• Privacy Policy

Buy Me a Coffee

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Grad Coach

What Is A Research (Scientific) Hypothesis? A plain-language explainer + examples

By:  Derek Jansen (MBA)  | Reviewed By: Dr Eunice Rautenbach | June 2020

If you’re new to the world of research, or it’s your first time writing a dissertation or thesis, you’re probably noticing that the words “research hypothesis” and “scientific hypothesis” are used quite a bit, and you’re wondering what they mean in a research context .

“Hypothesis” is one of those words that people use loosely, thinking they understand what it means. However, it has a very specific meaning within academic research. So, it’s important to understand the exact meaning before you start hypothesizing. 

Research Hypothesis 101

  • What is a hypothesis ?
  • What is a research hypothesis (scientific hypothesis)?
  • Requirements for a research hypothesis
  • Definition of a research hypothesis
  • The null hypothesis

What is a hypothesis?

Let’s start with the general definition of a hypothesis (not a research hypothesis or scientific hypothesis), according to the Cambridge Dictionary:

Hypothesis: an idea or explanation for something that is based on known facts but has not yet been proved.

In other words, it’s a statement that provides an explanation for why or how something works, based on facts (or some reasonable assumptions), but that has not yet been specifically tested . For example, a hypothesis might look something like this:

Hypothesis: sleep impacts academic performance.

This statement predicts that academic performance will be influenced by the amount and/or quality of sleep a student engages in – sounds reasonable, right? It’s based on reasonable assumptions , underpinned by what we currently know about sleep and health (from the existing literature). So, loosely speaking, we could call it a hypothesis, at least by the dictionary definition.

But that’s not good enough…

Unfortunately, that’s not quite sophisticated enough to describe a research hypothesis (also sometimes called a scientific hypothesis), and it wouldn’t be acceptable in a dissertation, thesis or research paper . In the world of academic research, a statement needs a few more criteria to constitute a true research hypothesis .

What is a research hypothesis?

A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes – specificity , clarity and testability .

Let’s take a look at these more closely.

Need a helping hand?

definition of general hypothesis

Hypothesis Essential #1: Specificity & Clarity

A good research hypothesis needs to be extremely clear and articulate about both what’ s being assessed (who or what variables are involved ) and the expected outcome (for example, a difference between groups, a relationship between variables, etc.).

Let’s stick with our sleepy students example and look at how this statement could be more specific and clear.

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.

As you can see, the statement is very specific as it identifies the variables involved (sleep hours and test grades), the parties involved (two groups of students), as well as the predicted relationship type (a positive relationship). There’s no ambiguity or uncertainty about who or what is involved in the statement, and the expected outcome is clear.

Contrast that to the original hypothesis we looked at – “Sleep impacts academic performance” – and you can see the difference. “Sleep” and “academic performance” are both comparatively vague , and there’s no indication of what the expected relationship direction is (more sleep or less sleep). As you can see, specificity and clarity are key.

A good research hypothesis needs to be very clear about what’s being assessed and very specific about the expected outcome.

Hypothesis Essential #2: Testability (Provability)

A statement must be testable to qualify as a research hypothesis. In other words, there needs to be a way to prove (or disprove) the statement. If it’s not testable, it’s not a hypothesis – simple as that.

For example, consider the hypothesis we mentioned earlier:

Hypothesis: Students who sleep at least 8 hours per night will, on average, achieve higher grades in standardised tests than students who sleep less than 8 hours a night.  

We could test this statement by undertaking a quantitative study involving two groups of students, one that gets 8 or more hours of sleep per night for a fixed period, and one that gets less. We could then compare the standardised test results for both groups to see if there’s a statistically significant difference. 

Again, if you compare this to the original hypothesis we looked at – “Sleep impacts academic performance” – you can see that it would be quite difficult to test that statement, primarily because it isn’t specific enough. How much sleep? By who? What type of academic performance?

So, remember the mantra – if you can’t test it, it’s not a hypothesis 🙂

A good research hypothesis must be testable. In other words, you must able to collect observable data in a scientifically rigorous fashion to test it.

Defining A Research Hypothesis

You’re still with us? Great! Let’s recap and pin down a clear definition of a hypothesis.

A research hypothesis (or scientific hypothesis) is a statement about an expected relationship between variables, or explanation of an occurrence, that is clear, specific and testable.

So, when you write up hypotheses for your dissertation or thesis, make sure that they meet all these criteria. If you do, you’ll not only have rock-solid hypotheses but you’ll also ensure a clear focus for your entire research project.

What about the null hypothesis?

You may have also heard the terms null hypothesis , alternative hypothesis, or H-zero thrown around. At a simple level, the null hypothesis is the counter-proposal to the original hypothesis.

For example, if the hypothesis predicts that there is a relationship between two variables (for example, sleep and academic performance), the null hypothesis would predict that there is no relationship between those variables.

At a more technical level, the null hypothesis proposes that no statistical significance exists in a set of given observations and that any differences are due to chance alone.

And there you have it – hypotheses in a nutshell. 

If you have any questions, be sure to leave a comment below and we’ll do our best to help you. If you need hands-on help developing and testing your hypotheses, consider our private coaching service , where we hold your hand through the research journey.

definition of general hypothesis

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Research limitations vs delimitations

16 Comments

Lynnet Chikwaikwai

Very useful information. I benefit more from getting more information in this regard.

Dr. WuodArek

Very great insight,educative and informative. Please give meet deep critics on many research data of public international Law like human rights, environment, natural resources, law of the sea etc

Afshin

In a book I read a distinction is made between null, research, and alternative hypothesis. As far as I understand, alternative and research hypotheses are the same. Can you please elaborate? Best Afshin

GANDI Benjamin

This is a self explanatory, easy going site. I will recommend this to my friends and colleagues.

Lucile Dossou-Yovo

Very good definition. How can I cite your definition in my thesis? Thank you. Is nul hypothesis compulsory in a research?

Pereria

It’s a counter-proposal to be proven as a rejection

Egya Salihu

Please what is the difference between alternate hypothesis and research hypothesis?

Mulugeta Tefera

It is a very good explanation. However, it limits hypotheses to statistically tasteable ideas. What about for qualitative researches or other researches that involve quantitative data that don’t need statistical tests?

Derek Jansen

In qualitative research, one typically uses propositions, not hypotheses.

Samia

could you please elaborate it more

Patricia Nyawir

I’ve benefited greatly from these notes, thank you.

Hopeson Khondiwa

This is very helpful

Dr. Andarge

well articulated ideas are presented here, thank you for being reliable sources of information

TAUNO

Excellent. Thanks for being clear and sound about the research methodology and hypothesis (quantitative research)

I have only a simple question regarding the null hypothesis. – Is the null hypothesis (Ho) known as the reversible hypothesis of the alternative hypothesis (H1? – How to test it in academic research?

Tesfaye Negesa Urge

this is very important note help me much more

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Contrasted to this, a quantitative methodology is typically used when the research aims and objectives are confirmatory in nature. For example,…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • More from M-W
  • To save this word, you'll need to log in. Log In

Definition of hypothesis

Did you know.

The Difference Between Hypothesis and Theory

A hypothesis is an assumption, an idea that is proposed for the sake of argument so that it can be tested to see if it might be true.

In the scientific method, the hypothesis is constructed before any applicable research has been done, apart from a basic background review. You ask a question, read up on what has been studied before, and then form a hypothesis.

A hypothesis is usually tentative; it's an assumption or suggestion made strictly for the objective of being tested.

A theory , in contrast, is a principle that has been formed as an attempt to explain things that have already been substantiated by data. It is used in the names of a number of principles accepted in the scientific community, such as the Big Bang Theory . Because of the rigors of experimentation and control, it is understood to be more likely to be true than a hypothesis is.

In non-scientific use, however, hypothesis and theory are often used interchangeably to mean simply an idea, speculation, or hunch, with theory being the more common choice.

Since this casual use does away with the distinctions upheld by the scientific community, hypothesis and theory are prone to being wrongly interpreted even when they are encountered in scientific contexts—or at least, contexts that allude to scientific study without making the critical distinction that scientists employ when weighing hypotheses and theories.

The most common occurrence is when theory is interpreted—and sometimes even gleefully seized upon—to mean something having less truth value than other scientific principles. (The word law applies to principles so firmly established that they are almost never questioned, such as the law of gravity.)

This mistake is one of projection: since we use theory in general to mean something lightly speculated, then it's implied that scientists must be talking about the same level of uncertainty when they use theory to refer to their well-tested and reasoned principles.

The distinction has come to the forefront particularly on occasions when the content of science curricula in schools has been challenged—notably, when a school board in Georgia put stickers on textbooks stating that evolution was "a theory, not a fact, regarding the origin of living things." As Kenneth R. Miller, a cell biologist at Brown University, has said , a theory "doesn’t mean a hunch or a guess. A theory is a system of explanations that ties together a whole bunch of facts. It not only explains those facts, but predicts what you ought to find from other observations and experiments.”

While theories are never completely infallible, they form the basis of scientific reasoning because, as Miller said "to the best of our ability, we’ve tested them, and they’ve held up."

  • proposition
  • supposition

hypothesis , theory , law mean a formula derived by inference from scientific data that explains a principle operating in nature.

hypothesis implies insufficient evidence to provide more than a tentative explanation.

theory implies a greater range of evidence and greater likelihood of truth.

law implies a statement of order and relation in nature that has been found to be invariable under the same conditions.

Examples of hypothesis in a Sentence

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'hypothesis.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Word History

Greek, from hypotithenai to put under, suppose, from hypo- + tithenai to put — more at do

1641, in the meaning defined at sense 1a

Phrases Containing hypothesis

  • nebular hypothesis
  • null hypothesis
  • counter - hypothesis
  • planetesimal hypothesis
  • Whorfian hypothesis

Articles Related to hypothesis

hypothesis

This is the Difference Between a...

This is the Difference Between a Hypothesis and a Theory

In scientific reasoning, they're two completely different things

Dictionary Entries Near hypothesis

hypothermia

hypothesize

Cite this Entry

“Hypothesis.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/hypothesis. Accessed 12 Apr. 2024.

Kids Definition

Kids definition of hypothesis, medical definition, medical definition of hypothesis, more from merriam-webster on hypothesis.

Nglish: Translation of hypothesis for Spanish Speakers

Britannica English: Translation of hypothesis for Arabic Speakers

Britannica.com: Encyclopedia article about hypothesis

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

Your vs. you're: how to use them correctly, every letter is silent, sometimes: a-z list of examples, more commonly mispronounced words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, popular in wordplay, the words of the week - apr. 12, 10 scrabble words without any vowels, 12 more bird names that sound like insults (and sometimes are), 8 uncommon words related to love, 9 superb owl words, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism. Run a free check.

Step 1. ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved April 11, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

Part of the San Andreas fault may be gearing up for an earthquake

Antarctica is covered in volcanoes, could they erupt?

'Exceptional' prosthesis of gold, silver and wool helped 18th-century man live with cleft palate

Most Popular

  • 2 Eclipse from space: See the moon's shadow race across North America at 1,500 mph in epic satellite footage
  • 3 Superfast drone fitted with new 'rotating detonation rocket engine' approaches the speed of sound
  • 4 NASA spacecraft snaps mysterious 'surfboard' orbiting the moon. What is it?
  • 5 Neolithic women in Europe were tied up and buried alive in ritual sacrifices, study suggests
  • 2 No, you didn't see a solar flare during the total eclipse — but you may have seen something just as special
  • 3 Decomposing globster washes ashore in Malaysia, drawing crowds
  • 4 Eclipse from space: See the moon's shadow race across North America at 1,500 mph in epic satellite footage
  • 5 Superfast drone fitted with new 'rotating detonation rocket engine' approaches the speed of sound

definition of general hypothesis

Frequently asked questions

What is the definition of a hypothesis.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Frequently asked questions: Methodology

Quantitative observations involve measuring or counting something and expressing the result in numerical form, while qualitative observations involve describing something in non-numerical terms, such as its appearance, texture, or color.

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Inclusion and exclusion criteria are predominantly used in non-probability sampling . In purposive sampling and snowball sampling , restrictions apply as to who can be included in the sample .

Inclusion and exclusion criteria are typically presented and discussed in the methodology section of your thesis or dissertation .

The purpose of theory-testing mode is to find evidence in order to disprove, refine, or support a theory. As such, generalisability is not the aim of theory-testing mode.

Due to this, the priority of researchers in theory-testing mode is to eliminate alternative causes for relationships between variables . In other words, they prioritise internal validity over external validity , including ecological validity .

Convergent validity shows how much a measure of one construct aligns with other measures of the same or related constructs .

On the other hand, concurrent validity is about how a measure matches up to some known criterion or gold standard, which can be another measure.

Although both types of validity are established by calculating the association or correlation between a test score and another variable , they represent distinct validation methods.

