Cambridge Dictionary

  • Cambridge Dictionary +Plus

Synonyms and antonyms of research in English

  • TO STUDY SOMETHING

Synonyms and examples

Research | american thesaurus.

{{randomImageQuizHook.quizId}}

Word of the Day

anonymously

Your browser doesn't support HTML5 audio

without the name of someone who has done a particular thing being known or made public

Dead ringers and peas in pods (Talking about similarities, Part 2)

Dead ringers and peas in pods (Talking about similarities, Part 2)

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists

Add ${headword} to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

Synonyms of 'research' in British English

Additional synonyms, synonyms of 'research' in american english.

Youtube video

Browse alphabetically research

  • researching
  • resemblance
  • All ENGLISH synonyms that begin with 'R'

Quick word challenge

Quiz Review

Score: 0 / 5

Tile

Wordle Helper

Tile

Scrabble Tools

other term for research work

50 Useful Academic Words & Phrases for Research

Like all good writing, writing an academic paper takes a certain level of skill to express your ideas and arguments in a way that is natural and that meets a level of academic sophistication. The terms, expressions, and phrases you use in your research paper must be of an appropriate level to be submitted to academic journals.

Therefore, authors need to know which verbs , nouns , and phrases to apply to create a paper that is not only easy to understand, but which conveys an understanding of academic conventions. Using the correct terminology and usage shows journal editors and fellow researchers that you are a competent writer and thinker, while using non-academic language might make them question your writing ability, as well as your critical reasoning skills.

What are academic words and phrases?

One way to understand what constitutes good academic writing is to read a lot of published research to find patterns of usage in different contexts. However, it may take an author countless hours of reading and might not be the most helpful advice when faced with an upcoming deadline on a manuscript draft.

Briefly, “academic” language includes terms, phrases, expressions, transitions, and sometimes symbols and abbreviations that help the pieces of an academic text fit together. When writing an academic text–whether it is a book report, annotated bibliography, research paper, research poster, lab report, research proposal, thesis, or manuscript for publication–authors must follow academic writing conventions. You can often find handy academic writing tips and guidelines by consulting the style manual of the text you are writing (i.e., APA Style , MLA Style , or Chicago Style ).

However, sometimes it can be helpful to have a list of academic words and expressions like the ones in this article to use as a “cheat sheet” for substituting the better term in a given context.

How to Choose the Best Academic Terms

You can think of writing “academically” as writing in a way that conveys one’s meaning effectively but concisely. For instance, while the term “take a look at” is a perfectly fine way to express an action in everyday English, a term like “analyze” would certainly be more suitable in most academic contexts. It takes up fewer words on the page and is used much more often in published academic papers.

You can use one handy guideline when choosing the most academic term: When faced with a choice between two different terms, use the Latinate version of the term. Here is a brief list of common verbs versus their academic counterparts:

Although this can be a useful tip to help academic authors, it can be difficult to memorize dozens of Latinate verbs. Using an AI paraphrasing tool or proofreading tool can help you instantly find more appropriate academic terms, so consider using such revision tools while you draft to improve your writing.

Top 50 Words and Phrases for Different Sections in a Research Paper

The “Latinate verb rule” is just one tool in your arsenal of academic writing, and there are many more out there. But to make the process of finding academic language a bit easier for you, we have compiled a list of 50 vital academic words and phrases, divided into specific categories and use cases, each with an explanation and contextual example.

Best Words and Phrases to use in an Introduction section

1. historically.

An adverb used to indicate a time perspective, especially when describing the background of a given topic.

2. In recent years

A temporal marker emphasizing recent developments, often used at the very beginning of your Introduction section.

3. It is widely acknowledged that

A “form phrase” indicating a broad consensus among researchers and/or the general public. Often used in the literature review section to build upon a foundation of established scientific knowledge.

4. There has been growing interest in

Highlights increasing attention to a topic and tells the reader why your study might be important to this field of research.

5. Preliminary observations indicate

Shares early insights or findings while hedging on making any definitive conclusions. Modal verbs like may , might , and could are often used with this expression.

6. This study aims to

Describes the goal of the research and is a form phrase very often used in the research objective or even the hypothesis of a research paper .

7. Despite its significance

Highlights the importance of a matter that might be overlooked. It is also frequently used in the rationale of the study section to show how your study’s aim and scope build on previous studies.

8. While numerous studies have focused on

Indicates the existing body of work on a topic while pointing to the shortcomings of certain aspects of that research. Helps focus the reader on the question, “What is missing from our knowledge of this topic?” This is often used alongside the statement of the problem in research papers.

9. The purpose of this research is

A form phrase that directly states the aim of the study.

10. The question arises (about/whether)

Poses a query or research problem statement for the reader to acknowledge.

Best Words and Phrases for Clarifying Information

11. in other words.

Introduces a synopsis or the rephrasing of a statement for clarity. This is often used in the Discussion section statement to explain the implications of the study .

12. That is to say

Provides clarification, similar to “in other words.”

13. To put it simply

Simplifies a complex idea, often for a more general readership.

14. To clarify

Specifically indicates to the reader a direct elaboration of a previous point.

15. More specifically

Narrows down a general statement from a broader one. Often used in the Discussion section to clarify the meaning of a specific result.

16. To elaborate

Expands on a point made previously.

17. In detail

Indicates a deeper dive into information.

Points out specifics. Similar meaning to “specifically” or “especially.”

19. This means that

Explains implications and/or interprets the meaning of the Results section .

20. Moreover

Expands a prior point to a broader one that shows the greater context or wider argument.

Best Words and Phrases for Giving Examples

21. for instance.

Provides a specific case that fits into the point being made.

22. As an illustration

Demonstrates a point in full or in part.

23. To illustrate

Shows a clear picture of the point being made.

24. For example

Presents a particular instance. Same meaning as “for instance.”

25. Such as

Lists specifics that comprise a broader category or assertion being made.

26. Including

Offers examples as part of a larger list.

27. Notably

Adverb highlighting an important example. Similar meaning to “especially.”

28. Especially

Adverb that emphasizes a significant instance.

29. In particular

Draws attention to a specific point.

30. To name a few

Indicates examples than previously mentioned are about to be named.

Best Words and Phrases for Comparing and Contrasting

31. however.

Introduces a contrasting idea.

32. On the other hand

Highlights an alternative view or fact.

33. Conversely

Indicates an opposing or reversed idea to the one just mentioned.

34. Similarly

Shows likeness or parallels between two ideas, objects, or situations.

35. Likewise

Indicates agreement with a previous point.

36. In contrast

Draws a distinction between two points.

37. Nevertheless

Introduces a contrasting point, despite what has been said.

38. Whereas

Compares two distinct entities or ideas.

Indicates a contrast between two points.

Signals an unexpected contrast.

Best Words and Phrases to use in a Conclusion section

41. in conclusion.

Signifies the beginning of the closing argument.

42. To sum up

Offers a brief summary.

43. In summary

Signals a concise recap.

44. Ultimately

Reflects the final or main point.

45. Overall

Gives a general concluding statement.

Indicates a resulting conclusion.

Demonstrates a logical conclusion.

48. Therefore

Connects a cause and its effect.

49. It can be concluded that

Clearly states a conclusion derived from the data.

50. Taking everything into consideration

Reflects on all the discussed points before concluding.

Edit Your Research Terms and Phrases Before Submission

Using these phrases in the proper places in your research papers can enhance the clarity, flow, and persuasiveness of your writing, especially in the Introduction section and Discussion section, which together make up the majority of your paper’s text in most academic domains.

However, it's vital to ensure each phrase is contextually appropriate to avoid redundancy or misinterpretation. As mentioned at the top of this article, the best way to do this is to 1) use an AI text editor , free AI paraphrasing tool or AI proofreading tool while you draft to enhance your writing, and 2) consult a professional proofreading service like Wordvice, which has human editors well versed in the terminology and conventions of the specific subject area of your academic documents.

For more detailed information on using AI tools to write a research paper and the best AI tools for research , check out the Wordvice AI Blog .

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

other term for research work

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

16k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

other term for research work

Your Guide to Understanding Common Research Terms

Share this:.

Share to facebook

                              Demystifying Clinical Trials -- Part 2

The clinical research world can sometimes seem confusing. Research teams have many people in different roles, and they may use words that are unfamiliar to people outside of research work.

The guide below defines some commonly used words and phrases. Let us know in the comments below or on our Facebook , Twitter , or Instagram pages if you’d like definitions of other words or parts of the research process!

Accrual – the number of subjects who have completed or are actively in the process of completing a study. The accrual goal is how many subjects are needed to finish the study (2).

Adverse event (AE) – a negative symptom or experience encountered by an subject during the course of a clinical trial. Adverse events can be expected or unexpected.

Assent – a minor child’s affirmative agreement to participate in a clinical trial. Failure to object may not be taken as assent.

Clinical research coordinator – a study team member who manages the day-to-day study tasks as directed by the principal investigator. (3)

Consent form – a document explaining all relevant study information to assist the study subject in understanding the expectations and requirements of participating in the trial. This document is presented to and signed by the study subject.

Control arm/group – a comparison group of study subjects who are not treated with the investigational agent. The subjects in this group have the same disease or condition under study, but receive either a different treatment, no treatment, or a placebo.

Data – the objective information gathered during a research study that is used to determine the results of the study.

De-identification – the process of removing identifiers (personal names, dates, social security numbers, etc.) that directly or indirectly point to a person, and removing those identifiers from the data. De-identification of protected health information is essential for protecting patient privacy (4).

Enroll/Enrollment – the process of an eligible participant signing a consent form and voluntarily agreeing to participate in a research study (2).

