and environment for statistical computing . R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ .

Rauch A (2020) Opportunities and threats in reviewing entrepreneurship theory and practice. Entrep Theory Pract 44(5):847–860

Rauch A, van Doorn R, Hulsink W (2014) A qualitative approach to evidence–based entrepreneurship: theoretical considerations and an example involving business clusters. Entrep Theory Pract 38(2):333–368

Raudenbush SW (2009) Analyzing effect sizes: Random-effects models. In: Cooper H, Hedges LV, Valentine JC (eds) The handbook of research synthesis and meta-analysis, 2nd edn. Russell Sage Foundation, New York, NY, pp 295–315

Rosenthal R (1979) The file drawer problem and tolerance for null results. Psychol Bull 86(3):638

Rothstein HR, Sutton AJ, Borenstein M (2005) Publication bias in meta-analysis: prevention, assessment and adjustments. Wiley, Chichester

Roth PL, Le H, Oh I-S, Van Iddekinge CH, Bobko P (2018) Using beta coefficients to impute missing correlations in meta-analysis research: Reasons for caution. J Appl Psychol 103(6):644–658. https://doi.org/10.1037/apl0000293

Rudolph CW, Chang CK, Rauvola RS, Zacher H (2020) Meta-analysis in vocational behavior: a systematic review and recommendations for best practices. J Vocat Behav 118:103397

Schmidt FL (2017) Statistical and measurement pitfalls in the use of meta-regression in meta-analysis. Career Dev Int 22(5):469–476

Schmidt FL, Hunter JE (2015) Methods of meta-analysis: correcting error and bias in research findings. Sage, Thousand Oaks

Schwab A (2015) Why all researchers should report effect sizes and their confidence intervals: Paving the way for meta–analysis and evidence–based management practices. Entrepreneurship Theory Pract 39(4):719–725. https://doi.org/10.1111/etap.12158

Shaw JD, Ertug G (2017) The suitability of simulations and meta-analyses for submissions to Academy of Management Journal. Acad Manag J 60(6):2045–2049

Soderberg CK (2018) Using OSF to share data: A step-by-step guide. Adv Methods Pract Psychol Sci 1(1):115–120

Stanley TD, Doucouliagos H (2010) Picture this: a simple graph that reveals much ado about research. J Econ Surveys 24(1):170–191

Stanley TD, Doucouliagos H (2012) Meta-regression analysis in economics and business. Routledge, London

Stanley TD, Jarrell SB (1989) Meta-regression analysis: a quantitative method of literature surveys. J Econ Surveys 3:54–67

Steel P, Beugelsdijk S, Aguinis H (2021) The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews. J Int Bus Stud 52(1):23–44

Suurmond R, van Rhee H, Hak T (2017) Introduction, comparison, and validation of Meta-Essentials: a free and simple tool for meta-analysis. Res Synth Methods 8(4):537–553

The Cochrane Collaboration (2020). Review Manager (RevMan) [Computer program] (Version 5.4).

Thomas J, Noel-Storr A, Marshall I, Wallace B, McDonald S, Mavergames C, Glasziou P, Shemilt I, Synnot A, Turner T, Elliot J (2017) Living systematic reviews: 2. Combining human and machine effort. J Clin Epidemiol 91:31–37

Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21(11):1559–1573

Tipton E, Pustejovsky JE, Ahmadi H (2019) A history of meta-regression: technical, conceptual, and practical developments between 1974 and 2018. Res Synth Methods 10(2):161–179

Vevea JL, Woods CM (2005) Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. Psychol Methods 10(4):428–443

Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48

Viechtbauer W, Cheung MWL (2010) Outlier and influence diagnostics for meta-analysis. Res Synth Methods 1(2):112–125

Viswesvaran C, Ones DS (1995) Theory testing: combining psychometric meta-analysis and structural equations modeling. Pers Psychol 48(4):865–885

Wilson SJ, Polanin JR, Lipsey MW (2016) Fitting meta-analytic structural equation models with complex datasets. Res Synth Methods 7(2):121–139. https://doi.org/10.1002/jrsm.1199

Wood JA (2008) Methodology for dealing with duplicate study effects in a meta-analysis. Organ Res Methods 11(1):79–95

Download references

Open Access funding enabled and organized by Projekt DEAL. No funding was received to assist with the preparation of this manuscript.

Author information

Authors and affiliations.

University of Luxembourg, Luxembourg, Luxembourg

Christopher Hansen

Leibniz Institute for Psychology (ZPID), Trier, Germany

Holger Steinmetz

Trier University, Trier, Germany

Erasmus University Rotterdam, Rotterdam, The Netherlands

Wittener Institut Für Familienunternehmen, Universität Witten/Herdecke, Witten, Germany

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jörn Block .

Ethics declarations

Conflict of interest.

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

See Table 1 .

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Hansen, C., Steinmetz, H. & Block, J. How to conduct a meta-analysis in eight steps: a practical guide. Manag Rev Q 72 , 1–19 (2022). https://doi.org/10.1007/s11301-021-00247-4

Download citation

Published : 30 November 2021

Issue Date : February 2022

DOI : https://doi.org/10.1007/s11301-021-00247-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

Logo for Idaho Pressbooks Consortium

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

46 Introduction to Analysis Writing

Amy Minervini

by Amy Minervini

Analysis is the process of digging deeper into what we read, see, and hear. This skill is used both in academic writing and in everyday life. In-depth exploration helps us to more effectively understand issues in society and our daily lives, including but not limited to the articles and books we read, the videos we watch, the brands and ads that influence our buying habits, and the songs we listen to. We can analyze authors, subjects, issues, images, and texts of all kinds using various methods of analysis. This chapter will introduce you to rhetorical and visual analysis, text and literary analysis, and cause and effect (another form of analysis).

Key Characteristics

Analysis writing generally exhibits the following:

  • Scrutinizing the details of a subject or text and then interpreting those details to show a particular point of view or theme is being conveyed
  • Using a subjective point of view, backed up by evidence
  • Determining the use of and quality of rhetorical strategies (pathos, ethos, logos, and kairos) used by others, see the Reading and Writing Rhetorically chapter for more information
  • An incorporation of ethos, pathos, and logos to help support claims
  • Awareness of and critique of bias that seeps in–for more information on this aspect, see the Addressing Bias and Stakeholder Concerns chapter for more information

Essay Types within this Chapter

  • Rhetorical Analysis
  • Textual (Article) Analysis
  • Literary Analysis
  • Image Analysis
  • Film Analysis
  • Cause and Effect

Introduction to Analysis Writing Copyright © 2020 by Amy Minervini is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

No internet connection.

All search filters on the page have been cleared., your search has been saved..

  • All content
  • Dictionaries
  • Encyclopedias
  • Expert Insights
  • Foundations
  • How-to Guides
  • Journal Articles
  • Little Blue Books
  • Little Green Books
  • Project Planner
  • Tools Directory
  • Sign in to my profile My Profile

Not Logged In

  • Sign in Signed in
  • My profile My Profile

Not Logged In

An Introduction to Research, Analysis, and Writing: Practical Skills for Social Science Students

  • Edited by: Bruce Oliver Newsome
  • Publisher: SAGE Publications, Inc
  • Publication year: 2016
  • Online pub date: January 19, 2023
  • Discipline: Sociology , Criminology and Criminal Justice , Business and Management , Communication and Media Studies , Education , Psychology , Health , Social Work , Political Science and International Relations
  • Methods: Case study research , Survey research , Theory
  • DOI: https:// doi. org/10.4135/9781071909829
  • Keywords: crime , knowledge , persons , scope , sentencing , terrorism , war Show all Show less
  • Print ISBN: 9781483352558
  • Online ISBN: 9781071909829
  • Buy the book icon link

Subject index

This accessible guide walks readers through the process of completing a social science research project. Written specifically to meet the needs of undergraduate research classes, it introduces students to a complete skill set, including: planning, design, analysis, argumentation, criticizing theories, building theories, modeling theories, choosing methods, gathering data, presenting evidence, and writing the final product. Students can use this text as a practical resource to navigate through each stage of the process, including choices between more advanced research techniques.

Front Matter

  • Acknowledgments
  • About the Author
  • Chapter 1: The Way Ahead
  • Chapter 2: The Research Process
  • Chapter 3: Research Ethics and Laws
  • Chapter 4: Scoping, Justifying, Designing, and Planning
  • Chapter 5: Reading and Reviewing
  • Chapter 6: Analysis
  • Chapter 7: Arguing and Explaining
  • Chapter 8: Theorizing and Modeling
  • Chapter 9: Methods
  • Chapter 10: Evidence and Data
  • Chapter 11: Writing

Back Matter

Sign in to access this content, get a 30 day free trial, more like this, sage recommends.

We found other relevant content for you on other Sage platforms.

Have you created a personal profile? Login or create a profile so that you can save clips, playlists and searches

  • Sign in/register

Navigating away from this page will delete your results

Please save your results to "My Self-Assessments" in your profile before navigating away from this page.

Sign in to my profile

Sign up for a free trial and experience all Sage Learning Resources have to offer.

You must have a valid academic email address to sign up.

Get off-campus access

  • View or download all content my institution has access to.

Sign up for a free trial and experience all Sage Research Methods has to offer.

  • view my profile
  • view my lists
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Finance and Business
  • Business Skills
  • Business Writing

How to Write an Analysis

Last Updated: March 28, 2024 Fact Checked

This article was co-authored by Christopher Taylor, PhD and by wikiHow staff writer, Megaera Lorenz, PhD . Christopher Taylor is an Adjunct Assistant Professor of English at Austin Community College in Texas. He received his PhD in English Literature and Medieval Studies from the University of Texas at Austin in 2014. There are 14 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 288,942 times.

An analysis is a piece of writing that looks at some aspect of a document in detail. To write a good analysis, you’ll need to ask yourself questions that focus on how and why the document works the way it does. You can start the process by gathering information about the subject of your analysis and defining the questions your analysis will answer. Once you’ve outlined your main arguments, look for specific evidence to support them. You can then work on putting your analysis together into a coherent piece of writing.

Gathering Information and Building Your Argument

Step 1 Review your assignment carefully.

  • If your analysis is supposed to answer a specific question or focus on a particular aspect of the document you are analyzing.
  • If there are any length or formatting requirements for the analysis.
  • The citation style your instructor wants you to use.
  • On what criteria your instructor will evaluate your analysis (e.g., organization, originality, good use of references and quotations, or correct spelling and grammar).

Step 2 Gather basic information about the subject of your analysis.

  • The title of the document (if it has one).
  • The name of the creator of the document. For example, depending on the type of document you’re working with, this could be the author, artist, director, performer, or photographer.
  • The form and medium of the document (e.g., “Painting, oil on canvas”).
  • When and where the document was created.
  • The historical and cultural context of the work.

Step 3 Do a close reading of the document and take notes.

  • Who you believe the intended audience is for the advertisement.
  • What rhetorical choices the author made to persuade the audience of their main point.
  • What product is being advertised.
  • How the poster uses images to make the product look appealing.
  • Whether there is any text in the poster, and, if so, how it works together with the images to reinforce the message of the ad.
  • What the purpose of the ad is or what its main point is.

Step 4 Determine which question(s) you would like to answer with your analysis.

  • For example, if you’re analyzing an advertisement poster, you might focus on the question: “How does this poster use colors to symbolize the problem that the product is intended to fix? Does it also use color to represent the beneficial results of using the product?”

Step 5 Make a list of your main arguments.

  • For example, you might write, “This poster uses the color red to symbolize the pain of a headache. The blue elements in the design represent the relief brought by the product.”
  • You could develop the argument further by saying, “The colors used in the text reinforce the use of colors in the graphic elements of the poster, helping the viewer make a direct connection between the words and images.”

Step 6 Gather evidence and examples to support your arguments.

  • For example, if you’re arguing that the advertisement poster uses red to represent pain, you might point out that the figure of the headache sufferer is red, while everyone around them is blue. Another piece of evidence might be the use of red lettering for the words “HEADACHE” and “PAIN” in the text of the poster.
  • You could also draw on outside evidence to support your claims. For example, you might point out that in the country where the advertisement was produced, the color red is often symbolically associated with warnings or danger.

Tip: If you’re analyzing a text, make sure to properly cite any quotations that you use to support your arguments. Put any direct quotations in quotation marks (“”) and be sure to give location information, such as the page number where the quote appears. Additionally, follow the citation requirements for the style guide assigned by your instructor or one that's commonly used for the subject matter you're writing about.

Organizing and Drafting Your Analysis

Step 1 Write a brief...

  • For example, “The poster ‘Say! What a relief,’ created in 1932 by designer Dorothy Plotzky, uses contrasting colors to symbolize the pain of a headache and the relief brought by Miss Burnham’s Pep-Em-Up Pills. The red elements denote pain, while blue ones indicate soothing relief.”

Tip: Your instructor might have specific directions about which information to include in your thesis statement (e.g., the title, author, and date of the document you are analyzing). If you’re not sure how to format your thesis statement or topic sentence, don’t hesitate to ask.

Step 2 Create an outline...

  • a. Background
  • ii. Analysis/Explanation
  • iii. Example
  • iv. Analysis/Explanation
  • III. Conclusion

Step 3 Draft an introductory paragraph.

  • For example, “In the late 1920s, Kansas City schoolteacher Ethel Burnham developed a patent headache medication that quickly achieved commercial success throughout the American Midwest. The popularity of the medicine was largely due to a series of simple but eye-catching advertising posters that were created over the next decade. The poster ‘Say! What a relief,’ created in 1932 by designer Dorothy Plotzky, uses contrasting colors to symbolize the pain of a headache and the relief brought by Miss Burnham’s Pep-Em-Up Pills.”

Step 4 Use the body of the essay to present your main arguments.

  • Make sure to include clear transitions between each argument and each paragraph. Use transitional words and phrases, such as “Furthermore,” “Additionally,” “For example,” “Likewise,” or “In contrast . . .”
  • The best way to organize your arguments will vary based on the individual topic and the specific points you are trying to make. For example, in your analysis of the poster, you might start with arguments about the red visual elements and then move on to a discussion about how the red text fits in.

Step 5 Compose a conclusion...

  • For example, you might end your essay with a few sentences about how other advertisements at the time might have been influenced by Dorothy Plotzky’s use of colors.

Step 6 Avoid presenting your personal opinions on the document.

  • For example, in your discussion of the advertisement, avoid stating that you think the art is “beautiful” or that the advertisement is “boring.” Instead, focus on what the poster was supposed to accomplish and how the designer attempted to achieve those goals.

Polishing Your Analysis

Step 1 Check that the organization of your analysis makes sense.

  • For example, if your essay currently skips around between discussions of the red and blue elements of the poster, consider reorganizing it so that you discuss all the red elements first, then focus on the blue ones.

Step 2 Look for areas where you might clarify your writing or add details.

  • For example, you might look for places where you could provide additional examples to support one of your major arguments.

Step 3 Cut out any irrelevant passages.

  • For example, if you included a paragraph about Dorothy Plotzky’s previous work as a children’s book illustrator, you may want to cut it if it doesn’t somehow relate to her use of color in advertising.
  • Cutting material out of your analysis may be difficult, especially if you put a lot of thought into each sentence or found the additional material really interesting. Your analysis will be stronger if you keep it concise and to the point, however.

Step 4 Proofread your writing and fix any errors.

  • You may find it helpful to have someone else go over your essay and look for any mistakes you might have missed.

Tip: When you’re reading silently, it’s easy to miss typos and other small errors because your brain corrects them automatically. Reading your work out loud can make problems easier to spot.

Sample Analysis Outline and Conclusion

analysis research writing

Expert Q&A

Christopher Taylor, PhD

You Might Also Like

Write

  • ↑ https://lsa.umich.edu/sweetland/undergraduates/writing-guides/how-do-i-make-sure-i-understand-an-assignment-.html
  • ↑ https://www.bucks.edu/media/bcccmedialibrary/pdf/HOWTOWRITEALITERARYANALYSISESSAY_10.15.07_001.pdf
  • ↑ https://owl.purdue.edu/owl/general_writing/visual_rhetoric/analyzing_visual_documents/elements_of_analysis.html
  • ↑ https://lsa.umich.edu/sweetland/undergraduates/writing-guides/how-can-i-create-stronger-analysis-.html
  • ↑ https://lsa.umich.edu/sweetland/undergraduates/writing-guides/how-do-i-decide-what-i-should-argue-.html
  • ↑ https://lsa.umich.edu/sweetland/undergraduates/writing-guides/how-do-i-effectively-integrate-textual-evidence-.html
  • ↑ https://writingcenter.uagc.edu/writing-a-thesis
  • ↑ https://owl.purdue.edu/owl/general_writing/visual_rhetoric/analyzing_visual_documents/organizing_your_analysis.html
  • ↑ https://lsa.umich.edu/sweetland/undergraduates/writing-guides/how-do-i-write-an-intro--conclusion----body-paragraph.html
  • ↑ http://utminers.utep.edu/omwilliamson/engl0310/Textanalysis.htm
  • ↑ https://owl.purdue.edu/owl/graduate_writing/graduate_writing_topics/graduate_writing_organization_structure_new.html
  • ↑ https://owl.purdue.edu/owl/general_writing/mechanics/sentence_clarity.html
  • ↑ https://writingcenter.unc.edu/tips-and-tools/conciseness-handout/
  • ↑ https://writingcenter.unc.edu/tips-and-tools/editing-and-proofreading/

About This Article

Christopher Taylor, PhD

If you need to write an analysis, first look closely at your assignment to make sure you understand the requirements. Then, gather background information about the document you’ll be analyzing and do a close read so that you’re thoroughly familiar with the subject matter. If it’s not already specified in your assignment, come up with one or more specific question’s you’d like your analysis to answer, then outline your main arguments. Finally, gather evidence and examples to support your arguments. Read on to learn how to organize, draft, and polish your analysis! Did this summary help you? Yes No

  • Send fan mail to authors

Did this article help you?

Am I a Narcissist or an Empath Quiz

Featured Articles

What Does a Forehead Kiss Mean? 10+ Reasons Behind This Personal Peck

Trending Articles

8 Reasons Why Life Sucks & 15 Ways to Deal With It

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Develop the tech skills you need for work and life

Academic Success Center

Research Writing and Analysis

  • NVivo Group and Study Sessions
  • SPSS This link opens in a new window
  • Statistical Analysis Group sessions
  • Using Qualtrics
  • Dissertation and Data Analysis Group Sessions
  • Research Process Flow Chart
  • Research Alignment This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • Problem Statement
  • Purpose Statement
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Trustworthiness of Qualitative Data
  • Analysis and Coding Example- Qualitative Data
  • Thematic Data Analysis in Qualitative Design
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Person typing on a laptop

Research Writing: The 5-Step Approach

What is research writing? 

Research writing involves f inding a topic, i dentifying a problem, g athering research, and l ogically presenting the evidence u sing scholarly writing conventions.  

A circle graph of the 5 steps to research writing

How to improve research writing skills?

Implement a plan before and during the process to develop your research writing skills by following the five-step process.

Was this resource helpful?

  • << Previous: Research Alignment
  • Next: Step 1: Seek Out Evidence >>
  • Last Updated: Mar 20, 2024 11:50 AM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

Writing Center Home Page

OASIS: Writing Center

Using evidence: analysis.

Beyond introducing and integrating your paraphrases and quotations, you also need to analyze the evidence in your paragraphs. Analysis is your opportunity to contextualize and explain the evidence for your reader. Your analysis might tell the reader why the evidence is important, what it means, or how it connects to other ideas in your writing.

Note that analysis often leads to synthesis , an extension and more complicated form of analysis. See our synthesis page for more information.

Example 1 of Analysis

Without analysis.

Embryonic stem cell research uses the stem cells from an embryo, causing much ethical debate in the scientific and political communities (Robinson, 2011). "Politicians don't know science" (James, 2010, p. 24). Academic discussion of both should continue (Robinson, 2011).

With Analysis (Added in Bold)

Embryonic stem cell research uses the stem cells from an embryo, causing much ethical debate in the scientific and political communities (Robinson, 2011). However, many politicians use the issue to stir up unnecessary emotion on both sides of the issues. James (2010) explained that "politicians don't know science," (p. 24) so scientists should not be listening to politics. Instead, Robinson (2011) suggested that academic discussion of both embryonic and adult stem cell research should continue in order for scientists to best utilize their resources while being mindful of ethical challenges.

Note that in the first example, the reader cannot know how the quotation fits into the paragraph. Also, note that the word both was unclear. In the revision, however, that the writer clearly (a) explained the quotations as well as the source material, (b) introduced the information sufficiently, and (c) integrated the ideas into the paragraph.

Example 2 of Analysis

Trow (1939) measured the effects of emotional responses on learning and found that student memorization dropped greatly with the introduction of a clock. Errors increased even more when intellectual inferiority regarding grades became a factor (Trow, 1939). The group that was allowed to learn free of restrictions from grades and time limits performed better on all tasks (Trow, 1939).

In this example, the author has successfully paraphrased the key findings from a study. However, there is no conclusion being drawn about those findings. Readers have a difficult time processing the evidence without some sort of ending explanation, an answer to the question so what? So what about this study? Why does it even matter?

Trow (1939) measured the effects of emotional responses on learning and found that student memorization dropped greatly with the introduction of a clock. Errors increased even more when intellectual inferiority regarding grades became a factor (Trow, 1939). The group that was allowed to learn free of restrictions from grades and time limits performed better on all tasks (Trow, 1939). Therefore, negative learning environments and students' emotional reactions can indeed hinder achievement.

Here the meaning becomes clear. The study’s findings support the claim the reader is making: that school environment affects achievement.

Analysis Video Playlist

Note that these videos were created while APA 6 was the style guide edition in use. There may be some examples of writing that have not been updated to APA 7 guidelines.

Related Resources

Webinar

Didn't find what you need? Search our website or email us .

Read our website accessibility and accommodation statement .

  • Previous Page: Quotation
  • Next Page: Synthesis
  • Office of Student Disability Services

Walden Resources

Departments.

  • Academic Residencies
  • Academic Skills
  • Career Planning and Development
  • Customer Care Team
  • Field Experience
  • Military Services
  • Student Success Advising
  • Writing Skills

Centers and Offices

  • Center for Social Change
  • Office of Academic Support and Instructional Services
  • Office of Degree Acceleration
  • Office of Research and Doctoral Services
  • Office of Student Affairs

Student Resources

  • Doctoral Writing Assessment
  • Form & Style Review
  • Quick Answers
  • ScholarWorks
  • SKIL Courses and Workshops
  • Walden Bookstore
  • Walden Catalog & Student Handbook
  • Student Safety/Title IX
  • Legal & Consumer Information
  • Website Terms and Conditions
  • Cookie Policy
  • Accessibility
  • Accreditation
  • State Authorization
  • Net Price Calculator
  • Contact Walden

Walden University is a member of Adtalem Global Education, Inc. www.adtalem.com Walden University is certified to operate by SCHEV © 2024 Walden University LLC. All rights reserved.

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Primary research involves collecting data about a given subject directly from the real world. This section includes information on what primary research is, how to get started, ethics involved with primary research and different types of research you can do. It includes details about interviews, surveys, observations, and analysis.

Analysis is a type of primary research that involves finding and interpreting patterns in data, classifying those patterns, and generalizing the results. It is useful when looking at actions, events, or occurrences in different texts, media, or publications. Analysis can usually be done without considering most of the ethical issues discussed in the overview, as you are not working with people but rather publicly accessible documents. Analysis can be done on new documents or performed on raw data that you yourself have collected.

Here are several examples of analysis:

  • Recording commercials on three major television networks and analyzing race and gender within the commercials to discover some conclusion.
  • Analyzing the historical trends in public laws by looking at the records at a local courthouse.
  • Analyzing topics of discussion in chat rooms for patterns based on gender and age.

Analysis research involves several steps:

  • Finding and collecting documents.
  • Specifying criteria or patterns that you are looking for.
  • Analyzing documents for patterns, noting number of occurrences or other factors.

Banner

The Power of Analysis: Tips and Tricks for Writing Analysis Essays: Home

Crystal sosa.

Profile Photo

Helpful Links

  • Super Search Webpage Where to start your research.
  • Scribbr Textual analysis guide.
  • Analyzing Texts Prezi Presentation A prezi presentation on analyzing texts.
  • Writing Essays Guide A guide to writing essays/
  • Why is it important?
  • Explanation & Example
  • Different Types of Analysis Essays

analysis research writing

Text analysis and writing analysis texts are important skills to develop as they allow individuals to critically engage with written material, understand underlying themes and arguments, and communicate their own ideas in a clear and effective manner. These skills are essential in academic and professional settings, as well as in everyday life, as they enable individuals to evaluate information and make informed decisions.

What is Text Analysis?

Text analysis is the process of examining and interpreting a written or spoken text to understand its meaning, structure, and context. It involves breaking down the text into its constituent parts, such as words, phrases, and sentences, and analyzing how they work together to convey a particular message or idea.

Text analysis can be used to explore a wide range of textual material, including literature, poetry, speeches, and news articles, and it is often employed in academic research, literary criticism, and media analysis. By analyzing texts, we can gain deeper insights into their meanings, uncover hidden messages and themes, and better understand the social and cultural contexts in which they were produced.

What is an Analysis Essay?

An analysis essay is a type of essay that requires the writer to analyze and interpret a particular text or topic. The goal of an analysis essay is to break down the text or topic into smaller parts and examine each part carefully. This allows the writer to make connections between different parts of the text or topic and develop a more comprehensive understanding of it.

In “The Yellow Wallpaper,” Charlotte Perkins Gilman uses the first-person point of view and vivid descriptions of the protagonist’s surroundings to convey the protagonist’s psychological deterioration. By limiting the reader’s understanding of the story’s events to the protagonist’s perspective, Gilman creates a sense of claustrophobia and paranoia, mirroring the protagonist’s own feelings. Additionally, the use of sensory language, such as the “smooch of rain,” and descriptions of the “yellow wallpaper” and its “sprawling flamboyant patterns,” further emphasize the protagonist’s sensory and emotional experience. Through these techniques, Gilman effectively communicates the protagonist’s descent into madness and the effects of societal oppression on women’s mental health.

There are several different types of analysis essays, including:

Literary Analysis Essays: These essays examine a work of literature and analyze various literary devices such as character development, plot, theme, and symbolism.

Rhetorical Analysis Essays: These essays examine how authors use language and rhetoric to persuade their audience, focusing on the author's tone, word choice, and use of rhetorical devices.

Film Analysis Essays: These essays analyze a film's themes, characters, and visual elements, such as cinematography and sound.

Visual Analysis Essays: These essays analyze visual art, such as paintings or sculptures, and explore how the artwork's elements work together to create meaning.

Historical Analysis Essays: These essays analyze historical events or documents and examine their causes, effects, and implications.

Comparative Analysis Essays: These essays compare and contrast two or more works, focusing on similarities and differences between them.

Process Analysis Essays: These essays explain how to do something or how something works, providing a step-by-step analysis of a process.

Analyzing Texts

  • General Tips
  • How to Analyze
  • What to Analyze

When writing an essay, it's essential to analyze your topic thoroughly. Here are some suggestions for analyzing your topic:

Read carefully: Start by reading your text or prompt carefully. Make sure you understand the key points and what the text or prompt is asking you to do.