Validity tells you how accurately a method measures what it was designed to measure. There are 4 main types of validity :

  • Construct validity : Does the test measure the construct it was designed to measure?
  • Face validity : Does the test appear to be suitable for its objectives ?
  • Content validity : Does the test cover all relevant parts of the construct it aims to measure.
  • Criterion validity : Do the results accurately measure the concrete outcome they are designed to measure?

Criterion validity evaluates how well a test measures the outcome it was designed to measure. An outcome can be, for example, the onset of a disease.

Criterion validity consists of two subtypes depending on the time at which the two measures (the criterion and your test) are obtained:

  • Concurrent validity is a validation strategy where the the scores of a test and the criterion are obtained at the same time
  • Predictive validity is a validation strategy where the criterion variables are measured after the scores of the test

Attrition refers to participants leaving a study. It always happens to some extent – for example, in randomised control trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analysing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Construct validity refers to how well a test measures the concept (or construct) it was designed to measure. Assessing construct validity is especially important when you’re researching concepts that can’t be quantified and/or are intangible, like introversion. To ensure construct validity your test should be based on known indicators of introversion ( operationalisation ).

On the other hand, content validity assesses how well the test represents all aspects of the construct. If some aspects are missing or irrelevant parts are included, the test has low content validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Construct validity has convergent and discriminant subtypes. They assist determine if a test measures the intended notion.

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.
  • Reproducing research entails reanalysing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalisations – often the goal of quantitative research . As such, a snowball sample is not representative of the target population, and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones. 

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extra-marital affairs)

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection , using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

When your population is large in size, geographically dispersed, or difficult to contact, it’s necessary to use a sampling method .

This allows you to gather information from a smaller part of the population, i.e. the sample, and make accurate statements by using statistical analysis. A few sampling methods include simple random sampling , convenience sampling , and snowball sampling .

The two main types of social desirability bias are:

  • Self-deceptive enhancement (self-deception): The tendency to see oneself in a favorable light without realizing it.
  • Impression managemen t (other-deception): The tendency to inflate one’s abilities or achievement in order to make a good impression on other people.

Response bias refers to conditions or factors that take place during the process of responding to surveys, affecting the responses. One type of response bias is social desirability bias .

Demand characteristics are aspects of experiments that may give away the research objective to participants. Social desirability bias occurs when participants automatically try to respond in ways that make them seem likeable in a study, even if it means misrepresenting how they truly feel.

Participants may use demand characteristics to infer social norms or experimenter expectancies and act in socially desirable ways, so you should try to control for demand characteristics wherever possible.

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information – for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Peer review is a process of evaluating submissions to an academic journal. Utilising rigorous criteria, a panel of reviewers in the same subject area decide whether to accept each submission for publication.

For this reason, academic journals are often considered among the most credible sources you can use in a research project – provided that the journal itself is trustworthy and well regarded.

In general, the peer review process follows the following steps:

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or
  • Send it onward to the selected peer reviewer(s)
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made.
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field.

It acts as a first defence, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure.

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analysing the data.

Blinding is important to reduce bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behaviour in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardisation and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyse, detect, modify, or remove ‘dirty’ data to make your dataset ‘clean’. Data cleaning is also called data cleansing or data scrubbing.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimise or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Observer bias occurs when a researcher’s expectations, opinions, or prejudices influence what they perceive or record in a study. It usually affects studies when observers are aware of the research aims or hypotheses. This type of research bias is also called detection bias or ascertainment bias .

The observer-expectancy effect occurs when researchers influence the results of their own study through interactions with participants.

Researchers’ own beliefs and expectations about the study results may unintentionally influence participants through demand characteristics .

You can use several tactics to minimise observer bias .

  • Use masking (blinding) to hide the purpose of your study from all observers.
  • Triangulate your data with different data collection methods or sources.
  • Use multiple observers and ensure inter-rater reliability.
  • Train your observers to make sure data is consistently recorded between them.
  • Standardise your observation procedures to make sure they are structured and clear.

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviours of your research subjects in real-world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as ‘people watching’ with a purpose.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

You can organise the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomisation can minimise the bias from order effects.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or by post. All questions are standardised so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analysing data from people using questionnaires.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviours. It is made up of four or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with five or seven possible responses, to capture their degree of agreement.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyse your data.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data are available for analysis; other times your research question may only require a cross-sectional study to answer it.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyse behaviour over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups . Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with ‘yes’ or ‘no’ (questions that start with ‘why’ or ‘how’ are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

Social desirability bias is the tendency for interview participants to give responses that will be viewed favourably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias in research can also occur in observations if the participants know they’re being observed. They might alter their behaviour accordingly.

A focus group is a research method that brings together a small group of people to answer questions in a moderated setting. The group is chosen due to predefined demographic traits, and the questions are designed to shed light on a topic of interest. It is one of four types of interviews .

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order.
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualise your initial thoughts and hypotheses
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when:

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyse your data quickly and efficiently
  • Your research question depends on strong parity between participants, with environmental conditions held constant

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g., understanding the needs of your consumers or user testing your website).
  • You can control and standardise the process for high reliability and validity (e.g., choosing appropriate measurements and sampling methods ).

However, there are also some drawbacks: data collection can be time-consuming, labour-intensive, and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

If something is a mediating variable :

  • It’s caused by the independent variable
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control, and randomisation.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomisation , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalisation .

In statistics, ordinal and nominal variables are both considered categorical variables .

Even though ordinal data can sometimes be numerical, not all mathematical operations can be performed on them.

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

‘Controlling for a variable’ means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

There are 4 main types of extraneous variables :

  • Demand characteristics : Environmental cues that encourage participants to conform to researchers’ expectations
  • Experimenter effects : Unintentional actions by researchers that influence study outcomes
  • Situational variables : Eenvironmental variables that alter participants’ behaviours
  • Participant variables : Any characteristic or aspect of a participant’s background that could affect study results

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

The term ‘ explanatory variable ‘ is sometimes preferred over ‘ independent variable ‘ because, in real-world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so ‘explanatory variables’ is a more appropriate term.

On graphs, the explanatory variable is conventionally placed on the x -axis, while the response variable is placed on the y -axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalisation : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalisation: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity, and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity: The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Attrition bias can skew your sample so that your final sample differs significantly from your original sample. Your sample is biased because some groups from your population are underrepresented.

With a biased final sample, you may not be able to generalise your findings to the original population that you sampled from, so your external validity is compromised.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment, and situation effect.

The two types of external validity are population validity (whether you can generalise to other groups of people) and ecological validity (whether you can generalise to other situations and settings).

The external validity of a study is the extent to which you can generalise your findings to different groups of people, situations, and measures.

Attrition bias is a threat to internal validity . In experiments, differential rates of attrition between treatment and control groups can skew results.

This bias can affect the relationship between your independent and dependent variables . It can make variables appear to be correlated when they are not, or vice versa.

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction, and attrition .

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 × 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method .

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

In multistage sampling , you can use probability or non-probability sampling methods.

For a probability sample, you have to probability sampling at every stage. You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data are then collected from as large a percentage as possible of this random subset.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from county to city to neighbourhood) to create a sample that’s less expensive and time-consuming to collect data from.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling , and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

Advantages:

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.

Disadvantages:

  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes
  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference between this and a true experiment is that the groups are not randomly assigned.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Triangulation can help:

  • Reduce bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labour-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analysing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

Exploratory research explores the main aspects of a new or barely researched question.

Explanatory research explains the causes and effects of an already widely researched question.

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

An observational study could be a good fit for your research if your research question is based on things you observe. If you have ethical, logistical, or practical concerns that make an experimental design challenging, consider an observational study. Remember that in an observational study, it is critical that there be no interference or manipulation of the research subjects. Since it’s not an experiment, there are no control or treatment groups either.

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analysed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analysed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualise your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analysed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organisation to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Ask our team

Want to contact us directly? No problem. We are always here for you.

Support team - Nina

Our support team is here to help you daily via chat, WhatsApp, email, or phone between 9:00 a.m. to 11:00 p.m. CET.

Our APA experts default to APA 7 for editing and formatting. For the Citation Editing Service you are able to choose between APA 6 and 7.

Yes, if your document is longer than 20,000 words, you will get a sample of approximately 2,000 words. This sample edit gives you a first impression of the editor’s editing style and a chance to ask questions and give feedback.

How does the sample edit work?

You will receive the sample edit within 24 hours after placing your order. You then have 24 hours to let us know if you’re happy with the sample or if there’s something you would like the editor to do differently.

Read more about how the sample edit works

Yes, you can upload your document in sections.

We try our best to ensure that the same editor checks all the different sections of your document. When you upload a new file, our system recognizes you as a returning customer, and we immediately contact the editor who helped you before.

However, we cannot guarantee that the same editor will be available. Your chances are higher if

  • You send us your text as soon as possible and
  • You can be flexible about the deadline.

Please note that the shorter your deadline is, the lower the chance that your previous editor is not available.

If your previous editor isn’t available, then we will inform you immediately and look for another qualified editor. Fear not! Every Scribbr editor follows the  Scribbr Improvement Model  and will deliver high-quality work.

Yes, our editors also work during the weekends and holidays.

Because we have many editors available, we can check your document 24 hours per day and 7 days per week, all year round.

If you choose a 72 hour deadline and upload your document on a Thursday evening, you’ll have your thesis back by Sunday evening!

Yes! Our editors are all native speakers, and they have lots of experience editing texts written by ESL students. They will make sure your grammar is perfect and point out any sentences that are difficult to understand. They’ll also notice your most common mistakes, and give you personal feedback to improve your writing in English.

Every Scribbr order comes with our award-winning Proofreading & Editing service , which combines two important stages of the revision process.

For a more comprehensive edit, you can add a Structure Check or Clarity Check to your order. With these building blocks, you can customize the kind of feedback you receive.

You might be familiar with a different set of editing terms. To help you understand what you can expect at Scribbr, we created this table:

View an example

When you place an order, you can specify your field of study and we’ll match you with an editor who has familiarity with this area.

However, our editors are language specialists, not academic experts in your field. Your editor’s job is not to comment on the content of your dissertation, but to improve your language and help you express your ideas as clearly and fluently as possible.

This means that your editor will understand your text well enough to give feedback on its clarity, logic and structure, but not on the accuracy or originality of its content.

Good academic writing should be understandable to a non-expert reader, and we believe that academic editing is a discipline in itself. The research, ideas and arguments are all yours – we’re here to make sure they shine!

After your document has been edited, you will receive an email with a link to download the document.

The editor has made changes to your document using ‘Track Changes’ in Word. This means that you only have to accept or ignore the changes that are made in the text one by one.

It is also possible to accept all changes at once. However, we strongly advise you not to do so for the following reasons:

  • You can learn a lot by looking at the mistakes you made.
  • The editors don’t only change the text – they also place comments when sentences or sometimes even entire paragraphs are unclear. You should read through these comments and take into account your editor’s tips and suggestions.
  • With a final read-through, you can make sure you’re 100% happy with your text before you submit!

You choose the turnaround time when ordering. We can return your dissertation within 24 hours , 3 days or 1 week . These timescales include weekends and holidays. As soon as you’ve paid, the deadline is set, and we guarantee to meet it! We’ll notify you by text and email when your editor has completed the job.

Very large orders might not be possible to complete in 24 hours. On average, our editors can complete around 13,000 words in a day while maintaining our high quality standards. If your order is longer than this and urgent, contact us to discuss possibilities.

Always leave yourself enough time to check through the document and accept the changes before your submission deadline.

Scribbr is specialised in editing study related documents. We check:

  • Graduation projects
  • Dissertations
  • Admissions essays
  • College essays
  • Application essays
  • Personal statements
  • Process reports
  • Reflections
  • Internship reports
  • Academic papers
  • Research proposals
  • Prospectuses

Calculate the costs

The fastest turnaround time is 24 hours.

You can upload your document at any time and choose between three deadlines:

At Scribbr, we promise to make every customer 100% happy with the service we offer. Our philosophy: Your complaint is always justified – no denial, no doubts.

Our customer support team is here to find the solution that helps you the most, whether that’s a free new edit or a refund for the service.

Yes, in the order process you can indicate your preference for American, British, or Australian English .

If you don’t choose one, your editor will follow the style of English you currently use. If your editor has any questions about this, we will contact you.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

definition of general hypothesis

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

definition of general hypothesis

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

Print Friendly, PDF & Email

Hypothesis Definition (Science)

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis is an explanation that is proposed for a phenomenon. Formulating a hypothesis is a step of the scientific method .

Alternate Spellings: plural: hypotheses

Examples: Upon observing that a lake appears blue under a blue sky, you might propose the hypothesis that the lake is blue because it is reflecting the sky. One alternate hypothesis would be that the lake is blue because water is blue.

Hypothesis Versus Theory

Although in common usage the terms hypothesis and theory are used interchangeably, the two words mean something different from each other in science. Like a hypothesis, a theory is testable and may be used to make predictions. However, a theory has been tested using the scientific method many times. Testing a hypothesis may, over time, lead to the formulation of a theory.