Ethics committee – an independent group of both medical and non-medical professionals who are responsible for verifying the integrity of a study and ensuring the safety, integrity, and human rights of the study participants.

Food and Drug Administration (FDA) – the agency within the Department of Health and Human Services (DHHS) that enforces public health laws related to research conduct.

Greater than minimal risk – the research involves more than minimal risk to subjects (2).

Health Insurance Portability and Accountability Act of 1996 (HIPAA) – required the Department of Health & Human Services to develop regulations protecting the privacy and security of certain health information (5). The HIPAA Privacy Rule established the conditions under which health information may be used or disclosed by approved entities for research purposes (6).

Hypothesis – a specific, clear, and testable proposition or prediction about the possible outcome of a scientific research study (7).

Informed consent – the process of discussing a clinical trial that goes beyond signing the consent form. The discussion should provide sufficient information so that a subject can make an informed decision about whether or not to enroll in a study, or continue participation in a study. Informed consent is a voluntary agreement to participate in research, and should be an ongoing conversation throughout a subject’s entire time in the study (8).

Investigational New Drug Application (IND) – the process through which an investigator requests the FDA to allow human testing of a new drug.

Institutional Review Board (IRB) – an independent group of professionals designated to review and approve the clinical protocol, informed consent forms, study advertisements, and patient brochures to ensure that the study is safe for human participation. It is also the IRB’s responsibility to ensure that the study adheres to the FDA’s regulations.

Minimal risk – the probability that harm or discomfort anticipated in the research study are not greater than those encountered in daily life or during routine physical examinations (2).

National Institutes of Health (NIH) – agency within DHHS that provides funding for research, conducts studies, and funds multi-site national studies.

Protected Health Information (PHI) – individually identifiable health information. HIPAA provides federal protections for personal health information and gives patients more control over their health information. It also sets boundaries for how entities and institutions can use and release health records (9).

Placebo – an inactive substance designed to resemble the drug being tested. It is used as a control to rule out any psychological effects testing may present. Most advanced clinical trials include a control group that is unknowingly taking a placebo.

Principal Investigator – the primary individual responsible for conducting a clinical trial and adhering to federal regulations, institutional policies, and IRB regulations (2).

Protocol – a detailed plan that sets out the objectives, study design, and methodology for a clinical trial. A study protocol must be approved by an IRB before research may begin on human subjects.

Randomization – study participants are assigned to groups in such a way that each participant has an equal chance of being assigned to each treatment or control group. Since randomization ensures that no specific criteria are used to assign any patients to a particular group, all the groups will be equally comparable.

Research – systematic investigation designed to develop or contribute to generalizable knowledge.

Standard treatment/Standard of care – the currently accepted treatment or intervention considered to be effective in the treatment of a specific disease or condition.

Statistical significance – the probability that an event or difference was occurred by chance alone. In clinical trials, the level of statistical significance depends on the number or participants studied and the observations made, as well as the magnitude of differences observed.

Subject/Participant – a patient or healthy individual participating in a research study.

Treatment arm/group – a group of study subjects who are treated with the investigational agent.

Visit schedule/Test schedule – the number, frequency, and type of exams, tests, and procedures that research subjects will be expected to undergo during the study. Some visits may be the same as normal clinical care visits, while others may be required just for the purpose of collecting data for the research study.

Definitions taken from https://www.centerwatch.com/health-resources/glossary/ unless otherwise cited.

(2) https://www.mayo.edu/research/institutional-review-board/definition-terms

(3) https://acrpnet.org/2018/08/14/the-anatomy-of-a-great-clinical-research-coordinator/

(4) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977668/

(5) https://www.hhs.gov/hipaa/for-professionals/privacy/index.html

(6) https://www.hhs.gov/hipaa/for-professionals/special-topics/research/index.html

(7) https://methods.sagepub.com/Reference//encyclopedia-of-survey-research-methods/n472.xml

(8) https://oprs.usc.edu/files/2017/04/Informed-Consent-Booklet-4.4.13.pdf

(9) https://www.hhs.gov/hipaa/for-individuals/faq/187/what-does-the-hipaa-privacy-rule-do/index.html

The Todd and Karen Wanek Family Program for Hypoplastic Left Heart Syndrome (HLHS)  is a collaborative network of specialists bonded by the vision of finding solutions for individuals affected by congenital heart defects including HLHS. The specialized team is addressing the various aspects of these defects by using research and clinical strategies ranging from basic science to diagnostic imaging to regenerative therapies.   Email the program at  [email protected]  to learn more.

  • Copy link to clipboard
  • Report newsfeed post

Interested in more newsfeed posts like this? Go to the HLHS blog.

other term for research work

Connect with thousands of patients and caregivers for support and answers.

  • Hosted and moderated by Mayo Clinic.
  • Safe and secure.

Already have an account? Sign In

other term for research work

bottom_desktop desktop:[300x250]

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

Glossary of research terms.

  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

This glossary is intended to assist you in understanding commonly used terms and concepts when reading, interpreting, and evaluating scholarly research. Also included are common words and phrases defined within the context of how they apply to research in the social and behavioral sciences.