Analyze the text or topic thoroughly: Analyze the text or topic thoroughly by breaking it down into smaller parts and examining each part carefully. This will help you make connections between different parts of the text or topic and develop a more comprehensive understanding of it.

Identify key concepts: Identify the key concepts, themes, and ideas in the text or prompt. This will help you focus your analysis.

Take notes: Take notes on important details and concepts as you read. This will help you remember what you've read and organize your thoughts.

Consider different perspectives: Consider different perspectives and interpretations of the text or prompt. This can help you create a more well-rounded analysis.

Use evidence: Use evidence from the text or outside sources to support your analysis. This can help you make your argument stronger and more convincing.

Formulate your thesis statement: Based on your analysis of the essay, formulate your thesis statement. This should be a clear and concise statement that summarizes your main argument.

Use clear and concise language: Use clear and concise language to communicate your ideas effectively. Avoid using overly complicated language that may confuse your reader.

Revise and edit: Revise and edit your essay carefully to ensure that it is clear, concise, and free of errors.

  • Understanding the assignment: Make sure you fully understand the assignment and the purpose of the analysis. This will help you focus your analysis and ensure that you are meeting the requirements of the assignment.

Read the essay multiple times: Reading the essay multiple times will help you to identify the author's main argument, key points, and supporting evidence.

Take notes: As you read the essay, take notes on key points, quotes, and examples. This will help you to organize your thoughts and identify patterns in the author's argument.

Take breaks: It's important to take breaks while reading academic essays to avoid burnout. Take a break every 20-30 minutes and do something completely different, like going for a walk or listening to music. This can help you to stay refreshed and engaged.

Highlight or underline key points: As you read, highlight or underline key points, arguments, and evidence that stand out to you. This will help you to remember and analyze important information later.

Ask questions: Ask yourself questions as you read to help you engage critically with the text. What is the author's argument? What evidence do they use to support their claims? What are the strengths and weaknesses of their argument?

Engage in active reading: Instead of passively reading, engage in active reading by asking questions, making connections to other readings or personal experiences, and reflecting on what you've read.

Find a discussion partner: Find someone to discuss the essay with, whether it's a classmate, a friend, or a teacher. Discussing the essay can help you to process and analyze the information more deeply, and can also help you to stay engaged.

  • Identify the author's purpose and audience: Consider why the author wrote the essay and who their intended audience is. This will help you to better understand the author's perspective and the purpose of their argument.

Analyze the structure of the essay: Consider how the essay is structured and how this supports the author's argument. Look for patterns in the organization of ideas and the use of transitions.

Evaluate the author's use of evidence: Evaluate the author's use of evidence and how it supports their argument. Consider whether the evidence is credible, relevant, and sufficient to support the author's claims.

Consider the author's tone and style: Consider the author's tone and style and how it contributes to their argument. Look for patterns in the use of language, imagery, and rhetorical devices.

Consider the context : Consider the context in which the essay was written, such as the author's background, the time period, and any societal or cultural factors that may have influenced their perspective.

Evaluate the evidence: Evaluate the evidence presented in the essay and consider whether it is sufficient to support the author's argument. Look for any biases or assumptions that may be present in the evidence.

Consider alternative viewpoints: Consider alternative viewpoints and arguments that may challenge the author's perspective. This can help you to engage critically with the text and develop a more well-rounded understanding of the topic.

analysis research writing

  • Last Updated: Jun 21, 2023 1:01 PM
  • URL: https://odessa.libguides.com/analysis

Creative Commons License

8.5 Writing Process: Creating an Analytical Report

Learning outcomes.

By the end of this section, you will be able to:

  • Identify the elements of the rhetorical situation for your report.
  • Find and focus a topic to write about.
  • Gather and analyze information from appropriate sources.
  • Distinguish among different kinds of evidence.
  • Draft a thesis and create an organizational plan.
  • Compose a report that develops ideas and integrates evidence from sources.
  • Give and act on productive feedback to works in progress.

You might think that writing comes easily to experienced writers—that they draft stories and college papers all at once, sitting down at the computer and having sentences flow from their fingers like water from a faucet. In reality, most writers engage in a recursive process, pushing forward, stepping back, and repeating steps multiple times as their ideas develop and change. In broad strokes, the steps most writers go through are these:

  • Planning and Organization . You will have an easier time drafting if you devote time at the beginning to consider the rhetorical situation for your report, understand your assignment, gather ideas and information, draft a thesis statement, and create an organizational plan.
  • Drafting . When you have an idea of what you want to say and the order in which you want to say it, you’re ready to draft. As much as possible, keep going until you have a complete first draft of your report, resisting the urge to go back and rewrite. Save that for after you have completed a first draft.
  • Review . Now is the time to get feedback from others, whether from your instructor, your classmates, a tutor in the writing center, your roommate, someone in your family, or someone else you trust to read your writing critically and give you honest feedback.
  • Revising . With feedback on your draft, you are ready to revise. You may need to return to an earlier step and make large-scale revisions that involve planning, organizing, and rewriting, or you may need to work mostly on ensuring that your sentences are clear and correct.

Considering the Rhetorical Situation

Like other kinds of writing projects, a report starts with assessing the rhetorical situation —the circumstance in which a writer communicates with an audience of readers about a subject. As the writer of a report, you make choices based on the purpose of your writing, the audience who will read it, the genre of the report, and the expectations of the community and culture in which you are working. A graphic organizer like Table 8.1 can help you begin.

Summary of Assignment

Write an analytical report on a topic that interests you and that you want to know more about. The topic can be contemporary or historical, but it must be one that you can analyze and support with evidence from sources.

The following questions can help you think about a topic suitable for analysis:

  • Why or how did ________ happen?
  • What are the results or effects of ________?
  • Is ________ a problem? If so, why?
  • What are examples of ________ or reasons for ________?
  • How does ________ compare to or contrast with other issues, concerns, or things?

Consult and cite three to five reliable sources. The sources do not have to be scholarly for this assignment, but they must be credible, trustworthy, and unbiased. Possible sources include academic journals, newspapers, magazines, reputable websites, government publications or agency websites, and visual sources such as TED Talks. You may also use the results of an experiment or survey, and you may want to conduct interviews.

Consider whether visuals and media will enhance your report. Can you present data you collect visually? Would a map, photograph, chart, or other graphic provide interesting and relevant support? Would video or audio allow you to present evidence that you would otherwise need to describe in words?

Another Lens. To gain another analytic view on the topic of your report, consider different people affected by it. Say, for example, that you have decided to report on recent high school graduates and the effect of the COVID-19 pandemic on the final months of their senior year. If you are a recent high school graduate, you might naturally gravitate toward writing about yourself and your peers. But you might also consider the adults in the lives of recent high school graduates—for example, teachers, parents, or grandparents—and how they view the same period. Or you might consider the same topic from the perspective of a college admissions department looking at their incoming freshman class.

Quick Launch: Finding and Focusing a Topic

Coming up with a topic for a report can be daunting because you can report on nearly anything. The topic can easily get too broad, trapping you in the realm of generalizations. The trick is to find a topic that interests you and focus on an angle you can analyze in order to say something significant about it. You can use a graphic organizer to generate ideas, or you can use a concept map similar to the one featured in Writing Process: Thinking Critically About a “Text.”

Asking the Journalist’s Questions

One way to generate ideas about a topic is to ask the five W (and one H) questions, also called the journalist’s questions : Who? What? When? Where? Why? How? Try answering the following questions to explore a topic:

Who was or is involved in ________?

What happened/is happening with ________? What were/are the results of ________?

When did ________ happen? Is ________ happening now?

Where did ________ happen, or where is ________ happening?

Why did ________ happen, or why is ________ happening now?

How did ________ happen?

For example, imagine that you have decided to write your analytical report on the effect of the COVID-19 shutdown on high-school students by interviewing students on your college campus. Your questions and answers might look something like those in Table 8.2 :

Asking Focused Questions

Another way to find a topic is to ask focused questions about it. For example, you might ask the following questions about the effect of the 2020 pandemic shutdown on recent high school graduates:

  • How did the shutdown change students’ feelings about their senior year?
  • How did the shutdown affect their decisions about post-graduation plans, such as work or going to college?
  • How did the shutdown affect their academic performance in high school or in college?
  • How did/do they feel about continuing their education?
  • How did the shutdown affect their social relationships?

Any of these questions might be developed into a thesis for an analytical report. Table 8.3 shows more examples of broad topics and focusing questions.

Gathering Information

Because they are based on information and evidence, most analytical reports require you to do at least some research. Depending on your assignment, you may be able to find reliable information online, or you may need to do primary research by conducting an experiment, a survey, or interviews. For example, if you live among students in their late teens and early twenties, consider what they can tell you about their lives that you might be able to analyze. Returning to or graduating from high school, starting college, or returning to college in the midst of a global pandemic has provided them, for better or worse, with educational and social experiences that are shared widely by people their age and very different from the experiences older adults had at the same age.

Some report assignments will require you to do formal research, an activity that involves finding sources and evaluating them for reliability, reading them carefully, taking notes, and citing all words you quote and ideas you borrow. See Research Process: Accessing and Recording Information and Annotated Bibliography: Gathering, Evaluating, and Documenting Sources for detailed instruction on conducting research.

Whether you conduct in-depth research or not, keep track of the ideas that come to you and the information you learn. You can write or dictate notes using an app on your phone or computer, or you can jot notes in a journal if you prefer pen and paper. Then, when you are ready to begin organizing your report, you will have a record of your thoughts and information. Always track the sources of information you gather, whether from printed or digital material or from a person you interviewed, so that you can return to the sources if you need more information. And always credit the sources in your report.

Kinds of Evidence

Depending on your assignment and the topic of your report, certain kinds of evidence may be more effective than others. Other kinds of evidence may even be required. As a general rule, choose evidence that is rooted in verifiable facts and experience. In addition, select the evidence that best supports the topic and your approach to the topic, be sure the evidence meets your instructor’s requirements, and cite any evidence you use that comes from a source. The following list contains different kinds of frequently used evidence and an example of each.

Definition : An explanation of a key word, idea, or concept.

The U.S. Census Bureau refers to a “young adult” as a person between 18 and 34 years old.

Example : An illustration of an idea or concept.

The college experience in the fall of 2020 was starkly different from that of previous years. Students who lived in residence halls were assigned to small pods. On-campus dining services were limited. Classes were small and physically distanced or conducted online. Parties were banned.

Expert opinion : A statement by a professional in the field whose opinion is respected.

According to Louise Aronson, MD, geriatrician and author of Elderhood , people over the age of 65 are the happiest of any age group, reporting “less stress, depression, worry, and anger, and more enjoyment, happiness, and satisfaction” (255).

Fact : Information that can be proven correct or accurate.

According to data collected by the NCAA, the academic success of Division I college athletes between 2015 and 2019 was consistently high (Hosick).

Interview : An in-person, phone, or remote conversation that involves an interviewer posing questions to another person or people.

During our interview, I asked Betty about living without a cell phone during the pandemic. She said that before the pandemic, she hadn’t needed a cell phone in her daily activities, but she soon realized that she, and people like her, were increasingly at a disadvantage.

Quotation : The exact words of an author or a speaker.

In response to whether she thought she needed a cell phone, Betty said, “I got along just fine without a cell phone when I could go everywhere in person. The shift to needing a phone came suddenly, and I don’t have extra money in my budget to get one.”

Statistics : A numerical fact or item of data.

The Pew Research Center reported that approximately 25 percent of Hispanic Americans and 17 percent of Black Americans relied on smartphones for online access, compared with 12 percent of White people.

Survey : A structured interview in which respondents (the people who answer the survey questions) are all asked the same questions, either in person or through print or electronic means, and their answers tabulated and interpreted. Surveys discover attitudes, beliefs, or habits of the general public or segments of the population.

A survey of 3,000 mobile phone users in October 2020 showed that 54 percent of respondents used their phones for messaging, while 40 percent used their phones for calls (Steele).

  • Visuals : Graphs, figures, tables, photographs and other images, diagrams, charts, maps, videos, and audio recordings, among others.

Thesis and Organization

Drafting a thesis.

When you have a grasp of your topic, move on to the next phase: drafting a thesis. The thesis is the central idea that you will explore and support in your report; all paragraphs in your report should relate to it. In an essay-style analytical report, you will likely express this main idea in a thesis statement of one or two sentences toward the end of the introduction.

For example, if you found that the academic performance of student athletes was higher than that of non-athletes, you might write the following thesis statement:

student sample text Although a common stereotype is that college athletes barely pass their classes, an analysis of athletes’ academic performance indicates that athletes drop fewer classes, earn higher grades, and are more likely to be on track to graduate in four years when compared with their non-athlete peers. end student sample text

The thesis statement often previews the organization of your writing. For example, in his report on the U.S. response to the COVID-19 pandemic in 2020, Trevor Garcia wrote the following thesis statement, which detailed the central idea of his report:

student sample text An examination of the U.S. response shows that a reduction of experts in key positions and programs, inaction that led to equipment shortages, and inconsistent policies were three major causes of the spread of the virus and the resulting deaths. end student sample text

After you draft a thesis statement, ask these questions, and examine your thesis as you answer them. Revise your draft as needed.

  • Is it interesting? A thesis for a report should answer a question that is worth asking and piques curiosity.
  • Is it precise and specific? If you are interested in reducing pollution in a nearby lake, explain how to stop the zebra mussel infestation or reduce the frequent algae blooms.
  • Is it manageable? Try to split the difference between having too much information and not having enough.

Organizing Your Ideas

As a next step, organize the points you want to make in your report and the evidence to support them. Use an outline, a diagram, or another organizational tool, such as Table 8.4 .

Drafting an Analytical Report

With a tentative thesis, an organization plan, and evidence, you are ready to begin drafting. For this assignment, you will report information, analyze it, and draw conclusions about the cause of something, the effect of something, or the similarities and differences between two different things.

Introduction

Some students write the introduction first; others save it for last. Whenever you choose to write the introduction, use it to draw readers into your report. Make the topic of your report clear, and be concise and sincere. End the introduction with your thesis statement. Depending on your topic and the type of report, you can write an effective introduction in several ways. Opening a report with an overview is a tried-and-true strategy, as shown in the following example on the U.S. response to COVID-19 by Trevor Garcia. Notice how he opens the introduction with statistics and a comparison and follows it with a question that leads to the thesis statement (underlined).

student sample text With more than 83 million cases and 1.8 million deaths at the end of 2020, COVID-19 has turned the world upside down. By the end of 2020, the United States led the world in the number of cases, at more than 20 million infections and nearly 350,000 deaths. In comparison, the second-highest number of cases was in India, which at the end of 2020 had less than half the number of COVID-19 cases despite having a population four times greater than the U.S. (“COVID-19 Coronavirus Pandemic,” 2021). How did the United States come to have the world’s worst record in this pandemic? underline An examination of the U.S. response shows that a reduction of experts in key positions and programs, inaction that led to equipment shortages, and inconsistent policies were three major causes of the spread of the virus and the resulting deaths end underline . end student sample text

For a less formal report, you might want to open with a question, quotation, or brief story. The following example opens with an anecdote that leads to the thesis statement (underlined).

student sample text Betty stood outside the salon, wondering how to get in. It was June of 2020, and the door was locked. A sign posted on the door provided a phone number for her to call to be let in, but at 81, Betty had lived her life without a cell phone. Betty’s day-to-day life had been hard during the pandemic, but she had planned for this haircut and was looking forward to it; she had a mask on and hand sanitizer in her car. Now she couldn’t get in the door, and she was discouraged. In that moment, Betty realized how much Americans’ dependence on cell phones had grown in the months since the pandemic began. underline Betty and thousands of other senior citizens who could not afford cell phones or did not have the technological skills and support they needed were being left behind in a society that was increasingly reliant on technology end underline . end student sample text

Body Paragraphs: Point, Evidence, Analysis

Use the body paragraphs of your report to present evidence that supports your thesis. A reliable pattern to keep in mind for developing the body paragraphs of a report is point , evidence , and analysis :

  • The point is the central idea of the paragraph, usually given in a topic sentence stated in your own words at or toward the beginning of the paragraph. Each topic sentence should relate to the thesis.
  • The evidence you provide develops the paragraph and supports the point made in the topic sentence. Include details, examples, quotations, paraphrases, and summaries from sources if you conducted formal research. Synthesize the evidence you include by showing in your sentences the connections between sources.
  • The analysis comes at the end of the paragraph. In your own words, draw a conclusion about the evidence you have provided and how it relates to the topic sentence.

The paragraph below illustrates the point, evidence, and analysis pattern. Drawn from a report about concussions among football players, the paragraph opens with a topic sentence about the NCAA and NFL and their responses to studies about concussions. The paragraph is developed with evidence from three sources. It concludes with a statement about helmets and players’ safety.

student sample text The NCAA and NFL have taken steps forward and backward to respond to studies about the danger of concussions among players. Responding to the deaths of athletes, documented brain damage, lawsuits, and public outcry (Buckley et al., 2017), the NCAA instituted protocols to reduce potentially dangerous hits during football games and to diagnose traumatic head injuries more quickly and effectively. Still, it has allowed players to wear more than one style of helmet during a season, raising the risk of injury because of imperfect fit. At the professional level, the NFL developed a helmet-rating system in 2011 in an effort to reduce concussions, but it continued to allow players to wear helmets with a wide range of safety ratings. The NFL’s decision created an opportunity for researchers to look at the relationship between helmet safety ratings and concussions. Cocello et al. (2016) reported that players who wore helmets with a lower safety rating had more concussions than players who wore helmets with a higher safety rating, and they concluded that safer helmets are a key factor in reducing concussions. end student sample text

Developing Paragraph Content

In the body paragraphs of your report, you will likely use examples, draw comparisons, show contrasts, or analyze causes and effects to develop your topic.

Paragraphs developed with Example are common in reports. The paragraph below, adapted from a report by student John Zwick on the mental health of soldiers deployed during wartime, draws examples from three sources.

student sample text Throughout the Vietnam War, military leaders claimed that the mental health of soldiers was stable and that men who suffered from combat fatigue, now known as PTSD, were getting the help they needed. For example, the New York Times (1966) quoted military leaders who claimed that mental fatigue among enlisted men had “virtually ceased to be a problem,” occurring at a rate far below that of World War II. Ayres (1969) reported that Brigadier General Spurgeon Neel, chief American medical officer in Vietnam, explained that soldiers experiencing combat fatigue were admitted to the psychiatric ward, sedated for up to 36 hours, and given a counseling session with a doctor who reassured them that the rest was well deserved and that they were ready to return to their units. Although experts outside the military saw profound damage to soldiers’ psyches when they returned home (Halloran, 1970), the military stayed the course, treating acute cases expediently and showing little concern for the cumulative effect of combat stress on individual soldiers. end student sample text

When you analyze causes and effects , you explain the reasons that certain things happened and/or their results. The report by Trevor Garcia on the U.S. response to the COVID-19 pandemic in 2020 is an example: his report examines the reasons the United States failed to control the coronavirus. The paragraph below, adapted from another student’s report written for an environmental policy course, explains the effect of white settlers’ views of forest management on New England.

student sample text The early colonists’ European ideas about forest management dramatically changed the New England landscape. White settlers saw the New World as virgin, unused land, even though indigenous people had been drawing on its resources for generations by using fire subtly to improve hunting, employing construction techniques that left ancient trees intact, and farming small, efficient fields that left the surrounding landscape largely unaltered. White settlers’ desire to develop wood-built and wood-burning homesteads surrounded by large farm fields led to forestry practices and techniques that resulted in the removal of old-growth trees. These practices defined the way the forests look today. end student sample text

Compare and contrast paragraphs are useful when you wish to examine similarities and differences. You can use both comparison and contrast in a single paragraph, or you can use one or the other. The paragraph below, adapted from a student report on the rise of populist politicians, compares the rhetorical styles of populist politicians Huey Long and Donald Trump.

student sample text A key similarity among populist politicians is their rejection of carefully crafted sound bites and erudite vocabulary typically associated with candidates for high office. Huey Long and Donald Trump are two examples. When he ran for president, Long captured attention through his wild gesticulations on almost every word, dramatically varying volume, and heavily accented, folksy expressions, such as “The only way to be able to feed the balance of the people is to make that man come back and bring back some of that grub that he ain’t got no business with!” In addition, Long’s down-home persona made him a credible voice to represent the common people against the country’s rich, and his buffoonish style allowed him to express his radical ideas without sounding anti-communist alarm bells. Similarly, Donald Trump chose to speak informally in his campaign appearances, but the persona he projected was that of a fast-talking, domineering salesman. His frequent use of personal anecdotes, rhetorical questions, brief asides, jokes, personal attacks, and false claims made his speeches disjointed, but they gave the feeling of a running conversation between him and his audience. For example, in a 2015 speech, Trump said, “They just built a hotel in Syria. Can you believe this? They built a hotel. When I have to build a hotel, I pay interest. They don’t have to pay interest, because they took the oil that, when we left Iraq, I said we should’ve taken” (“Our Country Needs” 2020). While very different in substance, Long and Trump adopted similar styles that positioned them as the antithesis of typical politicians and their worldviews. end student sample text

The conclusion should draw the threads of your report together and make its significance clear to readers. You may wish to review the introduction, restate the thesis, recommend a course of action, point to the future, or use some combination of these. Whichever way you approach it, the conclusion should not head in a new direction. The following example is the conclusion from a student’s report on the effect of a book about environmental movements in the United States.

student sample text Since its publication in 1949, environmental activists of various movements have found wisdom and inspiration in Aldo Leopold’s A Sand County Almanac . These audiences included Leopold’s conservationist contemporaries, environmentalists of the 1960s and 1970s, and the environmental justice activists who rose in the 1980s and continue to make their voices heard today. These audiences have read the work differently: conservationists looked to the author as a leader, environmentalists applied his wisdom to their movement, and environmental justice advocates have pointed out the flaws in Leopold’s thinking. Even so, like those before them, environmental justice activists recognize the book’s value as a testament to taking the long view and eliminating biases that may cloud an objective assessment of humanity’s interdependent relationship with the environment. end student sample text

Citing Sources

You must cite the sources of information and data included in your report. Citations must appear in both the text and a bibliography at the end of the report.

The sample paragraphs in the previous section include examples of in-text citation using APA documentation style. Trevor Garcia’s report on the U.S. response to COVID-19 in 2020 also uses APA documentation style for citations in the text of the report and the list of references at the end. Your instructor may require another documentation style, such as MLA or Chicago.

Peer Review: Getting Feedback from Readers

You will likely engage in peer review with other students in your class by sharing drafts and providing feedback to help spot strengths and weaknesses in your reports. For peer review within a class, your instructor may provide assignment-specific questions or a form for you to complete as you work together.

If you have a writing center on your campus, it is well worth your time to make an online or in-person appointment with a tutor. You’ll receive valuable feedback and improve your ability to review not only your report but your overall writing.

Another way to receive feedback on your report is to ask a friend or family member to read your draft. Provide a list of questions or a form such as the one in Table 8.5 for them to complete as they read.

Revising: Using Reviewers’ Responses to Revise your Work

When you receive comments from readers, including your instructor, read each comment carefully to understand what is being asked. Try not to get defensive, even though this response is completely natural. Remember that readers are like coaches who want you to succeed. They are looking at your writing from outside your own head, and they can identify strengths and weaknesses that you may not have noticed. Keep track of the strengths and weaknesses your readers point out. Pay special attention to those that more than one reader identifies, and use this information to improve your report and later assignments.

As you analyze each response, be open to suggestions for improvement, and be willing to make significant revisions to improve your writing. Perhaps you need to revise your thesis statement to better reflect the content of your draft. Maybe you need to return to your sources to better understand a point you’re trying to make in order to develop a paragraph more fully. Perhaps you need to rethink the organization, move paragraphs around, and add transition sentences.

Below is an early draft of part of Trevor Garcia’s report with comments from a peer reviewer:

student sample text To truly understand what happened, it’s important first to look back to the years leading up to the pandemic. Epidemiologists and public health officials had long known that a global pandemic was possible. In 2016, the U.S. National Security Council (NSC) published a 69-page document with the intimidating title Playbook for Early Response to High-Consequence Emerging Infectious Disease Threats and Biological Incidents . The document’s two sections address responses to “emerging disease threats that start or are circulating in another country but not yet confirmed within U.S. territorial borders” and to “emerging disease threats within our nation’s borders.” On 13 January 2017, the joint Obama-Trump transition teams performed a pandemic preparedness exercise; however, the playbook was never adopted by the incoming administration. end student sample text

annotated text Peer Review Comment: Do the words in quotation marks need to be a direct quotation? It seems like a paraphrase would work here. end annotated text

annotated text Peer Review Comment: I’m getting lost in the details about the playbook. What’s the Obama-Trump transition team? end annotated text

student sample text In February 2018, the administration began to cut funding for the Prevention and Public Health Fund at the Centers for Disease Control and Prevention; cuts to other health agencies continued throughout 2018, with funds diverted to unrelated projects such as housing for detained immigrant children. end student sample text

annotated text Peer Review Comment: This paragraph has only one sentence, and it’s more like an example. It needs a topic sentence and more development. end annotated text

student sample text Three months later, Luciana Borio, director of medical and biodefense preparedness at the NSC, spoke at a symposium marking the centennial of the 1918 influenza pandemic. “The threat of pandemic flu is the number one health security concern,” she said. “Are we ready to respond? I fear the answer is no.” end student sample text

annotated text Peer Review Comment: This paragraph is very short and a lot like the previous paragraph in that it’s a single example. It needs a topic sentence. Maybe you can combine them? end annotated text

annotated text Peer Review Comment: Be sure to cite the quotation. end annotated text

Reading these comments and those of others, Trevor decided to combine the three short paragraphs into one paragraph focusing on the fact that the United States knew a pandemic was possible but was unprepared for it. He developed the paragraph, using the short paragraphs as evidence and connecting the sentences and evidence with transitional words and phrases. Finally, he added in-text citations in APA documentation style to credit his sources. The revised paragraph is below:

student sample text Epidemiologists and public health officials in the United States had long known that a global pandemic was possible. In 2016, the National Security Council (NSC) published Playbook for Early Response to High-Consequence Emerging Infectious Disease Threats and Biological Incidents , a 69-page document on responding to diseases spreading within and outside of the United States. On January 13, 2017, the joint transition teams of outgoing president Barack Obama and then president-elect Donald Trump performed a pandemic preparedness exercise based on the playbook; however, it was never adopted by the incoming administration (Goodman & Schulkin, 2020). A year later, in February 2018, the Trump administration began to cut funding for the Prevention and Public Health Fund at the Centers for Disease Control and Prevention, leaving key positions unfilled. Other individuals who were fired or resigned in 2018 were the homeland security adviser, whose portfolio included global pandemics; the director for medical and biodefense preparedness; and the top official in charge of a pandemic response. None of them were replaced, leaving the White House with no senior person who had experience in public health (Goodman & Schulkin, 2020). Experts voiced concerns, among them Luciana Borio, director of medical and biodefense preparedness at the NSC, who spoke at a symposium marking the centennial of the 1918 influenza pandemic in May 2018: “The threat of pandemic flu is the number one health security concern,” she said. “Are we ready to respond? I fear the answer is no” (Sun, 2018, final para.). end student sample text

A final word on working with reviewers’ comments: as you consider your readers’ suggestions, remember, too, that you remain the author. You are free to disregard suggestions that you think will not improve your writing. If you choose to disregard comments from your instructor, consider submitting a note explaining your reasons with the final draft of your report.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/writing-guide/pages/1-unit-introduction
  • Authors: Michelle Bachelor Robinson, Maria Jerskey, featuring Toby Fulwiler
  • Publisher/website: OpenStax
  • Book title: Writing Guide with Handbook
  • Publication date: Dec 21, 2021
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/writing-guide/pages/1-unit-introduction
  • Section URL: https://openstax.org/books/writing-guide/pages/8-5-writing-process-creating-an-analytical-report

© Dec 19, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

11.1 The Purpose of Research Writing

Learning objectives.