  • Null Hypothesis Definition and Examples
  • Hypothesis, Model, Theory, and Law
  • Theory Definition in Science
  • What Is a Testable Hypothesis?
  • Scientific Hypothesis, Model, Theory, and Law
  • Scientific Method Flow Chart
  • What Is a Hypothesis? (Science)
  • Why Ice is Blue
  • How To Design a Science Fair Experiment
  • Definition of a Hypothesis
  • Six Steps of the Scientific Method
  • What Are the Elements of a Good Hypothesis?
  • Scientific Method Lesson Plan
  • What 'Fail to Reject' Means in a Hypothesis Test
  • Hypothesis Test for the Difference of Two Population Proportions
  • First Online: 01 January 2024

Cite this chapter

Book cover

  • Hiroshi Ishikawa 3  

Part of the book series: Studies in Big Data ((SBD,volume 139))

129 Accesses

This chapter will explain the definition and properties of a hypothesis, the related concepts, and basic methods of hypothesis generation as follows.

Describe the definition, properties, and life cycle of a hypothesis.

Describe relationships between a hypothesis and a theory, a model, and data.

Categorize and explain research questions that provide hints for hypothesis generation.

Explain how to visualize data and analysis results.

Explain the philosophy of science and scientific methods in relation to hypothesis generation in science.

Explain deduction, induction, plausible reasoning, and analogy concretely as reasoning methods useful for hypothesis generation.

Explain problem solving as hypothesis generation methods by using familiar examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Aufmann RN, Lockwood JS et al (2018) Mathematical excursions. CENGAGE

Google Scholar  

Bortolotti L (2008) An introduction to the philosophy of science. Polity

Cairo A (2016) The truthful art: data, charts, and maps for communication. New Riders

Cellucci C (2017) Rethinking knowledge: the heuristic view. Springer

Chang M (2014) Principles of scientific methods. CRC Press

Crease RP (2010) The great equations: breakthroughs in science from Pythagoras to Heisenberg. W. W. Norton & Company

Danks D, Ippoliti E (eds) Building theories: Heuristics and hypotheses in sciences. Springer

Diggle PJ, Chetwynd AG (2011) Statistics and scientific method: an introduction for students and researchers. Oxford University Press

DOAJ (2022) Directory of open access journal. https://doaj.org/ Accessed 2022

Gilchrist P, Wheaton B (2011) Lifestyle sport, public policy and youth engagement: examining the emergence of Parkour. Int J Sport Policy Polit 3(1):109–131. https://doi.org/10.1080/19406940.2010.547866

Article   Google Scholar  

Google Maps. https://www.google.com/maps Accessed 2022.

Ishikawa H (2015) Social big data mining. CRC Press

Järvinen P (2008) Mapping research questions to research methods. In: Avison D, Kasper GM, Pernici B, Ramos I, Roode D (eds) Advances in information systems research, education and practice. Proceedings of IFIP 20th world computer congress, TC 8, information systems, vol 274. Springer. https://doi.org/10.1007/978-0-387-09682-7-9_3

JAXA (2022) Martian moons eXploration. http://www.mmx.jaxa.jp/en/ . Accessed 2022

Lewton T (2020) How the bits of quantum gravity can buzz. Quanta Magazine. 2020. https://www.quantamagazine.org/gravitons-revealed-in-the-noise-of-gravitational-waves-20200723/ . Accessed 2022

Mahajan S (2014) The art of insight in science and engineering: Mastering complexity. The MIT Press

Méndez A, Rivera–Valentín EG (2017) The equilibrium temperature of planets in elliptical orbits. Astrophys J Lett 837(1)

NASA (2022) Mars sample return. https://www.jpl.nasa.gov/missions/mars-sample-return-msr Accessed 2022

OpenStreetMap (2022). https://www.openstreetmap.org . Accessed 2022

Pólya G (2009) Mathematics and plausible reasoning: vol I: induction and analogy in mathematics. Ishi Press

Pólya G, Conway JH (2014) How to solve it. Princeton University Press

Rehm J (2019) The four fundamental forces of nature. Live science https://www.livescience.com/the-fundamental-forces-of-nature.html

Sadler-Smith E (2015) Wallas’ four-stage model of the creative process: more than meets the eye? Creat Res J 27(4):342–352. https://doi.org/10.1080/10400419.2015.1087277

Siegel E, This is why physicists think string theory might be our ‘theory of everything.’ Forbes, 2018. https://www.forbes.com/sites/startswithabang/2018/05/31/this-is-why-physicists-think-string-theory-might-be-our-theory-of-everything/?sh=b01d79758c25

Zeitz P (2006) The art and craft of problem solving. Wiley

Download references

Author information

Authors and affiliations.

Department of Systems Design, Tokyo Metropolitan University, Hino, Tokyo, Japan

Hiroshi Ishikawa

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hiroshi Ishikawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Ishikawa, H. (2024). Hypothesis. In: Hypothesis Generation and Interpretation. Studies in Big Data, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-031-43540-9_2

Download citation

DOI : https://doi.org/10.1007/978-3-031-43540-9_2

Published : 01 January 2024

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-43539-3

Online ISBN : 978-3-031-43540-9

eBook Packages : Computer Science Computer Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

definition of general hypothesis

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.6: Hypothesis, Theories, and Laws

  • Last updated
  • Save as PDF
  • Page ID 47443

  Learning Objectives

  • Describe the difference between hypothesis and theory as scientific terms.
  • Describe the difference between a theory and scientific law.

Although many have taken science classes throughout the course of their studies, people often have incorrect or misleading ideas about some of the most important and basic principles in science. Most students have heard of hypotheses, theories, and laws, but what do these terms really mean? Prior to reading this section, consider what you have learned about these terms before. What do these terms mean to you? What do you read that contradicts or supports what you thought?

What is a Fact?

A fact is a basic statement established by experiment or observation. All facts are true under the specific conditions of the observation.

What is a Hypothesis?

One of the most common terms used in science classes is a "hypothesis". The word can have many different definitions, depending on the context in which it is being used:

  • An educated guess: a scientific hypothesis provides a suggested solution based on evidence.
  • Prediction: if you have ever carried out a science experiment, you probably made this type of hypothesis when you predicted the outcome of your experiment.
  • Tentative or proposed explanation: hypotheses can be suggestions about why something is observed. In order for it to be scientific, however, a scientist must be able to test the explanation to see if it works and if it is able to correctly predict what will happen in a situation. For example, "if my hypothesis is correct, we should see ___ result when we perform ___ test."
A hypothesis is very tentative; it can be easily changed.

What is a Theory?

The United States National Academy of Sciences describes what a theory is as follows:

"Some scientific explanations are so well established that no new evidence is likely to alter them. The explanation becomes a scientific theory. In everyday language a theory means a hunch or speculation. Not so in science. In science, the word theory refers to a comprehensive explanation of an important feature of nature supported by facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena."

"A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experimentation. Such fact-supported theories are not "guesses" but reliable accounts of the real world. The theory of biological evolution is more than "just a theory." It is as factual an explanation of the universe as the atomic theory of matter (stating that everything is made of atoms) or the germ theory of disease (which states that many diseases are caused by germs). Our understanding of gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact.

Note some key features of theories that are important to understand from this description:

  • Theories are explanations of natural phenomena. They aren't predictions (although we may use theories to make predictions). They are explanations as to why we observe something.
  • Theories aren't likely to change. They have a large amount of support and are able to satisfactorily explain numerous observations. Theories can, indeed, be facts. Theories can change, but it is a long and difficult process. In order for a theory to change, there must be many observations or pieces of evidence that the theory cannot explain.
  • Theories are not guesses. The phrase "just a theory" has no room in science. To be a scientific theory carries a lot of weight; it is not just one person's idea about something
Theories aren't likely to change.

What is a Law?

Scientific laws are similar to scientific theories in that they are principles that can be used to predict the behavior of the natural world. Both scientific laws and scientific theories are typically well-supported by observations and/or experimental evidence. Usually scientific laws refer to rules for how nature will behave under certain conditions, frequently written as an equation. Scientific theories are more overarching explanations of how nature works and why it exhibits certain characteristics. As a comparison, theories explain why we observe what we do and laws describe what happens.

For example, around the year 1800, Jacques Charles and other scientists were working with gases to, among other reasons, improve the design of the hot air balloon. These scientists found, after many, many tests, that certain patterns existed in the observations on gas behavior. If the temperature of the gas is increased, the volume of the gas increased. This is known as a natural law. A law is a relationship that exists between variables in a group of data. Laws describe the patterns we see in large amounts of data, but do not describe why the patterns exist.

What is a Belief?

A belief is a statement that is not scientifically provable. Beliefs may or may not be incorrect; they just are outside the realm of science to explore.

Laws vs. Theories

A common misconception is that scientific theories are rudimentary ideas that will eventually graduate into scientific laws when enough data and evidence has accumulated. A theory does not change into a scientific law with the accumulation of new or better evidence. Remember, theories are explanations and laws are patterns we see in large amounts of data, frequently written as an equation. A theory will always remain a theory; a law will always remain a law.

Video \(\PageIndex{1}\): What’s the difference between a scientific law and theory?

  • A hypothesis is a tentative explanation that can be tested by further investigation.
  • A theory is a well-supported explanation of observations.
  • A scientific law is a statement that summarizes the relationship between variables.
  • An experiment is a controlled method of testing a hypothesis.

Contributions & Attributions

Marisa Alviar-Agnew  ( Sacramento City College )

Henry Agnew (UC Davis)

definition of general hypothesis

GENERAL HYPOTHESES (Scientific models)

WHAT ARE HYPOTHESES?

General Hypotheses are explanatory MODELS that apply to large categories of observations.

DEFINITION : General Hypotheses are tentative, specific explanations of phenomena that can be rejected by experimental data.

General Hypotheses take many different forms. Some General Hypotheses are relatively simple statements. For example, consider a General Hypothesis:

General Hypothesis (GH) 1 : "Social media is one cause of childhood depression in the United States."

GH1 is tentative , because we are not sure that social media contributes to depression. GH1 is specific because it focuses on one factor (social media) out of many that could contribute to depression. GH1 is part of an explanation of the phenomenon of childhood depression (a public health problem). It would be possible to demonstrate that social media does not result in childhood depression and reject GH1. Therefore, GH1 fits the definition of a General Hypothesis.

General Hypotheses typically apply to large categories of observations. For example, GH1 applies to the entire population of American children, a category that includes millions of people. Millions of children may seem like a large population, but General Hypotheses often have even wider scope. For example the General Hypothesis "The interaction of actin and myosin is the basis for muscle contraction" explains how muscle contracts not only for all humans on Earth, but also for all other animals that have ever lived on Earth (many millions of species ). Therefore, general hypotheses can can have scopes that extend over wide ranges of entities, space, or time.

General Hypotheses express MODELS of different types.

It is useful to think of General Hypotheses as models that explain aspects of the natural world ( Giere, 2001 ). For example, engineers frequently use scale models to design cars, airplanes, buildings, and other physical structures. Engineering models may be physical models, constructed from materials such as wood or plastic. More recently, engineers frequently use computer models, which simulate material properties and physical laws to design structures (or evaluate existing structures).

Physical models are also used in some fields of science ( Vogel, 1999 ). However, even physical models commonly require mathematical relationships that enable the models to make accurate predictions about objects that the models represent. Moreover, constructing physical models is not feasible for many natural systems. 

Therefore scientists often express General Hypotheses as conceptual or mathematical models ( Braaten and Windschitl, 2011 ). Conceptual models are typically simplified representations of natural systems. Conceptual models are similar to frameworks : structures of assumptions, facts, and rules that are connected using logical relationships. 

definition of general hypothesis

Similar to frameworks, it is often helpful to express conceptual models using pictures or graphical representations . For example, the interaction of actin and myosin (or " sliding filament ") hypothesis for muscle function can be thought of as a conceptual model of muscle structure at the molecular level. The sliding filament hypothesis is primarily a structural model of muscle based on microscopic visualization ( Huxley and Hanson, 1954 ). However, even structural models can often lead to functional predictions (such as the trapezoidal relationship between muscle force and length; Morgan et al., 2002 ). 

Other important models seek to predict function with very basic representation of structure. For example, Newton's Laws of Motion describe how objects behave mechanically. With Newton's second law:

we can predict how much an object will accelerate based on a force and the mass of the object. Similarly, Newton's law of gravitation 

F = G * (M1 + M2) / r

allows us to predict gravitational forces between objects based on mass and distance. However, Newton's laws do not explain why objects behave like they do. Moreover, Newton's laws are limited to objects moving slowly relative to the speed of light (Einstein's model, "Relativity," is necessary to describe the behavior of fast-moving objects). Newton's laws aren't perfect! Nevertheless, Newton's laws are useful examples of conceptual and mathematical General Hypotheses that can predict the behavior of physical objects moving relatively slowly.