  • Acculturation -- refers to the process of adapting to another culture, particularly in reference to blending in with the majority population [e.g., an immigrant adopting American customs]. However, acculturation also implies that both cultures add something to one another, but still remain distinct groups unto themselves.
  • Accuracy -- a term used in survey research to refer to the match between the target population and the sample.
  • Affective Measures -- procedures or devices used to obtain quantified descriptions of an individual's feelings, emotional states, or dispositions.
  • Aggregate -- a total created from smaller units. For instance, the population of a county is an aggregate of the populations of the cities, rural areas, etc. that comprise the county. As a verb, it refers to total data from smaller units into a large unit.
  • Anonymity -- a research condition in which no one, including the researcher, knows the identities of research participants.
  • Baseline -- a control measurement carried out before an experimental treatment.
  • Behaviorism -- school of psychological thought concerned with the observable, tangible, objective facts of behavior, rather than with subjective phenomena such as thoughts, emotions, or impulses. Contemporary behaviorism also emphasizes the study of mental states such as feelings and fantasies to the extent that they can be directly observed and measured.
  • Beliefs -- ideas, doctrines, tenets, etc. that are accepted as true on grounds which are not immediately susceptible to rigorous proof.
  • Benchmarking -- systematically measuring and comparing the operations and outcomes of organizations, systems, processes, etc., against agreed upon "best-in-class" frames of reference.
  • Bias -- a loss of balance and accuracy in the use of research methods. It can appear in research via the sampling frame, random sampling, or non-response. It can also occur at other stages in research, such as while interviewing, in the design of questions, or in the way data are analyzed and presented. Bias means that the research findings will not be representative of, or generalizable to, a wider population.
  • Case Study -- the collection and presentation of detailed information about a particular participant or small group, frequently including data derived from the subjects themselves.
  • Causal Hypothesis -- a statement hypothesizing that the independent variable affects the dependent variable in some way.
  • Causal Relationship -- the relationship established that shows that an independent variable, and nothing else, causes a change in a dependent variable. It also establishes how much of a change is shown in the dependent variable.
  • Causality -- the relation between cause and effect.
  • Central Tendency -- any way of describing or characterizing typical, average, or common values in some distribution.
  • Chi-square Analysis -- a common non-parametric statistical test which compares an expected proportion or ratio to an actual proportion or ratio.
  • Claim -- a statement, similar to a hypothesis, which is made in response to the research question and that is affirmed with evidence based on research.
  • Classification -- ordering of related phenomena into categories, groups, or systems according to characteristics or attributes.
  • Cluster Analysis -- a method of statistical analysis where data that share a common trait are grouped together. The data is collected in a way that allows the data collector to group data according to certain characteristics.
  • Cohort Analysis -- group by group analytic treatment of individuals having a statistical factor in common to each group. Group members share a particular characteristic [e.g., born in a given year] or a common experience [e.g., entering a college at a given time].
  • Confidentiality -- a research condition in which no one except the researcher(s) knows the identities of the participants in a study. It refers to the treatment of information that a participant has disclosed to the researcher in a relationship of trust and with the expectation that it will not be revealed to others in ways that violate the original consent agreement, unless permission is granted by the participant.
  • Confirmability Objectivity -- the findings of the study could be confirmed by another person conducting the same study.
  • Construct -- refers to any of the following: something that exists theoretically but is not directly observable; a concept developed [constructed] for describing relations among phenomena or for other research purposes; or, a theoretical definition in which concepts are defined in terms of other concepts. For example, intelligence cannot be directly observed or measured; it is a construct.
  • Construct Validity -- seeks an agreement between a theoretical concept and a specific measuring device, such as observation.
  • Constructivism -- the idea that reality is socially constructed. It is the view that reality cannot be understood outside of the way humans interact and that the idea that knowledge is constructed, not discovered. Constructivists believe that learning is more active and self-directed than either behaviorism or cognitive theory would postulate.
  • Content Analysis -- the systematic, objective, and quantitative description of the manifest or latent content of print or nonprint communications.
  • Context Sensitivity -- awareness by a qualitative researcher of factors such as values and beliefs that influence cultural behaviors.
  • Control Group -- the group in an experimental design that receives either no treatment or a different treatment from the experimental group. This group can thus be compared to the experimental group.
  • Controlled Experiment -- an experimental design with two or more randomly selected groups [an experimental group and control group] in which the researcher controls or introduces the independent variable and measures the dependent variable at least two times [pre- and post-test measurements].
  • Correlation -- a common statistical analysis, usually abbreviated as r, that measures the degree of relationship between pairs of interval variables in a sample. The range of correlation is from -1.00 to zero to +1.00. Also, a non-cause and effect relationship between two variables.
  • Covariate -- a product of the correlation of two related variables times their standard deviations. Used in true experiments to measure the difference of treatment between them.
  • Credibility -- a researcher's ability to demonstrate that the object of a study is accurately identified and described based on the way in which the study was conducted.
  • Critical Theory -- an evaluative approach to social science research, associated with Germany's neo-Marxist “Frankfurt School,” that aims to criticize as well as analyze society, opposing the political orthodoxy of modern communism. Its goal is to promote human emancipatory forces and to expose ideas and systems that impede them.
  • Data -- factual information [as measurements or statistics] used as a basis for reasoning, discussion, or calculation.
  • Data Mining -- the process of analyzing data from different perspectives and summarizing it into useful information, often to discover patterns and/or systematic relationships among variables.
  • Data Quality -- this is the degree to which the collected data [results of measurement or observation] meet the standards of quality to be considered valid [trustworthy] and  reliable [dependable].
  • Deductive -- a form of reasoning in which conclusions are formulated about particulars from general or universal premises.
  • Dependability -- being able to account for changes in the design of the study and the changing conditions surrounding what was studied.
  • Dependent Variable -- a variable that varies due, at least in part, to the impact of the independent variable. In other words, its value “depends” on the value of the independent variable. For example, in the variables “gender” and “academic major,” academic major is the dependent variable, meaning that your major cannot determine whether you are male or female, but your gender might indirectly lead you to favor one major over another.
  • Deviation -- the distance between the mean and a particular data point in a given distribution.
  • Discourse Community -- a community of scholars and researchers in a given field who respond to and communicate to each other through published articles in the community's journals and presentations at conventions. All members of the discourse community adhere to certain conventions for the presentation of their theories and research.
  • Discrete Variable -- a variable that is measured solely in whole units, such as, gender and number of siblings.
  • Distribution -- the range of values of a particular variable.
  • Effect Size -- the amount of change in a dependent variable that can be attributed to manipulations of the independent variable. A large effect size exists when the value of the dependent variable is strongly influenced by the independent variable. It is the mean difference on a variable between experimental and control groups divided by the standard deviation on that variable of the pooled groups or of the control group alone.
  • Emancipatory Research -- research is conducted on and with people from marginalized groups or communities. It is led by a researcher or research team who is either an indigenous or external insider; is interpreted within intellectual frameworks of that group; and, is conducted largely for the purpose of empowering members of that community and improving services for them. It also engages members of the community as co-constructors or validators of knowledge.
  • Empirical Research -- the process of developing systematized knowledge gained from observations that are formulated to support insights and generalizations about the phenomena being researched.
  • Epistemology -- concerns knowledge construction; asks what constitutes knowledge and how knowledge is validated.
  • Ethnography -- method to study groups and/or cultures over a period of time. The goal of this type of research is to comprehend the particular group/culture through immersion into the culture or group. Research is completed through various methods but, since the researcher is immersed within the group for an extended period of time, more detailed information is usually collected during the research.
  • Expectancy Effect -- any unconscious or conscious cues that convey to the participant in a study how the researcher wants them to respond. Expecting someone to behave in a particular way has been shown to promote the expected behavior. Expectancy effects can be minimized by using standardized interactions with subjects, automated data-gathering methods, and double blind protocols.
  • External Validity -- the extent to which the results of a study are generalizable or transferable.
  • Factor Analysis -- a statistical test that explores relationships among data. The test explores which variables in a data set are most related to each other. In a carefully constructed survey, for example, factor analysis can yield information on patterns of responses, not simply data on a single response. Larger tendencies may then be interpreted, indicating behavior trends rather than simply responses to specific questions.
  • Field Studies -- academic or other investigative studies undertaken in a natural setting, rather than in laboratories, classrooms, or other structured environments.
  • Focus Groups -- small, roundtable discussion groups charged with examining specific topics or problems, including possible options or solutions. Focus groups usually consist of 4-12 participants, guided by moderators to keep the discussion flowing and to collect and report the results.
  • Framework -- the structure and support that may be used as both the launching point and the on-going guidelines for investigating a research problem.
  • Generalizability -- the extent to which research findings and conclusions conducted on a specific study to groups or situations can be applied to the population at large.
  • Grey Literature -- research produced by organizations outside of commercial and academic publishing that publish materials, such as, working papers, research reports, and briefing papers.
  • Grounded Theory -- practice of developing other theories that emerge from observing a group. Theories are grounded in the group's observable experiences, but researchers add their own insight into why those experiences exist.
  • Group Behavior -- behaviors of a group as a whole, as well as the behavior of an individual as influenced by his or her membership in a group.
  • Hypothesis -- a tentative explanation based on theory to predict a causal relationship between variables.
  • Independent Variable -- the conditions of an experiment that are systematically manipulated by the researcher. A variable that is not impacted by the dependent variable, and that itself impacts the dependent variable. In the earlier example of "gender" and "academic major," (see Dependent Variable) gender is the independent variable.
  • Individualism -- a theory or policy having primary regard for the liberty, rights, or independent actions of individuals.
  • Inductive -- a form of reasoning in which a generalized conclusion is formulated from particular instances.
  • Inductive Analysis -- a form of analysis based on inductive reasoning; a researcher using inductive analysis starts with answers, but formulates questions throughout the research process.
  • Insiderness -- a concept in qualitative research that refers to the degree to which a researcher has access to and an understanding of persons, places, or things within a group or community based on being a member of that group or community.
  • Internal Consistency -- the extent to which all questions or items assess the same characteristic, skill, or quality.
  • Internal Validity -- the rigor with which the study was conducted [e.g., the study's design, the care taken to conduct measurements, and decisions concerning what was and was not measured]. It is also the extent to which the designers of a study have taken into account alternative explanations for any causal relationships they explore. In studies that do not explore causal relationships, only the first of these definitions should be considered when assessing internal validity.
  • Life History -- a record of an event/events in a respondent's life told [written down, but increasingly audio or video recorded] by the respondent from his/her own perspective in his/her own words. A life history is different from a "research story" in that it covers a longer time span, perhaps a complete life, or a significant period in a life.
  • Margin of Error -- the permittable or acceptable deviation from the target or a specific value. The allowance for slight error or miscalculation or changing circumstances in a study.
  • Measurement -- process of obtaining a numerical description of the extent to which persons, organizations, or things possess specified characteristics.
  • Meta-Analysis -- an analysis combining the results of several studies that address a set of related hypotheses.
  • Methodology -- a theory or analysis of how research does and should proceed.
  • Methods -- systematic approaches to the conduct of an operation or process. It includes steps of procedure, application of techniques, systems of reasoning or analysis, and the modes of inquiry employed by a discipline.
  • Mixed-Methods -- a research approach that uses two or more methods from both the quantitative and qualitative research categories. It is also referred to as blended methods, combined methods, or methodological triangulation.
  • Modeling -- the creation of a physical or computer analogy to understand a particular phenomenon. Modeling helps in estimating the relative magnitude of various factors involved in a phenomenon. A successful model can be shown to account for unexpected behavior that has been observed, to predict certain behaviors, which can then be tested experimentally, and to demonstrate that a given theory cannot account for certain phenomenon.
  • Models -- representations of objects, principles, processes, or ideas often used for imitation or emulation.
  • Naturalistic Observation -- observation of behaviors and events in natural settings without experimental manipulation or other forms of interference.
  • Norm -- the norm in statistics is the average or usual performance. For example, students usually complete their high school graduation requirements when they are 18 years old. Even though some students graduate when they are younger or older, the norm is that any given student will graduate when he or she is 18 years old.
  • Null Hypothesis -- the proposition, to be tested statistically, that the experimental intervention has "no effect," meaning that the treatment and control groups will not differ as a result of the intervention. Investigators usually hope that the data will demonstrate some effect from the intervention, thus allowing the investigator to reject the null hypothesis.
  • Ontology -- a discipline of philosophy that explores the science of what is, the kinds and structures of objects, properties, events, processes, and relations in every area of reality.
  • Panel Study -- a longitudinal study in which a group of individuals is interviewed at intervals over a period of time.
  • Participant -- individuals whose physiological and/or behavioral characteristics and responses are the object of study in a research project.
  • Peer-Review -- the process in which the author of a book, article, or other type of publication submits his or her work to experts in the field for critical evaluation, usually prior to publication. This is standard procedure in publishing scholarly research.
  • Phenomenology -- a qualitative research approach concerned with understanding certain group behaviors from that group's point of view.
  • Philosophy -- critical examination of the grounds for fundamental beliefs and analysis of the basic concepts, doctrines, or practices that express such beliefs.
  • Phonology -- the study of the ways in which speech sounds form systems and patterns in language.
  • Policy -- governing principles that serve as guidelines or rules for decision making and action in a given area.
  • Policy Analysis -- systematic study of the nature, rationale, cost, impact, effectiveness, implications, etc., of existing or alternative policies, using the theories and methodologies of relevant social science disciplines.
  • Population -- the target group under investigation. The population is the entire set under consideration. Samples are drawn from populations.
  • Position Papers -- statements of official or organizational viewpoints, often recommending a particular course of action or response to a situation.
  • Positivism -- a doctrine in the philosophy of science, positivism argues that science can only deal with observable entities known directly to experience. The positivist aims to construct general laws, or theories, which express relationships between phenomena. Observation and experiment is used to show whether the phenomena fit the theory.
  • Predictive Measurement -- use of tests, inventories, or other measures to determine or estimate future events, conditions, outcomes, or trends.
  • Principal Investigator -- the scientist or scholar with primary responsibility for the design and conduct of a research project.
  • Probability -- the chance that a phenomenon will occur randomly. As a statistical measure, it is shown as p [the "p" factor].
  • Questionnaire -- structured sets of questions on specified subjects that are used to gather information, attitudes, or opinions.
  • Random Sampling -- a process used in research to draw a sample of a population strictly by chance, yielding no discernible pattern beyond chance. Random sampling can be accomplished by first numbering the population, then selecting the sample according to a table of random numbers or using a random-number computer generator. The sample is said to be random because there is no regular or discernible pattern or order. Random sample selection is used under the assumption that sufficiently large samples assigned randomly will exhibit a distribution comparable to that of the population from which the sample is drawn. The random assignment of participants increases the probability that differences observed between participant groups are the result of the experimental intervention.
  • Reliability -- the degree to which a measure yields consistent results. If the measuring instrument [e.g., survey] is reliable, then administering it to similar groups would yield similar results. Reliability is a prerequisite for validity. An unreliable indicator cannot produce trustworthy results.
  • Representative Sample -- sample in which the participants closely match the characteristics of the population, and thus, all segments of the population are represented in the sample. A representative sample allows results to be generalized from the sample to the population.
  • Rigor -- degree to which research methods are scrupulously and meticulously carried out in order to recognize important influences occurring in an experimental study.
  • Sample -- the population researched in a particular study. Usually, attempts are made to select a "sample population" that is considered representative of groups of people to whom results will be generalized or transferred. In studies that use inferential statistics to analyze results or which are designed to be generalizable, sample size is critical, generally the larger the number in the sample, the higher the likelihood of a representative distribution of the population.
  • Sampling Error -- the degree to which the results from the sample deviate from those that would be obtained from the entire population, because of random error in the selection of respondent and the corresponding reduction in reliability.
  • Saturation -- a situation in which data analysis begins to reveal repetition and redundancy and when new data tend to confirm existing findings rather than expand upon them.
  • Semantics -- the relationship between symbols and meaning in a linguistic system. Also, the cuing system that connects what is written in the text to what is stored in the reader's prior knowledge.
  • Social Theories -- theories about the structure, organization, and functioning of human societies.
  • Sociolinguistics -- the study of language in society and, more specifically, the study of language varieties, their functions, and their speakers.
  • Standard Deviation -- a measure of variation that indicates the typical distance between the scores of a distribution and the mean; it is determined by taking the square root of the average of the squared deviations in a given distribution. It can be used to indicate the proportion of data within certain ranges of scale values when the distribution conforms closely to the normal curve.
  • Statistical Analysis -- application of statistical processes and theory to the compilation, presentation, discussion, and interpretation of numerical data.
  • Statistical Bias -- characteristics of an experimental or sampling design, or the mathematical treatment of data, that systematically affects the results of a study so as to produce incorrect, unjustified, or inappropriate inferences or conclusions.
  • Statistical Significance -- the probability that the difference between the outcomes of the control and experimental group are great enough that it is unlikely due solely to chance. The probability that the null hypothesis can be rejected at a predetermined significance level [0.05 or 0.01].
  • Statistical Tests -- researchers use statistical tests to make quantitative decisions about whether a study's data indicate a significant effect from the intervention and allow the researcher to reject the null hypothesis. That is, statistical tests show whether the differences between the outcomes of the control and experimental groups are great enough to be statistically significant. If differences are found to be statistically significant, it means that the probability [likelihood] that these differences occurred solely due to chance is relatively low. Most researchers agree that a significance value of .05 or less [i.e., there is a 95% probability that the differences are real] sufficiently determines significance.
  • Subcultures -- ethnic, regional, economic, or social groups exhibiting characteristic patterns of behavior sufficient to distinguish them from the larger society to which they belong.
  • Testing -- the act of gathering and processing information about individuals' ability, skill, understanding, or knowledge under controlled conditions.
  • Theory -- a general explanation about a specific behavior or set of events that is based on known principles and serves to organize related events in a meaningful way. A theory is not as specific as a hypothesis.
  • Treatment -- the stimulus given to a dependent variable.
  • Trend Samples -- method of sampling different groups of people at different points in time from the same population.
  • Triangulation -- a multi-method or pluralistic approach, using different methods in order to focus on the research topic from different viewpoints and to produce a multi-faceted set of data. Also used to check the validity of findings from any one method.
  • Unit of Analysis -- the basic observable entity or phenomenon being analyzed by a study and for which data are collected in the form of variables.
  • Validity -- the degree to which a study accurately reflects or assesses the specific concept that the researcher is attempting to measure. A method can be reliable, consistently measuring the same thing, but not valid.
  • Variable -- any characteristic or trait that can vary from one person to another [race, gender, academic major] or for one person over time [age, political beliefs].
  • Weighted Scores -- scores in which the components are modified by different multipliers to reflect their relative importance.
  • White Paper -- an authoritative report that often states the position or philosophy about a social, political, or other subject, or a general explanation of an architecture, framework, or product technology written by a group of researchers. A white paper seeks to contain unbiased information and analysis regarding a business or policy problem that the researchers may be facing.