  • Identify reasons to research writing projects.
  • Outline the steps of the research writing process.

Why was the Great Wall of China built? What have scientists learned about the possibility of life on Mars? What roles did women play in the American Revolution? How does the human brain create, store, and retrieve memories? Who invented the game of football, and how has it changed over the years?

You may know the answers to these questions off the top of your head. If you are like most people, however, you find answers to tough questions like these by searching the Internet, visiting the library, or asking others for information. To put it simply, you perform research.

Whether you are a scientist, an artist, a paralegal, or a parent, you probably perform research in your everyday life. When your boss, your instructor, or a family member asks you a question that you do not know the answer to, you locate relevant information, analyze your findings, and share your results. Locating, analyzing, and sharing information are key steps in the research process, and in this chapter, you will learn more about each step. By developing your research writing skills, you will prepare yourself to answer any question no matter how challenging.

Reasons for Research

When you perform research, you are essentially trying to solve a mystery—you want to know how something works or why something happened. In other words, you want to answer a question that you (and other people) have about the world. This is one of the most basic reasons for performing research.

But the research process does not end when you have solved your mystery. Imagine what would happen if a detective collected enough evidence to solve a criminal case, but she never shared her solution with the authorities. Presenting what you have learned from research can be just as important as performing the research. Research results can be presented in a variety of ways, but one of the most popular—and effective—presentation forms is the research paper . A research paper presents an original thesis, or purpose statement, about a topic and develops that thesis with information gathered from a variety of sources.

If you are curious about the possibility of life on Mars, for example, you might choose to research the topic. What will you do, though, when your research is complete? You will need a way to put your thoughts together in a logical, coherent manner. You may want to use the facts you have learned to create a narrative or to support an argument. And you may want to show the results of your research to your friends, your teachers, or even the editors of magazines and journals. Writing a research paper is an ideal way to organize thoughts, craft narratives or make arguments based on research, and share your newfound knowledge with the world.

Write a paragraph about a time when you used research in your everyday life. Did you look for the cheapest way to travel from Houston to Denver? Did you search for a way to remove gum from the bottom of your shoe? In your paragraph, explain what you wanted to research, how you performed the research, and what you learned as a result.

Research Writing and the Academic Paper

No matter what field of study you are interested in, you will most likely be asked to write a research paper during your academic career. For example, a student in an art history course might write a research paper about an artist’s work. Similarly, a student in a psychology course might write a research paper about current findings in childhood development.

Having to write a research paper may feel intimidating at first. After all, researching and writing a long paper requires a lot of time, effort, and organization. However, writing a research paper can also be a great opportunity to explore a topic that is particularly interesting to you. The research process allows you to gain expertise on a topic of your choice, and the writing process helps you remember what you have learned and understand it on a deeper level.

Research Writing at Work

Knowing how to write a good research paper is a valuable skill that will serve you well throughout your career. Whether you are developing a new product, studying the best way to perform a procedure, or learning about challenges and opportunities in your field of employment, you will use research techniques to guide your exploration. You may even need to create a written report of your findings. And because effective communication is essential to any company, employers seek to hire people who can write clearly and professionally.

Writing at Work

Take a few minutes to think about each of the following careers. How might each of these professionals use researching and research writing skills on the job?

  • Medical laboratory technician
  • Small business owner
  • Information technology professional
  • Freelance magazine writer

A medical laboratory technician or information technology professional might do research to learn about the latest technological developments in either of these fields. A small business owner might conduct research to learn about the latest trends in his or her industry. A freelance magazine writer may need to research a given topic to write an informed, up-to-date article.

Think about the job of your dreams. How might you use research writing skills to perform that job? Create a list of ways in which strong researching, organizing, writing, and critical thinking skills could help you succeed at your dream job. How might these skills help you obtain that job?

Steps of the Research Writing Process

How does a research paper grow from a folder of brainstormed notes to a polished final draft? No two projects are identical, but most projects follow a series of six basic steps.

These are the steps in the research writing process:

  • Choose a topic.
  • Plan and schedule time to research and write.
  • Conduct research.
  • Organize research and ideas.
  • Draft your paper.
  • Revise and edit your paper.

Each of these steps will be discussed in more detail later in this chapter. For now, though, we will take a brief look at what each step involves.

Step 1: Choosing a Topic

As you may recall from Chapter 8 “The Writing Process: How Do I Begin?” , to narrow the focus of your topic, you may try freewriting exercises, such as brainstorming. You may also need to ask a specific research question —a broad, open-ended question that will guide your research—as well as propose a possible answer, or a working thesis . You may use your research question and your working thesis to create a research proposal . In a research proposal, you present your main research question, any related subquestions you plan to explore, and your working thesis.

Step 2: Planning and Scheduling

Before you start researching your topic, take time to plan your researching and writing schedule. Research projects can take days, weeks, or even months to complete. Creating a schedule is a good way to ensure that you do not end up being overwhelmed by all the work you have to do as the deadline approaches.

During this step of the process, it is also a good idea to plan the resources and organizational tools you will use to keep yourself on track throughout the project. Flowcharts, calendars, and checklists can all help you stick to your schedule. See Chapter 11 “Writing from Research: What Will I Learn?” , Section 11.2 “Steps in Developing a Research Proposal” for an example of a research schedule.

Step 3: Conducting Research

When going about your research, you will likely use a variety of sources—anything from books and periodicals to video presentations and in-person interviews.

Your sources will include both primary sources and secondary sources . Primary sources provide firsthand information or raw data. For example, surveys, in-person interviews, and historical documents are primary sources. Secondary sources, such as biographies, literary reviews, or magazine articles, include some analysis or interpretation of the information presented. As you conduct research, you will take detailed, careful notes about your discoveries. You will also evaluate the reliability of each source you find.

Step 4: Organizing Research and the Writer’s Ideas

When your research is complete, you will organize your findings and decide which sources to cite in your paper. You will also have an opportunity to evaluate the evidence you have collected and determine whether it supports your thesis, or the focus of your paper. You may decide to adjust your thesis or conduct additional research to ensure that your thesis is well supported.

Remember, your working thesis is not set in stone. You can and should change your working thesis throughout the research writing process if the evidence you find does not support your original thesis. Never try to force evidence to fit your argument. For example, your working thesis is “Mars cannot support life-forms.” Yet, a week into researching your topic, you find an article in the New York Times detailing new findings of bacteria under the Martian surface. Instead of trying to argue that bacteria are not life forms, you might instead alter your thesis to “Mars cannot support complex life-forms.”

Step 5: Drafting Your Paper

Now you are ready to combine your research findings with your critical analysis of the results in a rough draft. You will incorporate source materials into your paper and discuss each source thoughtfully in relation to your thesis or purpose statement.

When you cite your reference sources, it is important to pay close attention to standard conventions for citing sources in order to avoid plagiarism , or the practice of using someone else’s words without acknowledging the source. Later in this chapter, you will learn how to incorporate sources in your paper and avoid some of the most common pitfalls of attributing information.

Step 6: Revising and Editing Your Paper

In the final step of the research writing process, you will revise and polish your paper. You might reorganize your paper’s structure or revise for unity and cohesion, ensuring that each element in your paper flows into the next logically and naturally. You will also make sure that your paper uses an appropriate and consistent tone.

Once you feel confident in the strength of your writing, you will edit your paper for proper spelling, grammar, punctuation, mechanics, and formatting. When you complete this final step, you will have transformed a simple idea or question into a thoroughly researched and well-written paper you can be proud of!

Review the steps of the research writing process. Then answer the questions on your own sheet of paper.

  • In which steps of the research writing process are you allowed to change your thesis?
  • In step 2, which types of information should you include in your project schedule?
  • What might happen if you eliminated step 4 from the research writing process?

Key Takeaways

  • People undertake research projects throughout their academic and professional careers in order to answer specific questions, share their findings with others, increase their understanding of challenging topics, and strengthen their researching, writing, and analytical skills.
  • The research writing process generally comprises six steps: choosing a topic, scheduling and planning time for research and writing, conducting research, organizing research and ideas, drafting a paper, and revising and editing the paper.

Writing for Success Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Korean J Anesthesiol
  • v.71(2); 2018 Apr

Introduction to systematic review and meta-analysis

1 Department of Anesthesiology and Pain Medicine, Inje University Seoul Paik Hospital, Seoul, Korea

2 Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea

Systematic reviews and meta-analyses present results by combining and analyzing data from different studies conducted on similar research topics. In recent years, systematic reviews and meta-analyses have been actively performed in various fields including anesthesiology. These research methods are powerful tools that can overcome the difficulties in performing large-scale randomized controlled trials. However, the inclusion of studies with any biases or improperly assessed quality of evidence in systematic reviews and meta-analyses could yield misleading results. Therefore, various guidelines have been suggested for conducting systematic reviews and meta-analyses to help standardize them and improve their quality. Nonetheless, accepting the conclusions of many studies without understanding the meta-analysis can be dangerous. Therefore, this article provides an easy introduction to clinicians on performing and understanding meta-analyses.

Introduction

A systematic review collects all possible studies related to a given topic and design, and reviews and analyzes their results [ 1 ]. During the systematic review process, the quality of studies is evaluated, and a statistical meta-analysis of the study results is conducted on the basis of their quality. A meta-analysis is a valid, objective, and scientific method of analyzing and combining different results. Usually, in order to obtain more reliable results, a meta-analysis is mainly conducted on randomized controlled trials (RCTs), which have a high level of evidence [ 2 ] ( Fig. 1 ). Since 1999, various papers have presented guidelines for reporting meta-analyses of RCTs. Following the Quality of Reporting of Meta-analyses (QUORUM) statement [ 3 ], and the appearance of registers such as Cochrane Library’s Methodology Register, a large number of systematic literature reviews have been registered. In 2009, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [ 4 ] was published, and it greatly helped standardize and improve the quality of systematic reviews and meta-analyses [ 5 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f1.jpg

Levels of evidence.

In anesthesiology, the importance of systematic reviews and meta-analyses has been highlighted, and they provide diagnostic and therapeutic value to various areas, including not only perioperative management but also intensive care and outpatient anesthesia [6–13]. Systematic reviews and meta-analyses include various topics, such as comparing various treatments of postoperative nausea and vomiting [ 14 , 15 ], comparing general anesthesia and regional anesthesia [ 16 – 18 ], comparing airway maintenance devices [ 8 , 19 ], comparing various methods of postoperative pain control (e.g., patient-controlled analgesia pumps, nerve block, or analgesics) [ 20 – 23 ], comparing the precision of various monitoring instruments [ 7 ], and meta-analysis of dose-response in various drugs [ 12 ].

Thus, literature reviews and meta-analyses are being conducted in diverse medical fields, and the aim of highlighting their importance is to help better extract accurate, good quality data from the flood of data being produced. However, a lack of understanding about systematic reviews and meta-analyses can lead to incorrect outcomes being derived from the review and analysis processes. If readers indiscriminately accept the results of the many meta-analyses that are published, incorrect data may be obtained. Therefore, in this review, we aim to describe the contents and methods used in systematic reviews and meta-analyses in a way that is easy to understand for future authors and readers of systematic review and meta-analysis.

Study Planning

It is easy to confuse systematic reviews and meta-analyses. A systematic review is an objective, reproducible method to find answers to a certain research question, by collecting all available studies related to that question and reviewing and analyzing their results. A meta-analysis differs from a systematic review in that it uses statistical methods on estimates from two or more different studies to form a pooled estimate [ 1 ]. Following a systematic review, if it is not possible to form a pooled estimate, it can be published as is without progressing to a meta-analysis; however, if it is possible to form a pooled estimate from the extracted data, a meta-analysis can be attempted. Systematic reviews and meta-analyses usually proceed according to the flowchart presented in Fig. 2 . We explain each of the stages below.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f2.jpg

Flowchart illustrating a systematic review.

Formulating research questions

A systematic review attempts to gather all available empirical research by using clearly defined, systematic methods to obtain answers to a specific question. A meta-analysis is the statistical process of analyzing and combining results from several similar studies. Here, the definition of the word “similar” is not made clear, but when selecting a topic for the meta-analysis, it is essential to ensure that the different studies present data that can be combined. If the studies contain data on the same topic that can be combined, a meta-analysis can even be performed using data from only two studies. However, study selection via a systematic review is a precondition for performing a meta-analysis, and it is important to clearly define the Population, Intervention, Comparison, Outcomes (PICO) parameters that are central to evidence-based research. In addition, selection of the research topic is based on logical evidence, and it is important to select a topic that is familiar to readers without clearly confirmed the evidence [ 24 ].

Protocols and registration

In systematic reviews, prior registration of a detailed research plan is very important. In order to make the research process transparent, primary/secondary outcomes and methods are set in advance, and in the event of changes to the method, other researchers and readers are informed when, how, and why. Many studies are registered with an organization like PROSPERO ( http://www.crd.york.ac.uk/PROSPERO/ ), and the registration number is recorded when reporting the study, in order to share the protocol at the time of planning.

Defining inclusion and exclusion criteria

Information is included on the study design, patient characteristics, publication status (published or unpublished), language used, and research period. If there is a discrepancy between the number of patients included in the study and the number of patients included in the analysis, this needs to be clearly explained while describing the patient characteristics, to avoid confusing the reader.

Literature search and study selection

In order to secure proper basis for evidence-based research, it is essential to perform a broad search that includes as many studies as possible that meet the inclusion and exclusion criteria. Typically, the three bibliographic databases Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) are used. In domestic studies, the Korean databases KoreaMed, KMBASE, and RISS4U may be included. Effort is required to identify not only published studies but also abstracts, ongoing studies, and studies awaiting publication. Among the studies retrieved in the search, the researchers remove duplicate studies, select studies that meet the inclusion/exclusion criteria based on the abstracts, and then make the final selection of studies based on their full text. In order to maintain transparency and objectivity throughout this process, study selection is conducted independently by at least two investigators. When there is a inconsistency in opinions, intervention is required via debate or by a third reviewer. The methods for this process also need to be planned in advance. It is essential to ensure the reproducibility of the literature selection process [ 25 ].

Quality of evidence

However, well planned the systematic review or meta-analysis is, if the quality of evidence in the studies is low, the quality of the meta-analysis decreases and incorrect results can be obtained [ 26 ]. Even when using randomized studies with a high quality of evidence, evaluating the quality of evidence precisely helps determine the strength of recommendations in the meta-analysis. One method of evaluating the quality of evidence in non-randomized studies is the Newcastle-Ottawa Scale, provided by the Ottawa Hospital Research Institute 1) . However, we are mostly focusing on meta-analyses that use randomized studies.

If the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) system ( http://www.gradeworkinggroup.org/ ) is used, the quality of evidence is evaluated on the basis of the study limitations, inaccuracies, incompleteness of outcome data, indirectness of evidence, and risk of publication bias, and this is used to determine the strength of recommendations [ 27 ]. As shown in Table 1 , the study limitations are evaluated using the “risk of bias” method proposed by Cochrane 2) . This method classifies bias in randomized studies as “low,” “high,” or “unclear” on the basis of the presence or absence of six processes (random sequence generation, allocation concealment, blinding participants or investigators, incomplete outcome data, selective reporting, and other biases) [ 28 ].

The Cochrane Collaboration’s Tool for Assessing the Risk of Bias [ 28 ]

Data extraction

Two different investigators extract data based on the objectives and form of the study; thereafter, the extracted data are reviewed. Since the size and format of each variable are different, the size and format of the outcomes are also different, and slight changes may be required when combining the data [ 29 ]. If there are differences in the size and format of the outcome variables that cause difficulties combining the data, such as the use of different evaluation instruments or different evaluation timepoints, the analysis may be limited to a systematic review. The investigators resolve differences of opinion by debate, and if they fail to reach a consensus, a third-reviewer is consulted.

Data Analysis

The aim of a meta-analysis is to derive a conclusion with increased power and accuracy than what could not be able to achieve in individual studies. Therefore, before analysis, it is crucial to evaluate the direction of effect, size of effect, homogeneity of effects among studies, and strength of evidence [ 30 ]. Thereafter, the data are reviewed qualitatively and quantitatively. If it is determined that the different research outcomes cannot be combined, all the results and characteristics of the individual studies are displayed in a table or in a descriptive form; this is referred to as a qualitative review. A meta-analysis is a quantitative review, in which the clinical effectiveness is evaluated by calculating the weighted pooled estimate for the interventions in at least two separate studies.

The pooled estimate is the outcome of the meta-analysis, and is typically explained using a forest plot ( Figs. 3 and ​ and4). 4 ). The black squares in the forest plot are the odds ratios (ORs) and 95% confidence intervals in each study. The area of the squares represents the weight reflected in the meta-analysis. The black diamond represents the OR and 95% confidence interval calculated across all the included studies. The bold vertical line represents a lack of therapeutic effect (OR = 1); if the confidence interval includes OR = 1, it means no significant difference was found between the treatment and control groups.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f3.jpg

Forest plot analyzed by two different models using the same data. (A) Fixed-effect model. (B) Random-effect model. The figure depicts individual trials as filled squares with the relative sample size and the solid line as the 95% confidence interval of the difference. The diamond shape indicates the pooled estimate and uncertainty for the combined effect. The vertical line indicates the treatment group shows no effect (OR = 1). Moreover, if the confidence interval includes 1, then the result shows no evidence of difference between the treatment and control groups.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f4.jpg

Forest plot representing homogeneous data.

Dichotomous variables and continuous variables

In data analysis, outcome variables can be considered broadly in terms of dichotomous variables and continuous variables. When combining data from continuous variables, the mean difference (MD) and standardized mean difference (SMD) are used ( Table 2 ).

Summary of Meta-analysis Methods Available in RevMan [ 28 ]

The MD is the absolute difference in mean values between the groups, and the SMD is the mean difference between groups divided by the standard deviation. When results are presented in the same units, the MD can be used, but when results are presented in different units, the SMD should be used. When the MD is used, the combined units must be shown. A value of “0” for the MD or SMD indicates that the effects of the new treatment method and the existing treatment method are the same. A value lower than “0” means the new treatment method is less effective than the existing method, and a value greater than “0” means the new treatment is more effective than the existing method.

When combining data for dichotomous variables, the OR, risk ratio (RR), or risk difference (RD) can be used. The RR and RD can be used for RCTs, quasi-experimental studies, or cohort studies, and the OR can be used for other case-control studies or cross-sectional studies. However, because the OR is difficult to interpret, using the RR and RD, if possible, is recommended. If the outcome variable is a dichotomous variable, it can be presented as the number needed to treat (NNT), which is the minimum number of patients who need to be treated in the intervention group, compared to the control group, for a given event to occur in at least one patient. Based on Table 3 , in an RCT, if x is the probability of the event occurring in the control group and y is the probability of the event occurring in the intervention group, then x = c/(c + d), y = a/(a + b), and the absolute risk reduction (ARR) = x − y. NNT can be obtained as the reciprocal, 1/ARR.

Calculation of the Number Needed to Treat in the Dichotomous table

Fixed-effect models and random-effect models

In order to analyze effect size, two types of models can be used: a fixed-effect model or a random-effect model. A fixed-effect model assumes that the effect of treatment is the same, and that variation between results in different studies is due to random error. Thus, a fixed-effect model can be used when the studies are considered to have the same design and methodology, or when the variability in results within a study is small, and the variance is thought to be due to random error. Three common methods are used for weighted estimation in a fixed-effect model: 1) inverse variance-weighted estimation 3) , 2) Mantel-Haenszel estimation 4) , and 3) Peto estimation 5) .

A random-effect model assumes heterogeneity between the studies being combined, and these models are used when the studies are assumed different, even if a heterogeneity test does not show a significant result. Unlike a fixed-effect model, a random-effect model assumes that the size of the effect of treatment differs among studies. Thus, differences in variation among studies are thought to be due to not only random error but also between-study variability in results. Therefore, weight does not decrease greatly for studies with a small number of patients. Among methods for weighted estimation in a random-effect model, the DerSimonian and Laird method 6) is mostly used for dichotomous variables, as the simplest method, while inverse variance-weighted estimation is used for continuous variables, as with fixed-effect models. These four methods are all used in Review Manager software (The Cochrane Collaboration, UK), and are described in a study by Deeks et al. [ 31 ] ( Table 2 ). However, when the number of studies included in the analysis is less than 10, the Hartung-Knapp-Sidik-Jonkman method 7) can better reduce the risk of type 1 error than does the DerSimonian and Laird method [ 32 ].

Fig. 3 shows the results of analyzing outcome data using a fixed-effect model (A) and a random-effect model (B). As shown in Fig. 3 , while the results from large studies are weighted more heavily in the fixed-effect model, studies are given relatively similar weights irrespective of study size in the random-effect model. Although identical data were being analyzed, as shown in Fig. 3 , the significant result in the fixed-effect model was no longer significant in the random-effect model. One representative example of the small study effect in a random-effect model is the meta-analysis by Li et al. [ 33 ]. In a large-scale study, intravenous injection of magnesium was unrelated to acute myocardial infarction, but in the random-effect model, which included numerous small studies, the small study effect resulted in an association being found between intravenous injection of magnesium and myocardial infarction. This small study effect can be controlled for by using a sensitivity analysis, which is performed to examine the contribution of each of the included studies to the final meta-analysis result. In particular, when heterogeneity is suspected in the study methods or results, by changing certain data or analytical methods, this method makes it possible to verify whether the changes affect the robustness of the results, and to examine the causes of such effects [ 34 ].

Heterogeneity

Homogeneity test is a method whether the degree of heterogeneity is greater than would be expected to occur naturally when the effect size calculated from several studies is higher than the sampling error. This makes it possible to test whether the effect size calculated from several studies is the same. Three types of homogeneity tests can be used: 1) forest plot, 2) Cochrane’s Q test (chi-squared), and 3) Higgins I 2 statistics. In the forest plot, as shown in Fig. 4 , greater overlap between the confidence intervals indicates greater homogeneity. For the Q statistic, when the P value of the chi-squared test, calculated from the forest plot in Fig. 4 , is less than 0.1, it is considered to show statistical heterogeneity and a random-effect can be used. Finally, I 2 can be used [ 35 ].

I 2 , calculated as shown above, returns a value between 0 and 100%. A value less than 25% is considered to show strong homogeneity, a value of 50% is average, and a value greater than 75% indicates strong heterogeneity.

Even when the data cannot be shown to be homogeneous, a fixed-effect model can be used, ignoring the heterogeneity, and all the study results can be presented individually, without combining them. However, in many cases, a random-effect model is applied, as described above, and a subgroup analysis or meta-regression analysis is performed to explain the heterogeneity. In a subgroup analysis, the data are divided into subgroups that are expected to be homogeneous, and these subgroups are analyzed. This needs to be planned in the predetermined protocol before starting the meta-analysis. A meta-regression analysis is similar to a normal regression analysis, except that the heterogeneity between studies is modeled. This process involves performing a regression analysis of the pooled estimate for covariance at the study level, and so it is usually not considered when the number of studies is less than 10. Here, univariate and multivariate regression analyses can both be considered.

Publication bias

Publication bias is the most common type of reporting bias in meta-analyses. This refers to the distortion of meta-analysis outcomes due to the higher likelihood of publication of statistically significant studies rather than non-significant studies. In order to test the presence or absence of publication bias, first, a funnel plot can be used ( Fig. 5 ). Studies are plotted on a scatter plot with effect size on the x-axis and precision or total sample size on the y-axis. If the points form an upside-down funnel shape, with a broad base that narrows towards the top of the plot, this indicates the absence of a publication bias ( Fig. 5A ) [ 29 , 36 ]. On the other hand, if the plot shows an asymmetric shape, with no points on one side of the graph, then publication bias can be suspected ( Fig. 5B ). Second, to test publication bias statistically, Begg and Mazumdar’s rank correlation test 8) [ 37 ] or Egger’s test 9) [ 29 ] can be used. If publication bias is detected, the trim-and-fill method 10) can be used to correct the bias [ 38 ]. Fig. 6 displays results that show publication bias in Egger’s test, which has then been corrected using the trim-and-fill method using Comprehensive Meta-Analysis software (Biostat, USA).

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f5.jpg

Funnel plot showing the effect size on the x-axis and sample size on the y-axis as a scatter plot. (A) Funnel plot without publication bias. The individual plots are broader at the bottom and narrower at the top. (B) Funnel plot with publication bias. The individual plots are located asymmetrically.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f6.jpg

Funnel plot adjusted using the trim-and-fill method. White circles: comparisons included. Black circles: inputted comparisons using the trim-and-fill method. White diamond: pooled observed log risk ratio. Black diamond: pooled inputted log risk ratio.

Result Presentation

When reporting the results of a systematic review or meta-analysis, the analytical content and methods should be described in detail. First, a flowchart is displayed with the literature search and selection process according to the inclusion/exclusion criteria. Second, a table is shown with the characteristics of the included studies. A table should also be included with information related to the quality of evidence, such as GRADE ( Table 4 ). Third, the results of data analysis are shown in a forest plot and funnel plot. Fourth, if the results use dichotomous data, the NNT values can be reported, as described above.

The GRADE Evidence Quality for Each Outcome

N: number of studies, ROB: risk of bias, PON: postoperative nausea, POV: postoperative vomiting, PONV: postoperative nausea and vomiting, CI: confidence interval, RR: risk ratio, AR: absolute risk.

When Review Manager software (The Cochrane Collaboration, UK) is used for the analysis, two types of P values are given. The first is the P value from the z-test, which tests the null hypothesis that the intervention has no effect. The second P value is from the chi-squared test, which tests the null hypothesis for a lack of heterogeneity. The statistical result for the intervention effect, which is generally considered the most important result in meta-analyses, is the z-test P value.

A common mistake when reporting results is, given a z-test P value greater than 0.05, to say there was “no statistical significance” or “no difference.” When evaluating statistical significance in a meta-analysis, a P value lower than 0.05 can be explained as “a significant difference in the effects of the two treatment methods.” However, the P value may appear non-significant whether or not there is a difference between the two treatment methods. In such a situation, it is better to announce “there was no strong evidence for an effect,” and to present the P value and confidence intervals. Another common mistake is to think that a smaller P value is indicative of a more significant effect. In meta-analyses of large-scale studies, the P value is more greatly affected by the number of studies and patients included, rather than by the significance of the results; therefore, care should be taken when interpreting the results of a meta-analysis.

When performing a systematic literature review or meta-analysis, if the quality of studies is not properly evaluated or if proper methodology is not strictly applied, the results can be biased and the outcomes can be incorrect. However, when systematic reviews and meta-analyses are properly implemented, they can yield powerful results that could usually only be achieved using large-scale RCTs, which are difficult to perform in individual studies. As our understanding of evidence-based medicine increases and its importance is better appreciated, the number of systematic reviews and meta-analyses will keep increasing. However, indiscriminate acceptance of the results of all these meta-analyses can be dangerous, and hence, we recommend that their results be received critically on the basis of a more accurate understanding.

1) http://www.ohri.ca .

2) http://methods.cochrane.org/bias/assessing-risk-bias-included-studies .

3) The inverse variance-weighted estimation method is useful if the number of studies is small with large sample sizes.

4) The Mantel-Haenszel estimation method is useful if the number of studies is large with small sample sizes.

5) The Peto estimation method is useful if the event rate is low or one of the two groups shows zero incidence.

6) The most popular and simplest statistical method used in Review Manager and Comprehensive Meta-analysis software.

7) Alternative random-effect model meta-analysis that has more adequate error rates than does the common DerSimonian and Laird method, especially when the number of studies is small. However, even with the Hartung-Knapp-Sidik-Jonkman method, when there are less than five studies with very unequal sizes, extra caution is needed.

8) The Begg and Mazumdar rank correlation test uses the correlation between the ranks of effect sizes and the ranks of their variances [ 37 ].

9) The degree of funnel plot asymmetry as measured by the intercept from the regression of standard normal deviates against precision [ 29 ].

10) If there are more small studies on one side, we expect the suppression of studies on the other side. Trimming yields the adjusted effect size and reduces the variance of the effects by adding the original studies back into the analysis as a mirror image of each study.

  • Harvard Library
  • Research Guides
  • Faculty of Arts & Sciences Libraries

GSAS Writing Toolkit

  • Writing and Revision
  • Consult Your Library Experts
  • Research Handbooks & Guides
  • Finding a Researchable Question
  • Cross-Disciplinary Databases
  • Data: Finding, Interpreting, and Visualizing It
  • Tracking Stuff Down: Essential Services
  • Methodology Sources

Classic Guides to Writing

Writing in a second language, grant writing, note taking tips, back up your files, harvard sites for writers.

  • Style and Citation
  • Presenting & Publishing Your Work

The  Fellowships & Writing Center  at Harvard's Graduate School of Arts and Sciences is the best resource for GSAS students interested in producing clear, logical, persuasive, elegant, and engaging scholarly writing. In combination with their assistance and the latest guidance from your chosen manual of style, the old standards are as resonant as ever: 

  • The Elements of Style This classic text by William Strunk Jr. and E.B. White presents a concise style manual that provides the basic elementary principles of English usage and composition, with tips on commonly misused words and expressions, style, and spelling.
  • On Revision: The Only Writing That Counts Germano explains how to get your writing up to the level where it matters not just to yourself but to others. Revision goes far beyond the usual advice to cut for concision, discussing revision as expansion, structural revision across the larger span of a work, revision as response to one's audience, and revision as rethinking ...   On Revision steps back to take in the big picture, showing authors how to hear their own writing voice and how to reread their work as if they didn't write it.
  • Style: Lessons of Clarity and Grace Joseph M. Williams' clear, accessible style models the kind of writing that audiences — both in college and after — will admire. The principles offered in this manual help writers understand what readers expect and encourage writers to revise to meet those expectations more effectively. This book is all many might need to understand the principles of effective writing. Revised by Gregory G. Colomb.
  • Writing Your Journal Article in Twelve Weeks: A Guide to Academic Publishing Success   A much-appreciated and great all-around guide for writing, this is the only reference book to combine expert guidance with a step-by-step workbook for writing a journal article.

Conducting doctoral research and writing is even more challenging when writing in a second language. The following resources may ease the process.

  • Professional Communication Program for International Students and Scholars Through this program, Harvard University's Derek Book Center for Teaching and Learning supports international PhD students, teachers, and scholars at every stage of their academic careers.
  • Reading, Writing, and Discussing at the Graduate Level: A Guidebook for International Students From the publisher: "The purpose of this book is to help international students navigate the academic issues they will encounter while attending graduate school in the United States. This book provides guidelines for conquering the obstacles that international graduate students often face, such as developing independent ideas based on required readings, participating in classroom discussions effectively, organizing academic papers, and effectively managing academic work and social relationships. This book is an invaluable tool for international graduate students and their instructors and mentors."
  • Thesis and Dissertation Writing in a Second Language: A Handbook for Students and Their Supervisors This book by Brian Paltridge and Sue Starfield uses accessible language and practical examples to discuss issues that are crucial to successful thesis and dissertation writing. This edition offers insights into the experience of being a doctoral writer, issues of writer identity, and writing with authority; typical language and discourse features of theses and dissertations; advice on the structure and organisation of key sections; suggestions for online resources which support writing; extracts from completed theses and dissertations; guidance on understanding examiner expectations; and advice on publishing.
  • Translation: A Guide to Harvard Libraries in Plain English This research guide created by Harvard librarian, Anna Assogba, serves as a helpful tool for students whose first language is not English.

A successful grant proposal draws on specialized writing skills. The following resources may prove useful in your endeavor to secure funding for a scholarly project.

  • The Grant Writing Guide: A Road Map for Scholars This book by Betty S. Lai, forthcoming from Princeton University Press in January 2023, promises to be "an essential handbook for writing research grants, providing actionable strategies for professionals in every phase of their careers, from PhD students to seasoned researchers."

Librarians have experience with efficient note-taking tools and practices to help you retain what you learn along your research journey and hold on to your best ideas as you make connections among sources. Below is a selection to get you started.

  • Register  with your Harvard email address to access unlimited storage through Zotero.  
  • Keep Track , a module from Unabridged On Demand, provides general tips about staying organized and on task, including productivity strategies, workflows, and note-taking formats.  
  • Prepare your note-taking plan.

Have a file backup plan, just in case. Having multiple copies, accessible in multiple ways, is essential. An external hard drive, a USB flash drive, stored safely, will help you sleep soundly as deadlines approach:

  • Free cloud storage solutions to consider include Google Drive , DropBox , or OneDrive.  

Writing is the lifeblood of scholarship and a point of Crimson pride at Harvard. Keep your pen in hand and your finger on the pulse of what's available to you here.

  • Finding Your Voice: Understanding Academic Integrity and Graduate Writing at Harvard Academic writing at the graduate level is different from other writing you may have done in the past. Learn more about what it means to be a successful writer at Harvard and a contributor to the scholarly conversation in your discipline.
  • Gen Ed Writes A resource for faculty, teaching fellows and teaching assistants, and undergraduate students in Harvard's General Education courses.
  • Harvard Guide to Using Sources Essential guide to using sources in academic writing.
  • HarvardWrites A resource for writers and teachers of writing, HarvardWrites is a joint venture of the Harvard College Writing Program, the Derek Bok Center for Teaching and Learning, and the departments and schools represented on our site. The project was made possible through a generous grant from the Harvard Initiative for Learning and Teaching (HILT).
  • Harvard Writing Project Writing Guides A wide range of writing guides that encourage better writing through practical advice and useful examples. There are four principal types of writing guides: (1) for disciplines or interdisciplinary programs, (2) for specific courses, (3) for specific genres of writing, and (4) for General Education courses.
  • AnthroWrites
  • ScienceWrites  (in Beta)
  • << Previous: Methodology Sources
  • Next: Style and Citation >>

Except where otherwise noted, this work is subject to a Creative Commons Attribution 4.0 International License , which allows anyone to share and adapt our material as long as proper attribution is given. For details and exceptions, see the Harvard Library Copyright Policy ©2021 Presidents and Fellows of Harvard College.

Loading metrics

Open Access

Raising awareness of uncertain choices in empirical data analysis: A teaching concept toward replicable research practices

Roles Conceptualization, Formal analysis, Investigation, Software, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Current address: Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, München, Germany

Affiliations Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, München, Germany, Munich Center for Machine Learning (MCML), München, Germany, LMU Open Science Center, München, Germany

ORCID logo

Roles Conceptualization, Writing – original draft, Writing – review & editing

Affiliations Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, München, Germany, LMU Open Science Center, München, Germany, Department of Statistics, Ludwig-Maximilians-Universität München, München, Germany

Roles Writing – review & editing

Affiliation Department of Statistics, Ludwig-Maximilians-Universität München, München, Germany

Affiliation Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, München, Germany

Roles Conceptualization, Funding acquisition, Project administration, Supervision, Writing – original draft, Writing – review & editing

  • Maximilian M. Mandl, 
  • Sabine Hoffmann, 
  • Sebastian Bieringer, 
  • Anna E. Jacob, 
  • Marie Kraft, 
  • Simon Lemster, 
  • Anne-Laure Boulesteix

PLOS

Published: March 28, 2024

  • https://doi.org/10.1371/journal.pcbi.1011936
  • Reader Comments

Table 1

Author summary

Throughout their education and when reading the scientific literature, students may get the impression that there is a unique and correct analysis strategy for every data analysis task and that this analysis strategy will always yield a significant and noteworthy result. This expectation conflicts with a growing realization that there is a multiplicity of possible analysis strategies in empirical research, which will lead to overoptimism and nonreplicable research findings if it is combined with result-dependent selective reporting. Here, we argue that students are often ill-equipped for real-world data analysis tasks and unprepared for the dangers of selectively reporting the most promising results. We present a seminar course intended for advanced undergraduates and beginning graduate students of data analysis fields such as statistics, data science, or bioinformatics that aims to increase the awareness of uncertain choices in the analysis of empirical data and present ways to deal with these choices through theoretical modules and practical hands-on sessions.

Citation: Mandl MM, Hoffmann S, Bieringer S, Jacob AE, Kraft M, Lemster S, et al. (2024) Raising awareness of uncertain choices in empirical data analysis: A teaching concept toward replicable research practices. PLoS Comput Biol 20(3): e1011936. https://doi.org/10.1371/journal.pcbi.1011936

Editor: B.F. Francis Ouellette, bioinformatics.ca, CANADA

Copyright: © 2024 Mandl et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors gratefully acknowledge the funding by DFG grants BO3139/7-1 and BO3139/9-1 to A-LB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Statistics and data analysis education frequently focuses on acquiring skills and techniques concerning specific topics that are covered successively and in isolation. Students may, for instance, first take a course on general techniques for regression modeling without considering the challenges associated with missing data, outliers, or nonrepresentative sampling mechanisms. They may then acquire skills to specifically address these additional challenges in a later course. In the classroom, students are often presented with clear examples and with clean data sets to practice these skills and techniques on. These exercises typically have unique, correct solutions to the analysis task and often yield significant results, possibly conditioning students to expect the same from real-world data. In this vein, problems arising during the analysis are considered in isolation, even though they occur simultaneously and may be interrelated. While the simplified and sequential treatment of specific topics certainly makes sense from a pedagogical standpoint, it may convey the unrealistic expectation that for any data analysis task, there is a unique and correct analysis approach that will always yield a significant or interesting finding. This expectation is further strengthened when reading published research articles in which the authors commonly describe a single analysis strategy and report a significant finding without a detailed discussion of alternative analysis options.

This impression conflicts with a growing realization that there is a multiplicity of possible analysis strategies when analyzing empirical data [ 1 – 3 ] and that data analysts require the ability to make subjective decisions and acknowledge the multiplicity of possible perspectives [ 4 ]. In particular, so-called multianalyst projects [ 5 – 7 ] show that different teams of researchers make very different choices when they are asked to answer the same research question on the same data set. These uncertain choices, which are also referred to as researcher degrees of freedom [ 8 , 9 ], can be combined with result-dependent selective reporting to obtain the “most noteworthy” or impressive results. This is a practice known as “p-hacking” or “fishing for significance” in the context of hypothesis testing and, more generally, “fishing expeditions” or “cherry-picking.” These practices lead to overconfident and nonreplicable research findings in the literature and, ultimately, to situations where some may argue that “most published research findings are false,” especially in combination with a low prior probability of the hypothesis being true [ 10 , 11 ]. Computational biology as a field is, unfortunately, not immune to these types of problems [ 3 , 12 ].

For example, Ullmann et al. [ 3 ] show how the combination of researchers’ expectations and selective reporting may lead to overoptimistic results in the context of unsupervised microbiome analysis. Their paper highlights the relevance of open science practices in the field of computational biology.

Here, we argue that if students always encounter clean data sets with a correct unique analysis strategy yielding a significant and/or noteworthy finding during their training, they are ill-equipped for real-world data analysis tasks and unprepared for the dangers of selectively reporting the most promising results. In particular, data analysis courses commonly teach students to understand and apply statistical models, but in order to equip them against the cherry-picking, we need to strengthen awareness and understanding of uncertainties in the analysis of empirical research data. To address this point, we present a seminar course intended for advanced undergraduates and beginning graduate students of data analysis fields such as statistics, data science, or bioinformatics that aims to increase awareness of the multiplicity of analysis strategies and of ways to deal with this multiplicity through the introduction of theoretical concepts and practical hands-on sessions.

The remainder of the article is organized as follows: Section “Teaching concept” presents the general teaching concept of the proposed seminar course. Section “Implementation and student feedback” provides evidence on the instructional value of the proposed course. Section “Potential adaptations” discusses potential adaptations of the course, and in Section “Conclusion,” we highlight key skills and takeaways that we hope students will gain.

Teaching concept

The course consists of theoretical modules and practical hands-on sessions. It starts with two short lectures, providing a brief introduction to the concepts of reproducibility and replicability. Subsequently, it focuses on reproducibility by introducing the students to version control software and R-Markdown to make their analyses reproducible, i.e., they learn to prepare their code in a way that all results can be reproduced “by mouse click.” In this paper, we follow the definition by Nosek et al. [ 13 ], i.e., reproducibility involves verifying the reliability of a previous discovery by employing the identical data and analysis strategy.

The second part of the course is devoted to replicability in a broad sense, where a result is said to be replicable if one obtains a similar result when repeating the same study including the collection of independent data. More specifically, the students participate in a hands-on session, in which each student is asked to perform a regression analysis on the same data set. After this first hands-on session, they are presented with a second theoretical module that focuses on uncertain choices in the analysis of empirical data, the consequences of result-dependent selective reporting, and ways to address these issues. While the hands-on session can be seen as an evaluation of the extent of selective reporting in the classroom, this second theoretical module can be seen as an intervention. It aims to prevent the students from selectively reporting the most promosing results arising through the multiplicity of possible analysis strategies. The effect of this intervention can, to some extent, be measured by comparing the results of the first phase of the hands-on session with a second phase, which follows the theoretical module on researcher degrees of freedom, in which the students are again asked to analyze a data set that has been generated according to the same model and parameter values as the data set in phase 1. The students’ experience with the two hands-on sessions, the results concerning this intervention effect, and their takeaways are discussed in the last two sessions of the course. A sample weekly schedule for a 10-week academic term is shown in Table 1 . Note that the course might alternatively be conducted as an intensive course in one or few days as discussed in the section on potential adaptations.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pcbi.1011936.t001

Practical hands-on sessions

In the two hands-on sessions, which should ideally take around 3 hours and be onsite to guarantee that there is no exchange between the students, each student receives the same simulated data set and is asked to estimate the effect of a predictor of interest in a linear regression model and to provide a point estimate and a 95% confidence interval. See Section C “Instructions for the students” in S1 Appendix for more details on the exact instructions received by the students.

The analysis task is designed in such a way that several uncertain choices related to model selection, treatment of missing values, and handling of outliers are required. Although we realize that such questions should ideally be tackled at the design stage of a study, in practice many researchers unfortunately address these difficulties post hoc.

To help the students with these choices, they are provided with literature that gives an overview of methods and guidance on these choices (see, for instance, [ 14 , 15 ]) and they are able to ask the lecturer for advice during the entire session. Additionally, the students are given information on the “likely range” of the effect of interest, while the true effect is somewhat below this range. The goal is to mimic a realistic data analysis situation in which the life scientist may hope for a large effect and exert gentle pressure on the data analyst toward observing it in the data. For each of the hands-on sessions, students are asked to analyze the data in the best possible way (which is not necessarily the same for both phases) and to hand in their results and reproducible analysis code.

Theoretical module on uncertain choices in the analysis of empirical data and ways to address them

The theoretical module consists of lectures that address the ubiquity of uncertain choices in the analysis of empirical data, their consequences on the validity of statistical inference if they are combined with selective reporting, and solutions to address this issue. In particular, the lectures detail how result-dependent selective reporting (cherry-picking, HARKing [ 16 ], and selective publication of significant findings) can lead to overoptimism. Further, they outline that there is increasing evidence that this practice is both common and detrimental for the replicability and credibility of the scientific literature.

Finally, as an outlook, the theoretical module also presents general strategies to deal with the multiplicity of possible analysis strategies while preserving the validity of statistical inference. This can include preregistration, blind analysis, and multiverse-style analyses. A list of articles that can be used to design this theoretical module can be found in Section A “Details on the implementation” in S1 Appendix .

The last two sessions leave space for the discussion of the results of the two hands-on sessions, of the students’ experience with the course, and of student takeaways. In the first session, the students are presented with the results of the first hands-on session in which they analyzed the same data set. Due to the uncertain choices in the analysis of this data set, it is likely that the students chose a variety of analysis strategies and obtained different results, providing them with first-hand experience that there is not a single correct analysis strategy for every data analysis task. These results are then compared with the true parameter value that was used to generate the data, providing insight to the extent of selective reporting that was performed during the analysis. Instructors may stress that true parameter values are not known in real data analysis and point out the principles of statistical simulations and their importance for data analysis methods by mimicking real-world scenarios with known truth.

In the second debriefing session, the results of the two hands-on sessions are compared to assess the intervention effect of the theoretical module on uncertain choices in the analysis of empirical data. As seminar courses tend to be small (with less than 30 students) and some students might lack motivation or skills to either perform multiple analyses (and selective reporting) in the first hands-on session or to change their analysis strategy in the second hands-on session, it is unlikely that a statistically significant intervention effect would be observed. Such a nonsignificant finding opens the discussion to reasons for this “failed experiment,” including lack of power, imperfect adherence and, more generally, that this nonsignificant finding cannot be interpreted as evidence that the intervention is useless since “absence of evidence is not evidence of absence” [ 17 ] and that practical importance and significance are distinct concepts [ 18 ]. After discussing the realities of experimental design, the lecturer can present the students with alternative possible results on this intervention effect resulting, for instance, from more or less plausible inclusion and exclusion criteria or outcome switching that would lead to a statistically significant intervention effect. This could raise student awareness of their own preconceived expectations that it is only a matter of finding the right analysis strategy to produce an intended result. This is a common fallacy that can arise, especially in the analysis of underpowered studies.

Implementation and student feedback

We implemented a version of the course concept described in Section “Teaching concept” as a seminar course for advanced undergraduate students in statistics at Ludwig-Maximilians-Universität München (Germany) in 2021/2022.

The overall feedback from the students was very positive and indicated that the course had the intended effect of raising awareness of uncertain choices in the analysis of empirical data and of the dangers of result-dependent selective reporting.

The following 2 student statements, which we received after asking the students for more detailed feedback, further support this conclusion:

“I think that the learning effect of the seminar was greater than in a classical seminar, which consists exclusively of frontal teaching and presentations. […] This also made me aware of how difficult it is to make statistical decisions on the basis of the available information.”
“The seminar was very practical compared to other seminars, which made itself and the experience unique. This seminar and the experiment have had a sustainable effect on the way I do statistics. For example, it is okay to get an inconclusive result when analysing data, not everything has to be significant.”

Fig 1 shows the difference between the estimated and true effects (represented as relative under- or overestimation) in phases 1 and 2 for the full sample ( n = 26) and 3 further selected subsamples. In phase 1, the students reported a parameter estimate that was on average 17.55% larger than the true parameter value (one-sided t test: p = 0.03; Wilcoxon: p = 0.04), indicating that our instructions may indeed have incited the students to selectively report promising results.

thumbnail

(a) Full sample ( n = 26); (b) students with higher grades ( n = 15); (c) students who overestimated the true effect in phase 1 ( n = 18); (d) female students ( n = 11). Connected points represent the values for phases 1 and 2 for each student. Red lines indicate an increased estimated effect size in phase 2 compared to phase 1, and blue lines indicate the reverse.

https://doi.org/10.1371/journal.pcbi.1011936.g001

In phase 2, the reported effect was on average 11.67% larger than the true effect (one-sided t test: p = 0.18; Wilcoxon: p = 0.05), providing less evidence for result-dependent selective reporting after the theoretical module on uncertain choices and their consequences for the validity of statistical inference. Even if there was a significant overestimation of the effect in phase 1 (17.55%) but not in phase 2 (11.67%), the 2 phases did not significantly differ with respect to this difference (paired one-sided t test: p = 0.35; Wilcoxon: p = 0.40), a result that may appear counterintuitive to students and is certainly worth pointing out.

An aspect worth being discussed with the students is shown in Fig 1 . The intervention effect becomes significant (or very close to the 5% level) if we (slightly) change our analysis strategy, for instance, by performing the analysis only on students who overestimated the effect in phase 1 ( Fig 1(c) : n = 18, paired one-sided t test: p = 0.04; Wilcoxon: p = 0.06) or only on female students ( Fig 1(d) : n = 11, paired one-sided t test: p = 0.06; Wilcoxon: p = 0.09), leaving room for the selective reporting of promising intervention effects in this highly underpowered experiment. Conversely, the p -value of the intervention effect can also increase if we include only the students who performed well in terms of grades in the course ( Fig 1(b) : n = 15, paired one-sided t test: p = 0.57; Wilcoxon: p = 0.68).

For more details, see Sections A “Details on the implementation,” B “Data simulation,” and C “Instructions for the students” in S1 Appendix . The code and data can be found on GitHub ( https://github.com/mmax-code/teaching_concept ).

Potential adaptations

Since the multiplicity of possible analysis strategies and result-dependent selective reporting are complex issues with many different aspects, there are several potential adaptations that can be made to tailor the course to varying preferences and needs.

In our implementation of the course, we chose to have the students work on simulated data sets, but it is of course possible to choose real data sets for the hands-on-sessions. To decide between these two options, it is important to decide whether one merely intends to raise awareness for the multiplicity of possible analysis strategies or to caution students against the dangers of result-dependent selective reporting. More generally, questionable research practices that may result from this multiplicity of possible analysis strategies include HARKing, fishing for significance, and data dredging. In the case where the aim is to caution against result-dependent selective reporting, it is indispensable to use simulated data sets in the hands-on session to be able to show how these practices lead to an overestimation of the true parameter value (which would be impossible on a real data set since the true parameter value is unknown). If, on the other hand, the course only focuses on raising awareness of uncertain choices and the multiplicity of possible analysis strategies, it seems more advisable to use real data sets with all their “ugly” features including, for instance, complex patterns of missing data and outliers since they offer a more realistic framework to achieve this teaching purpose, in the vein of the multiverse analysis in the classroom suggested by Heyman and Vanpaemel [ 19 ].

A second important decision in the teaching concept concerns the question of whether to focus on long-term strategies to address the multiplicity of possible analysis strategies or to present students with short-term solutions whose effects will be more observable when comparing the results from the first and the second phase of the hands-on session. The course concept that we presented here was designed to be instructive in the long term (such an effect being impossible to demonstrate in the course setting) rather than to show a large intervention effect. In this sense, the strategies that we presented to prevent result-dependent selective reporting included preregistration, blind analysis, and multiverse analyses. While these strategies are indubitably very helpful for students to address the multiplicity of possible analysis strategies in future projects, they may be of rather limited value in the second hands-on session of the course.

Related to this latter point, we chose the timing of the course to be rather early in the students’ curriculum to inoculate them against result-dependent selective reporting among a multiplicity of possible analysis strategies. This is hopefully before they were even aware of the wealth of methods and modeling strategies that they could choose from. While we believe that this may very well increase the long-term effectiveness of the teaching intervention, it will inevitably reduce the size of the intervention effect that we can observe when comparing the first and the second phase of the hands-on session because this lack of awareness reduces the number of analysis strategies that the students can choose from. In contrast, one could choose a later timing of the course in the students’ curriculum or provide the students with abundant literature on various methods and include additional lectures on methods (for instance, on model selection or missing values) in the course. In our implementation of the course of limited volume, we deliberately decided not to handle methodological issues beyond a brief introduction, in order to focus on reproducibility and replicability. The fact that students used (mostly the same) rather simple methods (for instance, AIC-based model selection) in the implementation suggests that they were probably not aware of the many possibilities they had—which may de facto prevent them from fishing for significance. Presenting the students with a multiplicity of methods before or during the hands-on sessions, on the other hand, might increase their fishing behavior, at least in the first hands-on session. Finally, we did not explicitly ask the students to change their analysis strategies, which may have led students with limited motivation to keep the same analysis strategy for both phases.

This focus on the long-term effectiveness of the course rather than on short-term strategies that may be perceivable in the comparison of the first and the second hands-on session might very well explain why we did not observe a significant reduction in result-dependent selective reporting between the two phases. However, as pointed out in Section “Debriefing,” we would consider this nonsignificant result less of a bug and more of a feature since it opens the discussion to topics including lack of power, imperfect adherence and, more generally, reminds the students that a nonsignificant finding cannot be interpreted as evidence that an intervention did not work.

On a completely different level, the course could be adapted to other types of data analyses in a broad sense beyond the generic example of effect estimation with regression models considered here. Selective reporting is relevant and may be considered in various contexts such as supervised learning [ 20 ], cluster and network analysis [ 3 ], or gene set analysis [ 21 ] rather than statistical testing in regression models. Examples inspired from these studies may be appropriate for students majoring in fields related to computational biology. Note that even though a prerequisite for our course is the use of an interpreted programming language such as R or Python and at least basic knowledge of regression models, the general concept of the course can, in principle, also be applied to students with a weaker computational background. For example, one could implement the course with a simple hypothesis test setting using a statistical software framework including a user interface (for instance, SPSS).

Finally, depending on the complexity of the considered analyses and the amount of effort required from students to understand and execute the analyses, the course concept could also be adapted to a one or multiple day intensive course. With such a shorter format, the complexity of the hands-on task and the width of the covered theoretical topics (see section A in S1 Appendix ) should probably be reduced compared to our original version of the course. For example, one could address primarily the multiplicity of analysis strategies and put less focus on specific software aspects (such as the use of R-Markdown).

There has been growing evidence in recent years that the current use (and misuse) of data analysis methods has contributed to what has been referred to as a “replication crisis” or “statistical crisis” in science. We argue that we need to address these problems in the way we teach statistics and data analysis [ 22 ]. In particular, we need to raise awareness regarding the potential dangers of selective reporting in the education of computational scientists. With the concept of the presented course, we address this issue through practical hands-on sessions and theoretical modules. Going beyond selective reporting, the course also provides the opportunity to teach students reproducible research practices [ 23 ] and to discuss important issues in the design and analysis of experimental studies, including lack of statistical power, nonadherence, and the common misinterpretation of absence of evidence as evidence of absence.