"General" does not mean "vague."

For writing, the distinction between "general" statements and "vague" statements is very important. 

DEFINITION : "General" statements apply to a large range of people, places, or things; widespread.

DEFINITION : "Vague" statements are uncertain, indefinite, or of unclear character or meaning.

Clearly, "General" statements and "Vague" statements are very different things. However, many people mistake vague statements for general statements when writing hypotheses . For example, consider the statement:

GH2: "Desirable Difficulties affect test performance" 

(Remember that " Desirable Difficulties " are study or practice strategies hypothesized to make study or practice more difficult, but are desirable because the difficulties contribute to learning ).

Is GH2 a general statement, a vague statement, or both?

GH2 is definitely a general statement. GH2 implies that Desirable Difficulties affect test performance in ALL situations: for all people, for all tests, for all types of performance. GH2 is also a vague statement. In addition to not specifying types of tests or performance, we also do not know what types of study strategy GH2 refers to. Therefore, GH2 is a vague over-generalization.

A more specific statement would specify the aspect of study hypothesized to underlie a "Desirable Difficulty" compared to a specific type of study that does not involve Desirable Difficulties. For example, we could create a dichotomy to identify two potential sources of Desirable Difficulty:

definition of general hypothesis

Study involving Desirable Difficulties can be compared to "blocked study," where learners repetitively study a single subject for a block of time. Blocked study is both repetitive and predictable.

GH3: "Non-repetitive study results in lower performance during practice, but more learning, than blocked study of mathematics skills." 

GH3 is general because it applies to all mathematics skills. However, GH3 also specifies the types of study strategies being compared (non-repetitive vs. blocked) and the outcome measures (performance during practice and learning). Therefore, we can envision testing GH3, provided that we more specifically define the category "mathematics skills"  and the assessment of "performance," and "learning." 

General Hypotheses are explanations based on deductive reasoning, inductive reasoning, and assumptions to fill a "gap" in knowledge.

How can we create General Hypotheses?

Creating General Hypotheses is challenging and requires extensive research and reasoning. The motivation for creating a General Hypothesis is often to fill a "gap" in understanding. A "gap" in understanding is an area of inquiry that is (1) important ; (2) NOT sufficiently understood, and (3) surrounded by areas that we do understand enough to create explanations that include the gap in understanding. 

The purpose of a General Hypothesis is to provide one explanation that potentially fills the "gap" in understanding.

There are many ways to create General Hypotheses. However, at the broadest level, creating a General Hypothesis involves creating an explanatory scientific model using deductive reasoning (based on known principles) and inductive reasoning (previous observations). We also cannot avoid making some assumptions . Known assumptions can be stated in a forthright manner. The fact that we also make assumptions that are unknown to us can temper our confidence in hypotheses.

definition of general hypothesis

General Hypotheses do not need to be one sentence.

There is no reason that General Hypotheses must be expressed in a single sentence! If a General Hypothesis is more than a one sentence explanation, then it is acceptable to use as many sentences as necessary to express the General Hypothesis. For example, it might be clearer to express GH3 with two separate sentences that each express one idea :

GH4: "Non-repetitive practice results in lower performance during practice than blocked study of mathematics skills. However, non-repetitive practice results in more learning than blocked study of mathematics skills." 

Explanations (or models) may involve multiple steps or separate elements that require many sentences to explain. For example, the sliding-filament hypothesis involves myosin, actin, binding sites, ATP, etc. Models may be expressed using mathematical relationships. Including or explaining a model can all be part of a General Hypothesis.

Testing General Hypotheses requires many studies.

Although General Hypotheses have many forms, General Hypotheses have one property in common: testing General Hypotheses nearly always requires many studies. Theoretically, it may be possible to use modus tollens to reject some General Hypothesis using a single experiment. However, in practice even rejecting General Hypotheses requires multiple experiments ( Giere, 2006 ). No scientific model is perfect, but models may still be useful and widely explanatory even if some of their predictions are not accurate ( McElreath, 2019 ). Moreover, experiments are not perfect, and depend on known and unknown assumptions . It is also difficult or impossible to design an experiment that completely isolates a single variable and definitively tests a hypothesis. Therefore, rejecting a General Hypothesis typically requires the " consilience " of MANY studies that consistently point to a single conclusion to reject the General Hypothesis.

MANY studies are also required to support General Hypotheses. Strong inference requires many studies to exclude many possible alternative hypotheses. Inductive reasoning involves considering evidence from many studies of different types to support or reject hypotheses. Even with many studies, scientists can never be 100% confident in conclusions about hypotheses. Science can therefore be seen as a continual quest to construct more useful (but always tentative to some degree) models of the universe.

"All models are wrong, but some are useful" -- George Box et al.

Therefore, many studies are needed to either reject or support General Hypotheses.

definition of general hypothesis

General Hypotheses are testable models that apply to large categories of observations. Strong General Hypotheses are NOT vague, but as specific as possible. 

definition of general hypothesis

  • Scientific Methods

What is Hypothesis?

We have heard of many hypotheses which have led to great inventions in science. Assumptions that are made on the basis of some evidence are known as hypotheses. In this article, let us learn in detail about the hypothesis and the type of hypothesis with examples.

A hypothesis is an assumption that is made based on some evidence. This is the initial point of any investigation that translates the research questions into predictions. It includes components like variables, population and the relation between the variables. A research hypothesis is a hypothesis that is used to test the relationship between two or more variables.

Characteristics of Hypothesis

Following are the characteristics of the hypothesis:

  • The hypothesis should be clear and precise to consider it to be reliable.
  • If the hypothesis is a relational hypothesis, then it should be stating the relationship between variables.
  • The hypothesis must be specific and should have scope for conducting more tests.
  • The way of explanation of the hypothesis must be very simple and it should also be understood that the simplicity of the hypothesis is not related to its significance.

Sources of Hypothesis

Following are the sources of hypothesis:

  • The resemblance between the phenomenon.
  • Observations from past studies, present-day experiences and from the competitors.
  • Scientific theories.
  • General patterns that influence the thinking process of people.

Types of Hypothesis

There are six forms of hypothesis and they are:

  • Simple hypothesis
  • Complex hypothesis
  • Directional hypothesis
  • Non-directional hypothesis
  • Null hypothesis
  • Associative and casual hypothesis

Simple Hypothesis

It shows a relationship between one dependent variable and a single independent variable. For example – If you eat more vegetables, you will lose weight faster. Here, eating more vegetables is an independent variable, while losing weight is the dependent variable.

Complex Hypothesis

It shows the relationship between two or more dependent variables and two or more independent variables. Eating more vegetables and fruits leads to weight loss, glowing skin, and reduces the risk of many diseases such as heart disease.

Directional Hypothesis

It shows how a researcher is intellectual and committed to a particular outcome. The relationship between the variables can also predict its nature. For example- children aged four years eating proper food over a five-year period are having higher IQ levels than children not having a proper meal. This shows the effect and direction of the effect.

Non-directional Hypothesis

It is used when there is no theory involved. It is a statement that a relationship exists between two variables, without predicting the exact nature (direction) of the relationship.

Null Hypothesis

It provides a statement which is contrary to the hypothesis. It’s a negative statement, and there is no relationship between independent and dependent variables. The symbol is denoted by “H O ”.

Associative and Causal Hypothesis

Associative hypothesis occurs when there is a change in one variable resulting in a change in the other variable. Whereas, the causal hypothesis proposes a cause and effect interaction between two or more variables.

Examples of Hypothesis

Following are the examples of hypotheses based on their types:

  • Consumption of sugary drinks every day leads to obesity is an example of a simple hypothesis.
  • All lilies have the same number of petals is an example of a null hypothesis.
  • If a person gets 7 hours of sleep, then he will feel less fatigue than if he sleeps less. It is an example of a directional hypothesis.

Functions of Hypothesis

Following are the functions performed by the hypothesis:

  • Hypothesis helps in making an observation and experiments possible.
  • It becomes the start point for the investigation.
  • Hypothesis helps in verifying the observations.
  • It helps in directing the inquiries in the right direction.

How will Hypothesis help in the Scientific Method?

Researchers use hypotheses to put down their thoughts directing how the experiment would take place. Following are the steps that are involved in the scientific method:

  • Formation of question
  • Doing background research
  • Creation of hypothesis
  • Designing an experiment
  • Collection of data
  • Result analysis
  • Summarizing the experiment
  • Communicating the results

Frequently Asked Questions – FAQs

What is hypothesis.

A hypothesis is an assumption made based on some evidence.

Give an example of simple hypothesis?

What are the types of hypothesis.

Types of hypothesis are:

  • Associative and Casual hypothesis

State true or false: Hypothesis is the initial point of any investigation that translates the research questions into a prediction.

Define complex hypothesis..

A complex hypothesis shows the relationship between two or more dependent variables and two or more independent variables.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Physics related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

definition of general hypothesis

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Microb Biotechnol
  • v.15(11); 2022 Nov

On the role of hypotheses in science

Harald brüssow.

1 Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven Belgium

Associated Data

Scientific research progresses by the dialectic dialogue between hypothesis building and the experimental testing of these hypotheses. Microbiologists as biologists in general can rely on an increasing set of sophisticated experimental methods for hypothesis testing such that many scientists maintain that progress in biology essentially comes with new experimental tools. While this is certainly true, the importance of hypothesis building in science should not be neglected. Some scientists rely on intuition for hypothesis building. However, there is also a large body of philosophical thinking on hypothesis building whose knowledge may be of use to young scientists. The present essay presents a primer into philosophical thoughts on hypothesis building and illustrates it with two hypotheses that played a major role in the history of science (the parallel axiom and the fifth element hypothesis). It continues with philosophical concepts on hypotheses as a calculus that fits observations (Copernicus), the need for plausibility (Descartes and Gilbert) and for explicatory power imposing a strong selection on theories (Darwin, James and Dewey). Galilei introduced and James and Poincaré later justified the reductionist principle in hypothesis building. Waddington stressed the feed‐forward aspect of fruitful hypothesis building, while Poincaré called for a dialogue between experiment and hypothesis and distinguished false, true, fruitful and dangerous hypotheses. Theoretical biology plays a much lesser role than theoretical physics because physical thinking strives for unification principle across the universe while biology is confronted with a breathtaking diversity of life forms and its historical development on a single planet. Knowledge of the philosophical foundations on hypothesis building in science might stimulate more hypothesis‐driven experimentation that simple observation‐oriented “fishing expeditions” in biological research.

Short abstract

Scientific research progresses by the dialectic dialogue between hypothesis building and the experimental testing of these hypotheses. Microbiologists can rely on an increasing set of sophisticated experimental methods for hypothesis testing but the importance of hypothesis building in science should not be neglected. This Lilliput offers a primer on philosophical concepts on hypotheses in science.

INTRODUCTION

Philosophy of science and the theory of knowledge (epistemology) are important branches of philosophy. However, philosophy has over the centuries lost its dominant role it enjoyed in antiquity and became in Medieval Ages the maid of theology (ancilla theologiae) and after the rise of natural sciences and its technological applications many practising scientists and the general public doubt whether they need philosophical concepts in their professional and private life. This is in the opinion of the writer of this article, an applied microbiologist, shortsighted for several reasons. Philosophers of the 20th century have made important contributions to the theory of knowledge, and many eminent scientists grew interested in philosophical problems. Mathematics which plays such a prominent role in physics and increasingly also in other branches of science is a hybrid: to some extent, it is the paradigm of an exact science while its abstract aspects are deeply rooted in philosophical thinking. In the present essay, the focus is on hypothesis and hypothesis building in science, essentially it is a compilation what philosophers and scientists thought about this subject in past and present. The controversy between the mathematical mind and that of the practical mind is an old one. The philosopher, physicist and mathematician Pascal ( 1623 –1662a) wrote in his Pensées : “Mathematicians who are only mathematicians have exact minds, provided all things are explained to them by means of definitions and axioms; otherwise they are inaccurate. They are only right when the principles are quite clear. And men of intuition cannot have the patience to reach to first principles of things speculative and conceptional, which they have never seen in the world and which are altogether out of the common. The intellect can be strong and narrow, and can be comprehensive and weak.” Hypothesis building is an act both of intuition and exact thinking and I hope that theoretical knowledge about hypothesis building will also profit young microbiologists.

HYPOTHESES AND AXIOMS IN MATHEMATICS

In the following, I will illustrate the importance of hypothesis building for the history of science and the development of knowledge and illustrate it with two famous concepts, the parallel axiom in mathematics and the five elements hypothesis in physics.