Elliot, Mark, Fairweather, Ian, Olsen, Wendy Kay, and Pampaka, Maria. A Dictionary of Social Research Methods. Oxford, UK: Oxford University Press, 2016; Free Social Science Dictionary. Socialsciencedictionary.com [2008]. Glossary. Institutional Review Board. Colorado College; Glossary of Key Terms. Writing@CSU. Colorado State University; Glossary A-Z. Education.com; Glossary of Research Terms. Research Mindedness Virtual Learning Resource. Centre for Human Servive Technology. University of Southampton; Miller, Robert L. and Brewer, John D. The A-Z of Social Research: A Dictionary of Key Social Science Research Concepts London: SAGE, 2003; Jupp, Victor. The SAGE Dictionary of Social and Cultural Research Methods . London: Sage, 2006.

  • << Previous: Independent and Dependent Variables
  • Next: 1. Choosing a Research Problem >>
  • Last Updated: Apr 29, 2024 1:49 PM
  • URL: https://libguides.usc.edu/writingguide

Synonyms of researches

  • as in investigations
  • as in explores
  • More from M-W
  • To save this word, you'll need to log in. Log In

Thesaurus Definition of researches

 (Entry 1 of 2)

Synonyms & Similar Words

  • investigations
  • examinations
  • explorations
  • disquisitions
  • inspections
  • inquisitions
  • questionnaires
  • interrogations
  • reinvestigations
  • questionaries
  • cross - examinations
  • goings - over
  • self - reflections
  • self - examinations
  • soul - searchings
  • self - explorations
  • self - questionings
  • self - scrutinies

Thesaurus Definition of researches  (Entry 2 of 2)

  • investigates
  • looks (into)
  • delves (into)
  • digs (into)
  • inquires (into)
  • checks up on
  • checks into
  • skims (through)
  • thumbs (through)
  • reinvestigates

Thesaurus Entries Near researches

researchers

researching

Cite this Entry

“Researches.” Merriam-Webster.com Thesaurus , Merriam-Webster, https://www.merriam-webster.com/thesaurus/researches. Accessed 29 Apr. 2024.

More from Merriam-Webster on researches

Nglish: Translation of researches for Spanish Speakers

Britannica English: Translation of researches for Arabic Speakers

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

More commonly misspelled words, commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, how to use accents and diacritical marks, popular in wordplay, the words of the week - apr. 26, 9 superb owl words, 'gaslighting,' 'woke,' 'democracy,' and other top lookups, 10 words for lesser-known games and sports, your favorite band is in the dictionary, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

  • Daily Crossword
  • Word Puzzle
  • Word Finder
  • Word of the Day
  • Synonym of the Day
  • Word of the Year
  • Language stories
  • All featured
  • Gender and sexuality
  • All pop culture
  • Grammar Coach ™
  • Writing hub
  • Grammar essentials
  • Commonly confused
  • All writing tips
  • Pop culture
  • Writing tips

Advertisement

noun as in labor, chore

Strongest matches

  • performance

Strong matches

  • functioning
  • undertaking

Weak matches

  • daily grind
  • elbow grease

noun as in business, occupation

  • responsibility
  • specialization
  • line of business
  • nine-to-five

noun as in achievement

  • application
  • composition
  • end product

verb as in to do work

  • manufacture
  • apply oneself
  • be gainfully employed
  • buckle down
  • do business
  • earn a living
  • knuckle down
  • nine-to-five it
  • punch a clock

verb as in manipulate, operate

  • bring about

verb as in cultivate, form

Discover More

Example sentences.

I worked very loyally for him to do everything I could for him.

Both are recovering well after their surgeries and are already back to work.

The NBCU spokesperson said the company would work with each advertiser to decide how the data would be used and managed.

It works with the full-sized Smart Keyboard and the new Logitech keyboards.

At Fortune, we’ve worked to make business better since our founding 90 years ago.

If anything the work the two cops and the maintenance guy were doing deserves more respect and probably helped a lot more people.

Why, some might be asking, am I being so harsh on their work so soon after they died?

“I love my job and I love my city and I am committed to the work here,” he said in a statement.

So it might be me projecting my desires onto Archer to want to just get away from work for a few weeks.

To make it work almost everything else about these shows has to seem factual which is why many look like a weird Celebrity Sims.

Sleek finds it far harder work than fortune-making; but he pursues his Will-o'-the-Wisp with untiring energy.

With him one is at high pressure all the time, and I have gained a good many more ideas from him than I can work up in a hurry.

In fact, except for Ramona's help, it would have been a question whether even Alessandro could have made Baba work in harness.

The sad end of the mission to King M'Bongo has been narrated in the body of this work.

Entrez donc, 'tis the work of one of your compatriots; and here, though a heretic, you may consider yourself on English ground.

Related Words

Words related to work are not direct synonyms, but are associated with the word work . Browse related words to learn more about word associations.

noun as in special interest or pursuit

  • entertainment

noun as in power, instrumentality

  • instrumentality
  • intercession
  • intervention

verb as in solve; fulfill

  • deal/deal with
  • work through

Viewing 5 / 194 related words

When To Use

What are other ways to say  work .