While the combination of a multiplicity of possible analysis strategies with selective reporting is an important issue today, it is likely to pose even more challenges in the future with the increasing availability of large complex data sets. In the analysis of these data sets, researchers are faced with even more uncertain choices than in data that are collected within simple focused experiments, as there is far less knowledge of the data generating mechanisms and control over measurement procedures. To avoid what Meng [ 24 ] calls “Big data paradoxes” in the analysis of these data sets (“the more the data, the surer we fool ourselves”), we urgently need to prepare our students for the realities of empirical data analysis by fostering their awareness and understanding of uncertain choices and ways to address these choices that preserve the validity of statistical inference.

Supporting information

S1 appendix. details on the implementation, data simulation, and instructions for the students..

https://doi.org/10.1371/journal.pcbi.1011936.s001

Acknowledgments

We thank Roman Hornung, Christina Sauer, and Theresa Ullmann for their comments and helpful discussions and Savanna Ratky for valuable language corrections.

  • View Article
  • PubMed/NCBI
  • Google Scholar

analysis research writing

9 methodologies for a successful qualitative research assignment

Qualitative research is important in the educational and scientific domains. It enables a deeper understanding of phenomena, experiences, and context. Many researchers employ such research activities in the fields of history, sociology, and anthropology. For such researchers, learning quality analysis insights is crucial. This way, they can perform well throughout their research journey. Writing a qualitative research assignment is one such way to practice qualitative interpretations. When students address various qualitative questions in these projects, they become efficient in conducting these activities at a higher level, such as for a master’s or Ph.D. thesis.

The FormPlus highlights why researchers prefer qualitative research over quantitative research. It is faster, scientific, objective, focused, and acceptable. Researchers who don’t know what to expect from the research outcomes usually choose qualitative research. In this guide, we will discuss the top methodologies that students can employ while writing their qualitative research assignments. This way, you can write an appealing document that perfectly demonstrates your qualitative research skills.

However, being stressed with academic and daily life commitments, if you find it challenging to manage time exclusively for such projects, availing of assignment writing services can make it manageable. Instead of doing anything wrong in the hustle, get it done by the professionals specifically working to handle these academic write-ups. Now, let’s define quality research before we discuss the actual topic.

What is meant by qualitative research?

Quality research is a market research method that gathers data from conversational and open-ended communication. In simple words, it is about what people think and why they think so. It relates to the nature or standard of something rather than dealing with its quantity. Such researchers collect nonnumerical data to understand opinions, concepts, and ideas.

How do you write a qualitative research assignment? Top 9 methodologies

Writing an assignment requires your command of various tasks. Qualitative research assignment design involves research, writing, structuring, and providing citations of the resources used. Assignment writing plays a crucial role in upgrading your grades.

So, you must make it accurate and authentic. Write it with the utmost care without skipping any important aspects. Sometimes, it can be hard, but it becomes easy if you correctly use effective methodologies. This is why we have brought together some of the common methodologies you can use to write your qualitative research assignments.

1. Interviews

A qualitative interview is mostly used in projects that involve market research. In this study personal interaction is required to collect in-depth information of the participants. In qualitative research for assignment, consider the interview as a personal form of research agenda rather than a focused group study. A qualitative interview requires careful planning so that you can gather meaningful data.

Here are the simple steps to consider for its implementation in a qualitative research assignment:

  • Define research objectives.
  • Identify the target population.
  • Obtain informed consent of participants.
  • Make an interview guideline.
  • Select a suitable location.
  • Conduct the interview.
  • Show respect for participant’s perspectives.
  • Analyse the data.

2. Observation

In qualitative observation, the researcher gathers data from five senses: sight, hearing, touch, smell, and taste. It is a subject approach that depends on the sensory organ of the researcher. This method allows you to better understand the culture, process, and people under study. Some of its characteristics to consider for writing a qualitative research assignment include,

  • It is a naturalistic inquiry of the participants in a natural environment.
  • This approach is subjective and depends on the researcher’s observation.
  • It does not seek a definite answer to a query.
  • The researcher can recognise their own biases when compiling findings.

3. Questionnaires

In this type of survey, the researcher asks open-ended questions to participants. This way, they price the long written or typed document. In writing qualitative research assignments, these questions aim to reveal the participants’ narratives and experiences. Once you know what type of information you need, you can start curating your questionnaire form. The questions must be specific and clear enough that the participants can comprehend them.

Below are the main points that must be considered when creating qualitative research questionnaires.

  • Avoid jargon and ambiguity in the questions.
  • Each question should contribute to the research objectives.
  • Use simple language.
  • The questions should be neutral and unbiased.
  • Be precise, as the complex questions can overwhelm the respondents.
  • Always conduct a pilot test.
  • Put yourself in the respondent’s shoes while asking questions.

4. Case Study

A case study is a detailed analysis of a person, place, thing, organisation, or phenomenon. This method is appropriate when you want to gain a contextual, concrete, and in-depth understanding of the real-world problem for writing your qualitative research assignment. This method is especially helpful when you need more time to conduct large-scale research activities.

The four crucial steps below can be followed up with this methodology.

  • Select a case that has the potential to provide new and unexpected insights into the subject.
  • Make a theoretical framework.
  • Collect your data from various primary and secondary resources.
  • Describe and analyse the case to provide a clear picture of the subject.

5. Focus Groups

Focused group research has some interesting properties. In this method, a planned interview is conducted within a small group. For this purpose, some of the participants are sampled from the study population to record data for writing a qualitative research assignment. Typically, a focused group has features like,

  • At least four to ten participants must meet for up to two hours.
  • There must be a facilitator who can guide the discussion by asking open-ended questions.
  • The emphasis must be put on the group discussion rather than the discussion of the group members with the facilitator.
  • The discussion should be recorded and transcribed by the researchers.

6. Ethnographic Research

It is the most in-depth research method that involves studying people in their natural environment. It requires the researcher to adopt the target audience environment. The environment can be anything from an organisation to a city or any remote location.

However, the geographical constraints can be a problem in this study. For students who are writing their qualitative research assignment, some of the features of ethnographic research to write in their document include,

  • The researcher can get a more realistic picture of the study.
  • It uncovers extremely valuable insights.
  • Provides accurate predictions.
  • You can extend the observation to create more in-depth data.
  • You can interact with people within a particular context.

7. Record Keeping

This method is similar to going to the library to collect data from books. You consult various relayed books, note the important points, and take note of the referencing. So, the researcher uses already existing data rather than introducing new things in the field.

Later on, this data can be used to conduct new research. Yet, when faced with the vast resources available in your institution’s library, seeking assistance from UK-based assignment writing services is an excellent solution if you need help pinpointing the most relevant information for your topic. Proficient in data gathering and adept at structuring qualitative research assignments, these professionals can significantly elevate your academic results.

This method is mostly used by companies to understand a group of customers’ behaviour, characteristics, and motivation. It allows respondents to ask in-depth questions about their experience. In a business market, it helps you understand how your customers make decisions. The intent is to understand them at their level and make related changes in your setup. The researcher must ask generic and precise questions that have a clear purpose.

Consider the below examples of qualitative survey questions. It can be useful in recording data and writing qualitative research assignments.

  • Why did you buy this skin care product?
  • What is the overall narrative of this brand?
  • How do you feel after buying this product?
  • What sets this brand apart from others?
  • How will this product fulfil your needs?
  • What are the things that you expect from this brand to grant you?

9. Action Research

This method involves collaboration and empowerment of the participants. It is mostly appropriate for marginalised groups where there is no flexibility.

The primary characteristics of the action research that can be quoted in your qualitative research assignment include,

  • It is action-oriented, and participants are actively involved in the research.
  • There is a collaborative process between participants and researchers.
  • The nature of action research is flexible to the changing situation.

However, the survey also accompanies some of the limitations, including,

  • The researcher can misinterpret the open-ended questions.
  • The data ownership between the researcher and participants needs to be negotiated.
  • The ethical considerations must be kept.
  • It is not considered a scientific method as it is fluid in data collection. Consequently, it may not attract the finding.

What is the difference between quantitative and qualitative research?

Both research types share the common aim of knowledge acquisition. In quantitative research, the use of numbers and objective measures is used. It seeks answers to questions like when and where.

On the other hand, in qualitative research, the researcher is concerned with subjective phenomena. Such data can’t be numerically measured. For example, you might conduct a survey to analyse how different people experience grief.

What are the 4 types of qualitative research?

There are various types of qualitative research. It may include,

● Phenomenological studies:

It examines the human experience via description provided by the people involved. These are the lived experiences of the people. It is usually used in research areas where little knowledge is known.

● Ethnographic studies:

It involves the analysis of data about cultural groups. In such analysis, the researcher mostly lives with different communities and becomes part of their culture to provide solid interpretations.

● Grounded theory studies:

In this qualitative approach, the researcher collects and analyses the data. Later on, a theory is developed that is grounded in the data. It used both inductive and deductive approaches for theory development.

● Historical studies:

It is concerned with the location, identification, evaluation, and synthesis of data from the past. These researchers are not concerned with discovering past events but with relating these events to the present happenings.

The Research Gate provides a flow chart illustrating various qualitative research methods.

What are The 7 characteristics of qualitative research?

The following are some of the distinct features of qualitative research. You can write about them in your qualitative research assignment, as they are collected from reliable sources.

  • It can even capture the changing attitude within the target group.
  • It is beyond the limitations associated with quantitative research
  • It explains something that numbers alone can’t describe.
  • It is a flexible approach to improve the outcomes.
  • A researcher is not supposed to become more speculative about the results.
  • This approach is more targeted.
  • It keeps the cost of data collection down.

What are the advantages and disadvantages of qualitative research?

The pros of qualitative research can’t be denied. However, some cons are also associated with this research.

  • Explore attitudes and behaviours in depth.
  • It encourages discussions for better results.
  • Generate descriptive data that can formulate new theories.
  • The small sample size can be a problem.
  • Bias in the sample collection.
  • Lack of privacy if you are covering a sensitive topic.

Qualitative research assignment examples

The Afe Babalola University ePortal provides an example of a qualitative assignment. Here is the description of quality questions and related answers. You can get an idea about how to handle your quality research assignment project with this sample.

The questions asked in the paper are displayed below.

The Slide Team presents a template for further compressing other details, such as the qualitative research assignment template. You can use it to make your presentation look professional.

Writing a qualitative research assignment is crucial, especially if you want to engage in research activities for your master’s thesis. Most researchers choose this method because of the associated credibility and reliability of the results. In the above guide, we have discussed some of the prominent features of this method. All of the given data can help you in writing your assignments. We have discussed the benefits of each methodology and a brief account of how you can carry it.

However, even after going through this whole guideline, if the concepts of the Qualitative Research methods assignment seem ambiguous and you think you can’t write a good project, then ask professional to “ write my assignment .” These experts can consult the best sources for the data collection of your project. Consequently, they will deliver you the winning document that can stand out among other write-ups.

Help | Advanced Search

Computer Science > Computation and Language

Title: uni-smart: universal science multimodal analysis and research transformer.

Abstract: In scientific research and its application, scientific literature analysis is crucial as it allows researchers to build on the work of others. However, the fast growth of scientific knowledge has led to a massive increase in scholarly articles, making in-depth literature analysis increasingly challenging and time-consuming. The emergence of Large Language Models (LLMs) has offered a new way to address this challenge. Known for their strong abilities in summarizing texts, LLMs are seen as a potential tool to improve the analysis of scientific literature. However, existing LLMs have their own limits. Scientific literature often includes a wide range of multimodal elements, such as molecular structure, tables, and charts, which are hard for text-focused LLMs to understand and analyze. This issue points to the urgent need for new solutions that can fully understand and analyze multimodal content in scientific literature. To answer this demand, we present Uni-SMART (Universal Science Multimodal Analysis and Research Transformer), an innovative model designed for in-depth understanding of multimodal scientific literature. Through rigorous quantitative evaluation across several domains, Uni-SMART demonstrates superior performance over leading text-focused LLMs. Furthermore, our exploration extends to practical applications, including patent infringement detection and nuanced analysis of charts. These applications not only highlight Uni-SMART's adaptability but also its potential to revolutionize how we interact with scientific literature.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

  • Share full article

Advertisement

Supported by

What the Data Says About Pandemic School Closures, Four Years Later

The more time students spent in remote instruction, the further they fell behind. And, experts say, extended closures did little to stop the spread of Covid.

Sarah Mervosh

By Sarah Mervosh ,  Claire Cain Miller and Francesca Paris

Four years ago this month, schools nationwide began to shut down, igniting one of the most polarizing and partisan debates of the pandemic.

Some schools, often in Republican-led states and rural areas, reopened by fall 2020. Others, typically in large cities and states led by Democrats, would not fully reopen for another year.

A variety of data — about children’s academic outcomes and about the spread of Covid-19 — has accumulated in the time since. Today, there is broad acknowledgment among many public health and education experts that extended school closures did not significantly stop the spread of Covid, while the academic harms for children have been large and long-lasting.

While poverty and other factors also played a role, remote learning was a key driver of academic declines during the pandemic, research shows — a finding that held true across income levels.

Source: Fahle, Kane, Patterson, Reardon, Staiger and Stuart, “ School District and Community Factors Associated With Learning Loss During the COVID-19 Pandemic .” Score changes are measured from 2019 to 2022. In-person means a district offered traditional in-person learning, even if not all students were in-person.

“There’s fairly good consensus that, in general, as a society, we probably kept kids out of school longer than we should have,” said Dr. Sean O’Leary, a pediatric infectious disease specialist who helped write guidance for the American Academy of Pediatrics, which recommended in June 2020 that schools reopen with safety measures in place.

There were no easy decisions at the time. Officials had to weigh the risks of an emerging virus against the academic and mental health consequences of closing schools. And even schools that reopened quickly, by the fall of 2020, have seen lasting effects.

But as experts plan for the next public health emergency, whatever it may be, a growing body of research shows that pandemic school closures came at a steep cost to students.

The longer schools were closed, the more students fell behind.

At the state level, more time spent in remote or hybrid instruction in the 2020-21 school year was associated with larger drops in test scores, according to a New York Times analysis of school closure data and results from the National Assessment of Educational Progress , an authoritative exam administered to a national sample of fourth- and eighth-grade students.

At the school district level, that finding also holds, according to an analysis of test scores from third through eighth grade in thousands of U.S. districts, led by researchers at Stanford and Harvard. In districts where students spent most of the 2020-21 school year learning remotely, they fell more than half a grade behind in math on average, while in districts that spent most of the year in person they lost just over a third of a grade.

( A separate study of nearly 10,000 schools found similar results.)

Such losses can be hard to overcome, without significant interventions. The most recent test scores, from spring 2023, show that students, overall, are not caught up from their pandemic losses , with larger gaps remaining among students that lost the most ground to begin with. Students in districts that were remote or hybrid the longest — at least 90 percent of the 2020-21 school year — still had almost double the ground to make up compared with students in districts that allowed students back for most of the year.

Some time in person was better than no time.

As districts shifted toward in-person learning as the year went on, students that were offered a hybrid schedule (a few hours or days a week in person, with the rest online) did better, on average, than those in places where school was fully remote, but worse than those in places that had school fully in person.

Students in hybrid or remote learning, 2020-21

80% of students

Some schools return online, as Covid-19 cases surge. Vaccinations start for high-priority groups.

Teachers are eligible for the Covid vaccine in more than half of states.

Most districts end the year in-person or hybrid.

Source: Burbio audit of more than 1,200 school districts representing 47 percent of U.S. K-12 enrollment. Note: Learning mode was defined based on the most in-person option available to students.

Income and family background also made a big difference.

A second factor associated with academic declines during the pandemic was a community’s poverty level. Comparing districts with similar remote learning policies, poorer districts had steeper losses.

But in-person learning still mattered: Looking at districts with similar poverty levels, remote learning was associated with greater declines.

A community’s poverty rate and the length of school closures had a “roughly equal” effect on student outcomes, said Sean F. Reardon, a professor of poverty and inequality in education at Stanford, who led a district-level analysis with Thomas J. Kane, an economist at Harvard.

Score changes are measured from 2019 to 2022. Poorest and richest are the top and bottom 20% of districts by percent of students on free/reduced lunch. Mostly in-person and mostly remote are districts that offered traditional in-person learning for more than 90 percent or less than 10 percent of the 2020-21 year.

But the combination — poverty and remote learning — was particularly harmful. For each week spent remote, students in poor districts experienced steeper losses in math than peers in richer districts.

That is notable, because poor districts were also more likely to stay remote for longer .

Some of the country’s largest poor districts are in Democratic-leaning cities that took a more cautious approach to the virus. Poor areas, and Black and Hispanic communities , also suffered higher Covid death rates, making many families and teachers in those districts hesitant to return.

“We wanted to survive,” said Sarah Carpenter, the executive director of Memphis Lift, a parent advocacy group in Memphis, where schools were closed until spring 2021 .

“But I also think, man, looking back, I wish our kids could have gone back to school much quicker,” she added, citing the academic effects.

Other things were also associated with worse student outcomes, including increased anxiety and depression among adults in children’s lives, and the overall restriction of social activity in a community, according to the Stanford and Harvard research .

Even short closures had long-term consequences for children.

While being in school was on average better for academic outcomes, it wasn’t a guarantee. Some districts that opened early, like those in Cherokee County, Ga., a suburb of Atlanta, and Hanover County, Va., lost significant learning and remain behind.

At the same time, many schools are seeing more anxiety and behavioral outbursts among students. And chronic absenteeism from school has surged across demographic groups .

These are signs, experts say, that even short-term closures, and the pandemic more broadly, had lasting effects on the culture of education.

“There was almost, in the Covid era, a sense of, ‘We give up, we’re just trying to keep body and soul together,’ and I think that was corrosive to the higher expectations of schools,” said Margaret Spellings, an education secretary under President George W. Bush who is now chief executive of the Bipartisan Policy Center.

Closing schools did not appear to significantly slow Covid’s spread.

Perhaps the biggest question that hung over school reopenings: Was it safe?

That was largely unknown in the spring of 2020, when schools first shut down. But several experts said that had changed by the fall of 2020, when there were initial signs that children were less likely to become seriously ill, and growing evidence from Europe and parts of the United States that opening schools, with safety measures, did not lead to significantly more transmission.

“Infectious disease leaders have generally agreed that school closures were not an important strategy in stemming the spread of Covid,” said Dr. Jeanne Noble, who directed the Covid response at the U.C.S.F. Parnassus emergency department.

Politically, though, there remains some disagreement about when, exactly, it was safe to reopen school.

Republican governors who pushed to open schools sooner have claimed credit for their approach, while Democrats and teachers’ unions have emphasized their commitment to safety and their investment in helping students recover.

“I do believe it was the right decision,” said Jerry T. Jordan, president of the Philadelphia Federation of Teachers, which resisted returning to school in person over concerns about the availability of vaccines and poor ventilation in school buildings. Philadelphia schools waited to partially reopen until the spring of 2021 , a decision Mr. Jordan believes saved lives.

“It doesn’t matter what is going on in the building and how much people are learning if people are getting the virus and running the potential of dying,” he said.

Pandemic school closures offer lessons for the future.

Though the next health crisis may have different particulars, with different risk calculations, the consequences of closing schools are now well established, experts say.

In the future, infectious disease experts said, they hoped decisions would be guided more by epidemiological data as it emerged, taking into account the trade-offs.

“Could we have used data to better guide our decision making? Yes,” said Dr. Uzma N. Hasan, division chief of pediatric infectious diseases at RWJBarnabas Health in Livingston, N.J. “Fear should not guide our decision making.”

Source: Fahle, Kane, Patterson, Reardon, Staiger and Stuart, “ School District and Community Factors Associated With Learning Loss During the Covid-19 Pandemic. ”

The study used estimates of learning loss from the Stanford Education Data Archive . For closure lengths, the study averaged district-level estimates of time spent in remote and hybrid learning compiled by the Covid-19 School Data Hub (C.S.D.H.) and American Enterprise Institute (A.E.I.) . The A.E.I. data defines remote status by whether there was an in-person or hybrid option, even if some students chose to remain virtual. In the C.S.D.H. data set, districts are defined as remote if “all or most” students were virtual.

An earlier version of this article misstated a job description of Dr. Jeanne Noble. She directed the Covid response at the U.C.S.F. Parnassus emergency department. She did not direct the Covid response for the University of California, San Francisco health system.

How we handle corrections

Sarah Mervosh covers education for The Times, focusing on K-12 schools. More about Sarah Mervosh

Claire Cain Miller writes about gender, families and the future of work for The Upshot. She joined The Times in 2008 and was part of a team that won a Pulitzer Prize in 2018 for public service for reporting on workplace sexual harassment issues. More about Claire Cain Miller

Francesca Paris is a Times reporter working with data and graphics for The Upshot. More about Francesca Paris

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 26 March 2024

Predicting and improving complex beer flavor through machine learning

  • Michiel Schreurs   ORCID: orcid.org/0000-0002-9449-5619 1 , 2 , 3   na1 ,
  • Supinya Piampongsant 1 , 2 , 3   na1 ,
  • Miguel Roncoroni   ORCID: orcid.org/0000-0001-7461-1427 1 , 2 , 3   na1 ,
  • Lloyd Cool   ORCID: orcid.org/0000-0001-9936-3124 1 , 2 , 3 , 4 ,
  • Beatriz Herrera-Malaver   ORCID: orcid.org/0000-0002-5096-9974 1 , 2 , 3 ,
  • Christophe Vanderaa   ORCID: orcid.org/0000-0001-7443-5427 4 ,
  • Florian A. Theßeling 1 , 2 , 3 ,
  • Łukasz Kreft   ORCID: orcid.org/0000-0001-7620-4657 5 ,
  • Alexander Botzki   ORCID: orcid.org/0000-0001-6691-4233 5 ,
  • Philippe Malcorps 6 ,
  • Luk Daenen 6 ,
  • Tom Wenseleers   ORCID: orcid.org/0000-0002-1434-861X 4 &
  • Kevin J. Verstrepen   ORCID: orcid.org/0000-0002-3077-6219 1 , 2 , 3  

Nature Communications volume  15 , Article number:  2368 ( 2024 ) Cite this article

36k Accesses

741 Altmetric

Metrics details

  • Chemical engineering
  • Gas chromatography
  • Machine learning
  • Metabolomics
  • Taste receptors

The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to train machine learning models that allow predicting flavor and consumer appreciation. For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 different machine learning models. The best-performing algorithm, Gradient Boosting, yields models that significantly outperform predictions based on conventional statistics and accurately predict complex food features and consumer appreciation from chemical profiles. Model dissection allows identifying specific and unexpected compounds as drivers of beer flavor and appreciation. Adding these compounds results in variants of commercial alcoholic and non-alcoholic beers with improved consumer appreciation. Together, our study reveals how big data and machine learning uncover complex links between food chemistry, flavor and consumer perception, and lays the foundation to develop novel, tailored foods with superior flavors.

Similar content being viewed by others

analysis research writing

BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules

Rudraksh Tuwani, Somin Wadhwa & Ganesh Bagler

analysis research writing

Sensory lexicon and aroma volatiles analysis of brewing malt

Xiaoxia Su, Miao Yu, … Tianyi Du

analysis research writing

Predicting odor from molecular structure: a multi-label classification approach

Kushagra Saini & Venkatnarayan Ramanathan

Introduction

Predicting and understanding food perception and appreciation is one of the major challenges in food science. Accurate modeling of food flavor and appreciation could yield important opportunities for both producers and consumers, including quality control, product fingerprinting, counterfeit detection, spoilage detection, and the development of new products and product combinations (food pairing) 1 , 2 , 3 , 4 , 5 , 6 . Accurate models for flavor and consumer appreciation would contribute greatly to our scientific understanding of how humans perceive and appreciate flavor. Moreover, accurate predictive models would also facilitate and standardize existing food assessment methods and could supplement or replace assessments by trained and consumer tasting panels, which are variable, expensive and time-consuming 7 , 8 , 9 . Lastly, apart from providing objective, quantitative, accurate and contextual information that can help producers, models can also guide consumers in understanding their personal preferences 10 .

Despite the myriad of applications, predicting food flavor and appreciation from its chemical properties remains a largely elusive goal in sensory science, especially for complex food and beverages 11 , 12 . A key obstacle is the immense number of flavor-active chemicals underlying food flavor. Flavor compounds can vary widely in chemical structure and concentration, making them technically challenging and labor-intensive to quantify, even in the face of innovations in metabolomics, such as non-targeted metabolic fingerprinting 13 , 14 . Moreover, sensory analysis is perhaps even more complicated. Flavor perception is highly complex, resulting from hundreds of different molecules interacting at the physiochemical and sensorial level. Sensory perception is often non-linear, characterized by complex and concentration-dependent synergistic and antagonistic effects 15 , 16 , 17 , 18 , 19 , 20 , 21 that are further convoluted by the genetics, environment, culture and psychology of consumers 22 , 23 , 24 . Perceived flavor is therefore difficult to measure, with problems of sensitivity, accuracy, and reproducibility that can only be resolved by gathering sufficiently large datasets 25 . Trained tasting panels are considered the prime source of quality sensory data, but require meticulous training, are low throughput and high cost. Public databases containing consumer reviews of food products could provide a valuable alternative, especially for studying appreciation scores, which do not require formal training 25 . Public databases offer the advantage of amassing large amounts of data, increasing the statistical power to identify potential drivers of appreciation. However, public datasets suffer from biases, including a bias in the volunteers that contribute to the database, as well as confounding factors such as price, cult status and psychological conformity towards previous ratings of the product.

Classical multivariate statistics and machine learning methods have been used to predict flavor of specific compounds by, for example, linking structural properties of a compound to its potential biological activities or linking concentrations of specific compounds to sensory profiles 1 , 26 . Importantly, most previous studies focused on predicting organoleptic properties of single compounds (often based on their chemical structure) 27 , 28 , 29 , 30 , 31 , 32 , 33 , thus ignoring the fact that these compounds are present in a complex matrix in food or beverages and excluding complex interactions between compounds. Moreover, the classical statistics commonly used in sensory science 34 , 35 , 36 , 37 , 38 , 39 require a large sample size and sufficient variance amongst predictors to create accurate models. They are not fit for studying an extensive set of hundreds of interacting flavor compounds, since they are sensitive to outliers, have a high tendency to overfit and are less suited for non-linear and discontinuous relationships 40 .

In this study, we combine extensive chemical analyses and sensory data of a set of different commercial beers with machine learning approaches to develop models that predict taste, smell, mouthfeel and appreciation from compound concentrations. Beer is particularly suited to model the relationship between chemistry, flavor and appreciation. First, beer is a complex product, consisting of thousands of flavor compounds that partake in complex sensory interactions 41 , 42 , 43 . This chemical diversity arises from the raw materials (malt, yeast, hops, water and spices) and biochemical conversions during the brewing process (kilning, mashing, boiling, fermentation, maturation and aging) 44 , 45 . Second, the advent of the internet saw beer consumers embrace online review platforms, such as RateBeer (ZX Ventures, Anheuser-Busch InBev SA/NV) and BeerAdvocate (Next Glass, inc.). In this way, the beer community provides massive data sets of beer flavor and appreciation scores, creating extraordinarily large sensory databases to complement the analyses of our professional sensory panel. Specifically, we characterize over 200 chemical properties of 250 commercial beers, spread across 22 beer styles, and link these to the descriptive sensory profiling data of a 16-person in-house trained tasting panel and data acquired from over 180,000 public consumer reviews. These unique and extensive datasets enable us to train a suite of machine learning models to predict flavor and appreciation from a beer’s chemical profile. Dissection of the best-performing models allows us to pinpoint specific compounds as potential drivers of beer flavor and appreciation. Follow-up experiments confirm the importance of these compounds and ultimately allow us to significantly improve the flavor and appreciation of selected commercial beers. Together, our study represents a significant step towards understanding complex flavors and reinforces the value of machine learning to develop and refine complex foods. In this way, it represents a stepping stone for further computer-aided food engineering applications 46 .

To generate a comprehensive dataset on beer flavor, we selected 250 commercial Belgian beers across 22 different beer styles (Supplementary Fig.  S1 ). Beers with ≤ 4.2% alcohol by volume (ABV) were classified as non-alcoholic and low-alcoholic. Blonds and Tripels constitute a significant portion of the dataset (12.4% and 11.2%, respectively) reflecting their presence on the Belgian beer market and the heterogeneity of beers within these styles. By contrast, lager beers are less diverse and dominated by a handful of brands. Rare styles such as Brut or Faro make up only a small fraction of the dataset (2% and 1%, respectively) because fewer of these beers are produced and because they are dominated by distinct characteristics in terms of flavor and chemical composition.

Extensive analysis identifies relationships between chemical compounds in beer

For each beer, we measured 226 different chemical properties, including common brewing parameters such as alcohol content, iso-alpha acids, pH, sugar concentration 47 , and over 200 flavor compounds (Methods, Supplementary Table  S1 ). A large portion (37.2%) are terpenoids arising from hopping, responsible for herbal and fruity flavors 16 , 48 . A second major category are yeast metabolites, such as esters and alcohols, that result in fruity and solvent notes 48 , 49 , 50 . Other measured compounds are primarily derived from malt, or other microbes such as non- Saccharomyces yeasts and bacteria (‘wild flora’). Compounds that arise from spices or staling are labeled under ‘Others’. Five attributes (caloric value, total acids and total ester, hop aroma and sulfur compounds) are calculated from multiple individually measured compounds.

As a first step in identifying relationships between chemical properties, we determined correlations between the concentrations of the compounds (Fig.  1 , upper panel, Supplementary Data  1 and 2 , and Supplementary Fig.  S2 . For the sake of clarity, only a subset of the measured compounds is shown in Fig.  1 ). Compounds of the same origin typically show a positive correlation, while absence of correlation hints at parameters varying independently. For example, the hop aroma compounds citronellol, and alpha-terpineol show moderate correlations with each other (Spearman’s rho=0.39 and 0.57), but not with the bittering hop component iso-alpha acids (Spearman’s rho=0.16 and −0.07). This illustrates how brewers can independently modify hop aroma and bitterness by selecting hop varieties and dosage time. If hops are added early in the boiling phase, chemical conversions increase bitterness while aromas evaporate, conversely, late addition of hops preserves aroma but limits bitterness 51 . Similarly, hop-derived iso-alpha acids show a strong anti-correlation with lactic acid and acetic acid, likely reflecting growth inhibition of lactic acid and acetic acid bacteria, or the consequent use of fewer hops in sour beer styles, such as West Flanders ales and Fruit beers, that rely on these bacteria for their distinct flavors 52 . Finally, yeast-derived esters (ethyl acetate, ethyl decanoate, ethyl hexanoate, ethyl octanoate) and alcohols (ethanol, isoamyl alcohol, isobutanol, and glycerol), correlate with Spearman coefficients above 0.5, suggesting that these secondary metabolites are correlated with the yeast genetic background and/or fermentation parameters and may be difficult to influence individually, although the choice of yeast strain may offer some control 53 .

figure 1

Spearman rank correlations are shown. Descriptors are grouped according to their origin (malt (blue), hops (green), yeast (red), wild flora (yellow), Others (black)), and sensory aspect (aroma, taste, palate, and overall appreciation). Please note that for the chemical compounds, for the sake of clarity, only a subset of the total number of measured compounds is shown, with an emphasis on the key compounds for each source. For more details, see the main text and Methods section. Chemical data can be found in Supplementary Data  1 , correlations between all chemical compounds are depicted in Supplementary Fig.  S2 and correlation values can be found in Supplementary Data  2 . See Supplementary Data  4 for sensory panel assessments and Supplementary Data  5 for correlation values between all sensory descriptors.

Interestingly, different beer styles show distinct patterns for some flavor compounds (Supplementary Fig.  S3 ). These observations agree with expectations for key beer styles, and serve as a control for our measurements. For instance, Stouts generally show high values for color (darker), while hoppy beers contain elevated levels of iso-alpha acids, compounds associated with bitter hop taste. Acetic and lactic acid are not prevalent in most beers, with notable exceptions such as Kriek, Lambic, Faro, West Flanders ales and Flanders Old Brown, which use acid-producing bacteria ( Lactobacillus and Pediococcus ) or unconventional yeast ( Brettanomyces ) 54 , 55 . Glycerol, ethanol and esters show similar distributions across all beer styles, reflecting their common origin as products of yeast metabolism during fermentation 45 , 53 . Finally, low/no-alcohol beers contain low concentrations of glycerol and esters. This is in line with the production process for most of the low/no-alcohol beers in our dataset, which are produced through limiting fermentation or by stripping away alcohol via evaporation or dialysis, with both methods having the unintended side-effect of reducing the amount of flavor compounds in the final beer 56 , 57 .

Besides expected associations, our data also reveals less trivial associations between beer styles and specific parameters. For example, geraniol and citronellol, two monoterpenoids responsible for citrus, floral and rose flavors and characteristic of Citra hops, are found in relatively high amounts in Christmas, Saison, and Brett/co-fermented beers, where they may originate from terpenoid-rich spices such as coriander seeds instead of hops 58 .

Tasting panel assessments reveal sensorial relationships in beer

To assess the sensory profile of each beer, a trained tasting panel evaluated each of the 250 beers for 50 sensory attributes, including different hop, malt and yeast flavors, off-flavors and spices. Panelists used a tasting sheet (Supplementary Data  3 ) to score the different attributes. Panel consistency was evaluated by repeating 12 samples across different sessions and performing ANOVA. In 95% of cases no significant difference was found across sessions ( p  > 0.05), indicating good panel consistency (Supplementary Table  S2 ).

Aroma and taste perception reported by the trained panel are often linked (Fig.  1 , bottom left panel and Supplementary Data  4 and 5 ), with high correlations between hops aroma and taste (Spearman’s rho=0.83). Bitter taste was found to correlate with hop aroma and taste in general (Spearman’s rho=0.80 and 0.69), and particularly with “grassy” noble hops (Spearman’s rho=0.75). Barnyard flavor, most often associated with sour beers, is identified together with stale hops (Spearman’s rho=0.97) that are used in these beers. Lactic and acetic acid, which often co-occur, are correlated (Spearman’s rho=0.66). Interestingly, sweetness and bitterness are anti-correlated (Spearman’s rho = −0.48), confirming the hypothesis that they mask each other 59 , 60 . Beer body is highly correlated with alcohol (Spearman’s rho = 0.79), and overall appreciation is found to correlate with multiple aspects that describe beer mouthfeel (alcohol, carbonation; Spearman’s rho= 0.32, 0.39), as well as with hop and ester aroma intensity (Spearman’s rho=0.39 and 0.35).

Similar to the chemical analyses, sensorial analyses confirmed typical features of specific beer styles (Supplementary Fig.  S4 ). For example, sour beers (Faro, Flanders Old Brown, Fruit beer, Kriek, Lambic, West Flanders ale) were rated acidic, with flavors of both acetic and lactic acid. Hoppy beers were found to be bitter and showed hop-associated aromas like citrus and tropical fruit. Malt taste is most detected among scotch, stout/porters, and strong ales, while low/no-alcohol beers, which often have a reputation for being ‘worty’ (reminiscent of unfermented, sweet malt extract) appear in the middle. Unsurprisingly, hop aromas are most strongly detected among hoppy beers. Like its chemical counterpart (Supplementary Fig.  S3 ), acidity shows a right-skewed distribution, with the most acidic beers being Krieks, Lambics, and West Flanders ales.

Tasting panel assessments of specific flavors correlate with chemical composition

We find that the concentrations of several chemical compounds strongly correlate with specific aroma or taste, as evaluated by the tasting panel (Fig.  2 , Supplementary Fig.  S5 , Supplementary Data  6 ). In some cases, these correlations confirm expectations and serve as a useful control for data quality. For example, iso-alpha acids, the bittering compounds in hops, strongly correlate with bitterness (Spearman’s rho=0.68), while ethanol and glycerol correlate with tasters’ perceptions of alcohol and body, the mouthfeel sensation of fullness (Spearman’s rho=0.82/0.62 and 0.72/0.57 respectively) and darker color from roasted malts is a good indication of malt perception (Spearman’s rho=0.54).

figure 2

Heatmap colors indicate Spearman’s Rho. Axes are organized according to sensory categories (aroma, taste, mouthfeel, overall), chemical categories and chemical sources in beer (malt (blue), hops (green), yeast (red), wild flora (yellow), Others (black)). See Supplementary Data  6 for all correlation values.

Interestingly, for some relationships between chemical compounds and perceived flavor, correlations are weaker than expected. For example, the rose-smelling phenethyl acetate only weakly correlates with floral aroma. This hints at more complex relationships and interactions between compounds and suggests a need for a more complex model than simple correlations. Lastly, we uncovered unexpected correlations. For instance, the esters ethyl decanoate and ethyl octanoate appear to correlate slightly with hop perception and bitterness, possibly due to their fruity flavor. Iron is anti-correlated with hop aromas and bitterness, most likely because it is also anti-correlated with iso-alpha acids. This could be a sign of metal chelation of hop acids 61 , given that our analyses measure unbound hop acids and total iron content, or could result from the higher iron content in dark and Fruit beers, which typically have less hoppy and bitter flavors 62 .

Public consumer reviews complement expert panel data

To complement and expand the sensory data of our trained tasting panel, we collected 180,000 reviews of our 250 beers from the online consumer review platform RateBeer. This provided numerical scores for beer appearance, aroma, taste, palate, overall quality as well as the average overall score.

Public datasets are known to suffer from biases, such as price, cult status and psychological conformity towards previous ratings of a product. For example, prices correlate with appreciation scores for these online consumer reviews (rho=0.49, Supplementary Fig.  S6 ), but not for our trained tasting panel (rho=0.19). This suggests that prices affect consumer appreciation, which has been reported in wine 63 , while blind tastings are unaffected. Moreover, we observe that some beer styles, like lagers and non-alcoholic beers, generally receive lower scores, reflecting that online reviewers are mostly beer aficionados with a preference for specialty beers over lager beers. In general, we find a modest correlation between our trained panel’s overall appreciation score and the online consumer appreciation scores (Fig.  3 , rho=0.29). Apart from the aforementioned biases in the online datasets, serving temperature, sample freshness and surroundings, which are all tightly controlled during the tasting panel sessions, can vary tremendously across online consumers and can further contribute to (among others, appreciation) differences between the two categories of tasters. Importantly, in contrast to the overall appreciation scores, for many sensory aspects the results from the professional panel correlated well with results obtained from RateBeer reviews. Correlations were highest for features that are relatively easy to recognize even for untrained tasters, like bitterness, sweetness, alcohol and malt aroma (Fig.  3 and below).

figure 3

RateBeer text mining results can be found in Supplementary Data  7 . Rho values shown are Spearman correlation values, with asterisks indicating significant correlations ( p  < 0.05, two-sided). All p values were smaller than 0.001, except for Esters aroma (0.0553), Esters taste (0.3275), Esters aroma—banana (0.0019), Coriander (0.0508) and Diacetyl (0.0134).

Besides collecting consumer appreciation from these online reviews, we developed automated text analysis tools to gather additional data from review texts (Supplementary Data  7 ). Processing review texts on the RateBeer database yielded comparable results to the scores given by the trained panel for many common sensory aspects, including acidity, bitterness, sweetness, alcohol, malt, and hop tastes (Fig.  3 ). This is in line with what would be expected, since these attributes require less training for accurate assessment and are less influenced by environmental factors such as temperature, serving glass and odors in the environment. Consumer reviews also correlate well with our trained panel for 4-vinyl guaiacol, a compound associated with a very characteristic aroma. By contrast, correlations for more specific aromas like ester, coriander or diacetyl are underrepresented in the online reviews, underscoring the importance of using a trained tasting panel and standardized tasting sheets with explicit factors to be scored for evaluating specific aspects of a beer. Taken together, our results suggest that public reviews are trustworthy for some, but not all, flavor features and can complement or substitute taste panel data for these sensory aspects.

Models can predict beer sensory profiles from chemical data

The rich datasets of chemical analyses, tasting panel assessments and public reviews gathered in the first part of this study provided us with a unique opportunity to develop predictive models that link chemical data to sensorial features. Given the complexity of beer flavor, basic statistical tools such as correlations or linear regression may not always be the most suitable for making accurate predictions. Instead, we applied different machine learning models that can model both simple linear and complex interactive relationships. Specifically, we constructed a set of regression models to predict (a) trained panel scores for beer flavor and quality and (b) public reviews’ appreciation scores from beer chemical profiles. We trained and tested 10 different models (Methods), 3 linear regression-based models (simple linear regression with first-order interactions (LR), lasso regression with first-order interactions (Lasso), partial least squares regressor (PLSR)), 5 decision tree models (AdaBoost regressor (ABR), extra trees (ET), gradient boosting regressor (GBR), random forest (RF) and XGBoost regressor (XGBR)), 1 support vector regression (SVR), and 1 artificial neural network (ANN) model.

To compare the performance of our machine learning models, the dataset was randomly split into a training and test set, stratified by beer style. After a model was trained on data in the training set, its performance was evaluated on its ability to predict the test dataset obtained from multi-output models (based on the coefficient of determination, see Methods). Additionally, individual-attribute models were ranked per descriptor and the average rank was calculated, as proposed by Korneva et al. 64 . Importantly, both ways of evaluating the models’ performance agreed in general. Performance of the different models varied (Table  1 ). It should be noted that all models perform better at predicting RateBeer results than results from our trained tasting panel. One reason could be that sensory data is inherently variable, and this variability is averaged out with the large number of public reviews from RateBeer. Additionally, all tree-based models perform better at predicting taste than aroma. Linear models (LR) performed particularly poorly, with negative R 2 values, due to severe overfitting (training set R 2  = 1). Overfitting is a common issue in linear models with many parameters and limited samples, especially with interaction terms further amplifying the number of parameters. L1 regularization (Lasso) successfully overcomes this overfitting, out-competing multiple tree-based models on the RateBeer dataset. Similarly, the dimensionality reduction of PLSR avoids overfitting and improves performance, to some extent. Still, tree-based models (ABR, ET, GBR, RF and XGBR) show the best performance, out-competing the linear models (LR, Lasso, PLSR) commonly used in sensory science 65 .

GBR models showed the best overall performance in predicting sensory responses from chemical information, with R 2 values up to 0.75 depending on the predicted sensory feature (Supplementary Table  S4 ). The GBR models predict consumer appreciation (RateBeer) better than our trained panel’s appreciation (R 2 value of 0.67 compared to R 2 value of 0.09) (Supplementary Table  S3 and Supplementary Table  S4 ). ANN models showed intermediate performance, likely because neural networks typically perform best with larger datasets 66 . The SVR shows intermediate performance, mostly due to the weak predictions of specific attributes that lower the overall performance (Supplementary Table  S4 ).

Model dissection identifies specific, unexpected compounds as drivers of consumer appreciation

Next, we leveraged our models to infer important contributors to sensory perception and consumer appreciation. Consumer preference is a crucial sensory aspects, because a product that shows low consumer appreciation scores often does not succeed commercially 25 . Additionally, the requirement for a large number of representative evaluators makes consumer trials one of the more costly and time-consuming aspects of product development. Hence, a model for predicting chemical drivers of overall appreciation would be a welcome addition to the available toolbox for food development and optimization.

Since GBR models on our RateBeer dataset showed the best overall performance, we focused on these models. Specifically, we used two approaches to identify important contributors. First, rankings of the most important predictors for each sensorial trait in the GBR models were obtained based on impurity-based feature importance (mean decrease in impurity). High-ranked parameters were hypothesized to be either the true causal chemical properties underlying the trait, to correlate with the actual causal properties, or to take part in sensory interactions affecting the trait 67 (Fig.  4A ). In a second approach, we used SHAP 68 to determine which parameters contributed most to the model for making predictions of consumer appreciation (Fig.  4B ). SHAP calculates parameter contributions to model predictions on a per-sample basis, which can be aggregated into an importance score.

figure 4

A The impurity-based feature importance (mean deviance in impurity, MDI) calculated from the Gradient Boosting Regression (GBR) model predicting RateBeer appreciation scores. The top 15 highest ranked chemical properties are shown. B SHAP summary plot for the top 15 parameters contributing to our GBR model. Each point on the graph represents a sample from our dataset. The color represents the concentration of that parameter, with bluer colors representing low values and redder colors representing higher values. Greater absolute values on the horizontal axis indicate a higher impact of the parameter on the prediction of the model. C Spearman correlations between the 15 most important chemical properties and consumer overall appreciation. Numbers indicate the Spearman Rho correlation coefficient, and the rank of this correlation compared to all other correlations. The top 15 important compounds were determined using SHAP (panel B).

Both approaches identified ethyl acetate as the most predictive parameter for beer appreciation (Fig.  4 ). Ethyl acetate is the most abundant ester in beer with a typical ‘fruity’, ‘solvent’ and ‘alcoholic’ flavor, but is often considered less important than other esters like isoamyl acetate. The second most important parameter identified by SHAP is ethanol, the most abundant beer compound after water. Apart from directly contributing to beer flavor and mouthfeel, ethanol drastically influences the physical properties of beer, dictating how easily volatile compounds escape the beer matrix to contribute to beer aroma 69 . Importantly, it should also be noted that the importance of ethanol for appreciation is likely inflated by the very low appreciation scores of non-alcoholic beers (Supplementary Fig.  S4 ). Despite not often being considered a driver of beer appreciation, protein level also ranks highly in both approaches, possibly due to its effect on mouthfeel and body 70 . Lactic acid, which contributes to the tart taste of sour beers, is the fourth most important parameter identified by SHAP, possibly due to the generally high appreciation of sour beers in our dataset.

Interestingly, some of the most important predictive parameters for our model are not well-established as beer flavors or are even commonly regarded as being negative for beer quality. For example, our models identify methanethiol and ethyl phenyl acetate, an ester commonly linked to beer staling 71 , as a key factor contributing to beer appreciation. Although there is no doubt that high concentrations of these compounds are considered unpleasant, the positive effects of modest concentrations are not yet known 72 , 73 .

To compare our approach to conventional statistics, we evaluated how well the 15 most important SHAP-derived parameters correlate with consumer appreciation (Fig.  4C ). Interestingly, only 6 of the properties derived by SHAP rank amongst the top 15 most correlated parameters. For some chemical compounds, the correlations are so low that they would have likely been considered unimportant. For example, lactic acid, the fourth most important parameter, shows a bimodal distribution for appreciation, with sour beers forming a separate cluster, that is missed entirely by the Spearman correlation. Additionally, the correlation plots reveal outliers, emphasizing the need for robust analysis tools. Together, this highlights the need for alternative models, like the Gradient Boosting model, that better grasp the complexity of (beer) flavor.

Finally, to observe the relationships between these chemical properties and their predicted targets, partial dependence plots were constructed for the six most important predictors of consumer appreciation 74 , 75 , 76 (Supplementary Fig.  S7 ). One-way partial dependence plots show how a change in concentration affects the predicted appreciation. These plots reveal an important limitation of our models: appreciation predictions remain constant at ever-increasing concentrations. This implies that once a threshold concentration is reached, further increasing the concentration does not affect appreciation. This is false, as it is well-documented that certain compounds become unpleasant at high concentrations, including ethyl acetate (‘nail polish’) 77 and methanethiol (‘sulfury’ and ‘rotten cabbage’) 78 . The inability of our models to grasp that flavor compounds have optimal levels, above which they become negative, is a consequence of working with commercial beer brands where (off-)flavors are rarely too high to negatively impact the product. The two-way partial dependence plots show how changing the concentration of two compounds influences predicted appreciation, visualizing their interactions (Supplementary Fig.  S7 ). In our case, the top 5 parameters are dominated by additive or synergistic interactions, with high concentrations for both compounds resulting in the highest predicted appreciation.

To assess the robustness of our best-performing models and model predictions, we performed 100 iterations of the GBR, RF and ET models. In general, all iterations of the models yielded similar performance (Supplementary Fig.  S8 ). Moreover, the main predictors (including the top predictors ethanol and ethyl acetate) remained virtually the same, especially for GBR and RF. For the iterations of the ET model, we did observe more variation in the top predictors, which is likely a consequence of the model’s inherent random architecture in combination with co-correlations between certain predictors. However, even in this case, several of the top predictors (ethanol and ethyl acetate) remain unchanged, although their rank in importance changes (Supplementary Fig.  S8 ).

Next, we investigated if a combination of RateBeer and trained panel data into one consolidated dataset would lead to stronger models, under the hypothesis that such a model would suffer less from bias in the datasets. A GBR model was trained to predict appreciation on the combined dataset. This model underperformed compared to the RateBeer model, both in the native case and when including a dataset identifier (R 2  = 0.67, 0.26 and 0.42 respectively). For the latter, the dataset identifier is the most important feature (Supplementary Fig.  S9 ), while most of the feature importance remains unchanged, with ethyl acetate and ethanol ranking highest, like in the original model trained only on RateBeer data. It seems that the large variation in the panel dataset introduces noise, weakening the models’ performances and reliability. In addition, it seems reasonable to assume that both datasets are fundamentally different, with the panel dataset obtained by blind tastings by a trained professional panel.

Lastly, we evaluated whether beer style identifiers would further enhance the model’s performance. A GBR model was trained with parameters that explicitly encoded the styles of the samples. This did not improve model performance (R2 = 0.66 with style information vs R2 = 0.67). The most important chemical features are consistent with the model trained without style information (eg. ethanol and ethyl acetate), and with the exception of the most preferred (strong ale) and least preferred (low/no-alcohol) styles, none of the styles were among the most important features (Supplementary Fig.  S9 , Supplementary Table  S5 and S6 ). This is likely due to a combination of style-specific chemical signatures, such as iso-alpha acids and lactic acid, that implicitly convey style information to the original models, as well as the low number of samples belonging to some styles, making it difficult for the model to learn style-specific patterns. Moreover, beer styles are not rigorously defined, with some styles overlapping in features and some beers being misattributed to a specific style, all of which leads to more noise in models that use style parameters.

Model validation

To test if our predictive models give insight into beer appreciation, we set up experiments aimed at improving existing commercial beers. We specifically selected overall appreciation as the trait to be examined because of its complexity and commercial relevance. Beer flavor comprises a complex bouquet rather than single aromas and tastes 53 . Hence, adding a single compound to the extent that a difference is noticeable may lead to an unbalanced, artificial flavor. Therefore, we evaluated the effect of combinations of compounds. Because Blond beers represent the most extensive style in our dataset, we selected a beer from this style as the starting material for these experiments (Beer 64 in Supplementary Data  1 ).

In the first set of experiments, we adjusted the concentrations of compounds that made up the most important predictors of overall appreciation (ethyl acetate, ethanol, lactic acid, ethyl phenyl acetate) together with correlated compounds (ethyl hexanoate, isoamyl acetate, glycerol), bringing them up to 95 th percentile ethanol-normalized concentrations (Methods) within the Blond group (‘Spiked’ concentration in Fig.  5A ). Compared to controls, the spiked beers were found to have significantly improved overall appreciation among trained panelists, with panelist noting increased intensity of ester flavors, sweetness, alcohol, and body fullness (Fig.  5B ). To disentangle the contribution of ethanol to these results, a second experiment was performed without the addition of ethanol. This resulted in a similar outcome, including increased perception of alcohol and overall appreciation.

figure 5

Adding the top chemical compounds, identified as best predictors of appreciation by our model, into poorly appreciated beers results in increased appreciation from our trained panel. Results of sensory tests between base beers and those spiked with compounds identified as the best predictors by the model. A Blond and Non/Low-alcohol (0.0% ABV) base beers were brought up to 95th-percentile ethanol-normalized concentrations within each style. B For each sensory attribute, tasters indicated the more intense sample and selected the sample they preferred. The numbers above the bars correspond to the p values that indicate significant changes in perceived flavor (two-sided binomial test: alpha 0.05, n  = 20 or 13).

In a last experiment, we tested whether using the model’s predictions can boost the appreciation of a non-alcoholic beer (beer 223 in Supplementary Data  1 ). Again, the addition of a mixture of predicted compounds (omitting ethanol, in this case) resulted in a significant increase in appreciation, body, ester flavor and sweetness.

Predicting flavor and consumer appreciation from chemical composition is one of the ultimate goals of sensory science. A reliable, systematic and unbiased way to link chemical profiles to flavor and food appreciation would be a significant asset to the food and beverage industry. Such tools would substantially aid in quality control and recipe development, offer an efficient and cost-effective alternative to pilot studies and consumer trials and would ultimately allow food manufacturers to produce superior, tailor-made products that better meet the demands of specific consumer groups more efficiently.

A limited set of studies have previously tried, to varying degrees of success, to predict beer flavor and beer popularity based on (a limited set of) chemical compounds and flavors 79 , 80 . Current sensitive, high-throughput technologies allow measuring an unprecedented number of chemical compounds and properties in a large set of samples, yielding a dataset that can train models that help close the gaps between chemistry and flavor, even for a complex natural product like beer. To our knowledge, no previous research gathered data at this scale (250 samples, 226 chemical parameters, 50 sensory attributes and 5 consumer scores) to disentangle and validate the chemical aspects driving beer preference using various machine-learning techniques. We find that modern machine learning models outperform conventional statistical tools, such as correlations and linear models, and can successfully predict flavor appreciation from chemical composition. This could be attributed to the natural incorporation of interactions and non-linear or discontinuous effects in machine learning models, which are not easily grasped by the linear model architecture. While linear models and partial least squares regression represent the most widespread statistical approaches in sensory science, in part because they allow interpretation 65 , 81 , 82 , modern machine learning methods allow for building better predictive models while preserving the possibility to dissect and exploit the underlying patterns. Of the 10 different models we trained, tree-based models, such as our best performing GBR, showed the best overall performance in predicting sensory responses from chemical information, outcompeting artificial neural networks. This agrees with previous reports for models trained on tabular data 83 . Our results are in line with the findings of Colantonio et al. who also identified the gradient boosting architecture as performing best at predicting appreciation and flavor (of tomatoes and blueberries, in their specific study) 26 . Importantly, besides our larger experimental scale, we were able to directly confirm our models’ predictions in vivo.

Our study confirms that flavor compound concentration does not always correlate with perception, suggesting complex interactions that are often missed by more conventional statistics and simple models. Specifically, we find that tree-based algorithms may perform best in developing models that link complex food chemistry with aroma. Furthermore, we show that massive datasets of untrained consumer reviews provide a valuable source of data, that can complement or even replace trained tasting panels, especially for appreciation and basic flavors, such as sweetness and bitterness. This holds despite biases that are known to occur in such datasets, such as price or conformity bias. Moreover, GBR models predict taste better than aroma. This is likely because taste (e.g. bitterness) often directly relates to the corresponding chemical measurements (e.g., iso-alpha acids), whereas such a link is less clear for aromas, which often result from the interplay between multiple volatile compounds. We also find that our models are best at predicting acidity and alcohol, likely because there is a direct relation between the measured chemical compounds (acids and ethanol) and the corresponding perceived sensorial attribute (acidity and alcohol), and because even untrained consumers are generally able to recognize these flavors and aromas.

The predictions of our final models, trained on review data, hold even for blind tastings with small groups of trained tasters, as demonstrated by our ability to validate specific compounds as drivers of beer flavor and appreciation. Since adding a single compound to the extent of a noticeable difference may result in an unbalanced flavor profile, we specifically tested our identified key drivers as a combination of compounds. While this approach does not allow us to validate if a particular single compound would affect flavor and/or appreciation, our experiments do show that this combination of compounds increases consumer appreciation.

It is important to stress that, while it represents an important step forward, our approach still has several major limitations. A key weakness of the GBR model architecture is that amongst co-correlating variables, the largest main effect is consistently preferred for model building. As a result, co-correlating variables often have artificially low importance scores, both for impurity and SHAP-based methods, like we observed in the comparison to the more randomized Extra Trees models. This implies that chemicals identified as key drivers of a specific sensory feature by GBR might not be the true causative compounds, but rather co-correlate with the actual causative chemical. For example, the high importance of ethyl acetate could be (partially) attributed to the total ester content, ethanol or ethyl hexanoate (rho=0.77, rho=0.72 and rho=0.68), while ethyl phenylacetate could hide the importance of prenyl isobutyrate and ethyl benzoate (rho=0.77 and rho=0.76). Expanding our GBR model to include beer style as a parameter did not yield additional power or insight. This is likely due to style-specific chemical signatures, such as iso-alpha acids and lactic acid, that implicitly convey style information to the original model, as well as the smaller sample size per style, limiting the power to uncover style-specific patterns. This can be partly attributed to the curse of dimensionality, where the high number of parameters results in the models mainly incorporating single parameter effects, rather than complex interactions such as style-dependent effects 67 . A larger number of samples may overcome some of these limitations and offer more insight into style-specific effects. On the other hand, beer style is not a rigid scientific classification, and beers within one style often differ a lot, which further complicates the analysis of style as a model factor.

Our study is limited to beers from Belgian breweries. Although these beers cover a large portion of the beer styles available globally, some beer styles and consumer patterns may be missing, while other features might be overrepresented. For example, many Belgian ales exhibit yeast-driven flavor profiles, which is reflected in the chemical drivers of appreciation discovered by this study. In future work, expanding the scope to include diverse markets and beer styles could lead to the identification of even more drivers of appreciation and better models for special niche products that were not present in our beer set.

In addition to inherent limitations of GBR models, there are also some limitations associated with studying food aroma. Even if our chemical analyses measured most of the known aroma compounds, the total number of flavor compounds in complex foods like beer is still larger than the subset we were able to measure in this study. For example, hop-derived thiols, that influence flavor at very low concentrations, are notoriously difficult to measure in a high-throughput experiment. Moreover, consumer perception remains subjective and prone to biases that are difficult to avoid. It is also important to stress that the models are still immature and that more extensive datasets will be crucial for developing more complete models in the future. Besides more samples and parameters, our dataset does not include any demographic information about the tasters. Including such data could lead to better models that grasp external factors like age and culture. Another limitation is that our set of beers consists of high-quality end-products and lacks beers that are unfit for sale, which limits the current model in accurately predicting products that are appreciated very badly. Finally, while models could be readily applied in quality control, their use in sensory science and product development is restrained by their inability to discern causal relationships. Given that the models cannot distinguish compounds that genuinely drive consumer perception from those that merely correlate, validation experiments are essential to identify true causative compounds.

Despite the inherent limitations, dissection of our models enabled us to pinpoint specific molecules as potential drivers of beer aroma and consumer appreciation, including compounds that were unexpected and would not have been identified using standard approaches. Important drivers of beer appreciation uncovered by our models include protein levels, ethyl acetate, ethyl phenyl acetate and lactic acid. Currently, many brewers already use lactic acid to acidify their brewing water and ensure optimal pH for enzymatic activity during the mashing process. Our results suggest that adding lactic acid can also improve beer appreciation, although its individual effect remains to be tested. Interestingly, ethanol appears to be unnecessary to improve beer appreciation, both for blond beer and alcohol-free beer. Given the growing consumer interest in alcohol-free beer, with a predicted annual market growth of >7% 84 , it is relevant for brewers to know what compounds can further increase consumer appreciation of these beers. Hence, our model may readily provide avenues to further improve the flavor and consumer appreciation of both alcoholic and non-alcoholic beers, which is generally considered one of the key challenges for future beer production.

Whereas we see a direct implementation of our results for the development of superior alcohol-free beverages and other food products, our study can also serve as a stepping stone for the development of novel alcohol-containing beverages. We want to echo the growing body of scientific evidence for the negative effects of alcohol consumption, both on the individual level by the mutagenic, teratogenic and carcinogenic effects of ethanol 85 , 86 , as well as the burden on society caused by alcohol abuse and addiction. We encourage the use of our results for the production of healthier, tastier products, including novel and improved beverages with lower alcohol contents. Furthermore, we strongly discourage the use of these technologies to improve the appreciation or addictive properties of harmful substances.

The present work demonstrates that despite some important remaining hurdles, combining the latest developments in chemical analyses, sensory analysis and modern machine learning methods offers exciting avenues for food chemistry and engineering. Soon, these tools may provide solutions in quality control and recipe development, as well as new approaches to sensory science and flavor research.

Beer selection

250 commercial Belgian beers were selected to cover the broad diversity of beer styles and corresponding diversity in chemical composition and aroma. See Supplementary Fig.  S1 .

Chemical dataset

Sample preparation.

Beers within their expiration date were purchased from commercial retailers. Samples were prepared in biological duplicates at room temperature, unless explicitly stated otherwise. Bottle pressure was measured with a manual pressure device (Steinfurth Mess-Systeme GmbH) and used to calculate CO 2 concentration. The beer was poured through two filter papers (Macherey-Nagel, 500713032 MN 713 ¼) to remove carbon dioxide and prevent spontaneous foaming. Samples were then prepared for measurements by targeted Headspace-Gas Chromatography-Flame Ionization Detector/Flame Photometric Detector (HS-GC-FID/FPD), Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), colorimetric analysis, enzymatic analysis, Near-Infrared (NIR) analysis, as described in the sections below. The mean values of biological duplicates are reported for each compound.

HS-GC-FID/FPD

HS-GC-FID/FPD (Shimadzu GC 2010 Plus) was used to measure higher alcohols, acetaldehyde, esters, 4-vinyl guaicol, and sulfur compounds. Each measurement comprised 5 ml of sample pipetted into a 20 ml glass vial containing 1.75 g NaCl (VWR, 27810.295). 100 µl of 2-heptanol (Sigma-Aldrich, H3003) (internal standard) solution in ethanol (Fisher Chemical, E/0650DF/C17) was added for a final concentration of 2.44 mg/L. Samples were flushed with nitrogen for 10 s, sealed with a silicone septum, stored at −80 °C and analyzed in batches of 20.

The GC was equipped with a DB-WAXetr column (length, 30 m; internal diameter, 0.32 mm; layer thickness, 0.50 µm; Agilent Technologies, Santa Clara, CA, USA) to the FID and an HP-5 column (length, 30 m; internal diameter, 0.25 mm; layer thickness, 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) to the FPD. N 2 was used as the carrier gas. Samples were incubated for 20 min at 70 °C in the headspace autosampler (Flow rate, 35 cm/s; Injection volume, 1000 µL; Injection mode, split; Combi PAL autosampler, CTC analytics, Switzerland). The injector, FID and FPD temperatures were kept at 250 °C. The GC oven temperature was first held at 50 °C for 5 min and then allowed to rise to 80 °C at a rate of 5 °C/min, followed by a second ramp of 4 °C/min until 200 °C kept for 3 min and a final ramp of (4 °C/min) until 230 °C for 1 min. Results were analyzed with the GCSolution software version 2.4 (Shimadzu, Kyoto, Japan). The GC was calibrated with a 5% EtOH solution (VWR International) containing the volatiles under study (Supplementary Table  S7 ).

HS-SPME-GC-MS

HS-SPME-GC-MS (Shimadzu GCMS-QP-2010 Ultra) was used to measure additional volatile compounds, mainly comprising terpenoids and esters. Samples were analyzed by HS-SPME using a triphase DVB/Carboxen/PDMS 50/30 μm SPME fiber (Supelco Co., Bellefonte, PA, USA) followed by gas chromatography (Thermo Fisher Scientific Trace 1300 series, USA) coupled to a mass spectrometer (Thermo Fisher Scientific ISQ series MS) equipped with a TriPlus RSH autosampler. 5 ml of degassed beer sample was placed in 20 ml vials containing 1.75 g NaCl (VWR, 27810.295). 5 µl internal standard mix was added, containing 2-heptanol (1 g/L) (Sigma-Aldrich, H3003), 4-fluorobenzaldehyde (1 g/L) (Sigma-Aldrich, 128376), 2,3-hexanedione (1 g/L) (Sigma-Aldrich, 144169) and guaiacol (1 g/L) (Sigma-Aldrich, W253200) in ethanol (Fisher Chemical, E/0650DF/C17). Each sample was incubated at 60 °C in the autosampler oven with constant agitation. After 5 min equilibration, the SPME fiber was exposed to the sample headspace for 30 min. The compounds trapped on the fiber were thermally desorbed in the injection port of the chromatograph by heating the fiber for 15 min at 270 °C.

The GC-MS was equipped with a low polarity RXi-5Sil MS column (length, 20 m; internal diameter, 0.18 mm; layer thickness, 0.18 µm; Restek, Bellefonte, PA, USA). Injection was performed in splitless mode at 320 °C, a split flow of 9 ml/min, a purge flow of 5 ml/min and an open valve time of 3 min. To obtain a pulsed injection, a programmed gas flow was used whereby the helium gas flow was set at 2.7 mL/min for 0.1 min, followed by a decrease in flow of 20 ml/min to the normal 0.9 mL/min. The temperature was first held at 30 °C for 3 min and then allowed to rise to 80 °C at a rate of 7 °C/min, followed by a second ramp of 2 °C/min till 125 °C and a final ramp of 8 °C/min with a final temperature of 270 °C.

Mass acquisition range was 33 to 550 amu at a scan rate of 5 scans/s. Electron impact ionization energy was 70 eV. The interface and ion source were kept at 275 °C and 250 °C, respectively. A mix of linear n-alkanes (from C7 to C40, Supelco Co.) was injected into the GC-MS under identical conditions to serve as external retention index markers. Identification and quantification of the compounds were performed using an in-house developed R script as described in Goelen et al. and Reher et al. 87 , 88 (for package information, see Supplementary Table  S8 ). Briefly, chromatograms were analyzed using AMDIS (v2.71) 89 to separate overlapping peaks and obtain pure compound spectra. The NIST MS Search software (v2.0 g) in combination with the NIST2017, FFNSC3 and Adams4 libraries were used to manually identify the empirical spectra, taking into account the expected retention time. After background subtraction and correcting for retention time shifts between samples run on different days based on alkane ladders, compound elution profiles were extracted and integrated using a file with 284 target compounds of interest, which were either recovered in our identified AMDIS list of spectra or were known to occur in beer. Compound elution profiles were estimated for every peak in every chromatogram over a time-restricted window using weighted non-negative least square analysis after which peak areas were integrated 87 , 88 . Batch effect correction was performed by normalizing against the most stable internal standard compound, 4-fluorobenzaldehyde. Out of all 284 target compounds that were analyzed, 167 were visually judged to have reliable elution profiles and were used for final analysis.

Discrete photometric and enzymatic analysis

Discrete photometric and enzymatic analysis (Thermo Scientific TM Gallery TM Plus Beermaster Discrete Analyzer) was used to measure acetic acid, ammonia, beta-glucan, iso-alpha acids, color, sugars, glycerol, iron, pH, protein, and sulfite. 2 ml of sample volume was used for the analyses. Information regarding the reagents and standard solutions used for analyses and calibrations is included in Supplementary Table  S7 and Supplementary Table  S9 .

NIR analyses

NIR analysis (Anton Paar Alcolyzer Beer ME System) was used to measure ethanol. Measurements comprised 50 ml of sample, and a 10% EtOH solution was used for calibration.

Correlation calculations

Pairwise Spearman Rank correlations were calculated between all chemical properties.

Sensory dataset

Trained panel.

Our trained tasting panel consisted of volunteers who gave prior verbal informed consent. All compounds used for the validation experiment were of food-grade quality. The tasting sessions were approved by the Social and Societal Ethics Committee of the KU Leuven (G-2022-5677-R2(MAR)). All online reviewers agreed to the Terms and Conditions of the RateBeer website.

Sensory analysis was performed according to the American Society of Brewing Chemists (ASBC) Sensory Analysis Methods 90 . 30 volunteers were screened through a series of triangle tests. The sixteen most sensitive and consistent tasters were retained as taste panel members. The resulting panel was diverse in age [22–42, mean: 29], sex [56% male] and nationality [7 different countries]. The panel developed a consensus vocabulary to describe beer aroma, taste and mouthfeel. Panelists were trained to identify and score 50 different attributes, using a 7-point scale to rate attributes’ intensity. The scoring sheet is included as Supplementary Data  3 . Sensory assessments took place between 10–12 a.m. The beers were served in black-colored glasses. Per session, between 5 and 12 beers of the same style were tasted at 12 °C to 16 °C. Two reference beers were added to each set and indicated as ‘Reference 1 & 2’, allowing panel members to calibrate their ratings. Not all panelists were present at every tasting. Scores were scaled by standard deviation and mean-centered per taster. Values are represented as z-scores and clustered by Euclidean distance. Pairwise Spearman correlations were calculated between taste and aroma sensory attributes. Panel consistency was evaluated by repeating samples on different sessions and performing ANOVA to identify differences, using the ‘stats’ package (v4.2.2) in R (for package information, see Supplementary Table  S8 ).

Online reviews from a public database

The ‘scrapy’ package in Python (v3.6) (for package information, see Supplementary Table  S8 ). was used to collect 232,288 online reviews (mean=922, min=6, max=5343) from RateBeer, an online beer review database. Each review entry comprised 5 numerical scores (appearance, aroma, taste, palate and overall quality) and an optional review text. The total number of reviews per reviewer was collected separately. Numerical scores were scaled and centered per rater, and mean scores were calculated per beer.

For the review texts, the language was estimated using the packages ‘langdetect’ and ‘langid’ in Python. Reviews that were classified as English by both packages were kept. Reviewers with fewer than 100 entries overall were discarded. 181,025 reviews from >6000 reviewers from >40 countries remained. Text processing was done using the ‘nltk’ package in Python. Texts were corrected for slang and misspellings; proper nouns and rare words that are relevant to the beer context were specified and kept as-is (‘Chimay’,’Lambic’, etc.). A dictionary of semantically similar sensorial terms, for example ‘floral’ and ‘flower’, was created and collapsed together into one term. Words were stemmed and lemmatized to avoid identifying words such as ‘acid’ and ‘acidity’ as separate terms. Numbers and punctuation were removed.

Sentences from up to 50 randomly chosen reviews per beer were manually categorized according to the aspect of beer they describe (appearance, aroma, taste, palate, overall quality—not to be confused with the 5 numerical scores described above) or flagged as irrelevant if they contained no useful information. If a beer contained fewer than 50 reviews, all reviews were manually classified. This labeled data set was used to train a model that classified the rest of the sentences for all beers 91 . Sentences describing taste and aroma were extracted, and term frequency–inverse document frequency (TFIDF) was implemented to calculate enrichment scores for sensorial words per beer.

The sex of the tasting subject was not considered when building our sensory database. Instead, results from different panelists were averaged, both for our trained panel (56% male, 44% female) and the RateBeer reviews (70% male, 30% female for RateBeer as a whole).

Beer price collection and processing

Beer prices were collected from the following stores: Colruyt, Delhaize, Total Wine, BeerHawk, The Belgian Beer Shop, The Belgian Shop, and Beer of Belgium. Where applicable, prices were converted to Euros and normalized per liter. Spearman correlations were calculated between these prices and mean overall appreciation scores from RateBeer and the taste panel, respectively.

Pairwise Spearman Rank correlations were calculated between all sensory properties.

Machine learning models

Predictive modeling of sensory profiles from chemical data.

Regression models were constructed to predict (a) trained panel scores for beer flavors and quality from beer chemical profiles and (b) public reviews’ appreciation scores from beer chemical profiles. Z-scores were used to represent sensory attributes in both data sets. Chemical properties with log-normal distributions (Shapiro-Wilk test, p  <  0.05 ) were log-transformed. Missing chemical measurements (0.1% of all data) were replaced with mean values per attribute. Observations from 250 beers were randomly separated into a training set (70%, 175 beers) and a test set (30%, 75 beers), stratified per beer style. Chemical measurements (p = 231) were normalized based on the training set average and standard deviation. In total, three linear regression-based models: linear regression with first-order interaction terms (LR), lasso regression with first-order interaction terms (Lasso) and partial least squares regression (PLSR); five decision tree models, Adaboost regressor (ABR), Extra Trees (ET), Gradient Boosting regressor (GBR), Random Forest (RF) and XGBoost regressor (XGBR); one support vector machine model (SVR) and one artificial neural network model (ANN) were trained. The models were implemented using the ‘scikit-learn’ package (v1.2.2) and ‘xgboost’ package (v1.7.3) in Python (v3.9.16). Models were trained, and hyperparameters optimized, using five-fold cross-validated grid search with the coefficient of determination (R 2 ) as the evaluation metric. The ANN (scikit-learn’s MLPRegressor) was optimized using Bayesian Tree-Structured Parzen Estimator optimization with the ‘Optuna’ Python package (v3.2.0). Individual models were trained per attribute, and a multi-output model was trained on all attributes simultaneously.

Model dissection

GBR was found to outperform other methods, resulting in models with the highest average R 2 values in both trained panel and public review data sets. Impurity-based rankings of the most important predictors for each predicted sensorial trait were obtained using the ‘scikit-learn’ package. To observe the relationships between these chemical properties and their predicted targets, partial dependence plots (PDP) were constructed for the six most important predictors of consumer appreciation 74 , 75 .

The ‘SHAP’ package in Python (v0.41.0) was implemented to provide an alternative ranking of predictor importance and to visualize the predictors’ effects as a function of their concentration 68 .

Validation of causal chemical properties

To validate the effects of the most important model features on predicted sensory attributes, beers were spiked with the chemical compounds identified by the models and descriptive sensory analyses were carried out according to the American Society of Brewing Chemists (ASBC) protocol 90 .

Compound spiking was done 30 min before tasting. Compounds were spiked into fresh beer bottles, that were immediately resealed and inverted three times. Fresh bottles of beer were opened for the same duration, resealed, and inverted thrice, to serve as controls. Pairs of spiked samples and controls were served simultaneously, chilled and in dark glasses as outlined in the Trained panel section above. Tasters were instructed to select the glass with the higher flavor intensity for each attribute (directional difference test 92 ) and to select the glass they prefer.

The final concentration after spiking was equal to the within-style average, after normalizing by ethanol concentration. This was done to ensure balanced flavor profiles in the final spiked beer. The same methods were applied to improve a non-alcoholic beer. Compounds were the following: ethyl acetate (Merck KGaA, W241415), ethyl hexanoate (Merck KGaA, W243906), isoamyl acetate (Merck KGaA, W205508), phenethyl acetate (Merck KGaA, W285706), ethanol (96%, Colruyt), glycerol (Merck KGaA, W252506), lactic acid (Merck KGaA, 261106).

Significant differences in preference or perceived intensity were determined by performing the two-sided binomial test on each attribute.

Reporting summary

Further information on research design is available in the  Nature Portfolio Reporting Summary linked to this article.

Data availability

The data that support the findings of this work are available in the Supplementary Data files and have been deposited to Zenodo under accession code 10653704 93 . The RateBeer scores data are under restricted access, they are not publicly available as they are property of RateBeer (ZX Ventures, USA). Access can be obtained from the authors upon reasonable request and with permission of RateBeer (ZX Ventures, USA).  Source data are provided with this paper.

Code availability

The code for training the machine learning models, analyzing the models, and generating the figures has been deposited to Zenodo under accession code 10653704 93 .

Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor. Science 355 , 391–394 (2017).

Article   ADS   CAS   PubMed   Google Scholar  

Plutowska, B. & Wardencki, W. Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages – A review. Food Chem. 107 , 449–463 (2008).

Article   CAS   Google Scholar  

Legin, A., Rudnitskaya, A., Seleznev, B. & Vlasov, Y. Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie. Anal. Chim. Acta 534 , 129–135 (2005).

Loutfi, A., Coradeschi, S., Mani, G. K., Shankar, P. & Rayappan, J. B. B. Electronic noses for food quality: A review. J. Food Eng. 144 , 103–111 (2015).

Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P. & Barabási, A.-L. Flavor network and the principles of food pairing. Sci. Rep. 1 , 196 (2011).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bartoshuk, L. M. & Klee, H. J. Better fruits and vegetables through sensory analysis. Curr. Biol. 23 , R374–R378 (2013).

Article   CAS   PubMed   Google Scholar  

Piggott, J. R. Design questions in sensory and consumer science. Food Qual. Prefer. 3293 , 217–220 (1995).

Article   Google Scholar  

Kermit, M. & Lengard, V. Assessing the performance of a sensory panel-panellist monitoring and tracking. J. Chemom. 19 , 154–161 (2005).

Cook, D. J., Hollowood, T. A., Linforth, R. S. T. & Taylor, A. J. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 40 , 631–641 (2005).

Chinchanachokchai, S., Thontirawong, P. & Chinchanachokchai, P. A tale of two recommender systems: The moderating role of consumer expertise on artificial intelligence based product recommendations. J. Retail. Consum. Serv. 61 , 1–12 (2021).

Ross, C. F. Sensory science at the human-machine interface. Trends Food Sci. Technol. 20 , 63–72 (2009).

Chambers, E. IV & Koppel, K. Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules 18 , 4887–4905 (2013).

Pinu, F. R. Metabolomics—The new frontier in food safety and quality research. Food Res. Int. 72 , 80–81 (2015).

Danezis, G. P., Tsagkaris, A. S., Brusic, V. & Georgiou, C. A. Food authentication: state of the art and prospects. Curr. Opin. Food Sci. 10 , 22–31 (2016).

Shepherd, G. M. Smell images and the flavour system in the human brain. Nature 444 , 316–321 (2006).

Meilgaard, M. C. Prediction of flavor differences between beers from their chemical composition. J. Agric. Food Chem. 30 , 1009–1017 (1982).

Xu, L. et al. Widespread receptor-driven modulation in peripheral olfactory coding. Science 368 , eaaz5390 (2020).

Kupferschmidt, K. Following the flavor. Science 340 , 808–809 (2013).

Billesbølle, C. B. et al. Structural basis of odorant recognition by a human odorant receptor. Nature 615 , 742–749 (2023).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Smith, B. Perspective: Complexities of flavour. Nature 486 , S6–S6 (2012).

Pfister, P. et al. Odorant receptor inhibition is fundamental to odor encoding. Curr. Biol. 30 , 2574–2587 (2020).

Moskowitz, H. W., Kumaraiah, V., Sharma, K. N., Jacobs, H. L. & Sharma, S. D. Cross-cultural differences in simple taste preferences. Science 190 , 1217–1218 (1975).

Eriksson, N. et al. A genetic variant near olfactory receptor genes influences cilantro preference. Flavour 1 , 22 (2012).

Ferdenzi, C. et al. Variability of affective responses to odors: Culture, gender, and olfactory knowledge. Chem. Senses 38 , 175–186 (2013).

Article   PubMed   Google Scholar  

Lawless, H. T. & Heymann, H. Sensory evaluation of food: Principles and practices. (Springer, New York, NY). https://doi.org/10.1007/978-1-4419-6488-5 (2010).

Colantonio, V. et al. Metabolomic selection for enhanced fruit flavor. Proc. Natl. Acad. Sci. 119 , e2115865119 (2022).

Fritz, F., Preissner, R. & Banerjee, P. VirtualTaste: a web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Res 49 , W679–W684 (2021).

Tuwani, R., Wadhwa, S. & Bagler, G. BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules. Sci. Rep. 9 , 1–13 (2019).

Dagan-Wiener, A. et al. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Sci. Rep. 7 , 1–13 (2017).

Pallante, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci. Rep. 12 , 1–11 (2022).

Malavolta, M. et al. A survey on computational taste predictors. Eur. Food Res. Technol. 248 , 2215–2235 (2022).

Lee, B. K. et al. A principal odor map unifies diverse tasks in olfactory perception. Science 381 , 999–1006 (2023).

Mayhew, E. J. et al. Transport features predict if a molecule is odorous. Proc. Natl. Acad. Sci. 119 , e2116576119 (2022).

Niu, Y. et al. Sensory evaluation of the synergism among ester odorants in light aroma-type liquor by odor threshold, aroma intensity and flash GC electronic nose. Food Res. Int. 113 , 102–114 (2018).

Yu, P., Low, M. Y. & Zhou, W. Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends Food Sci. Technol. 71 , 202–215 (2018).

Oladokun, O. et al. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem. 205 , 212–220 (2016).

Linforth, R., Cabannes, M., Hewson, L., Yang, N. & Taylor, A. Effect of fat content on flavor delivery during consumption: An in vivo model. J. Agric. Food Chem. 58 , 6905–6911 (2010).

Guo, S., Na Jom, K. & Ge, Y. Influence of roasting condition on flavor profile of sunflower seeds: A flavoromics approach. Sci. Rep. 9 , 11295 (2019).

Ren, Q. et al. The changes of microbial community and flavor compound in the fermentation process of Chinese rice wine using Fagopyrum tataricum grain as feedstock. Sci. Rep. 9 , 3365 (2019).

Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning. (Springer, New York, NY). https://doi.org/10.1007/978-0-387-21606-5 (2001).

Dietz, C., Cook, D., Huismann, M., Wilson, C. & Ford, R. The multisensory perception of hop essential oil: a review. J. Inst. Brew. 126 , 320–342 (2020).

CAS   Google Scholar  

Roncoroni, Miguel & Verstrepen, Kevin Joan. Belgian Beer: Tested and Tasted. (Lannoo, 2018).

Meilgaard, M. Flavor chemistry of beer: Part II: Flavor and threshold of 239 aroma volatiles. in (1975).

Bokulich, N. A. & Bamforth, C. W. The microbiology of malting and brewing. Microbiol. Mol. Biol. Rev. MMBR 77 , 157–172 (2013).

Dzialo, M. C., Park, R., Steensels, J., Lievens, B. & Verstrepen, K. J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 41 , S95–S128 (2017).

Article   PubMed   PubMed Central   Google Scholar  

Datta, A. et al. Computer-aided food engineering. Nat. Food 3 , 894–904 (2022).

American Society of Brewing Chemists. Beer Methods. (American Society of Brewing Chemists, St. Paul, MN, U.S.A.).

Olaniran, A. O., Hiralal, L., Mokoena, M. P. & Pillay, B. Flavour-active volatile compounds in beer: production, regulation and control. J. Inst. Brew. 123 , 13–23 (2017).

Verstrepen, K. J. et al. Flavor-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96 , 110–118 (2003).

Meilgaard, M. C. Flavour chemistry of beer. part I: flavour interaction between principal volatiles. Master Brew. Assoc. Am. Tech. Q 12 , 107–117 (1975).

Briggs, D. E., Boulton, C. A., Brookes, P. A. & Stevens, R. Brewing 227–254. (Woodhead Publishing). https://doi.org/10.1533/9781855739062.227 (2004).

Bossaert, S., Crauwels, S., De Rouck, G. & Lievens, B. The power of sour - A review: Old traditions, new opportunities. BrewingScience 72 , 78–88 (2019).

Google Scholar  

Verstrepen, K. J. et al. Flavor active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96 , 110–118 (2003).

Snauwaert, I. et al. Microbial diversity and metabolite composition of Belgian red-brown acidic ales. Int. J. Food Microbiol. 221 , 1–11 (2016).

Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE 9 , e95384 (2014).

Blanco, C. A., Andrés-Iglesias, C. & Montero, O. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies. Crit. Rev. Food Sci. Nutr. 56 , 1379–1388 (2016).

Jackowski, M. & Trusek, A. Non-Alcohol. beer Prod. – Overv. 20 , 32–38 (2018).

Takoi, K. et al. The contribution of geraniol metabolism to the citrus flavour of beer: Synergy of geraniol and β-citronellol under coexistence with excess linalool. J. Inst. Brew. 116 , 251–260 (2010).

Kroeze, J. H. & Bartoshuk, L. M. Bitterness suppression as revealed by split-tongue taste stimulation in humans. Physiol. Behav. 35 , 779–783 (1985).

Mennella, J. A. et al. A spoonful of sugar helps the medicine go down”: Bitter masking bysucrose among children and adults. Chem. Senses 40 , 17–25 (2015).

Wietstock, P., Kunz, T., Perreira, F. & Methner, F.-J. Metal chelation behavior of hop acids in buffered model systems. BrewingScience 69 , 56–63 (2016).

Sancho, D., Blanco, C. A., Caballero, I. & Pascual, A. Free iron in pale, dark and alcohol-free commercial lager beers. J. Sci. Food Agric. 91 , 1142–1147 (2011).

Rodrigues, H. & Parr, W. V. Contribution of cross-cultural studies to understanding wine appreciation: A review. Food Res. Int. 115 , 251–258 (2019).

Korneva, E. & Blockeel, H. Towards better evaluation of multi-target regression models. in ECML PKDD 2020 Workshops (eds. Koprinska, I. et al.) 353–362 (Springer International Publishing, Cham, 2020). https://doi.org/10.1007/978-3-030-65965-3_23 .

Gastón Ares. Mathematical and Statistical Methods in Food Science and Technology. (Wiley, 2013).

Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based models still outperform deep learning on tabular data? Preprint at http://arxiv.org/abs/2207.08815 (2022).

Gries, S. T. Statistics for Linguistics with R: A Practical Introduction. in Statistics for Linguistics with R (De Gruyter Mouton, 2021). https://doi.org/10.1515/9783110718256 .

Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2 , 56–67 (2020).

Ickes, C. M. & Cadwallader, K. R. Effects of ethanol on flavor perception in alcoholic beverages. Chemosens. Percept. 10 , 119–134 (2017).

Kato, M. et al. Influence of high molecular weight polypeptides on the mouthfeel of commercial beer. J. Inst. Brew. 127 , 27–40 (2021).

Wauters, R. et al. Novel Saccharomyces cerevisiae variants slow down the accumulation of staling aldehydes and improve beer shelf-life. Food Chem. 398 , 1–11 (2023).

Li, H., Jia, S. & Zhang, W. Rapid determination of low-level sulfur compounds in beer by headspace gas chromatography with a pulsed flame photometric detector. J. Am. Soc. Brew. Chem. 66 , 188–191 (2008).

Dercksen, A., Laurens, J., Torline, P., Axcell, B. C. & Rohwer, E. Quantitative analysis of volatile sulfur compounds in beer using a membrane extraction interface. J. Am. Soc. Brew. Chem. 54 , 228–233 (1996).

Molnar, C. Interpretable Machine Learning: A Guide for Making Black-Box Models Interpretable. (2020).

Zhao, Q. & Hastie, T. Causal interpretations of black-box models. J. Bus. Econ. Stat. Publ. Am. Stat. Assoc. 39 , 272–281 (2019).

Article   MathSciNet   Google Scholar  

Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning. (Springer, 2019).

Labrado, D. et al. Identification by NMR of key compounds present in beer distillates and residual phases after dealcoholization by vacuum distillation. J. Sci. Food Agric. 100 , 3971–3978 (2020).

Lusk, L. T., Kay, S. B., Porubcan, A. & Ryder, D. S. Key olfactory cues for beer oxidation. J. Am. Soc. Brew. Chem. 70 , 257–261 (2012).

Gonzalez Viejo, C., Torrico, D. D., Dunshea, F. R. & Fuentes, S. Development of artificial neural network models to assess beer acceptability based on sensory properties using a robotic pourer: A comparative model approach to achieve an artificial intelligence system. Beverages 5 , 33 (2019).

Gonzalez Viejo, C., Fuentes, S., Torrico, D. D., Godbole, A. & Dunshea, F. R. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 293 , 479–485 (2019).

Gilbert, J. L. et al. Identifying breeding priorities for blueberry flavor using biochemical, sensory, and genotype by environment analyses. PLOS ONE 10 , 1–21 (2015).

Goulet, C. et al. Role of an esterase in flavor volatile variation within the tomato clade. Proc. Natl. Acad. Sci. 109 , 19009–19014 (2012).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Borisov, V. et al. Deep Neural Networks and Tabular Data: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 1–21 https://doi.org/10.1109/TNNLS.2022.3229161 (2022).

Statista. Statista Consumer Market Outlook: Beer - Worldwide.

Seitz, H. K. & Stickel, F. Molecular mechanisms of alcoholmediated carcinogenesis. Nat. Rev. Cancer 7 , 599–612 (2007).

Voordeckers, K. et al. Ethanol exposure increases mutation rate through error-prone polymerases. Nat. Commun. 11 , 3664 (2020).

Goelen, T. et al. Bacterial phylogeny predicts volatile organic compound composition and olfactory response of an aphid parasitoid. Oikos 129 , 1415–1428 (2020).

Article   ADS   Google Scholar  

Reher, T. et al. Evaluation of hop (Humulus lupulus) as a repellent for the management of Drosophila suzukii. Crop Prot. 124 , 104839 (2019).

Stein, S. E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10 , 770–781 (1999).

American Society of Brewing Chemists. Sensory Analysis Methods. (American Society of Brewing Chemists, St. Paul, MN, U.S.A., 1992).

McAuley, J., Leskovec, J. & Jurafsky, D. Learning Attitudes and Attributes from Multi-Aspect Reviews. Preprint at https://doi.org/10.48550/arXiv.1210.3926 (2012).

Meilgaard, M. C., Carr, B. T. & Carr, B. T. Sensory Evaluation Techniques. (CRC Press, Boca Raton). https://doi.org/10.1201/b16452 (2014).

Schreurs, M. et al. Data from: Predicting and improving complex beer flavor through machine learning. Zenodo https://doi.org/10.5281/zenodo.10653704 (2024).

Download references

Acknowledgements

We thank all lab members for their discussions and thank all tasting panel members for their contributions. Special thanks go out to Dr. Karin Voordeckers for her tremendous help in proofreading and improving the manuscript. M.S. was supported by a Baillet-Latour fellowship, L.C. acknowledges financial support from KU Leuven (C16/17/006), F.A.T. was supported by a PhD fellowship from FWO (1S08821N). Research in the lab of K.J.V. is supported by KU Leuven, FWO, VIB, VLAIO and the Brewing Science Serves Health Fund. Research in the lab of T.W. is supported by FWO (G.0A51.15) and KU Leuven (C16/17/006).

Author information

These authors contributed equally: Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni.

Authors and Affiliations

VIB—KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium

Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni, Lloyd Cool, Beatriz Herrera-Malaver, Florian A. Theßeling & Kevin J. Verstrepen

CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium

Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium

Laboratory of Socioecology and Social Evolution, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium

Lloyd Cool, Christophe Vanderaa & Tom Wenseleers

VIB Bioinformatics Core, VIB, Rijvisschestraat 120, B-9052, Ghent, Belgium

Łukasz Kreft & Alexander Botzki

AB InBev SA/NV, Brouwerijplein 1, B-3000, Leuven, Belgium

Philippe Malcorps & Luk Daenen

You can also search for this author in PubMed   Google Scholar

Contributions

S.P., M.S. and K.J.V. conceived the experiments. S.P., M.S. and K.J.V. designed the experiments. S.P., M.S., M.R., B.H. and F.A.T. performed the experiments. S.P., M.S., L.C., C.V., L.K., A.B., P.M., L.D., T.W. and K.J.V. contributed analysis ideas. S.P., M.S., L.C., C.V., T.W. and K.J.V. analyzed the data. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Kevin J. Verstrepen .

Ethics declarations

Competing interests.

K.J.V. is affiliated with bar.on. The other authors declare no competing interests.

Peer review

Peer review information.

Nature Communications thanks Florian Bauer, Andrew John Macintosh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, peer review file, description of additional supplementary files, supplementary data 1, supplementary data 2, supplementary data 3, supplementary data 4, supplementary data 5, supplementary data 6, supplementary data 7, reporting summary, source data, source data, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Schreurs, M., Piampongsant, S., Roncoroni, M. et al. Predicting and improving complex beer flavor through machine learning. Nat Commun 15 , 2368 (2024). https://doi.org/10.1038/s41467-024-46346-0

Download citation

Received : 30 October 2023

Accepted : 21 February 2024

Published : 26 March 2024

DOI : https://doi.org/10.1038/s41467-024-46346-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

analysis research writing

NASA Logo

The Effects of Climate Change

The effects of human-caused global warming are happening now, are irreversible for people alive today, and will worsen as long as humans add greenhouse gases to the atmosphere.

analysis research writing

  • We already see effects scientists predicted, such as the loss of sea ice, melting glaciers and ice sheets, sea level rise, and more intense heat waves.
  • Scientists predict global temperature increases from human-made greenhouse gases will continue. Severe weather damage will also increase and intensify.

Earth Will Continue to Warm and the Effects Will Be Profound

Effects_page_triptych

Global climate change is not a future problem. Changes to Earth’s climate driven by increased human emissions of heat-trapping greenhouse gases are already having widespread effects on the environment: glaciers and ice sheets are shrinking, river and lake ice is breaking up earlier, plant and animal geographic ranges are shifting, and plants and trees are blooming sooner.

Effects that scientists had long predicted would result from global climate change are now occurring, such as sea ice loss, accelerated sea level rise, and longer, more intense heat waves.

The magnitude and rate of climate change and associated risks depend strongly on near-term mitigation and adaptation actions, and projected adverse impacts and related losses and damages escalate with every increment of global warming.

analysis research writing

Intergovernmental Panel on Climate Change

Some changes (such as droughts, wildfires, and extreme rainfall) are happening faster than scientists previously assessed. In fact, according to the Intergovernmental Panel on Climate Change (IPCC) — the United Nations body established to assess the science related to climate change — modern humans have never before seen the observed changes in our global climate, and some of these changes are irreversible over the next hundreds to thousands of years.

Scientists have high confidence that global temperatures will continue to rise for many decades, mainly due to greenhouse gases produced by human activities.

The IPCC’s Sixth Assessment report, published in 2021, found that human emissions of heat-trapping gases have already warmed the climate by nearly 2 degrees Fahrenheit (1.1 degrees Celsius) since 1850-1900. 1 The global average temperature is expected to reach or exceed 1.5 degrees C (about 3 degrees F) within the next few decades. These changes will affect all regions of Earth.

The severity of effects caused by climate change will depend on the path of future human activities. More greenhouse gas emissions will lead to more climate extremes and widespread damaging effects across our planet. However, those future effects depend on the total amount of carbon dioxide we emit. So, if we can reduce emissions, we may avoid some of the worst effects.

The scientific evidence is unequivocal: climate change is a threat to human wellbeing and the health of the planet. Any further delay in concerted global action will miss the brief, rapidly closing window to secure a liveable future.

Here are some of the expected effects of global climate change on the United States, according to the Third and Fourth National Climate Assessment Reports:

Future effects of global climate change in the United States:

sea level rise

U.S. Sea Level Likely to Rise 1 to 6.6 Feet by 2100

Global sea level has risen about 8 inches (0.2 meters) since reliable record-keeping began in 1880. By 2100, scientists project that it will rise at least another foot (0.3 meters), but possibly as high as 6.6 feet (2 meters) in a high-emissions scenario. Sea level is rising because of added water from melting land ice and the expansion of seawater as it warms. Image credit: Creative Commons Attribution-Share Alike 4.0

Sun shining brightly over misty mountains.

Climate Changes Will Continue Through This Century and Beyond

Global climate is projected to continue warming over this century and beyond. Image credit: Khagani Hasanov, Creative Commons Attribution-Share Alike 3.0

Satellite image of a hurricane.

Hurricanes Will Become Stronger and More Intense

Scientists project that hurricane-associated storm intensity and rainfall rates will increase as the climate continues to warm. Image credit: NASA

analysis research writing

More Droughts and Heat Waves

Droughts in the Southwest and heat waves (periods of abnormally hot weather lasting days to weeks) are projected to become more intense, and cold waves less intense and less frequent. Image credit: NOAA

2013 Rim Fire

Longer Wildfire Season

Warming temperatures have extended and intensified wildfire season in the West, where long-term drought in the region has heightened the risk of fires. Scientists estimate that human-caused climate change has already doubled the area of forest burned in recent decades. By around 2050, the amount of land consumed by wildfires in Western states is projected to further increase by two to six times. Even in traditionally rainy regions like the Southeast, wildfires are projected to increase by about 30%.

Changes in Precipitation Patterns

Climate change is having an uneven effect on precipitation (rain and snow) in the United States, with some locations experiencing increased precipitation and flooding, while others suffer from drought. On average, more winter and spring precipitation is projected for the northern United States, and less for the Southwest, over this century. Image credit: Marvin Nauman/FEMA

Crop field.

Frost-Free Season (and Growing Season) will Lengthen

The length of the frost-free season, and the corresponding growing season, has been increasing since the 1980s, with the largest increases occurring in the western United States. Across the United States, the growing season is projected to continue to lengthen, which will affect ecosystems and agriculture.

Heatmap showing scorching temperatures in U.S. West

Global Temperatures Will Continue to Rise

Summer of 2023 was Earth's hottest summer on record, 0.41 degrees Fahrenheit (F) (0.23 degrees Celsius (C)) warmer than any other summer in NASA’s record and 2.1 degrees F (1.2 C) warmer than the average summer between 1951 and 1980. Image credit: NASA

Satellite map of arctic sea ice.

Arctic Is Very Likely to Become Ice-Free

Sea ice cover in the Arctic Ocean is expected to continue decreasing, and the Arctic Ocean will very likely become essentially ice-free in late summer if current projections hold. This change is expected to occur before mid-century.

U.S. Regional Effects

Climate change is bringing different types of challenges to each region of the country. Some of the current and future impacts are summarized below. These findings are from the Third 3 and Fourth 4 National Climate Assessment Reports, released by the U.S. Global Change Research Program .

  • Northeast. Heat waves, heavy downpours, and sea level rise pose increasing challenges to many aspects of life in the Northeast. Infrastructure, agriculture, fisheries, and ecosystems will be increasingly compromised. Farmers can explore new crop options, but these adaptations are not cost- or risk-free. Moreover, adaptive capacity , which varies throughout the region, could be overwhelmed by a changing climate. Many states and cities are beginning to incorporate climate change into their planning.
  • Northwest. Changes in the timing of peak flows in rivers and streams are reducing water supplies and worsening competing demands for water. Sea level rise, erosion, flooding, risks to infrastructure, and increasing ocean acidity pose major threats. Increasing wildfire incidence and severity, heat waves, insect outbreaks, and tree diseases are causing widespread forest die-off.
  • Southeast. Sea level rise poses widespread and continuing threats to the region’s economy and environment. Extreme heat will affect health, energy, agriculture, and more. Decreased water availability will have economic and environmental impacts.
  • Midwest. Extreme heat, heavy downpours, and flooding will affect infrastructure, health, agriculture, forestry, transportation, air and water quality, and more. Climate change will also worsen a range of risks to the Great Lakes.
  • Southwest. Climate change has caused increased heat, drought, and insect outbreaks. In turn, these changes have made wildfires more numerous and severe. The warming climate has also caused a decline in water supplies, reduced agricultural yields, and triggered heat-related health impacts in cities. In coastal areas, flooding and erosion are additional concerns.

1. IPCC 2021, Climate Change 2021: The Physical Science Basis , the Working Group I contribution to the Sixth Assessment Report, Cambridge University Press, Cambridge, UK.

2. IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

3. USGCRP 2014, Third Climate Assessment .

4. USGCRP 2017, Fourth Climate Assessment .

Related Resources

analysis research writing

A Degree of Difference

So, the Earth's average temperature has increased about 2 degrees Fahrenheit during the 20th century. What's the big deal?

analysis research writing

What’s the difference between climate change and global warming?

“Global warming” refers to the long-term warming of the planet. “Climate change” encompasses global warming, but refers to the broader range of changes that are happening to our planet, including rising sea levels; shrinking mountain glaciers; accelerating ice melt in Greenland, Antarctica and the Arctic; and shifts in flower/plant blooming times.

analysis research writing

Is it too late to prevent climate change?

Humans have caused major climate changes to happen already, and we have set in motion more changes still. However, if we stopped emitting greenhouse gases today, the rise in global temperatures would begin to flatten within a few years. Temperatures would then plateau but remain well-elevated for many, many centuries.

Discover More Topics From NASA

Explore Earth Science

analysis research writing

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

analysis research writing

IMAGES

  1. What Is a Critical Analysis Essay? Simple Guide With Examples

    analysis research writing

  2. How to Write Critical Analysis Essay with Examples

    analysis research writing

  3. Learn How to Write an Analytical Essay on Trust My Paper

    analysis research writing

  4. 10 Easy Steps: How to Write a Critical Analysis Essay

    analysis research writing

  5. 🔥 Steps to writing a critical analysis. How to write a critical

    analysis research writing

  6. How to Write an Analytical Research Paper Guide

    analysis research writing

VIDEO

  1. HOW TO WRITE RESEARCH TITLE?

  2. ACADEMIC RESEARCH WRITING BASIC GUIDELINES -RESEARCH OBJECTIVES

  3. PhD leads to unemployment and how to get employed after PhD?

  4. Data Analysis and Report Writing Part 1

  5. Research Methodologies

  6. 6 : Research Writing

COMMENTS

  1. How To Write an Analysis (With Examples and Tips)

    Writing an analysis requires a particular structure and key components to create a compelling argument. The following steps can help you format and write your analysis: Choose your argument. Define your thesis. Write the introduction. Write the body paragraphs. Add a conclusion. 1. Choose your argument.

  2. How to Write a Research Paper

    A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research. Research papers are similar to academic essays , but they are usually longer and more detailed assignments, designed to assess not only your writing skills but also your skills in scholarly research.

  3. A Practical Guide to Writing Quantitative and Qualitative Research

    A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. ... of the study meant to address the problem posed in the research question.1 An excellent research question clarifies the research writing while facilitating understanding of the ...

  4. Critical Analysis

    How to Write Critical Analysis. Writing a critical analysis involves evaluating and interpreting a text, such as a book, article, or film, and expressing your opinion about its quality and significance. ... However, it could benefit from including more recent studies and providing a more critical analysis of the existing literature. Research ...

  5. How to conduct a meta-analysis in eight steps: a practical guide

    2.1 Step 1: defining the research question. The first step in conducting a meta-analysis, as with any other empirical study, is the definition of the research question. Most importantly, the research question determines the realm of constructs to be considered or the type of interventions whose effects shall be analyzed.

  6. Introduction to Analysis Writing

    Analysis writing generally exhibits the following: Scrutinizing the details of a subject or text and then interpreting those details to show a particular point of view or theme is being conveyed. Using a subjective point of view, backed up by evidence. Determining the use of and quality of rhetorical strategies (pathos, ethos, logos, and kairos ...

  7. Textual Analysis

    Textual analysis is a broad term for various research methods used to describe, interpret and understand texts. All kinds of information can be gleaned from a text - from its literal meaning to the subtext, symbolism, assumptions, and values it reveals. The methods used to conduct textual analysis depend on the field and the aims of the ...

  8. The Beginner's Guide to Statistical Analysis

    Step 1: Write your hypotheses and plan your research design. To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design. Writing statistical hypotheses. The goal of research is often to investigate a relationship between variables within a population. You start with a prediction ...

  9. An Introduction to Research, Analysis, and Writing: Practical Skills

    This accessible guide walks readers through the process of completing a social science research project. Written specifically to meet the needs of undergraduate research classes, it introduces students to a complete skill set, including: planning, design, analysis, argumentation, criticizing theories, building theories, modeling theories, choosing methods, gathering data, presenting evidence ...

  10. How to Write an Analysis (with Pictures)

    2. Create an outline for your analysis. Building on your thesis and the arguments you sketched out while doing your close read of the document, create a brief outline. Make sure to include the main arguments you would like to make as well as the evidence you will use to support each argument.

  11. Research Writing: The 5 Step Approach

    What is research writing? Research writing involves f inding a topic, i dentifying a problem, g athering research, and l ogically presenting the evidence u sing scholarly writing conventions. How to improve research writing skills? Implement a plan before and during the process to develop your research writing skills by following the five-step ...

  12. Analysis

    Analysis is your opportunity to contextualize and explain the evidence for your reader. Your analysis might tell the reader why the evidence is important, what it means, or how it connects to other ideas in your writing. Note that analysis often leads to synthesis, an extension and more complicated form of analysis.

  13. Analysis

    Analysis. Analysis is a type of primary research that involves finding and interpreting patterns in data, classifying those patterns, and generalizing the results. It is useful when looking at actions, events, or occurrences in different texts, media, or publications. Analysis can usually be done without considering most of the ethical issues ...

  14. Home

    There are several different types of analysis essays, including: Literary Analysis Essays: These essays examine a work of literature and analyze various literary devices such as character development, plot, theme, and symbolism. Rhetorical Analysis Essays: These essays examine how authors use language and rhetoric to persuade their audience, focusing on the author's tone, word choice, and use ...

  15. 8.5 Writing Process: Creating an Analytical Report

    12.5 Writing Process: Integrating Research; 12.6 Editing Focus: Integrating Sources and Quotations; 12.7 Evaluation: Effectiveness of Research Paper; 12.8 Spotlight on … Bias in Language and Research ... an analysis of athletes' academic performance indicates that athletes drop fewer classes, earn higher grades, ...

  16. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  17. 11.1 The Purpose of Research Writing

    Step 4: Organizing Research and the Writer's Ideas. When your research is complete, you will organize your findings and decide which sources to cite in your paper. You will also have an opportunity to evaluate the evidence you have collected and determine whether it supports your thesis, or the focus of your paper.

  18. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  19. Introduction to systematic review and meta-analysis

    It is easy to confuse systematic reviews and meta-analyses. A systematic review is an objective, reproducible method to find answers to a certain research question, by collecting all available studies related to that question and reviewing and analyzing their results. A meta-analysis differs from a systematic review in that it uses statistical ...

  20. Research Guides: GSAS Writing Toolkit: Writing and Revision

    Classic Guides to Writing. The Fellowships & Writing Center at Harvard's Graduate School of Arts and Sciences is the best resource for GSAS students interested in producing clear, logical, persuasive, elegant, and engaging scholarly writing. In combination with their assistance and the latest guidance from your chosen manual of style, the old ...

  21. Raising awareness of uncertain choices in empirical data analysis: A

    Roles Conceptualization, Formal analysis, Investigation, Software, Visualization, Writing - original draft, Writing - review & editing * E-mail: [email protected] ... we need to strengthen awareness and understanding of uncertainties in the analysis of empirical research data. To address this point, we present a seminar course intended for ...

  22. 9 methodologies for a successful qualitative research assignment

    Top 9 methodologies. 1. Interviews. Define research objectives. Identify the target population. Obtain informed consent of participants. Make an interview guideline. Select a suitable location ...

  23. Uni-SMART: Universal Science Multimodal Analysis and Research Transformer

    In scientific research and its application, scientific literature analysis is crucial as it allows researchers to build on the work of others. However, the fast growth of scientific knowledge has led to a massive increase in scholarly articles, making in-depth literature analysis increasingly challenging and time-consuming. The emergence of Large Language Models (LLMs) has offered a new way to ...

  24. How to Write a Results Section

    The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share: A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression). A more detailed description of your analysis should go in your methodology section.

  25. Cryptic diversity of cellulose-degrading gut bacteria in ...

    Clustering analysis of MAGs GH family content according to their hosts was performed using PERMANOVA test with 1000 randomizations of the data and the p-value is indicated. (D) PCA of the expression of the fibrolytic system as examined by transcriptomic analysis of three fecal samples of the three hosts (macaque, human, and sheep rumen).

  26. (PDF) A Comprehensive Review and Meta-Analysis of Artificial

    PDF | On Mar 30, 2024, Dani G H Authors and others published A Comprehensive Review and Meta-Analysis of Artificial Intelligence Applications in Emergency Diagnostics | Find, read and cite all the ...

  27. Analysis of the research progress on the deposition and drift ...

    At present, the deposition and drift of droplets are mainly researched by field tests and wind tunnel tests 28,29,30,31,32.Field test research on pesticide deposition and drift is similar to the ...

  28. What the Data Says About Pandemic School Closures, Four Years Later

    At the school district level, that finding also holds, according to an analysis of test scores from third through eighth grade in thousands of U.S. districts, led by researchers at Stanford and ...

  29. Predicting and improving complex beer flavor through machine ...

    For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 ...

  30. The Effects of Climate Change

    Extreme heat, heavy downpours, and flooding will affect infrastructure, health, agriculture, forestry, transportation, air and water quality, and more. Climate change will also worsen a range of risks to the Great Lakes. Southwest. Climate change has caused increased heat, drought, and insect outbreaks.