Euclidean geometry

The prominent role of hypotheses in the development of science becomes already clear in the first science book of the Western civilization: Euclid's The Elements written about 300 BC starts with a set of statements called Definitions, Postulates and Common Notions that lay out the foundation of geometry (Euclid,  c.323‐c.283 ). This axiomatic approach is very modern as exemplified by the fact that Euclid's book remained for long time after the Bible the most read book in the Western hemisphere and a backbone of school teaching in mathematics. Euclid's twenty‐three definitions start with sentences such as “1. A point is that which has no part; 2. A line is breadthless length; 3. The extremities of a line are points”; and continues with the definition of angles (“8. A plane angle is the inclination to one another of two lines in a plane which meet one another and do not lie in a straight line”) and that of circles, triangles and quadrilateral figures. For the history of science, the 23rd definition of parallels is particularly interesting: “Parallel straight lines are straight lines which, being in the same plane and being produced indefinitely in both directions, do not meet one another in either direction”. This is the famous parallel axiom. It is clear that the parallel axiom cannot be the result of experimental observations, but must be a concept created in the mind. Euclid ends with five Common Notions (“1. Things which are equal to the same thing are also equal to one another, to 5. The whole is greater than the part”). The establishment of a contradiction‐free system for a branch of mathematics based on a set of axioms from which theorems were deduced was revolutionary modern. Hilbert ( 1899 ) formulated a sound modern formulation for Euclidian geometry. Hilbert's axiom system contains the notions “point, line and plane” and the concepts of “betweenness, containment and congruence” leading to five axioms, namely the axioms of Incidence (“Verknüpfung”), of Order (“Anordnung”), of Congruence, of Continuity (“Stetigkeit”) and of Parallels.

Origin of axioms

Philosophers gave various explanations for the origin of the Euclidean hypotheses or axioms. Plato considered geometrical figures as related to ideas (the true things behind the world of appearances). Aristoteles considered geometric figures as abstractions of physical bodies. Descartes perceived geometric figures as inborn ideas from extended bodies ( res extensa ), while Pascal thought that the axioms of Euclidian geometry were derived from intuition. Kant reasoned that Euclidian geometry represented a priori perceptions of space. Newton considered geometry as part of general mechanics linked to theories of measurement. Hilbert argued that the axioms of mathematical geometry are neither the result of contemplation (“Anschauung”) nor of psychological source. For him, axioms were formal propositions (“formale Aussageformen”) characterized by consistency (“Widerspruchsfreiheit”, i.e. absence of contradiction) (Mittelstrass,  1980a ).

Definitions

Axioms were also differently defined by philosophers. In Topics , Aristoteles calls axioms the assumptions taken up by one partner of a dialogue to initiate a dialectic discussion. Plato states that an axiom needs to be an acceptable or credible proposition, which cannot be justified by reference to other statements. Yet, a justification is not necessary because an axiom is an evident statement. In modern definition, axioms are methodical first sentences in the foundation of a deductive science (Mittelstrass,  1980a ). In Posterior Analytics , Aristotle defines postulates as positions which are at least initially not accepted by the dialogue partners while hypotheses are accepted for the sake of reasoning. In Euclid's book, postulates are construction methods that assure the existence of the geometric objects. Today postulates and axioms are used as synonyms while the 18th‐century philosophy made differences: Lambert defined axioms as descriptive sentences and postulates as prescriptive sentences. According to Kant, mathematical postulates create (synthesize) concepts (Mittelstrass,  1980b ). Definitions then fix the use of signs; they can be semantic definitions that explain the proper meaning of a sign in common language use (in a dictionary style) or they can be syntactic definitions that regulate the use of these signs in formal operations. Nominal definitions explain the words, while real definitions explain the meaning or the nature of the defined object. Definitions are thus essential for the development of a language of science, assuring communication and mutual understanding (Mittelstrass,  1980c ). Finally, hypotheses are also frequently defined as consistent conjectures that are compatible with the available knowledge. The truth of the hypothesis is only supposed in order to explain true observations and facts. Consequences of this hypothetical assumptions should explain the observed facts. Normally, descriptive hypotheses precede explanatory hypotheses in the development of scientific thought. Sometimes only tentative concepts are introduced as working hypotheses to test whether they have an explanatory capacity for the observations (Mittelstrass,  1980d ).

The Euclidian geometry is constructed along a logical “if→then” concept. The “if‐clause” formulates at the beginning the supposition, the “then clause” formulates the consequences from these axioms which provides a system of geometric theorems or insights. The conclusions do not follow directly from the hypothesis; this would otherwise represent self‐evident immediate conclusions. The “if‐then” concept in geometry is not used as in other branches of science where the consequences deduced from the axioms are checked against reality whether they are true, in order to confirm the validity of the hypothesis. The task in mathematics is: what can be logically deduced from a given set of axioms to build a contradiction‐free system of geometry. Whether this applies to the real world is in contrast to the situation in natural sciences another question and absolutely secondary to mathematics (Syntopicon,  1992 ).

Pascal's rules for hypotheses

In his Scientific Treatises on Geometric Demonstrations , Pascal ( 1623‐1662b ) formulates “Five rules are absolutely necessary and we cannot dispense with them without an essential defect and frequently even error. Do not leave undefined any terms at all obscure or ambiguous. Use in definitions of terms only words perfectly well known or already explained. Do not fail to ask that each of the necessary principles be granted, however clear and evident it may be. Ask only that perfectly self‐evident things be granted as axioms. Prove all propositions, using for their proof only axioms that are perfectly self‐evident or propositions already demonstrated or granted. Never get caught in the ambiguity of terms by failing to substitute in thought the definitions which restrict or define them. One should accept as true only those things whose contradiction appears to be false. We may then boldly affirm the original statement, however incomprehensible it is.”

Kant's rules on hypotheses

Kant ( 1724–1804 ) wrote that the analysis described in his book The Critique of Pure Reason “has now taught us that all its efforts to extend the bounds of knowledge by means of pure speculation, are utterly fruitless. So much the wider field lies open to hypothesis; as where we cannot know with certainty, we are at liberty to make guesses and to form suppositions. Imagination may be allowed, under the strict surveillance of reason, to invent suppositions; but these must be based on something that is perfectly certain‐ and that is the possibility of the object. Such a supposition is termed a hypothesis. We cannot imagine or invent any object or any property of an object not given in experience and employ it in a hypothesis; otherwise we should be basing our chain of reasoning upon mere chimerical fancies and not upon conception of things. Thus, we have no right to assume of new powers, not existing in nature and consequently we cannot assume that there is any other kind of community among substances than that observable in experience, any kind of presence than that in space and any kind of duration than that in time. The conditions of possible experience are for reason the only conditions of the possibility of things. Otherwise, such conceptions, although not self‐contradictory, are without object and without application. Transcendental hypotheses are therefore inadmissible, and we cannot use the liberty of employing in the absence of physical, hyperphysical grounds of explanation because such hypotheses do not advance reason, but rather stop it in its progress. When the explanation of natural phenomena happens to be difficult, we have constantly at hand a transcendental ground of explanation, which lifts us above the necessity of investigating nature. The next requisite for the admissibility of a hypothesis is its sufficiency. That is it must determine a priori the consequences which are given in experience and which are supposed to follow from the hypothesis itself.” Kant stresses another aspect when dealing with hypotheses: “It is our duty to try to discover new objections, to put weapons in the hands of our opponent, and to grant him the most favorable position. We have nothing to fear from these concessions; on the contrary, we may rather hope that we shall thus make ourselves master of a possession which no one will ever venture to dispute.”

For Kant's analytical and synthetical judgements and Difference between philosophy and mathematics (Kant, Whitehead) , see Appendices  S1 and S2 , respectively.

Poincaré on hypotheses

The mathematician‐philosopher Poincaré ( 1854 –1912a) explored the foundation of mathematics and physics in his book Science and Hypothesis . In the preface to the book, he summarizes common thinking of scientists at the end of the 19th century. “To the superficial observer scientific truth is unassailable, the logic of science is infallible, and if scientific men sometimes make mistakes, it is because they have not understood the rules of the game. Mathematical truths are derived from a few self‐evident propositions, by a chain of flawless reasoning, they are imposed not only by us, but on Nature itself. This is for the minds of most people the origin of certainty in science.” Poincaré then continues “but upon more mature reflection the position held by hypothesis was seen; it was recognized that it is as necessary to the experimenter as it is to the mathematician. And then the doubt arose if all these constructions are built on solid foundations.” However, “to doubt everything or to believe everything are two equally convenient solutions: both dispense with the necessity of reflection. Instead, we should examine with the utmost care the role of hypothesis; we shall then recognize not only that it is necessary, but that in most cases it is legitimate. We shall also see that there are several kinds of hypotheses; that some are verifiable and when once confirmed by experiment become truths of great fertility; that others may be useful to us in fixing our ideas; and finally that others are hypotheses only in appearance, and reduce to definitions or to conventions in disguise.” Poincaré argues that “we must seek mathematical thought where it has remained pure‐i.e. in arithmetic, in the proofs of the most elementary theorems. The process is proof by recurrence. We first show that a theorem is true for n  = 1; we then show that if it is true for n –1 it is true for n; and we conclude that it is true for all integers. The essential characteristic of reasoning by recurrence is that it contains, condensed in a single formula, an infinite number of syllogisms.” Syllogism is logical argument that applies deductive reasoning to arrive at a conclusion. Poincaré notes “that here is a striking analogy with the usual process of induction. But an essential difference exists. Induction applied to the physical sciences is always uncertain because it is based on the belief in a general order of the universe, an order which is external to us. Mathematical induction‐ i.e. proof by recurrence – is on the contrary, necessarily imposed on us, because it is only the affirmation of a property of the mind itself. No doubt mathematical recurrent reasoning and physical inductive reasoning are based on different foundations, but they move in parallel lines and in the same direction‐namely, from the particular to the general.”

Non‐Euclidian geometry: from Gauss to Lobatschewsky

Mathematics is an abstract science that intrinsically does not request that the structures described reflect a physical reality. Paradoxically, mathematics is the language of physics since the founder of experimental physics Galilei used Euclidian geometry when exploring the laws of the free fall. In his 1623 treatise The Assayer , Galilei ( 1564 –1642a) famously formulated that the book of Nature is written in the language of mathematics, thus establishing a link between formal concepts in mathematics and the structure of the physical world. Euclid's parallel axiom played historically a prominent role for the connection between mathematical concepts and physical realities. Mathematicians had doubted that the parallel axiom was needed and tried to prove it. In Euclidian geometry, there is a connection between the parallel axiom and the sum of the angles in a triangle being two right angles. It is therefore revealing that the famous mathematician C.F. Gauss investigated in the early 19th century experimentally whether this Euclidian theorem applies in nature. He approached this problem by measuring the sum of angles in a real triangle by using geodetic angle measurements of three geographical elevations in the vicinity of Göttingen where he was teaching mathematics. He reportedly measured a sum of the angles in this triangle that differed from 180°. Gauss had at the same time also developed statistical methods to evaluate the accuracy of measurements. Apparently, the difference of his measured angles was still within the interval of Gaussian error propagation. He did not publish the reasoning and the results for this experiment because he feared the outcry of colleagues about this unorthodox, even heretical approach to mathematical reasoning (Carnap,  1891 ‐1970a). However, soon afterwards non‐Euclidian geometries were developed. In the words of Poincaré, “Lobatschewsky assumes at the outset that several parallels may be drawn through a point to a given straight line, and he retains all the other axioms of Euclid. From these hypotheses he deduces a series of theorems between which it is impossible to find any contradiction, and he constructs a geometry as impeccable in its logic as Euclidian geometry. The theorems are very different, however, from those to which we are accustomed, and at first will be found a little disconcerting. For instance, the sum of the angles of a triangle is always less than two right angles, and the difference between that sum and two right angles is proportional to the area of the triangle. Lobatschewsky's propositions have no relation to those of Euclid, but are none the less logically interconnected.” Poincaré continues “most mathematicians regard Lobatschewsky's geometry as a mere logical curiosity. Some of them have, however, gone further. If several geometries are possible, they say, is it certain that our geometry is true? Experiments no doubt teaches us that the sum of the angles of a triangle is equal to two right angles, but this is because the triangles we deal with are too small” (Poincaré,  1854 ‐1912a)—hence the importance of Gauss' geodetic triangulation experiment. Gauss was aware that his three hills experiment was too small and thought on measurements on triangles formed with stars.

Poincaré vs. Einstein

Lobatschewsky's hyperbolic geometry did not remain the only non‐Euclidian geometry. Riemann developed a geometry without the parallel axiom, while the other Euclidian axioms were maintained with the exception of that of Order (Anordnung). Poincaré notes “so there is a kind of opposition between the geometries. For instance the sum of the angles in a triangle is equal to two right angles in Euclid's geometry, less than two right angles in that of Lobatschewsky, and greater than two right angles in that of Riemann. The number of parallel lines that can be drawn through a given point to a given line is one in Euclid's geometry, none in Riemann's, and an infinite number in the geometry of Lobatschewsky. Let us add that Riemann's space is finite, although unbounded.” As further distinction, the ratio of the circumference to the diameter of a circle is equal to π in Euclid's, greater than π in Lobatschewsky's and smaller than π in Riemann's geometry. A further difference between these geometries concerns the degree of curvature (Krümmungsmass k) which is 0 for a Euclidian surface, smaller than 0 for a Lobatschewsky and greater than 0 for a Riemann surface. The difference in curvature can be roughly compared with plane, concave and convex surfaces. The inner geometric structure of a Riemann plane resembles the surface structure of a Euclidean sphere and a Lobatschewsky plane resembles that of a Euclidean pseudosphere (a negatively curved geometry of a saddle). What geometry is true? Poincaré asked “Ought we then, to conclude that the axioms of geometry are experimental truths?” and continues “If geometry were an experimental science, it would not be an exact science. The geometric axioms are therefore neither synthetic a priori intuitions as affirmed by Kant nor experimental facts. They are conventions. Our choice among all possible conventions is guided by experimental facts; but it remains free and is only limited by the necessity of avoiding contradictions. In other words, the axioms of geometry are only definitions in disguise. What then are we to think of the question: Is Euclidean geometry true? It has no meaning. One geometry cannot be more true than another, it can only be more convenient. Now, Euclidean geometry is, and will remain, the most convenient, 1 st because it is the simplest and 2 nd because it sufficiently agrees with the properties of natural bodies” (Poincaré,  1854 ‐1912a).

Poincaré's book was published in 1903 and only a few years later Einstein published his general theory of relativity ( 1916 ) where he used a non‐Euclidean, Riemann geometry and where he demonstrated a structure of space that deviated from Euclidean geometry in the vicinity of strong gravitational fields. And in 1919, astronomical observations during a solar eclipse showed that light rays from a distant star were indeed “bent” when passing next to the sun. These physical observations challenged the view of Poincaré, and we should now address some aspects of hypotheses in physics (Carnap,  1891 ‐1970b).

HYPOTHESES IN PHYSICS

The long life of the five elements hypothesis.

Physical sciences—not to speak of biological sciences — were less developed in antiquity than mathematics which is already demonstrated by the primitive ideas on the elements constituting physical bodies. Plato and Aristotle spoke of the four elements which they took over from Thales (water), Anaximenes (air) and Parmenides (fire and earth) and add a fifth element (quinta essentia, our quintessence), namely ether. Ether is imagined a heavenly element belonging to the supralunar world. In Plato's dialogue Timaios (Plato,  c.424‐c.348 BC a ), the five elements were associated with regular polyhedra in geometry and became known as Platonic bodies: tetrahedron (fire), octahedron (air), cube (earth), icosahedron (water) and dodecahedron (ether). In regular polyhedra, faces are congruent (identical in shape and size), all angles and all edges are congruent, and the same number of faces meet at each vertex. The number of elements is limited to five because in Euclidian space there are exactly five regular polyhedral. There is in Plato's writing even a kind of geometrical chemistry. Since two octahedra (air) plus one tetrahedron (fire) can be combined into one icosahedron (water), these “liquid” elements can combine while this is not the case for combinations with the cube (earth). The 12 faces of the dodecahedron were compared with the 12 zodiac signs (Mittelstrass,  1980e ). This geometry‐based hypothesis of physics had a long life. As late as 1612, Kepler in his Mysterium cosmographicum tried to fit the Platonic bodies into the planetary shells of his solar system model. The ether theory even survived into the scientific discussion of the 19th‐century physics and the idea of a mathematical structure of the universe dominated by symmetry operations even fertilized 20th‐century ideas about symmetry concepts in the physics of elementary particles.

Huygens on sound waves in air

The ether hypothesis figures prominently in the 1690 Treatise on Light from Huygens ( 1617‐1670 ). He first reports on the transmission of sound by air when writing “this may be proved by shutting up a sounding body in a glass vessel from which the air is withdrawn and care was taken to place the sounding body on cotton that it cannot communicate its tremor to the glass vessel which encloses it. After having exhausted all the air, one hears no sound from the metal though it is struck.” Huygens comes up with some foresight when suspecting “the air is of such a nature that it can be compressed and reduced to a much smaller space than that it normally occupies. Air is made up of small bodies which float about and which are agitated very rapidly. So that the spreading of sound is the effort which these little bodies make in collisions with one another, to regain freedom when they are a little more squeezed together in the circuit of these waves than elsewhere.”

Huygens on light waves in ether

“That is not the same air but another kind of matter in which light spreads; since if the air is removed from the vessel the light does not cease to traverse it as before. The extreme velocity of light cannot admit such a propagation of motion” as sound waves. To achieve the propagation of light, Huygens invokes ether “as a substance approaching to perfect hardness and possessing springiness as prompt as we choose. One may conceive light to spread successively by spherical waves. The propagation consists nowise in the transport of those particles but merely in a small agitation which they cannot help communicate to those surrounding.” The hypothesis of an ether in outer space fills libraries of physical discussions, but all experimental approaches led to contradictions with respect to postulated properties of this hypothetical material for example when optical experiments showed that light waves display transversal and not longitudinal oscillations.

The demise of ether

Mechanical models for the transmission of light or gravitation waves requiring ether were finally put to rest by the theory of relativity from Einstein (Mittelstrass,  1980f ). This theory posits that the speed of light in an empty space is constant and does not depend on movements of the source of light or that of an observer as requested by the ether hypothesis. The theory of relativity also provides an answer how the force of gravitation is transmitted from one mass to another across an essentially empty space. In the non‐Euclidian formulation of the theory of relativity (Einstein used the Riemann geometry), there is no gravitation force in the sense of mechanical or electromagnetic forces. The gravitation force is in this formulation simply replaced by a geometric structure (space curvature near high and dense masses) of a four‐dimensional space–time system (Carnap,  1891 ‐1970c; Einstein & Imfeld,  1956 ) Gravitation waves and gravitation lens effects have indeed been experimental demonstrated by astrophysicists (Dorfmüller et al.,  1998 ).

For Aristotle's on physical hypotheses , see Appendix  S3 .

PHILOSOPHICAL THOUGHTS ON HYPOTHESES

In the following, the opinions of a number of famous scientists and philosophers on hypotheses are quoted to provide a historical overview on the subject.

Copernicus' hypothesis: a calculus which fits observations

In his book Revolutions of Heavenly Spheres Copernicus ( 1473–1543 ) reasoned in the preface about hypotheses in physics. “Since the newness of the hypotheses of this work ‐which sets the earth in motion and puts an immovable sun at the center of the universe‐ has already received a great deal of publicity, I have no doubt that certain of the savants have taken great offense.” He defended his heliocentric thesis by stating “For it is the job of the astronomer to use painstaking and skilled observations in gathering together the history of the celestial movements‐ and then – since he cannot by any line of reasoning reach the true causes of these movements‐ to think up or construct whatever causes or hypotheses he pleases such that, by the assumption of these causes, those same movements can be calculated from the principles of geometry for the past and the future too. This artist is markedly outstanding in both of these respects: for it is not necessary that these hypotheses should be true, or even probable; but it is enough if they provide a calculus which fits the observations.” This preface written in 1543 sounds in its arguments very modern physics. However, historians of science have discovered that it was probably written by a theologian friend of Copernicus to defend the book against the criticism by the church.

Bacon's intermediate hypotheses

In his book Novum Organum , Francis Bacon ( 1561–1626 ) claims for hypotheses and scientific reasoning “that they augur well for the sciences, when the ascent shall proceed by a true scale and successive steps, without interruption or breach, from particulars to the lesser axioms, thence to the intermediates and lastly to the most general.” He then notes “that the lowest axioms differ but little from bare experiments, the highest and most general are notional, abstract, and of no real weight. The intermediate are true, solid, full of life, and up to them depend the business and fortune of mankind.” He warns that “we must not then add wings, but rather lead and ballast to the understanding, to prevent its jumping and flying, which has not yet been done; but whenever this takes place we may entertain greater hopes of the sciences.” With respect to methodology, Bacon claims that “we must invent a different form of induction. The induction which proceeds by simple enumeration is puerile, leads to uncertain conclusions, …deciding generally from too small a number of facts. Sciences should separate nature by proper rejections and exclusions and then conclude for the affirmative, after collecting a sufficient number of negatives.”

Gilbert and Descartes for plausible hypotheses

William Gilbert introduced in his book On the Loadstone (Gilbert,  1544‐1603 ) the argument of plausibility into physical hypothesis building. “From these arguments, therefore, we infer not with mere probability, but with certainty, the diurnal rotation of the earth; for nature ever acts with fewer than with many means; and because it is more accordant to reason that the one small body, the earth, should make a daily revolution than the whole universe should be whirled around it.”

Descartes ( 1596‐1650 ) reflected on the sources of understanding in his book Rules for Direction and distinguished what “comes about by impulse, by conjecture, or by deduction. Impulse can assign no reason for their belief and when determined by fanciful disposition, it is almost always a source of error.” When speaking about the working of conjectures he quotes thoughts of Aristotle: “water which is at a greater distance from the center of the globe than earth is likewise less dense substance, and likewise the air which is above the water, is still rarer. Hence, we hazard the guess that above the air nothing exists but a very pure ether which is much rarer than air itself. Moreover nothing that we construct in this way really deceives, if we merely judge it to be probable and never affirm it to be true; in fact it makes us better instructed. Deduction is thus left to us as the only means of putting things together so as to be sure of their truth. Yet in it, too, there may be many defects.”

Care in formulating hypotheses

Locke ( 1632‐1704 ) in his treatise Concerning Human Understanding admits that “we may make use of any probable hypotheses whatsoever. Hypotheses if they are well made are at least great helps to the memory and often direct us to new discoveries. However, we should not take up any one too hastily.” Also, practising scientists argued against careless use of hypotheses and proposed remedies. Lavoisier ( 1743‐1794 ) in the preface to his Element of Chemistry warned about beaten‐track hypotheses. “Instead of applying observation to the things we wished to know, we have chosen rather to imagine them. Advancing from one ill‐founded supposition to another, we have at last bewildered ourselves amidst a multitude of errors. These errors becoming prejudices, are adopted as principles and we thus bewilder ourselves more and more. We abuse words which we do not understand. There is but one remedy: this is to forget all that we have learned, to trace back our ideas to their sources and as Bacon says to frame the human understanding anew.”

Faraday ( 1791–1867 ) in a Speculation Touching Electric Conduction and the Nature of Matter highlighted the fundamental difference between hypotheses and facts when noting “that he has most power of penetrating the secrets of nature, and guessing by hypothesis at her mode of working, will also be most careful for his own safe progress and that of others, to distinguish that knowledge which consists of assumption, by which I mean theory and hypothesis, from that which is the knowledge of facts and laws; never raising the former to the dignity or authority of the latter.”

Explicatory power justifies hypotheses

Darwin ( 1809 –1882a) defended the conclusions and hypothesis of his book The Origin of Species “that species have been modified in a long course of descent. This has been affected chiefly through the natural selection of numerous, slight, favorable variations.” He uses a post hoc argument for this hypothesis: “It can hardly be supposed that a false theory would explain, to so satisfactory a manner as does the theory of natural selection, the several large classes of facts” described in his book.

The natural selection of hypotheses

In the concluding chapter of The Descent of Man Darwin ( 1809 –1882b) admits “that many of the views which have been advanced in this book are highly speculative and some no doubt will prove erroneous.” However, he distinguished that “false facts are highly injurious to the progress of science for they often endure long; but false views do little harm for everyone takes a salutory pleasure in proving their falseness; and when this is done, one path to error is closed and the road to truth is often at the same time opened.”

The American philosopher William James ( 1842–1907 ) concurred with Darwin's view when he wrote in his Principles of Psychology “every scientific conception is in the first instance a spontaneous variation in someone'’s brain. For one that proves useful and applicable there are a thousand that perish through their worthlessness. The scientific conceptions must prove their worth by being verified. This test, however, is the cause of their preservation, not of their production.”

The American philosopher J. Dewey ( 1859‐1952 ) in his treatise Experience and Education notes that “the experimental method of science attaches more importance not less to ideas than do other methods. There is no such thing as experiment in the scientific sense unless action is directed by some leading idea. The fact that the ideas employed are hypotheses, not final truths, is the reason why ideas are more jealously guarded and tested in science than anywhere else. As fixed truths they must be accepted and that is the end of the matter. But as hypotheses, they must be continuously tested and revised, a requirement that demands they be accurately formulated. Ideas or hypotheses are tested by the consequences which they produce when they are acted upon. The method of intelligence manifested in the experimental method demands keeping track of ideas, activities, and observed consequences. Keeping track is a matter of reflective review.”

The reductionist principle

James ( 1842‐1907 ) pushed this idea further when saying “Scientific thought goes by selection. We break the solid plenitude of fact into separate essences, conceive generally what only exists particularly, and by our classifications leave nothing in its natural neighborhood. The reality exists as a plenum. All its part are contemporaneous, but we can neither experience nor think this plenum. What we experience is a chaos of fragmentary impressions, what we think is an abstract system of hypothetical data and laws. We must decompose each chaos into single facts. We must learn to see in the chaotic antecedent a multitude of distinct antecedents, in the chaotic consequent a multitude of distinct consequents.” From these considerations James concluded “even those experiences which are used to prove a scientific truth are for the most part artificial experiences of the laboratory gained after the truth itself has been conjectured. Instead of experiences engendering the inner relations, the inner relations are what engender the experience here.“

Following curiosity

Freud ( 1856–1939 ) considered curiosity and imagination as driving forces of hypothesis building which need to be confronted as quickly as possible with observations. In Beyond the Pleasure Principle , Freud wrote “One may surely give oneself up to a line of thought and follow it up as far as it leads, simply out of scientific curiosity. These innovations were direct translations of observation into theory, subject to no greater sources of error than is inevitable in anything of the kind. At all events there is no way of working out this idea except by combining facts with pure imagination and thereby departing far from observation.” This can quickly go astray when trusting intuition. Freud recommends “that one may inexorably reject theories that are contradicted by the very first steps in the analysis of observation and be aware that those one holds have only a tentative validity.”

Feed‐forward aspects of hypotheses

The geneticist Waddington ( 1905–1975 ) in his essay The Nature of Life states that “a scientific theory cannot remain a mere structure within the world of logic, but must have implications for action and that in two rather different ways. It must involve the consequence that if you do so and so, such and such result will follow. That is to say it must give, or at least offer, the possibility of controlling the process. Secondly, its value is quite largely dependent on its power of suggesting the next step in scientific advance. Any complete piece of scientific work starts with an activity essentially the same as that of an artist. It starts by asking a relevant question. The first step may be a new awareness of some facet of the world that no one else had previously thought worth attending to. Or some new imaginative idea which depends on a sensitive receptiveness to the oddity of nature essentially similar to that of the artist. In his logical analysis and manipulative experimentation, the scientist is behaving arrogantly towards nature, trying to force her into his categories of thought or to trick her into doing what he wants. But finally he has to be humble. He has to take his intuition, his logical theory and his manipulative skill to the bar of Nature and see whether she answers yes or no; and he has to abide by the result. Science is often quite ready to tolerate some logical inadequacy in a theory‐or even a flat logical contradiction like that between the particle and wave theories of matter‐so long as it finds itself in the possession of a hypothesis which offers both the possibility of control and a guide to worthwhile avenues of exploration.”

Poincaré: the dialogue between experiment and hypothesis

Poincaré ( 1854 –1912b) also dealt with physics in Science and Hypothesis . “Experiment is the sole source of truth. It alone can teach us certainty. Cannot we be content with experiment alone? What place is left for mathematical physics? The man of science must work with method. Science is built up of facts, as a house is built of stones, but an accumulation of facts is no more a science than a heap of stones is a house. It is often said that experiments should be made without preconceived concepts. That is impossible. Without the hypothesis, no conclusion could have been drawn; nothing extraordinary would have been seen; and only one fact the more would have been catalogued, without deducing from it the remotest consequence.” Poincaré compares science to a library. Experimental physics alone can enrich the library with new books, but mathematical theoretical physics draw up the catalogue to find the books and to reveal gaps which have to be closed by the purchase of new books.

Poincaré: false, true, fruitful and dangerous hypotheses

Poincaré continues “we all know that there are good and bad experiments. The latter accumulate in vain. Whether there are hundred or thousand, one single piece of work will be sufficient to sweep them into oblivion. Bacon invented the term of an experimentum crucis for such experiments. What then is a good experiment? It is that which teaches us something more than an isolated fact. It is that which enables us to predict and to generalize. Experiments only gives us a certain number of isolated points. They must be connected by a continuous line and that is true generalization. Every generalization is a hypothesis. It should be as soon as possible submitted to verification. If it cannot stand the test, it must be abandoned without any hesitation. The physicist who has just given up one of his hypotheses should rejoice, for he found an unexpected opportunity of discovery. The hypothesis took into account all the known factors which seem capable of intervention in the phenomenon. If it is not verified, it is because there is something unexpected. Has the hypothesis thus rejected been sterile? Far from it. It has rendered more service than a true hypothesis.” Poincaré notes that “with a true hypothesis only one fact the more would have been catalogued, without deducing from it the remotest consequence. It may be said that the wrong hypothesis has rendered more service than a true hypothesis.” However, Poincaré warns that “some hypotheses are dangerous – first and foremost those which are tacit and unconscious. And since we make them without knowing them, we cannot get rid of them.” Poincaré notes that here mathematical physics is of help because by its precision one is compelled to formulate all the hypotheses, revealing also the tacit ones.

Arguments for the reductionist principle

Poincaré also warned against multiplying hypotheses indefinitely: “If we construct a theory upon multiple hypotheses, and if experiment condemns it, which of the premisses must be changed?” Poincaré also recommended to “resolve the complex phenomenon given directly by experiment into a very large number of elementary phenomena. First, with respect to time. Instead of embracing in its entirety the progressive development of a phenomenon, we simply try to connect each moment with the one immediately preceding. Next, we try to decompose the phenomenon in space. We must try to deduce the elementary phenomenon localized in a very small region of space.” Poincaré suggested that the physicist should “be guided by the instinct of simplicity, and that is why in physical science generalization so readily takes the mathematical form to state the problem in the form of an equation.” This argument goes back to Galilei ( 1564 –1642b) who wrote in The Two Sciences “when I observe a stone initially at rest falling from an elevated position and continually acquiring new increments of speed, why should I not believe that such increases take place in a manner which is exceedingly simple and rather obvious to everybody? If now we examine the matter carefully we find no addition or increment more simple than that which repeats itself always in the same manner. It seems we shall not be far wrong if we put the increment of speed as proportional to the increment of time.” With a bit of geometrical reasoning, Galilei deduced that the distance travelled by a freely falling body varies as the square of the time. However, Galilei was not naïve and continued “I grant that these conclusions proved in the abstract will be different when applied in the concrete” and considers disturbances cause by friction and air resistance that complicate the initially conceived simplicity.

Four sequential steps of discovery…

Some philosophers of science attributed a fundamental importance to observations for the acquisition of experience in science. The process starts with accidental observations (Aristotle), going to systematic observations (Bacon), leading to quantitative rules obtained with exact measurements (Newton and Kant) and culminating in observations under artificially created conditions in experiments (Galilei) (Mittelstrass,  1980g ).

…rejected by Popper and Kant

In fact, Newton wrote that he had developed his theory of gravitation from experience followed by induction. K. Popper ( 1902‐1994 ) in his book Conjectures and Refutations did not agree with this logical flow “experience leading to theory” and that for several reasons. This scheme is according to Popper intuitively false because observations are always inexact, while theory makes absolute exact assertions. It is also historically false because Copernicus and Kepler were not led to their theories by experimental observations but by geometry and number theories of Plato and Pythagoras for which they searched verifications in observational data. Kepler, for example, tried to prove the concept of circular planetary movement influenced by Greek theory of the circle being a perfect geometric figure and only when he could not demonstrate this with observational data, he tried elliptical movements. Popper noted that it was Kant who realized that even physical experiments are not prior to theories when quoting Kant's preface to the Critique of Pure Reason : “When Galilei let his globes run down an inclined plane with a gravity which he has chosen himself, then a light dawned on all natural philosophers. They learnt that our reason can only understand what it creates according to its own design; that we must compel Nature to answer our questions, rather than cling to Nature's apron strings and allow her to guide us. For purely accidental observations, made without any plan having been thought out in advance, cannot be connected by a law‐ which is what reason is searching for.” From that reasoning Popper concluded that “we ourselves must confront nature with hypotheses and demand a reply to our questions; and that lacking such hypotheses, we can only make haphazard observations which follow no plan and which can therefore never lead to a natural law. Everyday experience, too, goes far beyond all observations. Everyday experience must interpret observations for without theoretical interpretation, observations remain blind and uninformative. Everyday experience constantly operates with abstract ideas, such as that of cause and effect, and so it cannot be derived from observation.” Popper agreed with Kant who said “Our intellect does not draw its laws from nature…but imposes them on nature”. Popper modifies this statement to “Our intellect does not draw its laws from nature, but tries‐ with varying degrees of success – to impose upon nature laws which it freely invents. Theories are seen to be free creations of our mind, the result of almost poetic intuition. While theories cannot be logically derived from observations, they can, however, clash with observations. This fact makes it possible to infer from observations that a theory is false. The possibility of refuting theories by observations is the basis of all empirical tests. All empirical tests are therefore attempted refutations.”

OUTLOOK: HYPOTHESES IN BIOLOGY

Is biology special.

Waddington notes that “living organisms are much more complicated than the non‐living things. Biology has therefore developed more slowly than sciences such as physics and chemistry and has tended to rely on them for many of its basic ideas. These older physical sciences have provided biology with many firm foundations which have been of the greatest value to it, but throughout most of its history biology has found itself faced with the dilemma as to how far its reliance on physics and chemistry should be pushed” both with respect to its experimental methods and its theoretical foundations. Vitalism is indeed such a theory maintaining that organisms cannot be explained solely by physicochemical laws claiming specific biological forces active in organisms. However, efforts to prove the existence of such vital forces have failed and today most biologists consider vitalism a superseded theory.

Biology as a branch of science is as old as physics. If one takes Aristotle as a reference, he has written more on biology than on physics. Sophisticated animal experiments were already conducted in the antiquity by Galen (Brüssow, 2022 ). Alertus Magnus displayed biological research interest during the medieval time. Knowledge on plants provided the basis of medical drugs in early modern times. What explains biology's decreasing influence compared with the rapid development of physics by Galilei and Newton? One reason is the possibility to use mathematical equations to describe physical phenomena which was not possible for biological phenomena. Physics has from the beginning displayed a trend to few fundamental underlying principles. This is not the case for biology. With the discovery of new continents, biologists were fascinated by the diversity of life. Diversity was the conducting line of biological thinking. This changed only when taxonomists and comparative anatomists revealed recurring pattern in this stunning biological variety and when Darwin provided a theoretical concept to understand variation as a driving force in biology. Even when genetics and molecular biology allowed to understand biology from a few universally shared properties, such as a universal genetic code, biology differed in fundamental aspects from physics and chemistry. First, biology is so far restricted to the planet earth while the laws of physic and chemistry apply in principle to the entire universe. Second, biology is to a great extent a historical discipline; many biological processes cannot be understood from present‐day observations because they are the result of historical developments in evolution. Hence, the importance of Dobzhansky's dictum that nothing makes sense in biology except in the light of evolution. The great diversity of life forms, the complexity of processes occurring in cells and their integration in higher organisms and the importance of a historical past for the understanding of extant organisms, all that has delayed the successful application of mathematical methods in biology or the construction of theoretical frameworks in biology. Theoretical biology by far did not achieve a comparable role as theoretical physics which is on equal foot with experimental physics. Many biologists are even rather sceptical towards a theoretical biology and see progress in the development of ever more sophisticated experimental methods instead in theoretical concepts expressed by new hypotheses.

Knowledge from data without hypothesis?

Philosophers distinguish rational knowledge ( cognitio ex principiis ) from knowledge from data ( cognitio ex data ). Kant associates these two branches with natural sciences and natural history, respectively. The latter with descriptions of natural objects as prominently done with systematic classification of animals and plants or, where it is really history, when describing events in the evolution of life forms on earth. Cognitio ex data thus played a much more prominent role in biology than in physics and explains why the compilation of data and in extremis the collection of museum specimen characterizes biological research. To account for this difference, philosophers of the logical empiricism developed a two‐level concept of science languages consisting of a language of observations (Beobachtungssprache) and a language of theories (Theoriesprache) which are linked by certain rules of correspondence (Korrespondenzregeln) (Carnap,  1891 –1970d). If one looks into leading biological research journals, it becomes clear that biology has a sophisticated language of observation and a much less developed language of theories.

Do we need more philosophical thinking in biology or at least a more vigorous theoretical biology? The breathtaking speed of progress in experimental biology seems to indicate that biology can well develop without much theoretical or philosophical thinking. At the same time, one could argue that some fields in biology might need more theoretical rigour. Microbiologists might think on microbiome research—one of the breakthrough developments of microbiology research in recent years. The field teems with fascinating, but ill‐defined terms (our second genome; holobionts; gut–brain axis; dysbiosis, symbionts; probiotics; health benefits) that call for stricter definitions. One might also argue that biologists should at least consider the criticism of Goethe ( 1749–1832 ), a poet who was also an active scientist. In Faust , the devil ironically teaches biology to a young student.

“Wer will was Lebendigs erkennen und beschreiben, Sucht erst den Geist herauszutreiben, Dann hat er die Teile in seiner Hand, Fehlt, leider! nur das geistige Band.” (To docket living things past any doubt. You cancel first the living spirit out: The parts lie in the hollow of your hand, You only lack the living thing you banned).

We probably need both in biology: more data and more theory and hypotheses.

CONFLICT OF INTEREST

The author reports no conflict of interest.

FUNDING INFORMATION

No funding information provided.

Supporting information

Appendix S1

Brüssow, H. (2022) On the role of hypotheses in science . Microbial Biotechnology , 15 , 2687–2698. Available from: 10.1111/1751-7915.14141 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

  • Bacon, F. (1561. –1626) Novum Organum. In: Adler, M.J. (Ed.) (editor‐in‐chief) Great books of the western world . Chicago, IL: Encyclopaedia Britannica, Inc. 2nd edition 1992 vol 1–60 (abbreviated below as GBWW) here: GBWW vol. 28: 128. [ Google Scholar ]
  • Brüssow, H. (2022) What is Truth – in science and beyond . Environmental Microbiology , 24 , 2895–2906. [ PubMed ] [ Google Scholar ]
  • Carnap, R. (1891. ‐1970a) Philosophical foundations of physics. Ch. 14 . Basic Books, Inc., New York, 1969. [ Google Scholar ]
  • Carnap, R. (1891. ‐1970b) Philosophical foundations of physics. Ch. 15 . Basic Books, Inc., New York, 1969. [ Google Scholar ]
  • Carnap, R. (1891. ‐1970c) Philosophical foundations of physics. Ch. 16 . Basic Books, Inc., New York, 1969. [ Google Scholar ]
  • Carnap, R. (1891. ‐1970d) Philosophical foundations of physics. Ch. 27–28 . Basic Books, Inc., New York, 1969. [ Google Scholar ]
  • Copernicus . (1473. ‐1543) Revolutions of heavenly spheres . GBWW , vol. 15 , 505–506. [ Google Scholar ]
  • Darwin, C. (1809. ‐1882a) The origin of species . GBWW , vol. 49 : 239. [ Google Scholar ]
  • Darwin, C. (1809. ‐1882b) The descent of man . GBWW , vol. 49 : 590. [ Google Scholar ]
  • Descartes, R. (1596. ‐1650) Rules for direction . GBWW , vol. 28 , 245. [ Google Scholar ]
  • Dewey, J. (1859. –1952) Experience and education . GBWW , vol. 55 , 124. [ Google Scholar ]
  • Dorfmüller, T. , Hering, W.T. & Stierstadt, K. (1998) Bergmann Schäfer Lehrbuch der Experimentalphysik: Band 1 Mechanik, Relativität, Wärme. In: Was ist Schwerkraft: Von Newton zu Einstein . Berlin, New York: Walter de Gruyter, pp. 197–203. [ Google Scholar ]
  • Einstein, A. (1916) Relativity . GBWW , vol. 56 , 191–243. [ Google Scholar ]
  • Einstein, A. & Imfeld, L. (1956) Die Evolution der Physik . Hamburg: Rowohlts deutsche Enzyklopädie, Rowohlt Verlag. [ Google Scholar ]
  • Euclid . (c.323‐c.283) The elements . GBWW , vol. 10 , 1–2. [ Google Scholar ]
  • Faraday, M. (1791. –1867) Speculation touching electric conduction and the nature of matter . GBWW , 42 , 758–763. [ Google Scholar ]
  • Freud, S. (1856. –1939) Beyond the pleasure principle . GBWW , vol. 54 , 661–662. [ Google Scholar ]
  • Galilei, G. (1564. ‐1642a) The Assayer, as translated by S. Drake (1957) Discoveries and Opinions of Galileo pp. 237–8 abridged pdf at Stanford University .
  • Galilei, G. (1564. ‐1642b) The two sciences . GBWW vol. 26 : 200. [ Google Scholar ]
  • Gilbert, W. (1544. ‐1603) On the Loadstone . GBWW , vol. 26 , 108–110. [ Google Scholar ]
  • Goethe, J.W. (1749. –1832) Faust . GBWW , vol. 45 , 20. [ Google Scholar ]
  • Hilbert, D. (1899) Grundlagen der Geometrie . Leipzig, Germany: Verlag Teubner. [ Google Scholar ]
  • Huygens, C. (1617. ‐1670) Treatise on light . GBWW , vol. 32 , 557–560. [ Google Scholar ]
  • James, W. (1842. –1907) Principles of psychology . GBWW , vol. 53 , 862–866. [ Google Scholar ]
  • Kant, I. (1724. –1804) Critique of pure reason . GBWW , vol. 39 , 227–230. [ Google Scholar ]
  • Lavoisier, A.L. (1743. ‐1794) Element of chemistry . GBWW , vol. 42 , p. 2, 6‐7, 9‐10. [ Google Scholar ]
  • Locke, J. (1632. ‐1704) Concerning Human Understanding . GBWW , vol. 33 , 317–362. [ Google Scholar ]
  • Mittelstrass, J. (1980a) Enzyklopädie Philosophie und Wissenschaftstheorie Bibliographisches Institut Mannheim, Wien, Zürich B.I. Wissenschaftsverlag Vol. 1: 239–241 .
  • Mittelstrass, J. (1980b) Enzyklopädie Philosophie und Wissenschaftstheorie Bibliographisches Institut Mannheim, Wien, Zürich B.I. Wissenschaftsverlag Vol. 3: 307 .
  • Mittelstrass, J. (1980c) Enzyklopädie Philosophie und Wissenschaftstheorie Bibliographisches Institut Mannheim, Wien, Zürich B.I. Wissenschaftsverlag Vol. 1: 439–442 .
  • Mittelstrass, J. (1980d) Enzyklopädie Philosophie und Wissenschaftstheorie Bibliographisches Institut Mannheim, Wien, Zürich B.I. Wissenschaftsverlag Vol. 2: 157–158 .
  • Mittelstrass, J. (1980e) Enzyklopädie Philosophie und Wissenschaftstheorie Bibliographisches Institut Mannheim, Wien, Zürich B.I. Wissenschaftsverlag Vol. 3: 264‐267, 449.450 .
  • Mittelstrass, J. (1980f) Enzyklopädie Philosophie und Wissenschaftstheorie Bibliographisches Institut Mannheim, Wien, Zürich B.I. Wissenschaftsverlag Vol. 1: 209–210 .
  • Mittelstrass, J. (1980g) Enzyklopädie Philosophie und Wissenschaftstheorie Bibliographisches Institut Mannheim, Wien, Zürich B.I. Wissenschaftsverlag Vol. 1: 281–282 .
  • Pascal, B. (1623. ‐1662a) Pensées GBWW vol. 30 : 171–173. [ Google Scholar ]
  • Pascal, B. (1623. ‐1662b) Scientific treatises on geometric demonstrations . GBWW vol. 30 : 442–443. [ Google Scholar ]
  • Plato . (c.424‐c.348 BC a) Timaeus . GBWW , vol. 6 , 442–477. [ Google Scholar ]
  • Poincaré, H. (1854. ‐1912a) Science and hypothesis GBWW , vol. 56 : XV‐XVI, 1–5, 10–15 [ Google Scholar ]
  • Poincaré, H. (1854. ‐1912b) Science and hypothesis GBWW , vol. 56 : 40–52. [ Google Scholar ]
  • Popper, K. (1902. ‐1994) Conjectures and refutations . London and New York, 2002: The Growth of Scientific Knowledge Routledge Classics, pp. 249–261. [ Google Scholar ]
  • Syntopicon . (1992) Hypothesis . GBWW , vol. 1 , 576–587. [ Google Scholar ]
  • Waddington, C.H. (1905. –1975) The nature of life . GBWW , vol. 56 , 697–699. [ Google Scholar ]

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    definition of general hypothesis

  2. 🏷️ Formulation of hypothesis in research. How to Write a Strong

    definition of general hypothesis

  3. Hypothesis

    definition of general hypothesis

  4. What Is Research Hypothesis And Types

    definition of general hypothesis

  5. Research Hypothesis: Definition, Types, Examples and Quick Tips

    definition of general hypothesis

  6. How to Write a Hypothesis: The Ultimate Guide with Examples

    definition of general hypothesis

VIDEO

  1. A Review of the General Principles of Hypothesis Testing

  2. General procedure for testing hypothesis ch 16 lec 5

  3. What Is A Hypothesis?

  4. Intro to hypothesis, Types functions

  5. Hypothesis

  6. How To Formulate The Hypothesis/What is Hypothesis?

COMMENTS

  1. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  2. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  3. Scientific hypothesis

    scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world.The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation.

  4. Hypothesis Definition & Meaning

    hypothesis: [noun] an assumption or concession made for the sake of argument. an interpretation of a practical situation or condition taken as the ground for action.

  5. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  6. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  7. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an "educated guess ...

  8. Hypothesis

    The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits.. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon.For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained ...

  9. Hypothesis

    hypothesis, something supposed or taken for granted, with the object of following out its consequences (Greek hypothesis, "a putting under," the Latin equivalent being suppositio ). Discussion with Kara Rogers of how the scientific model is used to test a hypothesis or represent a theory. Kara Rogers, senior biomedical sciences editor of ...

  10. What is the definition of a hypothesis?

    A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question. A hypothesis is not just a guess. It should be based on ...

  11. How to Write a Great Hypothesis

    What is a hypothesis and how can you write a great one for your research? A hypothesis is a tentative statement about the relationship between two or more variables that can be tested empirically. Find out how to formulate a clear, specific, and testable hypothesis with examples and tips from Verywell Mind, a trusted source of psychology and mental health information.

  12. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  13. On the scope of scientific hypotheses

    2. The scientific hypothesis. In this section, we will describe a functional and descriptive role regarding how scientists use hypotheses. Jeong & Kwon [] investigated and summarized the different uses the concept of 'hypothesis' had in philosophical and scientific texts.They identified five meanings: assumption, tentative explanation, tentative cause, tentative law, and prediction.

  14. Hypothesis Definition (Science)

    Hypothesis Versus Theory . Although in common usage the terms hypothesis and theory are used interchangeably, the two words mean something different from each other in science. Like a hypothesis, a theory is testable and may be used to make predictions. However, a theory has been tested using the scientific method many times.

  15. Hypothesis

    First, we give a general definition and properties of a hypothesis. In a nutshell, a hypothesis is an explanation of an event or a phenomenon. Hypotheses are mainly expressed in words, but they may also be expressed in mathematical formulas, figures, algorithms, or programs, which can be processed formally.

  16. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  17. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    Reflecting on general and specific issues around the subject matter is often recommended for drafting a well-structured hypothesis article. An analysis of influential hypotheses, presented in this article, particularly Strachan's hygiene hypothesis with global implications in the field of immunology and allergy, points to the need for properly ...

  18. 1.6: Hypothesis, Theories, and Laws

    Marisa Alviar-Agnew ( Sacramento City College) Henry Agnew (UC Davis) 1.6: Hypothesis, Theories, and Laws is shared under a CK-12 license and was authored, remixed, and/or curated by Marisa Alviar-Agnew & Henry Agnew. Although many have taken science classes throughout the course of their studies, people often have incorrect or misleading ideas ...

  19. GENERAL HYPOTHESES (Scientific models)

    DEFINITION: General Hypotheses are tentative, specific explanations of phenomena that can be rejected by experimental data. General Hypotheses take many different forms. Some General Hypotheses are relatively simple statements. For example, consider a General Hypothesis: General Hypothesis (GH) 1: "Social media is one cause of childhood ...

  20. What is Hypothesis

    Functions of Hypothesis. Following are the functions performed by the hypothesis: Hypothesis helps in making an observation and experiments possible. It becomes the start point for the investigation. Hypothesis helps in verifying the observations. It helps in directing the inquiries in the right direction.

  21. HYPOTHESIS

    HYPOTHESIS definition: 1. an idea or explanation for something that is based on known facts but has not yet been proved…. Learn more.

  22. On the role of hypotheses in science

    Scientific research progresses by the dialectic dialogue between hypothesis building and the experimental testing of these hypotheses. Microbiologists as biologists in general can rely on an increasing set of sophisticated experimental methods for hypothesis testing such that many scientists maintain that progress in biology essentially comes with new experimental tools.

  23. What is a Hypothesis in Machine Learning?

    Hypothesis in Machine Learning: Candidate model that approximates a target function for mapping examples of inputs to outputs. We can see that a hypothesis in machine learning draws upon the definition of a hypothesis more broadly in science. Just like a hypothesis in science is an explanation that covers available evidence, is falsifiable and ...

  24. Microorganisms

    Chronic HIV-1 infection can cause neurological illness, also known as HIV-associated neurocognitive disorders (HAND). The elevated level of pro-inflammatory cytokines and chemokines, such as C-C Chemokine Ligand 5 (CCL5/RANTES), is one of the ways of causing HIV-1-mediated neuroinflammation. C-C Chemokine Receptor 5 (CCR5) is the main coreceptor for viral entry into host cells and for ...