Work is the general word for exertion of body or mind, and it may apply to exertion that is either easy or hard: fun work; heavy work. Drudgery suggests continuous, dreary, and dispiriting work, especially of a menial or servile kind: the drudgery of household tasks. Labor particularly denotes hard manual work: backbreaking labor; arduous labor. Toil suggests wearying or exhausting labor: toil that breaks down the worker’s health.

On this page you'll find 427 synonyms, antonyms, and words related to work, such as: effort, endeavor, industry, job, performance, and production.

From Roget's 21st Century Thesaurus, Third Edition Copyright © 2013 by the Philip Lief Group.

U.S. flag

An official website of the United States government

Here’s how you know

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Take action

  • Report an antitrust violation
  • File adjudicative documents
  • Find banned debt collectors
  • View competition guidance
  • Competition Matters Blog

New HSR thresholds and filing fees for 2024

View all Competition Matters Blog posts

We work to advance government policies that protect consumers and promote competition.

View Policy

Search or browse the Legal Library

Find legal resources and guidance to understand your business responsibilities and comply with the law.

Browse legal resources

  • Find policy statements
  • Submit a public comment

other term for research work

Vision and Priorities

Memo from Chair Lina M. Khan to commission staff and commissioners regarding the vision and priorities for the FTC.

Technology Blog

Consumer facing applications: a quote book from the tech summit on ai.

View all Technology Blog posts

Advice and Guidance

Learn more about your rights as a consumer and how to spot and avoid scams. Find the resources you need to understand how consumer protection law impacts your business.

  • Report fraud
  • Report identity theft
  • Register for Do Not Call
  • Sign up for consumer alerts
  • Get Business Blog updates
  • Get your free credit report
  • Find refund cases
  • Order bulk publications
  • Consumer Advice
  • Shopping and Donating
  • Credit, Loans, and Debt
  • Jobs and Making Money
  • Unwanted Calls, Emails, and Texts
  • Identity Theft and Online Security
  • Business Guidance
  • Advertising and Marketing
  • Credit and Finance
  • Privacy and Security
  • By Industry
  • For Small Businesses
  • Browse Business Guidance Resources
  • Business Blog

Servicemembers: Your tool for financial readiness

Visit militaryconsumer.gov

Get consumer protection basics, plain and simple

Visit consumer.gov

Learn how the FTC protects free enterprise and consumers

Visit Competition Counts

Looking for competition guidance?

  • Competition Guidance

News and Events

Latest news, razer, inc. to pay more than $1.1 million for misrepresenting the performance and efficacy of supposed “n95-grade” zephyr face masks.

View News and Events

Upcoming Event

Older adults and fraud: what you need to know.

View more Events

Sign up for the latest news

Follow us on social media

-->   -->   -->   -->   -->  

gaming controller illustration

Playing it Safe: Explore the FTC's Top Video Game Cases

Learn about the FTC's notable video game cases and what our agency is doing to keep the public safe.

Latest Data Visualization

Visualization of FTC Refunds to Consumers

FTC Refunds to Consumers

Explore refund statistics including where refunds were sent and the dollar amounts refunded with this visualization.

About the FTC

Our mission is protecting the public from deceptive or unfair business practices and from unfair methods of competition through law enforcement, advocacy, research, and education.

Learn more about the FTC

Lina M. Khan

Meet the Chair

Lina M. Khan was sworn in as Chair of the Federal Trade Commission on June 15, 2021.

Chair Lina M. Khan

Looking for legal documents or records? Search the Legal Library instead.

  • Cases and Proceedings
  • Premerger Notification Program
  • Merger Review
  • Anticompetitive Practices
  • Competition and Consumer Protection Guidance Documents
  • Warning Letters
  • Consumer Sentinel Network
  • Criminal Liaison Unit
  • FTC Refund Programs
  • Notices of Penalty Offenses
  • Advocacy and Research
  • Advisory Opinions
  • Cooperation Agreements
  • Federal Register Notices
  • Public Comments
  • Policy Statements
  • International
  • Office of Technology Blog
  • Military Consumer
  • Consumer.gov
  • Bulk Publications
  • Data and Visualizations
  • Stay Connected
  • Commissioners and Staff
  • Bureaus and Offices
  • Budget and Strategy
  • Office of Inspector General
  • Careers at the FTC

FTC Announces Rule Banning Noncompetes

Facebook

  • Competition
  • Office of Policy Planning
  • Bureau of Competition

Today, the Federal Trade Commission issued a final rule to promote competition by banning noncompetes nationwide, protecting the fundamental freedom of workers to change jobs, increasing innovation, and fostering new business formation.

“Noncompete clauses keep wages low, suppress new ideas, and rob the American economy of dynamism, including from the more than 8,500 new startups that would be created a year once noncompetes are banned,” said FTC Chair Lina M. Khan. “The FTC’s final rule to ban noncompetes will ensure Americans have the freedom to pursue a new job, start a new business, or bring a new idea to market.”

The FTC estimates that the final rule banning noncompetes will lead to new business formation growing by 2.7% per year, resulting in more than 8,500 additional new businesses created each year. The final rule is expected to result in higher earnings for workers, with estimated earnings increasing for the average worker by an additional $524 per year, and it is expected to lower health care costs by up to $194 billion over the next decade. In addition, the final rule is expected to help drive innovation, leading to an estimated average increase of 17,000 to 29,000 more patents each year for the next 10 years under the final rule.

Banning Non Competes: Good for workers, businesses, and the economy

Noncompetes are a widespread and often exploitative practice imposing contractual conditions that prevent workers from taking a new job or starting a new business. Noncompetes often force workers to either stay in a job they want to leave or bear other significant harms and costs, such as being forced to switch to a lower-paying field, being forced to relocate, being forced to leave the workforce altogether, or being forced to defend against expensive litigation. An estimated 30 million workers—nearly one in five Americans—are subject to a noncompete.

Under the FTC’s new rule, existing noncompetes for the vast majority of workers will no longer be enforceable after the rule’s effective date. Existing noncompetes for senior executives - who represent less than 0.75% of workers - can remain in force under the FTC’s final rule, but employers are banned from entering into or attempting to enforce any new noncompetes, even if they involve senior executives. Employers will be required to provide notice to workers other than senior executives who are bound by an existing noncompete that they will not be enforcing any noncompetes against them.

In January 2023, the FTC issued a  proposed rule which was subject to a 90-day public comment period. The FTC received more than 26,000 comments on the proposed rule, with over 25,000 comments in support of the FTC’s proposed ban on noncompetes. The comments informed the FTC’s final rulemaking process, with the FTC carefully reviewing each comment and making changes to the proposed rule in response to the public’s feedback.

In the final rule, the Commission has determined that it is an unfair method of competition, and therefore a violation of Section 5 of the FTC Act, for employers to enter into noncompetes with workers and to enforce certain noncompetes.

The Commission found that noncompetes tend to negatively affect competitive conditions in labor markets by inhibiting efficient matching between workers and employers. The Commission also found that noncompetes tend to negatively affect competitive conditions in product and service markets, inhibiting new business formation and innovation. There is also evidence that noncompetes lead to increased market concentration and higher prices for consumers.

Alternatives to Noncompetes

The Commission found that employers have several alternatives to noncompetes that still enable firms to protect their investments without having to enforce a noncompete.

Trade secret laws and non-disclosure agreements (NDAs) both provide employers with well-established means to protect proprietary and other sensitive information. Researchers estimate that over 95% of workers with a noncompete already have an NDA.

The Commission also finds that instead of using noncompetes to lock in workers, employers that wish to retain employees can compete on the merits for the worker’s labor services by improving wages and working conditions.

Changes from the NPRM

Under the final rule, existing noncompetes for senior executives can remain in force. Employers, however, are prohibited from entering into or enforcing new noncompetes with senior executives. The final rule defines senior executives as workers earning more than $151,164 annually and who are in policy-making positions.

Additionally, the Commission has eliminated a provision in the proposed rule that would have required employers to legally modify existing noncompetes by formally rescinding them. That change will help to streamline compliance.

Instead, under the final rule, employers will simply have to provide notice to workers bound to an existing noncompete that the noncompete agreement will not be enforced against them in the future. To aid employers’ compliance with this requirement, the Commission has included model language in the final rule that employers can use to communicate to workers. 

The Commission vote to approve the issuance of the final rule was 3-2 with Commissioners Melissa Holyoak and Andrew N. Ferguson voting no. Commissioners Rebecca Kelly Slaughter , Alvaro Bedoya , Melissa Holyoak and Andrew N. Ferguson each issued separate statements. Chair Lina M. Khan will issue a separate statement.

The final rule will become effective 120 days after publication in the Federal Register.

Once the rule is effective, market participants can report information about a suspected violation of the rule to the Bureau of Competition by emailing  [email protected]

The Federal Trade Commission develops policy initiatives on issues that affect competition, consumers, and the U.S. economy. The FTC will never demand money, make threats, tell you to transfer money, or promise you a prize. Follow the  FTC on social media , read  consumer alerts  and the  business blog , and  sign up to get the latest FTC news and alerts .

Press Release Reference

Contact information, media contacts.

Victoria Graham  Office of Public Affairs

NASA Logo

Life on Other Planets: What is Life and What Does It Need?

Against a background of deep space, we see in this illustration a green and brown, rocky planet In the lower right foreground, its star – a red dwarf – in the distance to the planet’s upper left. That side of the planet is brightly illuminated while the rest is slightly shadowed. Other planets in this system can be seen at various points to the planet’s far left, lower near left, and upper near-right.

One day, perhaps in the not-too-distant future, a faraway planet could yield hints that it might host some form of life – but surrender its secrets reluctantly.

Our space telescopes might detect a mixture of gases in its atmosphere that resembles our own. Computer models would offer predictions about the planet’s life-bearing potential. Experts would debate whether the evidence made a strong case for the presence of life, or try to find still more evidence to support such a groundbreaking interpretation.

“We are in the beginning of a golden era right now,” said Ravi Kopparapu, a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who studies habitable planets. “For the first time in the history of civilization we might be able to answer the question: Is there life beyond Earth?”

For exoplanets – planets around other stars – that era opens with NASA’s James Webb Space Telescope. Instruments aboard the spacecraft are detecting the composition of atmospheres on exoplanets. As the power of telescopes increases in the years ahead, future advanced instruments could capture possible signs of life – “biosignatures” – from a planet light-years away.

Within our solar system, the Perseverance rover on Mars is gathering rock samples for eventual return to Earth, so scientists can probe them for signs of life. And the coming Europa Clipper mission will visit an icy moon of Jupiter. Its goal: to determine whether conditions on that moon would allow life to thrive in its global ocean, buried beneath a global ice shell.

But any hints of life beyond Earth would come with another big question: How certain could any scientific conclusions really be?

“The challenge is deciding what is life – when to say, ‘I found it,’” said Laurie Barge of the Origins and Habitability Lab at NASA’s Jet Propulsion Laboratory in Southern California.

With so much unknown about what even constitutes a “sign of life,” astrobiologists are working on a new framework to understand the strength of the evidence. A sample framework, proposed in 2021, includes a scale ranging from 1 to 7, with hints of other life at level 1, to increasingly substantial evidence, all the way to certainty of life elsewhere at level 7. This framework, which is being discussed and revised, acknowledges that scientific exploration in the search for life is a twisted, winding road, rather than a straightforward path.

And identifying definitive signs remains difficult enough for “life as we know it.” Even more uncertain would be finding evidence of life as we don’t know it, made of unfamiliar molecular combinations or based on a solvent other than water.

Still, as the search for life begins in earnest, among the planets in our own solar system as well as far distant systems known only by their light, NASA scientists and their partners around the world have some ideas that serve as starting points.

Life That Evolves

First, there’s NASA’s less-than-formal, non-binding but still helpful working definition of life: “A self-sustaining chemical system capable of Darwinian evolution.” Charles Darwin famously described evolution by natural selection, with characteristics preserved across generations leading to changes in organisms over time.

Derived in the 1990s by a NASA exobiology working group, the definition is not used to design missions or research projects. It does help to set expectations, and to focus debate on the critical issues around another thorny question: When does non-life become life?

“Biology is chemistry with history,” says Gerald Joyce, one of the members of the working group that helped create the NASA definition and now a research professor at the Salk Institute in La Jolla, California.

That means history recorded by the chemistry itself – in our case, inscribed in our DNA, which encodes genetic data that can be translated into the structures and physical processes that make up our bodies.

The DNA record must be robust, complex, self-replicating and open-ended, Joyce suggests, to endure and adapt over billions of years.

“That would be a smoking gun: evidence for information having been recorded in molecules,” Joyce said.

Such a molecule from another world in our solar system, whether DNA, RNA or something else, might turn up in a sample from Mars, say from the Mars sample-return mission now being planned by NASA.

Or it might be found among the “ocean worlds” in the outer solar system – Jupiter’s moon, Europa, Saturn’s Enceladus or one of the other moons of gas giants that hide vast oceans beneath shells of ice.

We can’t obtain samples of such information-bearing molecules from planets beyond our solar system, since they are so far away that it would take tens of thousands of years to travel there even in the fastest spaceships ever built. Instead, we’ll have to rely on remote detection of potential biosignatures, measuring the types and quantities of gases in exoplanet atmospheres to try to determine whether they were generated by life-forms. That likely will require deeper knowledge of what life needs to get its start – and to persist long enough to be detected.

A Place Where Life Emerges

There is no true consensus on a list of requirements for life, whether in our solar system or the stars beyond. But Joyce, who researches life’s origin and development, suggests a few likely “must-haves.”

Topping the list is liquid water. Despite a broad spectrum of environmental conditions inhabited by living things on Earth, all life on the planet seems to require it. Liquid water provides a medium for the chemical components of life to persist over time and come together for reactions, in a way that air or the surface of a rock don’t do as well.

Spectroscopy_of_exoplanet

Also essential: an energy source, both for chemical reactions that produce structures and to create “order” against the universal tendency toward “disorder” – also known as entropy.

An imbalance in atmospheric gases also might offer a tell-tale sign of the presence of life.

“In Earth’s atmosphere, oxygen and methane are highly reactive with each other,” Kopparapu said. Left to themselves, they would quickly cancel each other out.

“They should not be seen together,” he said. “So why are we seeing methane, why are we seeing oxygen? Something must be constantly replenishing these compounds.”

On Earth, that “something” is life, pumping more of each into the atmosphere and keeping it out of balance. Such an imbalance, in these compounds or others, could be detected on a distant exoplanet, suggesting the presence of a living biosphere. But scientists also will have to rule out geological processes like volcanic or hydrothermal activity that could generate molecules that we might otherwise associate with life.

Careful laboratory work and precision modeling of possible exoplanet atmospheres will be needed to tell the difference.

Going Through Changes

Barge also places high on the list the idea of “gradients,” or changes that occur over time and distance, like wet to dry, hot to cold, and many other possible environments. Gradients create places for energy to go, changing along the way and generating molecules or chemical systems that later might be incorporated into life-forms.

Plate tectonics on Earth, and the cycling of gases like carbon dioxide – buried beneath Earth’s crust by subduction, perhaps, or released back into the atmosphere by volcanoes – represent one kind of gradient.

Barge’s specialty, the chemistry of hydrothermal vents on the ocean floor billions of years ago, is another. It’s one possible pathway to have created a kind of primitive metabolism – the translation of organic compounds into energy – as a potential precursor to true life-forms.

“What gradients existed before life?” she asks. “If life depends so much on gradients, could the origin of life also have benefited from these gradients?”

Clearer mapping of possible pathways to life ultimately could inform the design of future space telescopes, tasked with parsing the gases in the atmospheres of potentially habitable exoplanets.

“If we want to be sure it’s coming from biology, we have to not only look for gases; we have to look at how it’s being emitted from the planet, if it’s emitted in the right quantities, in the right way,” Kopparapu said. “With future telescopes, we’ll be more confident because they’ll be designed to look for life on other planets.”

Search for Life

This article is one in a series about how NASA is searching for life in the cosmos.

Beginnings: Life on Our World and Others

The Hunt for Life on Mars – and Elsewhere in the Solar System

'Life' in the Lab

Searching for Signs of Intelligent Life: Technosignatures

Finding Life Beyond Earth: What Comes Next?

An illustration in a style similar to a National Parks poster shows a rocky shoreline in the foreground, an expanse of water lapping against it and, on the horizon, the cone of a volcano releasing a white cloud of gas against a sky with dusky light.

Related Terms

  • Terrestrial Exoplanets
  • The Search for Life

Explore More

other term for research work

NASA-Led Study Provides New Global Accounting of Earth’s Rivers

The novel approach to estimating river water storage and discharge also identifies regions marked by ‘fingerprints’ of intense water use. A study led by NASA researchers provides new estimates of how much water courses through Earth’s rivers, the rates at which it’s flowing into the ocean, and how much both of those figures have fluctuated […]

other term for research work

NASA’s ORCA, AirHARP Projects Paved Way for PACE to Reach Space

It took the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission just 13 minutes to reach low-Earth orbit from Cape Canaveral Space Force Station in February 2024. It took a network of scientists at NASA and research institutions around the world more than 20 years to carefully craft and test the novel instruments that allow PACE […]

other term for research work

NASA’s CloudSat Ends Mission Peering Into the Heart of Clouds

Over the course of nearly two decades, its powerful radar provided never-before-seen details of clouds and helped advance global weather and climate predictions. CloudSat, a NASA mission that peered into hurricanes, tallied global snowfall rates, and achieved other weather and climate firsts, has ended its operations. Originally proposed as a 22-month mission, the spacecraft was […]

Discover More Topics From NASA

Photo of a planet with a bright purple glow emitting from behind

Black Holes

other term for research work

Home

Site Search

  • About ARPA-E
  • Team Directory
  • ARPA-E History
  • Annual Reports
  • Budget Requests
  • Apply For Funding
  • Authorization
  • View Active Programs
  • Search Our Programs
  • Search Individual Projects
  • Interactive Project Map
  • Exploratory Topics
  • The SCALEUP Program
  • OPEN Programs
  • Project Guidance
  • ARPA-E Technology-to-Market
  • Technology Commercialization
  • External Engagement Model
  • Investor Updates
  • ARPA-E News & Media
  • Press Releases
  • ARPA-E Disruptors
  • Publications
  • ARPA-E Events
  • Energy Innovation Summit
  • Careers at ARPA-E
  • Job Opportunities
  • Life at ARPA-E
  • ARPA-E FAQs
  • General Questions
  • Current Funding Opportunities
  • Closed Funding Opportunities

Press Release

other term for research work

U.S. Department of Energy Announces $20 Million to Develop Cost-Effective, Highly Accurate Hydrogen Detection and Quantification Technologies

WASHINGTON, D.C. — The U.S. Department of Energy (DOE) today announced up to $20 million in funding to support the development of innovative approaches for hydrogen gas emissions detection and quantification. Managed by the Advanced Research Projects Agency-Energy (ARPA-E), this initiative supports President Biden’s whole-of-government approach to accelerating the deployment of clean hydrogen. The focus of this new ARPA-E effort is on detecting emissions throughout the full hydrogen supply chain, from production to end use. Cost-effective, accurate measurements of hydrogen gas will facilitate detection and mitigation of direct emissions. Advancing clean hydrogen is a key component of President Biden’s Investing in America agenda to tackle the climate crisis, create good-paying jobs across the nation, and strengthen America’s competitiveness in the technologies of the future.

“President Biden has made historic investments in hydrogen infrastructure to support the future hydrogen economy, Americans’ health and environmental wellbeing, and create jobs. ARPA-E is focused on doing its part to reinforce America's global leadership in the growing clean hydrogen industry,” said ARPA-E Director Evelyn N. Wang. “Given the projected growth of the hydrogen economy and potential near-term warming effects of atmospheric hydrogen, detection and mitigation of hydrogen emissions is essential and ARPA-E is proud to lead this work.”

Hydrogen does not absorb infrared (IR) light and therefore does not act as a direct greenhouse gas (GHG) in the atmosphere. However, hydrogen is considered an indirect GHG due to its ability to extend the lifetime of other GHGs in the atmosphere. This lack of IR absorption also makes the detection of atmospheric hydrogen extremely challenging. ARPA-E—through the H2SENSE Exploratory Topic—is seeking technologies with a:

  • Minimum detection and quantification threshold of 10 kg/hr across a 100 meters (m) x 100 m area; and
  • Cost of no more than $10,000 for the detection area.

These performance targets will enable a systems-level approach to large-area monitoring of hydrogen emissions. You can access more information on ARPA-E Exchange.

The H2SENSE Exploratory Topic builds on ARPA-E’s prior work pioneering precise atmospheric gas detection industries. Before ARPA-E’s MONITOR program, low-cost, continuous methane detection and mitigation was not possible. But now, ARPA-E-funded projects born from that initiative—like LongPath, which recently received an LPO loan guarantee —have created a paradigm shift and developed technologies capable of detecting over 90% of methane leaks down to 0.2 kg/hr from nearly a mile away. ARPA-E is building on this history with H2SENSE in pursuit of low-cost, effective hydrogen emissions detection.

ARPA-E advances high-potential, high-impact clean energy technologies across a wide range of technical areas that are strategic to America's energy security. Learn more about these efforts and ARPA-E's commitment to ensuring the United States continues to lead the world in developing and deploying advanced clean energy technologies.

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

What the data says about crime in the U.S.

A growing share of Americans say reducing crime should be a top priority for the president and Congress to address this year. Around six-in-ten U.S. adults (58%) hold that view today, up from 47% at the beginning of Joe Biden’s presidency in 2021.

We conducted this analysis to learn more about U.S. crime patterns and how those patterns have changed over time.

The analysis relies on statistics published by the FBI, which we accessed through the Crime Data Explorer , and the Bureau of Justice Statistics (BJS), which we accessed through the  National Crime Victimization Survey data analysis tool .

To measure public attitudes about crime in the U.S., we relied on survey data from Pew Research Center and Gallup.

Additional details about each data source, including survey methodologies, are available by following the links in the text of this analysis.

A line chart showing that, since 2021, concerns about crime have grown among both Republicans and Democrats.

With the issue likely to come up in this year’s presidential election, here’s what we know about crime in the United States, based on the latest available data from the federal government and other sources.

How much crime is there in the U.S.?

It’s difficult to say for certain. The  two primary sources of government crime statistics  – the Federal Bureau of Investigation (FBI) and the Bureau of Justice Statistics (BJS) – paint an incomplete picture.

The FBI publishes  annual data  on crimes that have been reported to law enforcement, but not crimes that haven’t been reported. Historically, the FBI has also only published statistics about a handful of specific violent and property crimes, but not many other types of crime, such as drug crime. And while the FBI’s data is based on information from thousands of federal, state, county, city and other police departments, not all law enforcement agencies participate every year. In 2022, the most recent full year with available statistics, the FBI received data from 83% of participating agencies .

BJS, for its part, tracks crime by fielding a  large annual survey of Americans ages 12 and older and asking them whether they were the victim of certain types of crime in the past six months. One advantage of this approach is that it captures both reported and unreported crimes. But the BJS survey has limitations of its own. Like the FBI, it focuses mainly on a handful of violent and property crimes. And since the BJS data is based on after-the-fact interviews with crime victims, it cannot provide information about one especially high-profile type of offense: murder.

All those caveats aside, looking at the FBI and BJS statistics side-by-side  does  give researchers a good picture of U.S. violent and property crime rates and how they have changed over time. In addition, the FBI is transitioning to a new data collection system – known as the National Incident-Based Reporting System – that eventually will provide national information on a much larger set of crimes , as well as details such as the time and place they occur and the types of weapons involved, if applicable.

Which kinds of crime are most and least common?

A bar chart showing that theft is most common property crime, and assault is most common violent crime.

Property crime in the U.S. is much more common than violent crime. In 2022, the FBI reported a total of 1,954.4 property crimes per 100,000 people, compared with 380.7 violent crimes per 100,000 people.  

By far the most common form of property crime in 2022 was larceny/theft, followed by motor vehicle theft and burglary. Among violent crimes, aggravated assault was the most common offense, followed by robbery, rape, and murder/nonnegligent manslaughter.

BJS tracks a slightly different set of offenses from the FBI, but it finds the same overall patterns, with theft the most common form of property crime in 2022 and assault the most common form of violent crime.

How have crime rates in the U.S. changed over time?

Both the FBI and BJS data show dramatic declines in U.S. violent and property crime rates since the early 1990s, when crime spiked across much of the nation.

Using the FBI data, the violent crime rate fell 49% between 1993 and 2022, with large decreases in the rates of robbery (-74%), aggravated assault (-39%) and murder/nonnegligent manslaughter (-34%). It’s not possible to calculate the change in the rape rate during this period because the FBI  revised its definition of the offense in 2013 .

Line charts showing that U.S. violent and property crime rates have plunged since 1990s, regardless of data source.

The FBI data also shows a 59% reduction in the U.S. property crime rate between 1993 and 2022, with big declines in the rates of burglary (-75%), larceny/theft (-54%) and motor vehicle theft (-53%).

Using the BJS statistics, the declines in the violent and property crime rates are even steeper than those captured in the FBI data. Per BJS, the U.S. violent and property crime rates each fell 71% between 1993 and 2022.

While crime rates have fallen sharply over the long term, the decline hasn’t always been steady. There have been notable increases in certain kinds of crime in some years, including recently.

In 2020, for example, the U.S. murder rate saw its largest single-year increase on record – and by 2022, it remained considerably higher than before the coronavirus pandemic. Preliminary data for 2023, however, suggests that the murder rate fell substantially last year .

How do Americans perceive crime in their country?

Americans tend to believe crime is up, even when official data shows it is down.

In 23 of 27 Gallup surveys conducted since 1993 , at least 60% of U.S. adults have said there is more crime nationally than there was the year before, despite the downward trend in crime rates during most of that period.

A line chart showing that Americans tend to believe crime is up nationally, less so locally.

While perceptions of rising crime at the national level are common, fewer Americans believe crime is up in their own communities. In every Gallup crime survey since the 1990s, Americans have been much less likely to say crime is up in their area than to say the same about crime nationally.

Public attitudes about crime differ widely by Americans’ party affiliation, race and ethnicity, and other factors . For example, Republicans and Republican-leaning independents are much more likely than Democrats and Democratic leaners to say reducing crime should be a top priority for the president and Congress this year (68% vs. 47%), according to a recent Pew Research Center survey.

How does crime in the U.S. differ by demographic characteristics?

Some groups of Americans are more likely than others to be victims of crime. In the  2022 BJS survey , for example, younger people and those with lower incomes were far more likely to report being the victim of a violent crime than older and higher-income people.

There were no major differences in violent crime victimization rates between male and female respondents or between those who identified as White, Black or Hispanic. But the victimization rate among Asian Americans (a category that includes Native Hawaiians and other Pacific Islanders) was substantially lower than among other racial and ethnic groups.

The same BJS survey asks victims about the demographic characteristics of the offenders in the incidents they experienced.

In 2022, those who are male, younger people and those who are Black accounted for considerably larger shares of perceived offenders in violent incidents than their respective shares of the U.S. population. Men, for instance, accounted for 79% of perceived offenders in violent incidents, compared with 49% of the nation’s 12-and-older population that year. Black Americans accounted for 25% of perceived offenders in violent incidents, about twice their share of the 12-and-older population (12%).

As with all surveys, however, there are several potential sources of error, including the possibility that crime victims’ perceptions about offenders are incorrect.

How does crime in the U.S. differ geographically?

There are big geographic differences in violent and property crime rates.

For example, in 2022, there were more than 700 violent crimes per 100,000 residents in New Mexico and Alaska. That compares with fewer than 200 per 100,000 people in Rhode Island, Connecticut, New Hampshire and Maine, according to the FBI.

The FBI notes that various factors might influence an area’s crime rate, including its population density and economic conditions.

What percentage of crimes are reported to police? What percentage are solved?

Line charts showing that fewer than half of crimes in the U.S. are reported, and fewer than half of reported crimes are solved.

Most violent and property crimes in the U.S. are not reported to police, and most of the crimes that  are  reported are not solved.

In its annual survey, BJS asks crime victims whether they reported their crime to police. It found that in 2022, only 41.5% of violent crimes and 31.8% of household property crimes were reported to authorities. BJS notes that there are many reasons why crime might not be reported, including fear of reprisal or of “getting the offender in trouble,” a feeling that police “would not or could not do anything to help,” or a belief that the crime is “a personal issue or too trivial to report.”

Most of the crimes that are reported to police, meanwhile,  are not solved , at least based on an FBI measure known as the clearance rate . That’s the share of cases each year that are closed, or “cleared,” through the arrest, charging and referral of a suspect for prosecution, or due to “exceptional” circumstances such as the death of a suspect or a victim’s refusal to cooperate with a prosecution. In 2022, police nationwide cleared 36.7% of violent crimes that were reported to them and 12.1% of the property crimes that came to their attention.

Which crimes are most likely to be reported to police? Which are most likely to be solved?

Bar charts showing that most vehicle thefts are reported to police, but relatively few result in arrest.

Around eight-in-ten motor vehicle thefts (80.9%) were reported to police in 2022, making them by far the most commonly reported property crime tracked by BJS. Household burglaries and trespassing offenses were reported to police at much lower rates (44.9% and 41.2%, respectively), while personal theft/larceny and other types of theft were only reported around a quarter of the time.

Among violent crimes – excluding homicide, which BJS doesn’t track – robbery was the most likely to be reported to law enforcement in 2022 (64.0%). It was followed by aggravated assault (49.9%), simple assault (36.8%) and rape/sexual assault (21.4%).

The list of crimes  cleared  by police in 2022 looks different from the list of crimes reported. Law enforcement officers were generally much more likely to solve violent crimes than property crimes, according to the FBI.

The most frequently solved violent crime tends to be homicide. Police cleared around half of murders and nonnegligent manslaughters (52.3%) in 2022. The clearance rates were lower for aggravated assault (41.4%), rape (26.1%) and robbery (23.2%).

When it comes to property crime, law enforcement agencies cleared 13.0% of burglaries, 12.4% of larcenies/thefts and 9.3% of motor vehicle thefts in 2022.

Are police solving more or fewer crimes than they used to?

Nationwide clearance rates for both violent and property crime are at their lowest levels since at least 1993, the FBI data shows.

Police cleared a little over a third (36.7%) of the violent crimes that came to their attention in 2022, down from nearly half (48.1%) as recently as 2013. During the same period, there were decreases for each of the four types of violent crime the FBI tracks:

Line charts showing that police clearance rates for violent crimes have declined in recent years.

  • Police cleared 52.3% of reported murders and nonnegligent homicides in 2022, down from 64.1% in 2013.
  • They cleared 41.4% of aggravated assaults, down from 57.7%.
  • They cleared 26.1% of rapes, down from 40.6%.
  • They cleared 23.2% of robberies, down from 29.4%.

The pattern is less pronounced for property crime. Overall, law enforcement agencies cleared 12.1% of reported property crimes in 2022, down from 19.7% in 2013. The clearance rate for burglary didn’t change much, but it fell for larceny/theft (to 12.4% in 2022 from 22.4% in 2013) and motor vehicle theft (to 9.3% from 14.2%).

Note: This is an update of a post originally published on Nov. 20, 2020.

  • Criminal Justice

John Gramlich's photo

John Gramlich is an associate director at Pew Research Center

8 facts about Black Lives Matter

#blacklivesmatter turns 10, support for the black lives matter movement has dropped considerably from its peak in 2020, fewer than 1% of federal criminal defendants were acquitted in 2022, before release of video showing tyre nichols’ beating, public views of police conduct had improved modestly, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

IMAGES

  1. RESEARCH Scientific research work and students research activity

    other term for research work

  2. 15 Types of Research Methods (2024)

    other term for research work

  3. What is Research

    other term for research work

  4. What are the Characteristics of Research?

    other term for research work

  5. Research Terms And Their Meaning

    other term for research work

  6. How to Write a Research Paper in English

    other term for research work

VIDEO

  1. Language, Emotion, and Personality: How the Words We Use Reflect Who We Are

  2. Research, Educational research

  3. Research Meaning

  4. Metho1: What Is Research?

  5. What is Research?

  6. What is Research

COMMENTS

  1. Research Work synonyms

    Synonyms for Research Work (other words and phrases for Research Work). Synonyms for Research work. 127 other terms for research work- words and phrases with similar meaning. Lists. synonyms. antonyms. definitions. sentences. thesaurus. words. phrases. Parts of speech. nouns. suggest new. research job. n.

  2. What is another word for research

    Find 1,723 synonyms for research and other similar words that you can use instead based on 15 separate contexts from our thesaurus. What's another word for Synonyms. Antonyms ... A piece of research work undertaken by a school or college student. project. assignment. homework. task. analysis. experimentation. exploration. piece of work. piece ...

  3. RESEARCH Synonyms: 62 Similar Words

    Synonyms for RESEARCH: investigation, inquiry, study, exploration, examination, probing, probe, inspection, inquisition, delving

  4. 33 Synonyms & Antonyms for RESEARCH

    Find 33 different ways to say RESEARCH, along with antonyms, related words, and example sentences at Thesaurus.com.

  5. Research synonyms

    Another way to say Research? Synonyms for Research (other words and phrases for Research). Synonyms for Research. 1 837 other terms for research- words and phrases with similar meaning. Lists. synonyms. antonyms. definitions. sentences. thesaurus. words. phrases. idioms. Parts of speech. verbs. nouns. adjectives. Tags. study.

  6. 162 Words and Phrases for Research Study

    Synonyms for Research Study (other words and phrases for Research Study). Synonyms for Research study. 162 other terms for research study- words and phrases with similar meaning. Lists. synonyms. ... academic work. experimental works. fact finding study. research survey. n. scientific exploration. n. scientific inquiry. n. # american ...

  7. RESEARCH WORK in Thesaurus: 100+ Synonyms & Antonyms for RESEARCH WORK

    Most related words/phrases with sentence examples define Research work meaning and usage. Thesaurus for Research work. Related terms for research work- synonyms, antonyms and sentences with research work. Lists. synonyms. antonyms. definitions. sentences. thesaurus. Parts of speech. nouns. Synonyms Similar meaning. View all.

  8. RESEARCH

    RESEARCH - Synonyms, related words and examples | Cambridge English Thesaurus

  9. RESEARCH Synonyms

    Synonyms for RESEARCH in English: investigation, study, inquiry, analysis, examination, probe, exploration, scrutiny, experimentation, delving, …

  10. 50 Useful Academic Words & Phrases for Research

    Provides clarification, similar to "in other words.". Example The reaction is exothermic; that is to say, it releases heat. 13. To put it simply. Simplifies a complex idea, often for a more general readership. Example The universe is vast; to put it simply, it is larger than anything we can truly imagine. 14.

  11. RESEARCHING Synonyms: 22 Similar Words

    Synonyms for RESEARCHING: exploring, investigating, examining, looking (into), probing, digging (into), studying, inspecting, inquiring (into), delving (into)

  12. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  13. Research

    Original research, also called primary research, is research that is not exclusively based on a summary, review, or synthesis of earlier publications on the subject of research.This material is of a primary-source character. The purpose of the original research is to produce new knowledge rather than present the existing knowledge in a new form (e.g., summarized or classified).

  14. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  15. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  16. Academic Research Work synonyms

    74 other terms for academic research work- words and phrases with similar meaning

  17. Your Guide to Understanding Common Research Terms

    Research teams have many people in different roles, and they may use words that are unfamiliar to people outside of research work. The guide below defines some commonly used words and phrases. Let us know in the comments below or on our Facebook, Twitter, or Instagram pages if you'd like definitions of other words or parts of the research ...

  18. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  19. What is another word for "scientific research"?

    Synonyms for scientific research include scientific method, research, exploration, analysis, study, experimentation, inquiry, probe, probing and scrutiny. Find more ...

  20. Glossary of Research Terms

    Colorado State University; Glossary A-Z. Education.com; Glossary of Research Terms. Research Mindedness Virtual Learning Resource. Centre for Human Servive Technology. University of Southampton; Miller, Robert L. and Brewer, John D. The A-Z of Social Research: A Dictionary of Key Social Science Research Concepts London: SAGE, 2003; Jupp, Victor.

  21. RESEARCHES Synonyms: 60 Similar Words

    Synonyms for RESEARCHES: investigations, inquiries, studies, examinations, explorations, probes, probings, disquisitions, inspections, inquisitions

  22. 241 Synonyms & Antonyms for WORK

    Find 241 different ways to say WORK, along with antonyms, related words, and example sentences at Thesaurus.com.

  23. 153 Words and Phrases for Research Project

    Synonyms for Research Project (other words and phrases for Research Project). Synonyms for Research project. 153 other terms for research project- words and phrases with similar meaning. Lists. ... research work. n. sample study. science fair project. science investigation. n. scientific endeavour. n. scientific study. n. scientific task ...

  24. FTC Announces Rule Banning Noncompetes

    Today, the Federal Trade Commission issued a final rule to promote competition by banning noncompetes nationwide, protecting the fundamental freedom of workers to change jobs, increasing innovation, and fostering new business formation. "Noncompete clauses keep wages low, suppress new ideas, and rob the American economy of dynamism, including from the more than 8,500 new startups that would ...

  25. Life on Other Planets: What is Life and What Does It Need?

    Careful laboratory work and precision modeling of possible exoplanet atmospheres will be needed to tell the difference. Going Through Changes Barge also places high on the list the idea of "gradients," or changes that occur over time and distance, like wet to dry, hot to cold, and many other possible environments.

  26. Press Release

    WASHINGTON, D.C. — The U.S. Department of Energy (DOE) today announced up to $20 million in funding to support the development of innovative approaches for hydrogen gas emissions detection and quantification. Managed by the Advanced Research Projects Agency-Energy (ARPA-E), this initiative supports President Biden's whole-of-government approach to accelerating the deployment of clean hydrogen.

  27. Crime in the U.S.: Key questions answered

    ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions.