• Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

why are assumptions and hypothesis important in research

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

why are assumptions and hypothesis important in research

Home Market Research

Research Hypothesis: What It Is, Types + How to Develop?

A research hypothesis proposes a link between variables. Uncover its types and the secrets to creating hypotheses for scientific inquiry.

A research study starts with a question. Researchers worldwide ask questions and create research hypotheses. The effectiveness of research relies on developing a good research hypothesis. Examples of research hypotheses can guide researchers in writing effective ones.

In this blog, we’ll learn what a research hypothesis is, why it’s important in research, and the different types used in science. We’ll also guide you through creating your research hypothesis and discussing ways to test and evaluate it.

What is a Research Hypothesis?

A hypothesis is like a guess or idea that you suggest to check if it’s true. A research hypothesis is a statement that brings up a question and predicts what might happen.

It’s really important in the scientific method and is used in experiments to figure things out. Essentially, it’s an educated guess about how things are connected in the research.

A research hypothesis usually includes pointing out the independent variable (the thing they’re changing or studying) and the dependent variable (the result they’re measuring or watching). It helps plan how to gather and analyze data to see if there’s evidence to support or deny the expected connection between these variables.

Importance of Hypothesis in Research

Hypotheses are really important in research. They help design studies, allow for practical testing, and add to our scientific knowledge. Their main role is to organize research projects, making them purposeful, focused, and valuable to the scientific community. Let’s look at some key reasons why they matter:

  • A research hypothesis helps test theories.

A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior.

  • It serves as a great platform for investigation activities.

It serves as a launching pad for investigation activities, which offers researchers a clear starting point. A research hypothesis can explore the relationship between exercise and stress reduction.

  • Hypothesis guides the research work or study.

A well-formulated hypothesis guides the entire research process. It ensures that the study remains focused and purposeful. For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study.

  • Hypothesis sometimes suggests theories.

In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the effectiveness of a new drug might prompt a reconsideration of current medical theories.

  • It helps in knowing the data needs.

A hypothesis clarifies the data requirements for a study, ensuring that researchers collect the necessary information—a hypothesis guiding the collection of demographic data to analyze the influence of age on a particular phenomenon.

  • The hypothesis explains social phenomena.

Hypotheses are instrumental in explaining complex social phenomena. For instance, a hypothesis might explore the relationship between economic factors and crime rates in a given community.

  • Hypothesis provides a relationship between phenomena for empirical Testing.

Hypotheses establish clear relationships between phenomena, paving the way for empirical testing. An example could be a hypothesis exploring the correlation between sleep patterns and academic performance.

  • It helps in knowing the most suitable analysis technique.

A hypothesis guides researchers in selecting the most appropriate analysis techniques for their data. For example, a hypothesis focusing on the effectiveness of a teaching method may lead to the choice of statistical analyses best suited for educational research.

Characteristics of a Good Research Hypothesis

A hypothesis is a specific idea that you can test in a study. It often comes from looking at past research and theories. A good hypothesis usually starts with a research question that you can explore through background research. For it to be effective, consider these key characteristics:

  • Clear and Focused Language: A good hypothesis uses clear and focused language to avoid confusion and ensure everyone understands it.
  • Related to the Research Topic: The hypothesis should directly relate to the research topic, acting as a bridge between the specific question and the broader study.
  • Testable: An effective hypothesis can be tested, meaning its prediction can be checked with real data to support or challenge the proposed relationship.
  • Potential for Exploration: A good hypothesis often comes from a research question that invites further exploration. Doing background research helps find gaps and potential areas to investigate.
  • Includes Variables: The hypothesis should clearly state both the independent and dependent variables, specifying the factors being studied and the expected outcomes.
  • Ethical Considerations: Check if variables can be manipulated without breaking ethical standards. It’s crucial to maintain ethical research practices.
  • Predicts Outcomes: The hypothesis should predict the expected relationship and outcome, acting as a roadmap for the study and guiding data collection and analysis.
  • Simple and Concise: A good hypothesis avoids unnecessary complexity and is simple and concise, expressing the essence of the proposed relationship clearly.
  • Clear and Assumption-Free: The hypothesis should be clear and free from assumptions about the reader’s prior knowledge, ensuring universal understanding.
  • Observable and Testable Results: A strong hypothesis implies research that produces observable and testable results, making sure the study’s outcomes can be effectively measured and analyzed.

When you use these characteristics as a checklist, it can help you create a good research hypothesis. It’ll guide improving and strengthening the hypothesis, identifying any weaknesses, and making necessary changes. Crafting a hypothesis with these features helps you conduct a thorough and insightful research study.

Types of Research Hypotheses

The research hypothesis comes in various types, each serving a specific purpose in guiding the scientific investigation. Knowing the differences will make it easier for you to create your own hypothesis. Here’s an overview of the common types:

01. Null Hypothesis

The null hypothesis states that there is no connection between two considered variables or that two groups are unrelated. As discussed earlier, a hypothesis is an unproven assumption lacking sufficient supporting data. It serves as the statement researchers aim to disprove. It is testable, verifiable, and can be rejected.

For example, if you’re studying the relationship between Project A and Project B, assuming both projects are of equal standard is your null hypothesis. It needs to be specific for your study.

02. Alternative Hypothesis

The alternative hypothesis is basically another option to the null hypothesis. It involves looking for a significant change or alternative that could lead you to reject the null hypothesis. It’s a different idea compared to the null hypothesis.

When you create a null hypothesis, you’re making an educated guess about whether something is true or if there’s a connection between that thing and another variable. If the null view suggests something is correct, the alternative hypothesis says it’s incorrect. 

For instance, if your null hypothesis is “I’m going to be $1000 richer,” the alternative hypothesis would be “I’m not going to get $1000 or be richer.”

03. Directional Hypothesis

The directional hypothesis predicts the direction of the relationship between independent and dependent variables. They specify whether the effect will be positive or negative.

If you increase your study hours, you will experience a positive association with your exam scores. This hypothesis suggests that as you increase the independent variable (study hours), there will also be an increase in the dependent variable (exam scores).

04. Non-directional Hypothesis

The non-directional hypothesis predicts the existence of a relationship between variables but does not specify the direction of the effect. It suggests that there will be a significant difference or relationship, but it does not predict the nature of that difference.

For example, you will find no notable difference in test scores between students who receive the educational intervention and those who do not. However, once you compare the test scores of the two groups, you will notice an important difference.

05. Simple Hypothesis

A simple hypothesis predicts a relationship between one dependent variable and one independent variable without specifying the nature of that relationship. It’s simple and usually used when we don’t know much about how the two things are connected.

For example, if you adopt effective study habits, you will achieve higher exam scores than those with poor study habits.

06. Complex Hypothesis

A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis.

While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they’re connected to each other.

For example, when you increase your study time, you tend to achieve higher exam scores. The connection between your study time and exam performance is affected by various factors, including the quality of your sleep, your motivation levels, and the effectiveness of your study techniques.

If you sleep well, stay highly motivated, and use effective study strategies, you may observe a more robust positive correlation between the time you spend studying and your exam scores, unlike those who may lack these factors.

07. Associative Hypothesis

An associative hypothesis proposes a connection between two things without saying that one causes the other. Basically, it suggests that when one thing changes, the other changes too, but it doesn’t claim that one thing is causing the change in the other.

For example, you will likely notice higher exam scores when you increase your study time. You can recognize an association between your study time and exam scores in this scenario.

Your hypothesis acknowledges a relationship between the two variables—your study time and exam scores—without asserting that increased study time directly causes higher exam scores. You need to consider that other factors, like motivation or learning style, could affect the observed association.

08. Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between two variables. It suggests that changes in one variable directly cause changes in another variable.

For example, when you increase your study time, you experience higher exam scores. This hypothesis suggests a direct cause-and-effect relationship, indicating that the more time you spend studying, the higher your exam scores. It assumes that changes in your study time directly influence changes in your exam performance.

09. Empirical Hypothesis

An empirical hypothesis is a statement based on things we can see and measure. It comes from direct observation or experiments and can be tested with real-world evidence. If an experiment proves a theory, it supports the idea and shows it’s not just a guess. This makes the statement more reliable than a wild guess.

For example, if you increase the dosage of a certain medication, you might observe a quicker recovery time for patients. Imagine you’re in charge of a clinical trial. In this trial, patients are given varying dosages of the medication, and you measure and compare their recovery times. This allows you to directly see the effects of different dosages on how fast patients recover.

This way, you can create a research hypothesis: “Increasing the dosage of a certain medication will lead to a faster recovery time for patients.”

10. Statistical Hypothesis

A statistical hypothesis is a statement or assumption about a population parameter that is the subject of an investigation. It serves as the basis for statistical analysis and testing. It is often tested using statistical methods to draw inferences about the larger population.

In a hypothesis test, statistical evidence is collected to either reject the null hypothesis in favor of the alternative hypothesis or fail to reject the null hypothesis due to insufficient evidence.

For example, let’s say you’re testing a new medicine. Your hypothesis could be that the medicine doesn’t really help patients get better. So, you collect data and use statistics to see if your guess is right or if the medicine actually makes a difference.

If the data strongly shows that the medicine does help, you say your guess was wrong, and the medicine does make a difference. But if the proof isn’t strong enough, you can stick with your original guess because you didn’t get enough evidence to change your mind.

How to Develop a Research Hypotheses?

Step 1: identify your research problem or topic..

Define the area of interest or the problem you want to investigate. Make sure it’s clear and well-defined.

Start by asking a question about your chosen topic. Consider the limitations of your research and create a straightforward problem related to your topic. Once you’ve done that, you can develop and test a hypothesis with evidence.

Step 2: Conduct a literature review

Review existing literature related to your research problem. This will help you understand the current state of knowledge in the field, identify gaps, and build a foundation for your hypothesis. Consider the following questions:

  • What existing research has been conducted on your chosen topic?
  • Are there any gaps or unanswered questions in the current literature?
  • How will the existing literature contribute to the foundation of your research?

Step 3: Formulate your research question

Based on your literature review, create a specific and concise research question that addresses your identified problem. Your research question should be clear, focused, and relevant to your field of study.

Step 4: Identify variables

Determine the key variables involved in your research question. Variables are the factors or phenomena that you will study and manipulate to test your hypothesis.

  • Independent Variable: The variable you manipulate or control.
  • Dependent Variable: The variable you measure to observe the effect of the independent variable.

Step 5: State the Null hypothesis

The null hypothesis is a statement that there is no significant difference or effect. It serves as a baseline for comparison with the alternative hypothesis.

Step 6: Select appropriate methods for testing the hypothesis

Choose research methods that align with your study objectives, such as experiments, surveys, or observational studies. The selected methods enable you to test your research hypothesis effectively.

Creating a research hypothesis usually takes more than one try. Expect to make changes as you collect data. It’s normal to test and say no to a few hypotheses before you find the right answer to your research question.

Testing and Evaluating Hypotheses

Testing hypotheses is a really important part of research. It’s like the practical side of things. Here, real-world evidence will help you determine how different things are connected. Let’s explore the main steps in hypothesis testing:

  • State your research hypothesis.

Before testing, clearly articulate your research hypothesis. This involves framing both a null hypothesis, suggesting no significant effect or relationship, and an alternative hypothesis, proposing the expected outcome.

  • Collect data strategically.

Plan how you will gather information in a way that fits your study. Make sure your data collection method matches the things you’re studying.

Whether through surveys, observations, or experiments, this step demands precision and adherence to the established methodology. The quality of data collected directly influences the credibility of study outcomes.

  • Perform an appropriate statistical test.

Choose a statistical test that aligns with the nature of your data and the hypotheses being tested. Whether it’s a t-test, chi-square test, ANOVA, or regression analysis, selecting the right statistical tool is paramount for accurate and reliable results.

  • Decide if your idea was right or wrong.

Following the statistical analysis, evaluate the results in the context of your null hypothesis. You need to decide if you should reject your null hypothesis or not.

  • Share what you found.

When discussing what you found in your research, be clear and organized. Say whether your idea was supported or not, and talk about what your results mean. Also, mention any limits to your study and suggest ideas for future research.

The Role of QuestionPro to Develop a Good Research Hypothesis

QuestionPro is a survey and research platform that provides tools for creating, distributing, and analyzing surveys. It plays a crucial role in the research process, especially when you’re in the initial stages of hypothesis development. Here’s how QuestionPro can help you to develop a good research hypothesis:

  • Survey design and data collection: You can use the platform to create targeted questions that help you gather relevant data.
  • Exploratory research: Through surveys and feedback mechanisms on QuestionPro, you can conduct exploratory research to understand the landscape of a particular subject.
  • Literature review and background research: QuestionPro surveys can collect sample population opinions, experiences, and preferences. This data and a thorough literature evaluation can help you generate a well-grounded hypothesis by improving your research knowledge.
  • Identifying variables: Using targeted survey questions, you can identify relevant variables related to their research topic.
  • Testing assumptions: You can use surveys to informally test certain assumptions or hypotheses before formalizing a research hypothesis.
  • Data analysis tools: QuestionPro provides tools for analyzing survey data. You can use these tools to identify the collected data’s patterns, correlations, or trends.
  • Refining your hypotheses: As you collect data through QuestionPro, you can adjust your hypotheses based on the real-world responses you receive.

A research hypothesis is like a guide for researchers in science. It’s a well-thought-out idea that has been thoroughly tested. This idea is crucial as researchers can explore different fields, such as medicine, social sciences, and natural sciences. The research hypothesis links theories to real-world evidence and gives researchers a clear path to explore and make discoveries.

QuestionPro Research Suite is a helpful tool for researchers. It makes creating surveys, collecting data, and analyzing information easily. It supports all kinds of research, from exploring new ideas to forming hypotheses. With a focus on using data, it helps researchers do their best work.

Are you interested in learning more about QuestionPro Research Suite? Take advantage of QuestionPro’s free trial to get an initial look at its capabilities and realize the full potential of your research efforts.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Resident Experience

Resident Experience: What It Is and How to Improve It 

Mar 27, 2024

employee onboarding and training software

11 Best Employee Onboarding and Training Software in 2024

team engagement software

Top 11 Team Engagement Software in 2024

Brand Health Tracker

8 Leading Brand Health Tracker to Track Your Brand Reputation

Mar 26, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Header

Assumptions in Research: Foundation, 5 Types, and Impact

An assumption is a belief, thing, or statement that is taken as true by the researcher. It is not tested in research because these statements are the cornerstone of whole research. These are universally accepted and sufficiently well demonstrated that the researcher can build on them.

They are a fundamental part of the human experience. People make them in their everyday decisions and experiences. If we do not consider these assumptions, our research will not proceed any further.

Our inferences or conclusions are often based on them, and sometimes we do not think about it critically. Nevertheless, a critical thinker pays close attention to these assumptions, recognizing that they can be flawed or misinformed. Merely presuming something’s validity doesn’t guarantee its accuracy. Just because we assume something is true doesn’t mean it is.

In research, we must think carefully about them when finding and analyzing information, but we also must think carefully about the assumptions of others. When looking at a website or a scholarly article, we should always consider the author’s assumptions, whether the author has taken them logically.

Assumptions

However, when one person believes one thing to be true, it may be somewhat different from what another person believes to be true. Although the well-established assumptions are firmly rooted in prior research, most of us tend to accept those assumptions that square with our own personal or professional views of the world without questioning the extent to which they have been or are capable of being verified. In addition, assumptions are not always easy to state. Seasoned researchers may not consider it seemly to admit that fact, but beginning researchers are quick to acknowledge the difficulty and to ask where the dividing line falls between assumptions and hypotheses. For example, the statement that memory loss occurs with aging may be accepted as an assumption by some but as a hypothesis for investigation by others.

Assumptions are things that are accepted as true; any scholar reading our paper will assume that certain aspects of our study are true, like population, statistical test, research design, or other delimitations. For example, if I tell my friend that the jungle is my favorite place, he will assume that I have never encountered a lion in the jungle. It’s assumed that I go there for walks and recreation. Because most assumptions are not discussed in text, assumptions that are discussed in text are discussed in the context of the limitations of our study, which is typically in the discussion section.

This is important, because both assumptions and limitations affect the inferences we can draw from your study. One prevalent assumption often made in survey research involves expecting honesty and truthful answers. However, for certain sensitive questions this assumption may be more difficult to accept, in this case it would be described as a limitation of the study.

For example, asking people to report their criminal or sexual behavior in a survey may not be as reliable as asking people to report their eating habits. It is important to remember that our limitations and assumptions should not contradict one another. For instance, if we state that generalizability is a limitation of our study given that our sample was limited to one city in Pakistan, then we should not claim generalizability to Pakistan population as an assumption of our study.

In quantitative research designs, statistical models come with accompanying assumptions, which can vary in their stringency. These assumptions typically pertain to data characteristics, including distributions, correlations, and variable types. Violating these assumptions can lead to drastically invalid results, though this often depends on sample size and other considerations.

Table of Contents

Types of assumptions, 1. universal .

These assumptions are believed to be universally accepted and considered as true by large part of society. To test these assumptions is a very difficult task.

For example: There is a super natural force which holds this whole universe.

2.  Based On Theories

If a researcher is working on a theory, the assumptions used in that theory will also be the assumptions of this study.

For example: Research on atomic theory will take the assumptions of development of atomic theory.

3. Common Sense Assumptions

Some of the common sense assumptions are taken to conduct a research.

For example: Heart attack is more common in urban areas as compared to rural areas.

4. Warranted 

This assumption is supported by certain evidence.

For example: Regular walk can reduce obesity.

5. Unwarranted 

This assumption is not supported by evidences.

For example: God exists everywhere in this universe.

Examples in Research

  • Sample is a true representative of population.
  • It is a true experimental design.
  • In comparison of two teaching methods, the behavior of students will be ideal and results are generalizable.
  • We will receive true responses from respondents.
  • During the experiment in laboratory, no hidden factors will affect the results of experiment.
  • The equipment is functioning well and there is no error in equipment.

IDENTIFYING ASSUMPTION

When we make incorrect or unreasonable assumption during research, we will get false conclusions. So we should think that what assumption should be a part of thesis and what should not be. A good assumption is that which can be verified or justified. A bad one on the other hand cannot be verified or justified. The researcher must explain and give examples that the assumption made is true. For example, if the researcher is making an assumption that respondents will give honest responses to your questions, he or she must explain the data collection process and how will preserve anonymity and confidentiality to maximize the truthfulness.

assumptions

DIFFERENCE BETWEEN HYPOTHESIS AND ASSUMPTION

A hypothesis is an intelligent guess which establishes relationship between variables. On the other hand, assumption is statement or belief which is taken as true without any justification. Hypothesis is tested explicitly, and assumption is tested implicitly. Hypothesis passes through the stages of verification. Assumption specifies the existence of relationship between variables while hypothesis establishes this relationship.

Hypotheses and assumption are so close to each other that sometime they create confusion. Assumption is assumed true statement without having any firm explanation behind it. Hypothesis is an assumption which is taken to be true unless proved otherwise.

assumptions and hypothesis

Discover more from Theresearches

Subscribe now to keep reading and get access to the full archive.

Type your email


Continue reading

Dadangoray.com

AI, Your Side Hustle Hero to Make Money from Home

Think AI is just for super-smart scientists? Nope! There are tons of ways you can use AI to make some serious cash from home.

Ready to turn your tech-love into a side hustle? Here are some amazing ideas:

1. The Content Creation Powerhouse

Ai, your writing buddy.

Imagine having a writing assistant that never gets tired, bored, or has writer’s block! AI tools like Jasper and Rytr help you crank out blog posts, website copy, product descriptions, and even creative stuff like poems or short stories.

You can write paid articles for websites or companies, or use AI to make your own online business shine with tons of fresh content. AI can even help you find ideas and make sure your writing is on point!

Pics in a Flash

Ever wish you could draw anything you imagine? AI image generators like DALL-E and Midjourney let you do just that!

Just type in what you want to see – like “a cat flying a spaceship” or “a watercolor landscape of a hidden waterfall” – and the AI will create it.

You can sell your images on stock photo sites, use them to make your blog posts stand out, or turn them into cool digital art pieces you can sell online.

Movie Magician

AI can help you become the next editing superstar! Services can cut and paste video clips, add background music, and even turn your dialogue into subtitles for different languages.

Imagine helping YouTubers make their videos snappier, or editing short videos for businesses– it’s a skill you could even be paid for!

2. AI Expert Services

The global chat champ.

If you know another language (or more!), AI translation tools become your BFFs. Instead of taking forever on translations, AI does the basic work, and you fine-tune it for accuracy and style.

Get gigs translating websites so they reach worldwide markets, translating important documents, or even adding subtitles so movies and videos can be enjoyed by everyone!

Meet Your Robot Assistant

Businesses want to offer help 24/7, but that’s impossible for humans! That’s where chatbots come in.

Platforms like Dialogflow let you “train” little AI assistants to answer common questions, take orders, or gather information from potential customers even when everyone’s asleep.

It’s like coding and customer service rolled into one cool job.

Data Detective

AI is amazing at spotting patterns way too huge for humans to see alone. You can offer services by using AI to analyze mountains of social media chatter to see what people really think about products or brands.

Investors might pay you to use AI to spot stock market trends. Businesses might want you to use AI to track their rivals and see what sneaky plans they might be hatching!

3. Affiliate Marketing with a Techy Twist

Ai reviewer: the ultimate comparison tool.

Imagine being able to gather tons of information on different products in a flash! That’s what AI lets you do. Let’s say you want to review the best robot vacuums.

AI tools can help you scrape customer reviews, compare features across different brands, and even summarize the pros and cons. You write awesome reviews, include your special affiliate links, and whenever someone clicks your link and buys, you earn cash.

It’s like being a super-helpful shopping guide and getting paid for it!

Super-Niche Websites: Your Secret Weapon

Sometimes the biggest money isn’t in the broadest topics, but the super-focused ones. Imagine a website not about pets, but all about the cutest outfits for teacup poodles! AI tools help you find these “micro-niches” – topics huge groups of people are obsessed with but might have fewer websites dedicated to them.

Once you’ve picked your niche, AI can help with everything else. It can find keywords that help people find your site, suggest tons of article ideas, and even help you write some of the content.

AI can also help you find products related to your niche to promote with affiliate links, making your awesome website into a money-making machine.

4. Build Your AI Empire

Tool time: coding for cash.

If you have some coding skills, you can build super-useful, bite-sized AI tools that people will happily pay for. Think of common problems people have: resizing a ton of images is a pain, long articles can be a drag to read, and catching every single grammar error is tough.

You could build simple tools that offer AI-powered solutions – a quick image resizer, an article summarizer, or an extra-smart grammar checker. Sell these tools on online marketplaces, and suddenly you’re not just using AI, you’re selling it!

Plugin Power: Supercharge Popular Programs

Do you know your way around popular software like Photoshop, Excel, or even game design programs? You can become a plugin superstar! Create little add-ons that use AI to do cool new things.

Maybe your plugin adds AI filters to Photoshop, or teaches Excel to predict future patterns based on the data. Find platforms that allow developers to sell plugins for their software, and your creations could make you money while helping others work smarter.

AI Business Sensei: The Ultimate Consultant

If you get really good with AI, and understand how businesses work, you could make serious money as a consultant. Companies often have no idea how to start using AI to their advantage.

You could be the expert that helps them! Teach them how AI can find them new customers, help them analyze huge amounts of data to make better decisions, or even automate some parts of their business to save them time and money.

As AI gets more important, companies will be desperate for consultants like you!

Things to Remember:

Humans still needed: the ai hype is real, but
.

AI is a powerful tool, but it’s still just that – a tool. It can mess up, make stuff that’s just plain weird, or even be used for harmful things if we’re not careful. That’s where you come in!

Your job is to double-check AI’s work, make sure it sounds natural and makes sense, add your own creative spark, and be the one to make sure the AI is doing good, not harm.

Find Your Thing: Be the Specialist

Trying to be an expert in everything AI-related is a recipe for a headache. Instead, become known as THE person for something specific.

Are you the best AI product reviewer for tech gadgets? The go-to person for building customer service chatbots? The genius who finds hidden stock market patterns using AI?

Specializing makes it easier for clients to find you and know exactly what you can do for them.

Never Stop Learning: The AI Train Keeps Rolling

AI technology changes at lightning speed! New tools, techniques, and updates are happening all the time. To stay ahead of the game, you’ve got to be curious and willing to learn.

Subscribe to tech newsletters, mess around with new AI programs as they come out, and take online courses. The more you know about cutting-edge AI, the more valuable your skills become!

Scientific Research Methods

28.2 about hypotheses and assumptions.

Two hypotheses are made about the population parameter:

  • The null hypothesis \(H_0\) ; and
  • The alternative hypothesis \(H_1\) .

28.2.1 Null hypotheses

Hypotheses always concern a population parameter . Hypothesising, for example, that the sample mean body temperature is equal to \(37.0^\circ\text{C}\) is pointless, because it clearly isn’t: the sample mean is \(36.8051^\circ\text{C}\) . Besides, the RQ is about the unknown population : the P in P OCI stands for P opulation.

The null hypothesis \(H_0\) offers one possible reason why the value of the sample statistic (such as the sample mean) is not the same as the value of the proposed population parameter (such as the population mean): sampling variation . Every sample is different, and so the sample statistic will vary from sample to sample; it may not be equal to the population parameter , just because of the sample used by chance. Null hypotheses always have an ‘equals’ in them (for example, the population mean equals 100, is less than or equal to 100, or is more than or equal to 100), because (as part of the decision making process ), something specific must be assumed for the population parameter.

The parameter can take many different forms, depending on the context. The null hypothesis about the parameter is the default value of that parameter; for example,

  • there is no difference between the parameter value in two (or more) groups;
  • there is no change in the parameter value; or
  • there is no relationship as measured by a parameter value.

28.2.2 Alternative hypotheses

The other hypothesis is called the alternative hypothesis \(H_1\) . The alternative hypothesis offers another possible reason why the value of the sample statistic (such as the sample mean) is not the same as the value of the proposed population parameter (such as the population mean). The alternative hypothesis proposes that the value of the population parameter really is not the value claimed in the null hypothesis.

Alternative hypotheses can be one-tailed or two-tailed . A two -tailed alternative hypothesis means, for example, that the population mean could be either smaller or larger than what is claimed. A one -tailed alternative hypothesis admits only one of those two possibilities. Most (but not all) hypothesis tests are two-tailed.

The decision about whether the alternative hypothesis is one- or two-tailed is made by reading the RQ ( not by looking at the data). Indeed, the RQ and hypotheses should (in principle) be formed before the data are obtained , or at least before looking at the data if the data are already collected.

The ideas are the same whether the alternative hypothesis is one- or two-tailed: based on the data and the sample statistic, a decision is to be made about whether the alternative hypotheses is supported by the data.

Example 28.1 (Alternative hypotheses) For the body-temperature study, the alternative hypothesis is two-tailed : The RQ asks if the population mean is \(37.0^\circ\text{C}\) or not . That is, two possibilities are considered: that \(\mu\) could be either larger or smaller than \(37.0^\circ\text{C}\) .

Important points about forming hypotheses:

  • Hypotheses always concern a population parameter.
  • Null hypotheses always contain an ‘equals.’
  • Alternative hypothesis are one-tailed or two-tailed, depending on the RQ.
  • Hypotheses emerge from the RQ (not the data): The RQ and the hypotheses could be written down before collecting the data.

How Do You Formulate (Important) Hypotheses?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

Book cover

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

10k Accesses

Building on the ideas in Chap. 1, we describe formulating, testing, and revising hypotheses as a continuing cycle of clarifying what you want to study, making predictions about what you might find together with developing your reasons for these predictions, imagining tests of these predictions, revising your predictions and rationales, and so on. Many resources feed this process, including reading what others have found about similar phenomena, talking with colleagues, conducting pilot studies, and writing drafts as you revise your thinking. Although you might think you cannot predict what you will find, it is always possible—with enough reading and conversations and pilot studies—to make some good guesses. And, once you guess what you will find and write out the reasons for these guesses you are on your way to scientific inquiry. As you refine your hypotheses, you can assess their research importance by asking how connected they are to problems your research community really wants to solve.

Download chapter PDF

Part I. Getting Started

We want to begin by addressing a question you might have had as you read the title of this chapter. You are likely to hear, or read in other sources, that the research process begins by asking research questions . For reasons we gave in Chap. 1 , and more we will describe in this and later chapters, we emphasize formulating, testing, and revising hypotheses. However, it is important to know that asking and answering research questions involve many of the same activities, so we are not describing a completely different process.

We acknowledge that many researchers do not actually begin by formulating hypotheses. In other words, researchers rarely get a researchable idea by writing out a well-formulated hypothesis. Instead, their initial ideas for what they study come from a variety of sources. Then, after they have the idea for a study, they do lots of background reading and thinking and talking before they are ready to formulate a hypothesis. So, for readers who are at the very beginning and do not yet have an idea for a study, let’s back up. Where do research ideas come from?

There are no formulas or algorithms that spawn a researchable idea. But as you begin the process, you can ask yourself some questions. Your answers to these questions can help you move forward.

What are you curious about? What are you passionate about? What have you wondered about as an educator? These are questions that look inward, questions about yourself.

What do you think are the most pressing educational problems? Which problems are you in the best position to address? What change(s) do you think would help all students learn more productively? These are questions that look outward, questions about phenomena you have observed.

What are the main areas of research in the field? What are the big questions that are being asked? These are questions about the general landscape of the field.

What have you read about in the research literature that caught your attention? What have you read that prompted you to think about extending the profession’s knowledge about this? What have you read that made you ask, “I wonder why this is true?” These are questions about how you can build on what is known in the field.

What are some research questions or testable hypotheses that have been identified by other researchers for future research? This, too, is a question about how you can build on what is known in the field. Taking up such questions or hypotheses can help by providing some existing scaffolding that others have constructed.

What research is being done by your immediate colleagues or your advisor that is of interest to you? These are questions about topics for which you will likely receive local support.

Exercise 2.1

Brainstorm some answers for each set of questions. Record them. Then step back and look at the places of intersection. Did you have similar answers across several questions? Write out, as clearly as you can, the topic that captures your primary interest, at least at this point. We will give you a chance to update your responses as you study this book.

Part II. Paths from a General Interest to an Informed Hypothesis

There are many different paths you might take from conceiving an idea for a study, maybe even a vague idea, to formulating a prediction that leads to an informed hypothesis that can be tested. We will explore some of the paths we recommend.

We will assume you have completed Exercise 2.1 in Part I and have some written answers to the six questions that preceded it as well as a statement that describes your topic of interest. This very first statement could take several different forms: a description of a problem you want to study, a question you want to address, or a hypothesis you want to test. We recommend that you begin with one of these three forms, the one that makes most sense to you. There is an advantage to using all three and flexibly choosing the one that is most meaningful at the time and for a particular study. You can then move from one to the other as you think more about your research study and you develop your initial idea. To get a sense of how the process might unfold, consider the following alternative paths.

Beginning with a Prediction If You Have One

Sometimes, when you notice an educational problem or have a question about an educational situation or phenomenon, you quickly have an idea that might help solve the problem or answer the question. Here are three examples.

You are a teacher, and you noticed a problem with the way the textbook presented two related concepts in two consecutive lessons. Almost as soon as you noticed the problem, it occurred to you that the two lessons could be taught more effectively in the reverse order. You predicted better outcomes if the order was reversed, and you even had a preliminary rationale for why this would be true.

You are a graduate student and you read that students often misunderstand a particular aspect of graphing linear functions. You predicted that, by listening to small groups of students working together, you could hear new details that would help you understand this misconception.

You are a curriculum supervisor and you observed sixth-grade classrooms where students were learning about decimal fractions. After talking with several experienced teachers, you predicted that beginning with percentages might be a good way to introduce students to decimal fractions.

We begin with the path of making predictions because we see the other two paths as leading into this one at some point in the process (see Fig. 2.1 ). Starting with this path does not mean you did not sense a problem you wanted to solve or a question you wanted to answer.

The process flow diagram of initiation of hypothesis. It starts with a problem situation and leads to a prediction following the question to the hypothesis.

Three Pathways to Formulating Informed Hypotheses

Notice that your predictions can come from a variety of sources—your own experience, reading, and talking with colleagues. Most likely, as you write out your predictions you also think about the educational problem for which your prediction is a potential solution. Writing a clear description of the problem will be useful as you proceed. Notice also that it is easy to change each of your predictions into a question. When you formulate a prediction, you are actually answering a question, even though the question might be implicit. Making that implicit question explicit can generate a first draft of the research question that accompanies your prediction. For example, suppose you are the curriculum supervisor who predicts that teaching percentages first would be a good way to introduce decimal fractions. In an obvious shift in form, you could ask, “In what ways would teaching percentages benefit students’ initial learning of decimal fractions?”

The picture has a difference between a question and a prediction: a question simply asks what you will find whereas a prediction also says what you expect to find; written.

There are advantages to starting with the prediction form if you can make an educated guess about what you will find. Making a prediction forces you to think now about several things you will need to think about at some point anyway. It is better to think about them earlier rather than later. If you state your prediction clearly and explicitly, you can begin to ask yourself three questions about your prediction: Why do I expect to observe what I am predicting? Why did I make that prediction? (These two questions essentially ask what your rationale is for your prediction.) And, how can I test to see if it’s right? This is where the benefits of making predictions begin.

Asking yourself why you predicted what you did, and then asking yourself why you answered the first “why” question as you did, can be a powerful chain of thought that lays the groundwork for an increasingly accurate prediction and an increasingly well-reasoned rationale. For example, suppose you are the curriculum supervisor above who predicted that beginning by teaching percentages would be a good way to introduce students to decimal fractions. Why did you make this prediction? Maybe because students are familiar with percentages in everyday life so they could use what they know to anchor their thinking about hundredths. Why would that be helpful? Because if students could connect hundredths in percentage form with hundredths in decimal fraction form, they could bring their meaning of percentages into decimal fractions. But how would that help? If students understood that a decimal fraction like 0.35 meant 35 of 100, then they could use their understanding of hundredths to explore the meaning of tenths, thousandths, and so on. Why would that be useful? By continuing to ask yourself why you gave the previous answer, you can begin building your rationale and, as you build your rationale, you will find yourself revisiting your prediction, often making it more precise and explicit. If you were the curriculum supervisor and continued the reasoning in the previous sentences, you might elaborate your prediction by specifying the way in which percentages should be taught in order to have a positive effect on particular aspects of students’ understanding of decimal fractions.

Developing a Rationale for Your Predictions

Keeping your initial predictions in mind, you can read what others already know about the phenomenon. Your reading can now become targeted with a clear purpose.

By reading and talking with colleagues, you can develop more complete reasons for your predictions. It is likely that you will also decide to revise your predictions based on what you learn from your reading. As you develop sound reasons for your predictions, you are creating your rationales, and your predictions together with your rationales become your hypotheses. The more you learn about what is already known about your research topic, the more refined will be your predictions and the clearer and more complete your rationales. We will use the term more informed hypotheses to describe this evolution of your hypotheses.

The picture says you develop sound reasons for your predictions, you are creating your rationales, and your predictions together with your rationales become your hypotheses.

Developing more informed hypotheses is a good thing because it means: (1) you understand the reasons for your predictions; (2) you will be able to imagine how you can test your hypotheses; (3) you can more easily convince your colleagues that they are important hypotheses—they are hypotheses worth testing; and (4) at the end of your study, you will be able to more easily interpret the results of your test and to revise your hypotheses to demonstrate what you have learned by conducting the study.

Imagining Testing Your Hypotheses

Because we have tied together predictions and rationales to constitute hypotheses, testing hypotheses means testing predictions and rationales. Testing predictions means comparing empirical observations, or findings, with the predictions. Testing rationales means using these comparisons to evaluate the adequacy or soundness of the rationales.

Imagining how you might test your hypotheses does not mean working out the details for exactly how you would test them. Rather, it means thinking ahead about how you could do this. Recall the descriptor of scientific inquiry: “experience carefully planned in advance” (Fisher, 1935). Asking whether predictions are testable and whether rationales can be evaluated is simply planning in advance.

You might read that testing hypotheses means simply assessing whether predictions are correct or incorrect. In our view, it is more useful to think of testing as a means of gathering enough information to compare your findings with your predictions, revise your rationales, and propose more accurate predictions. So, asking yourself whether hypotheses can be tested means asking whether information could be collected to assess the accuracy of your predictions and whether the information will show you how to revise your rationales to sharpen your predictions.

Cycles of Building Rationales and Planning to Test Your Predictions

Scientific reasoning is a dialogue between the possible and the actual, an interplay between hypotheses and the logical expectations they give rise to: there is a restless to-and-fro motion of thought, the formulation and rectification of hypotheses (Medawar, 1982 , p.72).

As you ask yourself about how you could test your predictions, you will inevitably revise your rationales and sharpen your predictions. Your hypotheses will become more informed, more targeted, and more explicit. They will make clearer to you and others what, exactly, you plan to study.

When will you know that your hypotheses are clear and precise enough? Because of the way we define hypotheses, this question asks about both rationales and predictions. If a rationale you are building lets you make a number of quite different predictions that are equally plausible rather than a single, primary prediction, then your hypothesis needs further refinement by building a more complete and precise rationale. Also, if you cannot briefly describe to your colleagues a believable way to test your prediction, then you need to phrase it more clearly and precisely.

Each time you strengthen your rationales, you might need to adjust your predictions. And, each time you clarify your predictions, you might need to adjust your rationales. The cycle of going back and forth to keep your predictions and rationales tightly aligned has many payoffs down the road. Every decision you make from this point on will be in the interests of providing a transparent and convincing test of your hypotheses and explaining how the results of your test dictate specific revisions to your hypotheses. As you make these decisions (described in the succeeding chapters), you will probably return to clarify your hypotheses even further. But, you will be in a much better position, at each point, if you begin with well-informed hypotheses.

Beginning by Asking Questions to Clarify Your Interests

Instead of starting with predictions, a second path you might take devotes more time at the beginning to asking questions as you zero in on what you want to study. Some researchers suggest you start this way (e.g., Gournelos et al., 2019 ). Specifically, with this second path, the first statement you write to express your research interest would be a question. For example, you might ask, “Why do ninth-grade students change the way they think about linear equations after studying quadratic equations?” or “How do first graders solve simple arithmetic problems before they have been taught to add and subtract?”

The first phrasing of your question might be quite general or vague. As you think about your question and what you really want to know, you are likely to ask follow-up questions. These questions will almost always be more specific than your first question. The questions will also express more clearly what you want to know. So, the question “How do first graders solve simple arithmetic problems before they have been taught to add and subtract” might evolve into “Before first graders have been taught to solve arithmetic problems, what strategies do they use to solve arithmetic problems with sums and products below 20?” As you read and learn about what others already know about your questions, you will continually revise your questions toward clearer and more explicit and more precise versions that zero in on what you really want to know. The question above might become, “Before they are taught to solve arithmetic problems, what strategies do beginning first graders use to solve arithmetic problems with sums and products below 20 if they are read story problems and given physical counters to help them keep track of the quantities?”

Imagining Answers to Your Questions

If you monitor your own thinking as you ask questions, you are likely to begin forming some guesses about answers, even to the early versions of the questions. What do students learn about quadratic functions that influences changes in their proportional reasoning when dealing with linear functions? It could be that if you analyze the moments during instruction on quadratic equations that are extensions of the proportional reasoning involved in solving linear equations, there are times when students receive further experience reasoning proportionally. You might predict that these are the experiences that have a “backward transfer” effect (Hohensee, 2014 ).

These initial guesses about answers to your questions are your first predictions. The first predicted answers are likely to be hunches or fuzzy, vague guesses. This simply means you do not know very much yet about the question you are asking. Your first predictions, no matter how unfocused or tentative, represent the most you know at the time about the question you are asking. They help you gauge where you are in your thinking.

Shifting to the Hypothesis Formulation and Testing Path

Research questions can play an important role in the research process. They provide a succinct way of capturing your research interests and communicating them to others. When colleagues want to know about your work, they will often ask “What are your research questions?” It is good to have a ready answer.

However, research questions have limitations. They do not capture the three images of scientific inquiry presented in Chap. 1 . Due, in part, to this less expansive depiction of the process, research questions do not take you very far. They do not provide a guide that leads you through the phases of conducting a study.

Consequently, when you can imagine an answer to your research question, we recommend that you move onto the hypothesis formulation and testing path. Imagining an answer to your question means you can make plausible predictions. You can now begin clarifying the reasons for your predictions and transform your early predictions into hypotheses (predictions along with rationales). We recommend you do this as soon as you have guesses about the answers to your questions because formulating, testing, and revising hypotheses offers a tool that puts you squarely on the path of scientific inquiry. It is a tool that can guide you through the entire process of conducting a research study.

This does not mean you are finished asking questions. Predictions are often created as answers to questions. So, we encourage you to continue asking questions to clarify what you want to know. But your target shifts from only asking questions to also proposing predictions for the answers and developing reasons the answers will be accurate predictions. It is by predicting answers, and explaining why you made those predictions, that you become engaged in scientific inquiry.

Cycles of Refining Questions and Predicting Answers

An example might provide a sense of how this process plays out. Suppose you are reading about Vygotsky’s ( 1987 ) zone of proximal development (ZPD), and you realize this concept might help you understand why your high school students had trouble learning exponential functions. Maybe they were outside this zone when you tried to teach exponential functions. In order to recognize students who would benefit from instruction, you might ask, “How can I identify students who are within the ZPD around exponential functions?” What would you predict? Maybe students in this ZPD are those who already had knowledge of related functions. You could write out some reasons for this prediction, like “students who understand linear and quadratic functions are more likely to extend their knowledge to exponential functions.” But what kind of data would you need to test this? What would count as “understanding”? Are linear and quadratic the functions you should assess? Even if they are, how could you tell whether students who scored well on tests of linear and quadratic functions were within the ZPD of exponential functions? How, in the end, would you measure what it means to be in this ZPD? So, asking a series of reasonable questions raised some red flags about the way your initial question was phrased, and you decide to revise it.

You set the stage for revising your question by defining ZPD as the zone within which students can solve an exponential function problem by making only one additional conceptual connection between what they already know and exponential functions. Your revised question is, “Based on students’ knowledge of linear and quadratic functions, which students are within the ZPD of exponential functions?” This time you know what kind of data you need: the number of conceptual connections students need to bridge from their knowledge of related functions to exponential functions. How can you collect these data? Would you need to see into the minds of the students? Or, are there ways to test the number of conceptual connections someone makes to move from one topic to another? Do methods exist for gathering these data? You decide this is not realistic, so you now have a choice: revise the question further or move your research in a different direction.

Notice that we do not use the term research question for all these early versions of questions that begin clarifying for yourself what you want to study. These early versions are too vague and general to be called research questions. In this book, we save the term research question for a question that comes near the end of the work and captures exactly what you want to study . By the time you are ready to specify a research question, you will be thinking about your study in terms of hypotheses and tests. When your hypotheses are in final form and include clear predictions about what you will find, it will be easy to state the research questions that accompany your predictions.

To reiterate one of the key points of this chapter: hypotheses carry much more information than research questions. Using our definition, hypotheses include predictions about what the answer might be to the question plus reasons for why you think so. Unlike research questions, hypotheses capture all three images of scientific inquiry presented in Chap. 1 (planning, observing and explaining, and revising one’s thinking). Your hypotheses represent the most you know, at the moment, about your research topic. The same cannot be said for research questions.

Beginning with a Research Problem

When you wrote answers to the six questions at the end of Part I of this chapter, you might have identified a research interest by stating it as a problem. This is the third path you might take to begin your research. Perhaps your description of your problem might look something like this: “When I tried to teach my middle school students by presenting them with a challenging problem without showing them how to solve similar problems, they didn’t exert much effort trying to find a solution but instead waited for me to show them how to solve the problem.” You do not have a specific question in mind, and you do not have an idea for why the problem exists, so you do not have a prediction about how to solve it. Writing a statement of this problem as clearly as possible could be the first step in your research journey.

As you think more about this problem, it will feel natural to ask questions about it. For example, why did some students show more initiative than others? What could I have done to get them started? How could I have encouraged the students to keep trying without giving away the solution? You are now on the path of asking questions—not research questions yet, but questions that are helping you focus your interest.

As you continue to think about these questions, reflect on your own experience, and read what others know about this problem, you will likely develop some guesses about the answers to the questions. They might be somewhat vague answers, and you might not have lots of confidence they are correct, but they are guesses that you can turn into predictions. Now you are on the hypothesis-formulation-and-testing path. This means you are on the path of asking yourself why you believe the predictions are correct, developing rationales for the predictions, asking what kinds of empirical observations would test your predictions, and refining your rationales and predictions as you read the literature and talk with colleagues.

A simple diagram that summarizes the three paths we have described is shown in Fig. 2.1 . Each row of arrows represents one pathway for formulating an informed hypothesis. The dotted arrows in the first two rows represent parts of the pathways that a researcher may have implicitly travelled through already (without an intent to form a prediction) but that ultimately inform the researcher’s development of a question or prediction.

Part III. One Researcher’s Experience Launching a Scientific Inquiry

Martha was in her third year of her doctoral program and beginning to identify a topic for her dissertation. Based on (a) her experience as a high school mathematics teacher and a curriculum supervisor, (b) the reading she has done to this point, and (c) her conversations with her colleagues, she has developed an interest in what kinds of professional development experiences (let’s call them learning opportunities [LOs] for teachers) are most effective. Where does she go from here?

Exercise 2.2

Before you continue reading, please write down some suggestions for Martha about where she should start.

A natural thing for Martha to do at this point is to ask herself some additional questions, questions that specify further what she wants to learn: What kinds of LOs do most teachers experience? How do these experiences change teachers’ practices and beliefs? Are some LOs more effective than others? What makes them more effective?

To focus her questions and decide what she really wants to know, she continues reading but now targets her reading toward everything she can find that suggests possible answers to these questions. She also talks with her colleagues to get more ideas about possible answers to these or related questions. Over several weeks or months, she finds herself being drawn to questions about what makes LOs effective, especially for helping teachers teach more conceptually. She zeroes in on the question, “What makes LOs for teachers effective for improving their teaching for conceptual understanding?”

This question is more focused than her first questions, but it is still too general for Martha to define a research study. How does she know it is too general? She uses two criteria. First, she notices that the predictions she makes about the answers to the question are all over the place; they are not constrained by the reasons she has assembled for her predictions. One prediction is that LOs are more effective when they help teachers learn content. Martha makes this guess because previous research suggests that effective LOs for teachers include attention to content. But this rationale allows lots of different predictions. For example, LOs are more effective when they focus on the content teachers will teach; LOs are more effective when they focus on content beyond what teachers will teach so teachers see how their instruction fits with what their students will encounter later; and LOs are more effective when they are tailored to the level of content knowledge participants have when they begin the LOs. The rationale she can provide at this point does not point to a particular prediction.

A second measure Martha uses to decide her question is too general is that the predictions she can make regarding the answers seem very difficult to test. How could she test, for example, whether LOs should focus on content beyond what teachers will teach? What does “content beyond what teachers teach” mean? How could you tell whether teachers use their new knowledge of later content to inform their teaching?

Before anticipating what Martha’s next question might be, it is important to pause and recognize how predicting the answers to her questions moved Martha into a new phase in the research process. As she makes predictions, works out the reasons for them, and imagines how she might test them, she is immersed in scientific inquiry. This intellectual work is the main engine that drives the research process. Also notice that revisions in the questions asked, the predictions made, and the rationales built represent the updated thinking (Chap. 1 ) that occurs as Martha continues to define her study.

Based on all these considerations and her continued reading, Martha revises the question again. The question now reads, “Do LOs that engage middle school mathematics teachers in studying mathematics content help teachers teach this same content with more of a conceptual emphasis?” Although she feels like the question is more specific, she realizes that the answer to the question is either “yes” or “no.” This, by itself, is a red flag. Answers of “yes” or “no” would not contribute much to understanding the relationships between these LOs for teachers and changes in their teaching. Recall from Chap. 1 that understanding how things work, explaining why things work, is the goal of scientific inquiry.

Martha continues by trying to understand why she believes the answer is “yes.” When she tries to write out reasons for predicting “yes,” she realizes that her prediction depends on a variety of factors. If teachers already have deep knowledge of the content, the LOs might not affect them as much as other teachers. If the LOs do not help teachers develop their own conceptual understanding, they are not likely to change their teaching. By trying to build the rationale for her prediction—thus formulating a hypothesis—Martha realizes that the question still is not precise and clear enough.

Martha uses what she learned when developing the rationale and rephrases the question as follows: “ Under what conditions do LOs that engage middle school mathematics teachers in studying mathematics content help teachers teach this same content with more of a conceptual emphasis?” Through several additional cycles of thinking through the rationale for her predictions and how she might test them, Martha specifies her question even further: “Under what conditions do middle school teachers who lack conceptual knowledge of linear functions benefit from LOs that engage them in conceptual learning of linear functions as assessed by changes in their teaching toward a more conceptual emphasis on linear functions?”

Each version of Martha’s question has become more specific. This has occurred as she has (a) identified a starting condition for the teachers—they lack conceptual knowledge of linear functions, (b) specified the mathematics content as linear functions, and (c) included a condition or purpose of the LO—it is aimed at conceptual learning.

Because of the way Martha’s question is now phrased, her predictions will require thinking about the conditions that could influence what teachers learn from the LOs and how this learning could affect their teaching. She might predict that if teachers engaged in LOs that extended over multiple sessions, they would develop deeper understanding which would, in turn, prompt changes in their teaching. Or she might predict that if the LOs included examples of how their conceptual learning could translate into different instructional activities for their students, teachers would be more likely to change their teaching. Reasons for these predictions would likely come from research about the effects of professional development on teachers’ practice.

As Martha thinks about testing her predictions, she realizes it will probably be easier to measure the conditions under which teachers are learning than the changes in the conceptual emphasis in their instruction. She makes a note to continue searching the literature for ways to measure the “conceptualness” of teaching.

As she refines her predictions and expresses her reasons for the predictions, she formulates a hypothesis (in this case several hypotheses) that will guide her research. As she makes predictions and develops the rationales for these predictions, she will probably continue revising her question. She might decide, for example, that she is not interested in studying the condition of different numbers of LO sessions and so decides to remove this condition from consideration by including in her question something like “. . . over five 2-hour sessions . . .”

At this point, Martha has developed a research question, articulated a number of predictions, and developed rationales for them. Her current question is: “Under what conditions do middle school teachers who lack conceptual knowledge of linear functions benefit from five 2-hour LO sessions that engage them in conceptual learning of linear functions as assessed by changes in their teaching toward a more conceptual emphasis on linear functions?” Her hypothesis is:

Prediction: Participating teachers will show changes in their teaching with a greater emphasis on conceptual understanding, with larger changes on linear function topics directly addressed in the LOs than on other topics.

Brief Description of Rationale: (1) Past research has shown correlations between teachers’ specific mathematics knowledge of a topic and the quality of their teaching of that topic. This does not mean an increase in knowledge causes higher quality teaching but it allows for that possibility. (2) Transfer is usually difficult for teachers, but the examples developed during the LO sessions will help them use what they learned to teach for conceptual understanding. This is because the examples developed during the LO sessions are much like those that will be used by the teachers. So larger changes will be found when teachers are teaching the linear function topics addressed in the LOs.

Notice it is more straightforward to imagine how Martha could test this prediction because it is more precise than previous predictions. Notice also that by asking how to test a particular prediction, Martha will be faced with a decision about whether testing this prediction will tell her something she wants to learn. If not, she can return to the research question and consider how to specify it further and, perhaps, constrain further the conditions that could affect the data.

As Martha formulates her hypotheses and goes through multiple cycles of refining her question(s), articulating her predictions, and developing her rationales, she is constantly building the theoretical framework for her study. Because the theoretical framework is the topic for Chap. 3 , we will pause here and pick up Martha’s story in the next chapter. Spoiler alert: Martha’s experience contains some surprising twists and turns.

Before leaving Martha, however, we point out two aspects of the process in which she has been engaged. First, it can be useful to think about the process as identifying (1) the variables targeted in her predictions, (2) the mechanisms she believes explain the relationships among the variables, and (3) the definitions of all the terms that are special to her educational problem. By variables, we mean things that can be measured and, when measured, can take on different values. In Martha’s case, the variables are the conceptualness of teaching and the content topics addressed in the LOs. The mechanisms are cognitive processes that enable teachers to see the relevance of what they learn in PD to their own teaching and that enable the transfer of learning from one setting to another. Definitions are the precise descriptions of how the important ideas relevant to the research are conceptualized. In Martha’s case, definitions must be provided for terms like conceptual understanding, linear functions, LOs, each of the topics related to linear functions, instructional setting, and knowledge transfer.

A second aspect of the process is a practice that Martha acquired as part of her graduate program, a practice that can go unnoticed. Martha writes out, in full sentences, her thinking as she wrestles with her research question, her predictions of the answers, and the rationales for her predictions. Writing is a tool for organizing thinking and we recommend you use it throughout the scientific inquiry process. We say more about this at the end of the chapter.

Here are the questions Martha wrote as she developed a clearer sense of what question she wanted to answer and what answer she predicted. The list shows the increasing refinement that occurred as she continued to read, think, talk, and write.

Early questions: What kinds of LOs do most teachers experience? How do these experiences change teachers’ practices and beliefs? Are some LOs more effective than others? What makes them more effective?

First focused question: What makes LOs for teachers effective for improving their teaching for conceptual understanding?

Question after trying to predict the answer and imagining how to test the prediction: Do LOs that engage middle school mathematics teachers in studying mathematics content help teachers teach this same content with more of a conceptual emphasis?

Question after developing an initial rationale for her prediction: Under what conditions do LOs that engage middle school mathematics teachers in studying mathematics content help teachers teach this same content with more of a conceptual emphasis?

Question after developing a more precise prediction and richer rationale: Under what conditions do middle school teachers who lack conceptual knowledge of linear functions benefit from five 2-hour LO sessions that engage them in conceptual learning of linear functions as assessed by changes in their teaching toward a more conceptual emphasis on linear functions?

Part IV. An Illustrative Dialogue

The story of Martha described the major steps she took to refine her thinking. However, there is a lot of work that went on behind the scenes that wasn’t part of the story. For example, Martha had conversations with fellow students and professors that sharpened her thinking. What do these conversations look like? Because they are such an important part of the inquiry process, it will be helpful to “listen in” on the kinds of conversations that students might have with their advisors.

Here is a dialogue between a beginning student, Sam (S), and their advisor, Dr. Avery (A). They are meeting to discuss data Sam collected for a course project. The dialogue below is happening very early on in Sam’s conceptualization of the study, prior even to systematic reading of the literature.

Thanks for meeting with me today. As you know, I was able to collect some data for a course project a few weeks ago, but I’m having trouble analyzing the data, so I need your help. Let me try to explain the problem. As you know, I wanted to understand what middle-school teachers do to promote girls’ achievement in a mathematics class. I conducted four observations in each of three teachers’ classrooms. I also interviewed each teacher once about the four lessons I observed, and I interviewed two girls from each of the teachers’ classes. Obviously, I have a ton of data. But when I look at all these data, I don’t really know what I learned about my topic. When I was observing the teachers, I thought I might have observed some ways the teachers were promoting girls’ achievement, but then I wasn’t sure how to interpret my data. I didn’t know if the things I was observing were actually promoting girls’ achievement.

What were some of your observations?

Well, in a couple of my classroom observations, teachers called on girls to give an answer, even when the girls didn’t have their hands up. I thought that this might be a way that teachers were promoting the girls’ achievement. But then the girls didn’t say anything about that when I interviewed them and also the teachers didn’t do it in every class. So, it’s hard to know what effect, if any, this might have had on their learning or their motivation to learn. I didn’t want to ask the girls during the interview specifically about the teacher calling on them, and without the girls bringing it up themselves, I didn’t know if it had any effect.

Well, why didn’t you want to ask the girls about being called on?

Because I wanted to leave it as open as possible; I didn’t want to influence what they were going to say. I didn’t want to put words in their mouths. I wanted to know what they thought the teacher was doing that promoted their mathematical achievement and so I only asked the girls general questions, like “Do you think the teacher does things to promote girls’ mathematical achievement?” and “Can you describe specific experiences you have had that you believe do and do not promote your mathematical achievement?”

So then, how did they answer those general questions?

Well, with very general answers, such as that the teacher knows their names, offers review sessions, grades their homework fairly, gives them opportunities to earn extra credit, lets them ask questions, and always answers their questions. Nothing specific that helps me know what teaching actions specifically target girls’ mathematics achievement.

OK. Any ideas about what you might do next?

Well, I remember that when I was planning this data collection for my course, you suggested I might want to be more targeted and specific about what I was looking for. I can see now that more targeted questions would have made my data more interpretable in terms of connecting teaching actions to the mathematical achievement of girls. But I just didn’t want to influence what the girls would say.

Yes, I remember when you were planning your course project, you wanted to keep it open. You didn’t want to miss out on discovering something new and interesting. What do you think now about this issue?

Well, I still don’t want to put words in their mouths. I want to know what they think. But I see that if I ask really open questions, I have no guarantee they will talk about what I want them to talk about. I guess I still like the idea of an open study, but I see that it’s a risky approach. Leaving the questions too open meant I didn’t constrain their responses and there were too many ways they could interpret and answer the questions. And there are too many ways I could interpret their responses.

By this point in the dialogue, Sam has realized that open data (i.e., data not testing a specific prediction) is difficult to interpret. In the next part, Dr. Avery explains why collecting open data was not helping Sam achieve goals for her study that had motivated collecting open data in the first place.

Yes, I totally agree. Even for an experienced researcher, it can be difficult to make sense of this kind of open, messy data. However, if you design a study with a more specific focus, you can create questions for participants that are more targeted because you will be interested in their answers to these specific questions. Let’s reflect back on your data collection. What can you learn from it for the future?

When I think about it now, I realize that I didn’t think about the distinction between all the different constructs at play in my study, and I didn’t choose which one I was focusing on. One construct was the teaching moves that teachers think could be promoting achievement. Another is what teachers deliberately do to promote girls’ mathematics achievement, if anything. Another was the teaching moves that actually do support girls’ mathematics achievement. Another was what teachers were doing that supported girls’ mathematics achievement versus the mathematics achievement of all students. Another was students’ perception of what their teacher was doing to promote girls’ mathematics achievement. I now see that any one of these constructs could have been the focus of a study and that I didn’t really decide which of these was the focus of my course project prior to collecting data.

So, since you told me that the topic of this course project is probably what you’ll eventually want to study for your dissertation, which of these constructs are you most interested in?

I think I’m more interested in the teacher moves that teachers deliberately do to promote girls’ achievement. But I’m still worried about asking teachers directly and getting too specific about what they do because I don’t want to bias what they will say. And I chose qualitative methods and an exploratory design because I thought it would allow for a more open approach, an approach that helps me see what’s going on and that doesn’t bias or predetermine the results.

Well, it seems to me you are conflating three issues. One issue is how to conduct an unbiased study. Another issue is how specific to make your study. And the third issue is whether or not to choose an exploratory or qualitative study design. Those three issues are not the same. For example, designing a study that’s more open or more exploratory is not how researchers make studies fair and unbiased. In fact, it would be quite easy to create an open study that is biased. For example, you could ask very open questions and then interpret the responses in a way that unintentionally, and even unknowingly, aligns with what you were hoping the findings would say. Actually, you could argue that by adding more specificity and narrowing your focus, you’re creating constraints that prevent bias. The same goes for an exploratory or qualitative study; they can be biased or unbiased. So, let’s talk about what is meant by getting more specific. Within your new focus on what teachers deliberately do, there are many things that would be interesting to look at, such as teacher moves that address math anxiety, moves that allow girls to answer questions more frequently, moves that are specifically fitted to student thinking about specific mathematical content, and so on. What are one or two things that are most interesting to you? One way to answer this question is by thinking back to where your interest in this topic began.

In the preceding part of the dialogue, Dr. Avery explained how the goals Sam had for their study were not being met with open data. In the next part, Sam begins to articulate a prediction, which Sam and Dr. Avery then sharpen.

Actually, I became interested in this topic because of an experience I had in college when I was in a class of mostly girls. During whole class discussions, we were supposed to critically evaluate each other’s mathematical thinking, but we were too polite to do that. Instead, we just praised each other’s work. But it was so different in our small groups. It seemed easier to critique each other’s thinking and to push each other to better solutions in small groups. I began wondering how to get girls to be more critical of each other’s thinking in a whole class discussion in order to push everyone’s thinking.

Okay, this is great information. Why not use this idea to zoom-in on a more manageable and interpretable study? You could look specifically at how teachers support girls in critically evaluating each other’s thinking during whole class discussions. That would be a much more targeted and specific topic. Do you have predictions about what teachers could do in that situation, keeping in mind that you are looking specifically at girls’ mathematical achievement, not students in general?

Well, what I noticed was that small groups provided more social and emotional support for girls, whereas the whole class discussion did not provide that same support. The girls felt more comfortable critiquing each other’s thinking in small groups. So, I guess I predict that when the social and emotional supports that are present in small groups are extended to the whole class discussion, girls would be more willing to evaluate each other’s mathematical thinking critically during whole class discussion . I guess ultimately, I’d like to know how the whole class discussion could be used to enhance, rather than undermine, the social and emotional support that is present in the small groups.

Okay, then where would you start? Would you start with a study of what the teachers say they will do during whole class discussion and then observe if that happens during whole class discussion?

But part of my prediction also involves the small groups. So, I’d also like to include small groups in my study if possible. If I focus on whole groups, I won’t be exploring what I am interested in. My interest is broader than just the whole class discussion.

That makes sense, but there are many different things you could look at as part of your prediction, more than you can do in one study. For instance, if your prediction is that when the social and emotional supports that are present in small groups are extended to whole class discussions, girls would be more willing to evaluate each other’s mathematical thinking critically during whole class discussions , then you could ask the following questions: What are the social and emotional supports that are present in small groups?; In which small groups do they exist?; Is it groups that are made up only of girls?; Does every small group do this, and for groups that do this, when do these supports get created?; What kinds of small group activities that teachers ask them to work on are associated with these supports?; Do the same social and emotional supports that apply to small groups even apply to whole group discussion?

All your questions make me realize that my prediction about extending social and emotional supports to whole class discussions first requires me to have a better understanding of the social and emotional supports that exist in small groups. In fact, I first need to find out whether those supports commonly exist in small groups or is that just my experience working in small groups. So, I think I will first have to figure out what small groups do to support each other and then, in a later study, I could ask a teacher to implement those supports during whole class discussions and find out how you can do that. Yeah, now I’m seeing that.

The previous part of the dialogue illustrates how continuing to ask questions about one’s initial prediction is a good way to make it more and more precise (and researchable). In the next part, we see how developing a precise prediction has the added benefit of setting the researcher up for future studies.

Yes, I agree that for your first study, you should probably look at small groups. In other words, you should focus on only a part of your prediction for now, namely the part that says there are social and emotional supports in small groups that support girls in critiquing each other’s thinking . That begins to sharpen the focus of your prediction, but you’ll want to continue to refine it. For example, right now, the question that this prediction leads to is a question with a yes or no answer, but what you’ve said so far suggests to me that you are looking for more than that.

Yes, I want to know more than just whether there are supports. I’d like to know what kinds. That’s why I wanted to do a qualitative study.

Okay, this aligns more with my thinking about research as being prediction driven. It’s about collecting data that would help you revise your existing predictions into better ones. What I mean is that you would focus on collecting data that would allow you to refine your prediction, make it more nuanced, and go beyond what is already known. Does that make sense, and if so, what would that look like for your prediction?

Oh yes, I like that. I guess that would mean that, based on the data I collect for this next study, I could develop a more refined prediction that, for example, more specifically identifies and differentiates between different kinds of social and emotional supports that are present in small groups, or maybe that identifies the kinds of small groups that they occur in, or that predicts when and how frequently or infrequently they occur, or about the features of the small group tasks in which they occur, etc. I now realize that, although I chose qualitative research to make my study be more open, really the reason qualitative research fits my purposes is because it will allow me to explore fine-grained aspects of social and emotional supports that may exist for girls in small groups.

Yes, exactly! And then, based on the data you collect, you can include in your revised prediction those new fine-grained aspects. Furthermore, you will have a story to tell about your study in your written report, namely the story about your evolving prediction. In other words, your written report can largely tell how you filled out and refined your prediction as you learned more from carrying out the study. And even though you might not use them right away, you are also going to be able to develop new predictions that you would not have even thought of about social and emotional supports in small groups and your aim of extending them to whole-class discussions, had you not done this study. That will set you up to follow up on those new predictions in future studies. For example, you might have more refined ideas after you collect the data about the goals for critiquing student thinking in small groups versus the goals for critiquing student thinking during whole class discussion. You might even begin to think that some of the social and emotional supports you observe are not even replicable or even applicable to or appropriate for whole-class discussions, because the supports play different roles in different contexts. So, to summarize what I’m saying, what you look at in this study, even though it will be very focused, sets you up for a research program that will allow you to more fully investigate your broader interest in this topic, where each new study builds on your prior body of work. That’s why it is so important to be explicit about the best place to start this research, so that you can build on it.

I see what you are saying. We started this conversation talking about my course project data. What I think I should have done was figure out explicitly what I needed to learn with that study with the intention of then taking what I learned and using it as the basis for the next study. I didn’t do that, and so I didn’t collect data that pushed forward my thinking in ways that would guide my next study. It would be as if I was starting over with my next study.

Sam and Dr. Avery have just explored how specifying a prediction reveals additional complexities that could become fodder for developing a systematic research program. Next, we watch Sam beginning to recognize the level of specificity required for a prediction to be testable.

One thing that would have really helped would have been if you had had a specific prediction going into your data collection for your course project.

Well, I didn’t really have much of an explicit prediction in mind when I designed my methods.

Think back, you must have had some kind of prediction, even if it was implicit.

Well, yes, I guess I was predicting that teachers would enact moves that supported girls’ mathematical achievement. And I observed classrooms to identify those teacher moves, I interviewed teachers to ask them about the moves I observed, and I interviewed students to see if they mentioned those moves as promoting their mathematical achievement. The goal of my course project was to identify teacher moves that support girls’ mathematical achievement. And my specific research question was: What teacher moves support girls’ mathematical achievement?

So, really you were asking the teacher and students to show and tell you what those moves are and the effects of those moves, as a result putting the onus on your participants to provide the answers to your research question for you. I have an idea, let’s try a thought experiment. You come up with data collection methods for testing the prediction that there are social and emotional supports in small groups that support girls in critiquing each other’s thinking that still puts the onus on the participants. And then I’ll see if I can think of data collection methods that would not put the onus on the participants.

Hmm, well. .. I guess I could simply interview girls who participated in small groups and ask them “are there social and emotional supports that you use in small groups that support your group in critiquing each other’s thinking and if so, what are they?” In that case, I would be putting the onus on them to be aware of the social dynamics of small groups and to have thought about these constructs as much as I have. Okay now can you continue the thought experiment? What might the data collection methods look like if I didn’t put the onus on the participants?

First, I would pick a setting in which it was only girls at this point to reduce the number of variables. Then, personally I would want to observe a lot of groups of girls interacting in groups around tasks. I would be looking for instances when the conversation about students’ ideas was shut down and instances when the conversation about students’ ideas involved critiquing of ideas and building on each other’s thinking. I would also look at what happened just before and during those instances, such as: did the student continue to talk after their thinking was critiqued, did other students do anything to encourage the student to build on their own thinking (i.e., constructive criticism) or how did they support or shut down continued participation. In fact, now that I think about it, “critiquing each other’s thinking” can be defined in a number of different ways. I could mean just commenting on someone’s thinking, judging correctness and incorrectness, constructive criticism that moves the thinking forward, etc. If you put the onus on the participants to answer your research question, you are stuck with their definition, and they won’t have thought about this very much, if at all.

I think that what you are also saying is that my definitions would affect my data collection. If I think that critiquing each other’s thinking means that the group moves their thinking forward toward more valid and complete mathematical solutions, then I’m going to focus on different moves than if I define it another way, such as just making a comment on each other’s thinking and making each other feel comfortable enough to keep participating. In fact, am I going to look at individual instances of critiquing or look at entire sequences in which the critiquing leads to a goal? This seems like a unit of analysis question, and I would need to develop a more nuanced prediction that would make explicit what that unit of analysis is.

I agree, your definition of “critiquing each other’s thinking” could entirely change what you are predicting. One prediction could be based on defining critiquing as a one-shot event in which someone makes one comment on another person’s thinking. In this case the prediction would be that there are social and emotional supports in small groups that support girls in making an evaluative comment on another student’s thinking. Another prediction could be based on defining critiquing as a back-and-forth process in which the thinking gets built on and refined. In that case, the prediction would be something like that there are social and emotional supports in small groups that support girls in critiquing each other’s thinking in ways that do not shut down the conversation but that lead to sustained conversations that move each other toward more valid and complete solutions.

Well, I think I am more interested in the second prediction because it is more compatible with my long-term interests, which are that I’m interested in extending small group supports to whole class discussions. The second prediction is more appropriate for eventually looking at girls in whole class discussion. During whole class discussion, the teacher tries to get a sustained conversation going that moves the students’ thinking forward. So, if I learn about small group supports that lead to sustained conversations that move each other toward more valid and complete solutions , those supports might transfer to whole class discussions.

In the previous part of the dialogue, Dr. Avery and Sam showed how narrowing down a prediction to one that is testable requires making numerous important decisions, including how to define the constructs referred to in the prediction. In the final part of the dialogue, Dr. Avery and Sam begin to outline the reading Sam will have to do to develop a rationale for the specific prediction.

Do you see how your prediction and definitions are getting more and more specific? You now need to read extensively to further refine your prediction.

Well, I should probably read about micro dynamics of small group interactions, anything about interactions in small groups, and what is already known about small group interactions that support sustained conversations that move students’ thinking toward more valid and complete solutions. I guess I could also look at research on whole-class discussion methods that support sustained conversations that move the class to more mathematically valid and complete solutions, because it might give me ideas for what to look for in the small groups. I might also need to focus on research about how learners develop understandings about a particular subject matter so that I know what “more valid and complete solutions” look like. I also need to read about social and emotional supports but focus on how they support students cognitively, rather than in other ways.

Sounds good, let’s get together after you have processed some of this literature and we can talk about refining your prediction based on what you read and also the methods that will best suit testing that prediction.

Great! Thanks for meeting with me. I feel like I have a much better set of tools that push my own thinking forward and allow me to target something specific that will lead to more interpretable data.

Part V. Is It Always Possible to Formulate Hypotheses?

In Chap. 1 , we noted you are likely to read that research does not require formulating hypotheses. Some sources describe doing research without making predictions and developing rationales for these predictions. Some researchers say you cannot always make predictions—you do not know enough about the situation. In fact, some argue for the value of not making predictions (e.g., Glaser & Holton, 2004 ; Merton, 1968 ; Nemirovsky, 2011 ). These are important points of view, so we will devote this section to discussing them.

Can You Always Predict What You Will Find?

One reason some researchers say you do not need to make predictions is that it can be difficult to imagine what you will find. This argument comes up most often for descriptive studies. Suppose you want to describe the nature of a situation you do not know much about. Can you still make a prediction about what you will find? We believe that, although you do not know exactly what you will find, you probably have a hunch or, at a minimum, a very fuzzy idea. It would be unusual to ask a question about a situation you want to know about without at least a fuzzy inkling of what you might find. The original question just would not occur to you. We acknowledge you might have only a vague idea of what you will find and you might not have much confidence in your prediction. However, we expect if you monitor your own thinking you will discover you have developed a suspicion along the way, regardless how vague the suspicion might be. Through the cyclic process we discussed above, that suspicion or hunch gradually evolves and turns into a prediction.

The Benefits of Making Predictions Even When They Are Wrong: An Example from the 1970s

One of us was a graduate student at the University of Wisconsin in the late 1970s, assigned as a research assistant to a project that was investigating young children’s thinking about simple arithmetic. A new curriculum was being written, and the developers wanted to know how to introduce the earliest concepts and skills to kindergarten and first-grade children. The directors of the project did not know what to expect because, at the time, there was little research on five- and six-year-olds’ pre-instruction strategies for adding and subtracting.

After consulting what literature was available, talking with teachers, analyzing the nature of different types of addition and subtraction problems, and debating with each other, the research team formulated some hypotheses about children’s performance. Following the usual assumptions at the time and recognizing the new curriculum would introduce the concepts, the researchers predicted that, before instruction, most children would not be able to solve the problems. Based on the rationale that some young children did not yet recognize the simple form for written problems (e.g., 5 + 3 = ___), the researchers predicted that the best chance for success would be to read problems as stories (e.g., Jesse had 5 apples and then found 3 more. How many does she have now?). They reasoned that, even though children would have difficulty on all the problems, some story problems would be easier because the semantic structure is easier to follow. For example, they predicted the above story about adding 3 apples to 5 would be easier than a problem like, “Jesse had some apples in the refrigerator. She put in 2 more and now has 6. How many were in the refrigerator at the beginning?” Based on the rationale that children would need to count to solve the problems and that it can be difficult to keep track of the numbers, they predicted children would be more successful if they were given counters. Finally, accepting the common reasoning that larger numbers are more difficult than smaller numbers, they predicted children would be more successful if all the numbers in a problem were below 10.

Although these predictions were not very precise and the rationales were not strongly convincing, these hypotheses prompted the researchers to design the study to test their predictions. This meant they would collect data by presenting a variety of problems under a variety of conditions. Because the goal was to describe children’s thinking, problems were presented to students in individual interviews. Problems with different semantic structures were included, counters were available for some problems but not others, and some problems had sums to 9 whereas others had sums to 20 or more.

The punchline of this story is that gathering data under these conditions, prompted by the predictions, made all the difference in what the researchers learned. Contrary to predictions, children could solve addition and subtraction problems before instruction. Counters were important because almost all the solution strategies were based on counting which meant that memory was an issue because many strategies require counting in two ways simultaneously. For example, subtracting 4 from 7 was usually solved by counting down from 7 while counting up from 1 to 4 to keep track of counting down. Because children acted out the stories with their counters, the semantic structure of the story was also important. Stories that were easier to read and write were also easier to solve.

To make a very long story very short, other researchers were, at about the same time, reporting similar results about children’s pre-instruction arithmetic capabilities. A clear pattern emerged regarding the relative difficulty of different problem types (semantic structures) and the strategies children used to solve each type. As the data were replicated, the researchers recognized that kindergarten and first-grade teachers could make good use of this information when they introduced simple arithmetic. This is how Cognitively Guided Instruction (CGI) was born (Carpenter et al., 1989 ; Fennema et al., 1996 ).

To reiterate, the point of this example is that the study conducted to describe children’s thinking would have looked quite different if the researchers had made no predictions. They would have had no reason to choose the particular problems and present them under different conditions. The fact that some of the predictions were completely wrong is not the point. The predictions created the conditions under which the predictions were tested which, in turn, created learning opportunities for the researchers that would not have existed without the predictions. The lesson is that even research that aims to simply describe a phenomenon can benefit from hypotheses. As signaled in Chap. 1 , this also serves as another example of “failing productively.”

Suggestions for What to Do When You Do Not Have Predictions

There likely are exceptions to our claim about being able to make a prediction about what you will find. For example, there could be rare cases where researchers truly have no idea what they will find and can come up with no predictions and even no hunches. And, no research has been reported on related phenomena that would offer some guidance. If you find yourself in this position, we suggest one of three approaches: revise your question, conduct a pilot study, or choose another question.

Because there are many advantages to making predictions explicit and then writing out the reasons for these predictions, one approach is to adjust your question just enough to allow you to make a prediction. Perhaps you can build on descriptions that other researchers have provided for related situations and consider how you can extend this work. Building on previous descriptions will enable you to make predictions about the situation you want to describe.

A second approach is to conduct a small pilot study or, better, a series of small pilot studies to develop some preliminary ideas of what you might find. If you can identify a small sample of participants who are similar to those in your study, you can try out at least some of your research plans to help make and refine your predictions. As we detail later, you can also use pilot studies to check whether key aspects of your methods (e.g., tasks, interview questions, data collection methods) work as you expect.

A third approach is to return to your list of interests and choose one that has been studied previously. Sometimes this is the wisest choice. It is very difficult for beginning researchers to conduct research in brand-new areas where no hunches or predictions are possible. In addition, the contributions of this research can be limited. Recall the earlier story about one of us “failing productively” by completing a dissertation in a somewhat new area. If, after an exhaustive search, you find that no one has investigated the phenomenon in which you are interested or even related phenomena, it can be best to move in a different direction. You will read recommendations in other sources to find a “gap” in the research and develop a study to “fill the gap.” This can be helpful advice if the gap is very small. However, if the gap is large, too large to predict what you might find, the study will present severe challenges. It will be more productive to extend work that has already been done than to launch into an entirely new area.

Should You Always Try to Predict What You Will Find?

In short, our answer to the question in the heading is “yes.” But this calls for further explanation.

Suppose you want to observe a second-grade classroom in order to investigate how students talk about adding and subtracting whole numbers. You might think, “I don’t want to bias my thinking; I want to be completely open to what I see in the classroom.” Sam shared a similar point of view at the beginning of the dialogue: “I wanted to leave it as open as possible; I didn’t want to influence what they were going to say.” Some researchers say that beginning your research study by making predictions is inappropriate precisely because it will bias your observations and results. The argument is that by bringing a set of preconceptions, you will confirm what you expected to find and be blind to other observations and outcomes. The following quote illustrates this view: “The first step in gaining theoretical sensitivity is to enter the research setting with as few predetermined ideas as possible—especially logically deducted, a priori hypotheses. In this posture, the analyst is able to remain sensitive to the data by being able to record events and detect happenings without first having them filtered through and squared with pre-existing hypotheses and biases” (Glaser, 1978, pp. 2–3).

We take a different point of view. In fact, we believe there are several compelling reasons for making your predictions explicit.

Making Your Predictions Explicit Increases Your Chances of Productive Observations

Because your predictions are an extension of what is already known, they prepare you to identify more nuanced relationships that can advance our understanding of a phenomenon. For example, rather than simply noticing, in a general sense, that students talking about addition and subtraction leads them to better understandings, you might, based on your prediction, make the specific observation that talking about addition and subtraction in a particular way helps students to think more deeply about a particular concept related to addition and subtraction. Going into a study without predictions can bring less sensitivity rather than more to the study of a phenomenon. Drawing on knowledge about related phenomena by reading the literature and conducting pilot studies allows you to be much more sensitive and your observations to be more productive.

Making Your Predictions Explicit Allows You to Guard Against Biases

Some genres and methods of educational research are, in fact, rooted in philosophical traditions (e.g., Husserl, 1929/ 1973 ) that explicitly call for researchers to temporarily “bracket” or set aside existing theory as well as their prior knowledge and experience to better enter into the experience of the participants in the research. However, this does not mean ignoring one’s own knowledge and experience or turning a blind eye to what has been learned by others. Much more than the simplistic image of emptying one’s mind of preconceptions and implicit biases (arguably an impossible feat to begin with), the goal is to be as reflective as possible about one’s prior knowledge and conceptions and as transparent as possible about how they may guide observations and shape interpretations (Levitt et al., 2018 ).

We believe it is better to be honest about the predictions you are almost sure to have because then you can deliberately plan to minimize the chances they will influence what you find and how you interpret your results. For starters, it is important to recognize that acknowledging you have some guesses about what you will find does not make them more influential. Because you are likely to have them anyway, we recommend being explicit about what they are. It is easier to deal with biases that are explicit than those that lurk in the background and are not acknowledged.

What do we mean by “deal with biases”? Some journals require you to include a statement about your “positionality” with respect to the participants in your study and the observations you are making to gather data. Formulating clear hypotheses is, in our view, a direct response to this request. The reasons for your predictions are your explicit statements about your positionality. Often there are methodological strategies you can use to protect the study from undue influences of bias. In other words, making your vague predictions explicit can help you design your study so you minimize the bias of your findings.

Making Your Predictions Explicit Can Help You See What You Did Not Predict

Making your predictions explicit does not need to blind you to what is different than expected. It does not need to force you to see only what you want to see. Instead, it can actually increase your sensitivity to noticing features of the situation that are surprising, features you did not predict. Results can stand out when you did not expect to see them.

In contrast, not bringing your biases to consciousness might subtly shift your attention away from these unexpected results in ways that you are not aware of. This path can lead to claiming no biases and no unexpected findings without being conscious of them. You cannot observe everything, and some things inevitably will be overlooked. If you have predicted what you will see, you can design your study so that the unexpected results become more salient rather than less.

Returning to the example of observing a second-grade classroom, we note that the field already knows a great deal about how students talk about addition and subtraction. Being cognizant of what others have observed allows you to enter the classroom with some clear predictions about what will happen. The rationales for these predictions are based on all the related knowledge you have before stepping into the classroom, and the predictions and rationales help you to better deal with what you see. This is partly because you are likely to be surprised by the things you did not anticipate. There is almost always something that will surprise you because your predictions will almost always be incomplete or too general. This sensitivity to the unanticipated—the sense of surprise that sparks your curiosity—is an indication of your openness to the phenomenon you are studying.

Making Your Predictions Explicit Allows You to Plan in Advance

Recall from Chap. 1 the descriptor of scientific inquiry: “Experience carefully planned in advance.” If you make no predictions about what might happen, it is very difficult, if not impossible, to plan your study in advance. Again, you cannot observe everything, so you must make decisions about what you will observe. What kind of data will you plan to collect? Why would you collect these data instead of others? If you have no idea what to expect, on what basis will you make these consequential decisions? Even if your predictions are vague and your rationales for the predictions are a bit shaky, at least they provide a direction for your plan. They allow you to explain why you are planning this study and collecting these data. They allow you to “carefully plan in advance.”

Making Your Predictions Explicit Allows You to Put Your Rationales in Harm’s Way

Rationales are developed to justify the predictions. Rationales represent your best reasoning about the research problem you are studying. How can you tell whether your reasoning is sound? You can try it out with colleagues. However, the best way to test it is to put it in “harm’s way” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003 p. 10). And the best approach to putting your reasoning in harm’s way is to test the predictions it generates. Regardless if you are conducting a qualitative or quantitative study, rationales can be improved only if they generate testable predictions. This is possible only if predictions are explicit and precise. As we described earlier, rationales are evaluated for their soundness and refined in light of the specific differences between predictions and empirical observations.

Making Your Predictions Explicit Forces You to Organize and Extend Your (and the Field’s) Thinking

By writing out your predictions (even hunches or fuzzy guesses) and by reflecting on why you have these predictions and making these reasons explicit for yourself, you are advancing your thinking about the questions you really want to answer. This means you are making progress toward formulating your research questions and your final hypotheses. Making more progress in your own thinking before you conduct your study increases the chances your study will be of higher quality and will be exactly the study you intended. Making predictions, developing rationales, and imagining tests are tools you can use to push your thinking forward before you even collect data.

Suppose you wonder how preservice teachers in your university’s teacher preparation program will solve particular kinds of math problems. You are interested in this question because you have noticed several PSTs solve them in unexpected ways. As you ask the question you want to answer, you make predictions about what you expect to see. When you reflect on why you made these predictions, you realize that some PSTs might use particular solution strategies because they were taught to use some of them in an earlier course, and they might believe you expect them to solve the problems in these ways. By being explicit about why you are making particular predictions, you realize that you might be answering a different question than you intend (“How much do PSTs remember from previous courses?” or even “To what extent do PSTs believe different instructors have similar expectations?”). Now you can either change your question or change the design of your study (i.e., the sample of students you will use) or both. You are advancing your thinking by being explicit about your predictions and why you are making them.

The Costs of Not Making Predictions

Avoiding making predictions, for whatever reason, comes with significant costs. It prevents you from learning very much about your research topic. It would require not reading related research, not talking with your colleagues, and not conducting pilot studies because, if you do, you are likely to find a prediction creeping into your thinking. Not doing these things would forego the benefits of advancing your thinking before you collect data. It would amount to conducting the study with as little forethought as possible.

Part VI. How Do You Formulate Important Hypotheses?

We provided a partial answer in Chap. 1 to the question of a hypothesis’ importance when we encouraged considering the ultimate goal to which a study’s findings might contribute. You might want to reread Part III of Chap. 1 where we offered our opinions about the purposes of doing research. We also recommend reading the March 2019 editorial in the Journal for Research in Mathematics Education (Cai et al., 2019b ) in which we address what constitutes important educational research.

As we argued in Chap. 1 and in the March 2019 editorial, a worthy ultimate goal for educational research is to improve the learning opportunities for all students. However, arguments can be made for other ultimate goals as well. To gauge the importance of your hypotheses, think about how clearly you can connect them to a goal the educational community considers important. In addition, given the descriptors of scientific inquiry proposed in Chap. 1 , think about how testing your hypotheses will help you (and the community) understand what you are studying. Will you have a better explanation for the phenomenon after your study than before?

Although we address the question of importance again, and in more detail, in Chap. 5 , it is useful to know here that you can determine the significance or importance of your hypotheses when you formulate them. The importance need not depend on the data you collect or the results you report. The importance can come from the fact that, based on the results of your study, you will be able to offer revised hypotheses that help the field better understand an important issue. In large part, it is these revised hypotheses rather than the data that determine a study’s importance.

A critical caveat to this discussion is that few hypotheses are self-evidently important. They are important only if you make the case for their importance. Even if you follow closely the guidelines we suggest for formulating an important hypothesis, you must develop an argument that convinces others. This argument will be presented in the research paper you write.

The picture has a few hypotheses that are self-evidently important. They are important only if you make the case for their importance; written.

Consider Martha’s hypothesis presented earlier. When we left Martha, she predicted that “Participating teachers will show changes in their teaching with a greater emphasis on conceptual understanding with larger changes on linear function topics directly addressed in the LOs than on other topics.” For researchers and educators not intimately familiar with this area of research, it is not apparent why someone should spend a year or more conducting a dissertation to test this prediction. Her rationale, summarized earlier, begins to describe why this could be an important hypothesis. But it is by writing a clear argument that explains her rationale to readers that she will convince them of its importance.

How Martha fills in her rationale so she can create a clear written argument for its importance is taken up in Chap. 3 . As we indicated, Martha’s work in this regard led her to make some interesting decisions, in part due to her own assessment of what was important.

Part VII. Beginning to Write the Research Paper for Your Study

It is common to think that researchers conduct a study and then, after the data are collected and analyzed, begin writing the paper about the study. We recommend an alternative, especially for beginning researchers. We believe it is better to write drafts of the paper at the same time you are planning and conducting your study. The paper will gradually evolve as you work through successive phases of the scientific inquiry process. Consequently, we will call this paper your evolving research paper .

The picture has, we believe it is better to write drafts of the paper at the same time you are planning and conducting your study; written.

You will use your evolving research paper to communicate your study, but you can also use writing as a tool for thinking and organizing your thinking while planning and conducting the study. Used as a tool for thinking, you can write drafts of your ideas to check on the clarity of your thinking, and then you can step back and reflect on how to clarify it further. Be sure to avoid jargon and general terms that are not well defined. Ask yourself whether someone not in your field, maybe a sibling, a parent, or a friend, would be able to understand what you mean. You are likely to write multiple drafts with lots of scribbling, crossing out, and revising.

Used as a tool for communicating, writing the best version of what you know before moving to the next phase will help you record your decisions and the reasons for them before you forget important details. This best-version-for-now paper also provides the basis for your thinking about the next phase of your scientific inquiry.

At this point in the process, you will be writing your (research) questions, the answers you predict, and the rationales for your predictions. The predictions you make should be direct answers to your research questions and should flow logically from (or be directly supported by) the rationales you present. In addition, you will have a written statement of the study’s purpose or, said another way, an argument for the importance of the hypotheses you will be testing. It is in the early sections of your paper that you will convince your audience about the importance of your hypotheses.

In our experience, presenting research questions is a more common form of stating the goal of a research study than presenting well-formulated hypotheses. Authors sometimes present a hypothesis, often as a simple prediction of what they might find. The hypothesis is then forgotten and not used to guide the analysis or interpretations of the findings. In other words, authors seldom use hypotheses to do the kind of work we describe. This means that many research articles you read will not treat hypotheses as we suggest. We believe these are missed opportunities to present research in a more compelling and informative way. We intend to provide enough guidance in the remaining chapters for you to feel comfortable organizing your evolving research paper around formulating, testing, and revising hypotheses.

While we were editing one of the leading research journals in mathematics education ( JRME ), we conducted a study of reviewers’ critiques of papers submitted to the journal. Two of the five most common concerns were: (1) the research questions were unclear, and (2) the answers to the questions did not make a substantial contribution to the field. These are likely to be major concerns for the reviewers of all research journals. We hope the knowledge and skills you have acquired working through this chapter will allow you to write the opening to your evolving research paper in a way that addresses these concerns. Much of the chapter should help make your research questions clear, and the prior section on formulating “important hypotheses” will help you convey the contribution of your study.

Exercise 2.3

Look back at your answers to the sets of questions before part II of this chapter.

Think about how you would argue for the importance of your current interest.

Write your interest in the form of (1) a research problem, (2) a research question, and (3) a prediction with the beginnings of a rationale. You will update these as you read the remaining chapters.

Part VIII. The Heart of Scientific Inquiry

In this chapter, we have described the process of formulating hypotheses. This process is at the heart of scientific inquiry. It is where doing research begins. Conducting research always involves formulating, testing, and revising hypotheses. This is true regardless of your research questions and whether you are using qualitative, quantitative, or mixed methods. Without engaging in this process in a deliberate, intense, relentless way, your study will reveal less than it could. By engaging in this process, you are maximizing what you, and others, can learn from conducting your study.

In the next chapter, we build on the ideas we have developed in the first two chapters to describe the purpose and nature of theoretical frameworks . The term theoretical framework, along with closely related terms like conceptual framework, can be somewhat mysterious for beginning researchers and can seem like a requirement for writing a paper rather than an aid for conducting research. We will show how theoretical frameworks grow from formulating hypotheses—from developing rationales for the predicted answers to your research questions. We will propose some practical suggestions for building theoretical frameworks and show how useful they can be. In addition, we will continue Martha’s story from the point at which we paused earlier—developing her theoretical framework.

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M. (1989). Using knowledge of children’s mathematics thinking in classroom teaching: An experimental study. American Educational Research Journal, 26 (4), 385–531.

Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., & Empson, S. B. (1996). A longitudinal study of learning to use children’s thinking in mathematics instruction. Journal for Research in Mathematics Education, 27 (4), 403–434.

Glaser, B. G., & Holton, J. (2004). Remodeling grounded theory. Forum: Qualitative Social Research, 5(2). https://www.qualitative-research.net/index.php/fqs/article/view/607/1316

Gournelos, T., Hammonds, J. R., & Wilson, M. A. (2019). Doing academic research: A practical guide to research methods and analysis . Routledge.

Book   Google Scholar  

Hohensee, C. (2014). Backward transfer: An investigation of the influence of quadratic functions instruction on students’ prior ways of reasoning about linear functions. Mathematical Thinking and Learning, 16 (2), 135–174.

Husserl, E. (1973). Cartesian meditations: An introduction to phenomenology (D. Cairns, Trans.). Martinus Nijhoff. (Original work published 1929).

Google Scholar  

Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board Task Force report. American Psychologist, 73 (1), 26–46.

Medawar, P. (1982). Pluto’s republic [no typo]. Oxford University Press.

Merton, R. K. (1968). Social theory and social structure (Enlarged edition). Free Press.

Nemirovsky, R. (2011). Episodic feelings and transfer of learning. Journal of the Learning Sciences, 20 (2), 308–337. https://doi.org/10.1080/10508406.2011.528316

Vygotsky, L. (1987). The development of scientific concepts in childhood: The design of a working hypothesis. In A. Kozulin (Ed.), Thought and language (pp. 146–209). The MIT Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). How Do You Formulate (Important) Hypotheses?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_2

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_2

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Google sign-in

Understanding the importance of a research hypothesis

A research hypothesis is a specification of a testable prediction about what a researcher expects as the outcome of the study. It comprises certain aspects such as the population, variables, and the relationship between the variables. It states the specific role of the position of individual elements through empirical verification. When conducting research, there are certain assumptions that are made by the researcher. According to the available information, the goal is to present the expected outcome after testing them.

A hypothesis should be precise and accurate

A hypothesis is a clear statement of the information that the researcher intends to investigate. It is thus a clear statement that is essential before conducting research.

Aspects identified by the hypothesis in a thesis

Based on this aspect, the features of the hypothesis are listed below:

Figure 2: Features of Hypothesis

1. Conceptual

The statement of the hypothesis is based on a certain concept i.e. it could be either related to the theory or the pre-assumption of the researcher about certain variables i.e. educated guess. This leads to linking the research questions of the study. It helps the collection of data and conducting analysis as per the stated concept.

People who shop at speciality stores tend to spend more on luxury brands as compared to those who shop at a department store.

2. Verbal statement

The research hypothesis represents a verbal statement in declarative form. The hypothesis is often stated in mathematical form. However, it brings in the possibility of representing the idea, assumption, or concept of the researcher in the form of words that could be tested.

The capability of students who are undergoing vocational training programs is not different from the students undergoing regular studies.

3. Empirical reference

By building a tentative relationship among concepts, hypothesis testing provides an empirical verification of a study. It helps validate the assumption of the researcher.

The quality of nursing education affects the quality of nursing practice skills.

4. Tentative relationship

It links the variables as per assumption and builds a tentative relationship. A hypothesis is initially unverified, therefore the relationship between variables is uncertain. Thus a predictable relationship is specified.

Sleep deprivation affects the productivity of an individual.

5. Tool of knowledge advancement

With help of a hypothesis statement, the researcher has the opportunity of verifying the available knowledge and having further enquiry about a concept. Thus, it helps the advancement of knowledge.

The effectiveness of social awareness programs influences the living standards of people.

The hypothesis statement provides the benefit of assessing the available information and making the appropriate prediction about the future. With the possibility of verifiability and identifying falsifiable information, researchers assess their assumptions and determine accurate conclusions.

People who are exposed to a high level of ultraviolet light tend to have a higher incidence of cancer.

7. Not moral

The hypothesis statement is not based on the consideration of moral values or ethics. It is as per the beliefs or assumptions of the researcher. However, testing and prediction are not entirely based on individual moral beliefs. For example, people having sample moral values would take the same strategy for business management. In this case, it is not the desired objective to study the business management strategy.

Neither too specific nor too general

A hypothesis should not be too general or too specific.

‘Actions of an individual would impact the health’ is too general, and ‘running would improve your health’ is too specific. Thus, the hypothesis for the above study is exercise does have an impact on the health of people.

Prediction of consequences

The hypothesis is the statement of the researcher’s assumption. Thus, it helps in predicting the ultimate outcome of the thesis.

Experience leads to better air traffic control management.

Even if the assumption of the researcher is proven false in testing, the result derived from the examination is valuable. With the presence of null and alternative hypotheses, each assessment of the hypothesis yields a valuable conclusion.

Separating irrelevant information from relevant information

 A hypothesis plays a significant role ineffectiveness of a study. It not only navigates the researcher but also prevents the researcher from building an inconclusive study. By guiding as light in the entire thesis, the hypothesis contributes to suggesting and testing the theories along with describing the legal or social phenomenon.

Importance of Hypothesis

Navigate research

A hypothesis helps in identifying the areas that should be focused on for solving the research problem. It helps frame the concepts of study in a meaningful and effective manner. It also helps the researcher arrive at a conclusion for the study based on organized empirical data examination.

Prevents blind research

A hypothesis guides the researcher in the processes that need to be followed throughout the study. It prevents the researcher from collecting massive data and doing blind research which would prove irrelevant.

A platform for investigating activities

By examining conceptual and factual elements related to the problem of a thesis, the hypothesis provides a framework for drawing effective conclusions. It also helps stimulate further studies.

Describes a phenomenon

Each time a hypothesis is tested, more information about the concerned phenomenon is made available. Empirical support via hypothesis testing helps analyse aspects that were unexplored earlier.

Framing accurate research hypothesis statements

For the deduction of accurate and reliable outcomes from the analysis, belong stated things should be noted:

  • Should never be formulated in the form of a question.
  • Empirical testability of the hypothesis should be possible.
  • A precise and specific statement of concept should be present.
  • The hypothesis should not be contradictory to the identified concept and linkage between the variables.
  • A clear specification of all the variables which are used for building relationships in the hypothesis should be present.
  • The focus of a single hypothesis should only be on one issue. No multi-issue consideration should be taken while building the hypothesis i.e. could only be either relational or descriptive.
  • The hypothesis should not be conflicting with the defined law of nature which is already specified as true.
  • Effective tools and techniques need to be used for the verification of the hypothesis.
  • The form of the hypothesis statement should be simple and understandable. Complex or conflicting statement reduces the applicability and reliability of the thesis results.
  • The hypothesis should be amendable in the form that testing could be completed within a specified reasonable time.
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on Telegram (Opens in new window)

Notify me of follow-up comments by email.

4 thoughts on “Understanding the importance of a research hypothesis”

Proofreading.

Logo for UEN Digital Press with Pressbooks

Assumptions, Making Recommendations, and Dissemination

This section challenges assumptions, explores making intervention recommendations, and dissemination of findings.

Content includes:

  • Assumptions
  • Making recommendations

Dissemination

Objectives:

  • List two assumptions related to an evidence-based project.
  • Check assumptions related to an evidence-based project.
  • Describe recommended interventions for an EBP project.

As we move forward with creating your EBP Poster, you will need to really evaluate your own assumptions. As a beginning nursing student, it is fairly reasonable and expected to insert one’s own experiences and assumptions into the published research. It’s easy to “not” see results objectively. This is where the phrase, “Never make assumptions without seeking clarification” comes into play.

What are assumptions? Assumptions   are statements or perceptions thought to be true and taken for granted; a thing that is accepted to be true or certain. Assumptions are ingrained in thinking and are strongly impacted by one’s unique personality and culture. Assumptions are the often used as the basic for thinking. People tend to create assumptions into habits of thinking and doing (Brookfield, 1987). By asking and answering questions, one can develop skills in uncovering assumptions (Paul & Elder, 2008).

Strive to become aware of your assumptions and integrate this cognitive skill into your daily life. This will help you to prevent thinking errors. The act of making assumptions is a good thing, as this is the basis for thinking. However, some assumptions are incorrect, so critical thinkers develop the skill of checking their assumptions. In this module, the meaning of an assumption, how to check assumptions, and how assumptions relate to evidence-based practice is the primary focus. Since assumptions are so ingrained in people, part of being a critical thinker is to practice assumption awareness.

Remember, we would not walk into a room, look at a flat line on a monitor, and simply assume the patient is dead, right? We would assess the situation – airway, breathing, circulation, and so on. In doing so, we are seeking clarification. We are asking, “ Is  that monitor accurate? ” , “ What is going on ?” , “ I need to find out if this what I see is true ” , etc. We would not just pronounce the person dead and move on. Part of clarifying our thinking while performing assessments, having conversations with peers and instructors, and reading research articles is to constantly seek clarification. This takes advanced skill and is not as easy as one might think.

Image of blurred text with a magnifying glass with fake news written in it.

Here is an example.

I made a very erroneous assumption while I was a young nursing student. We had some very important assignments that were due at the end of the semester. It was noted that there were no late grace periods for those assignments as the turnaround for final grades was soon thereafter. I missed the due date. I turned it in the next day. Unfortunately, the instructor could offer no lenient point deduction for that assignment. I received a zero. My course grade dropped from an A to a B. I proceeded to get very angry at her, assuming she had the choice to let my assignment slip by since I had turned everything else in on time all semester and had received great grades on everything. I then proceeded to discuss it with another instructor and was quickly schooled that it was not the choice or decision of that particular instructor, but that it was a program policy due to the assignment being so close to the end of the semester. To this day, I regret my assumption in that the instructor was being mean. My assumption produced negative thoughts and almost resulted in me giving her a bad evaluation. Do you see how quickly it can happen? Assumptions can sometimes lead to very destructive actions that can affect others, including our patients. Assumptions are so often based on our emotions, our previous experiences in life, and others’ influences on us.

Checking Assumptions

A very important point to make is that all people make assumptions. Some assumptions are accurate, and others can really lead to mislead our thinking. The act of checking assumptions is a critical skill for critical thinkers.

Brain Workout: Let’s Practice Being Aware of and Checking Assumptions

why are assumptions and hypothesis important in research

What is an assumption you made today?

Did you assume this module was going to be complete? (It might have been blank.)

Did you assume the electricity would work?

Did you assume class would start on time? Get out early? Have a break every 50 minutes?

What is an assumption you made about the PICO statement you wrote for your EBP project?

This is usually very difficult for most people to learn the skill of checking assumptions, because they are so ingrained that people do not realize they are even making assumptions.

One way to improve your skills with checking assumptions is to consciously question your assumptions every single day. Ask me questions in class to seek clarification! I love clarifying questions and it shows me that you are ready to become a critical thinker!

Application Practice

When driving a car and you have to suddenly stop for a red light. What do you do besides brake?

Most people look in the rearview mirror to see if the car behind them is also stopping. This is checking an assumption!

Strive to be aware of checking your assumptions.

When I ride my motorcycle, I assume that I am absolutely invisible. I assume no one can see me. My superpower! My invisibility cloak. I assume that no one can see me, and this mindset helps me to be more aware of myself and cars. Sometimes, assumptions can be of help in life so that we can predict consequences.

Case Study: An Error in Judgment

A nurse stated that patients with diabetes should all be taking their medications and eating as ordered and most of them were non-compliant. She pointed to a patient with diabetes who was admitted with sepsis as an example. She said the patient had a high glucose on admission to the ICU and that is proof they were not being compliant. The patient’s physician came a few minutes later and shared that the patient was one of the most stable patients with diabetes he had ever seen in his practice. He said the patient has had normal A1C values (a lab test that measures the average blood glucose over a 3-month period) at every checkup. He said the patient’s elevated glucose was a result of the massive infection.

The nurse had judged the patient incorrectly, based on false assumptions. Had the nurse checked her assumptions, she would have noted the normal A1C value in the patient’s chart and/or withheld judgment until gathering more information from the physician. A normal A1C value in a patient who is acutely ill usually indicates the patient had been stable with diabetes until becoming acutely ill. The elevated glucose is a sign of the body’s physiological response to stress.

Now You Try! Case Study: The Patient and Pulse

A nurse was assessing a patient with a history of congestive heart failure who was just admitted to the intensive care unit with a heart rate of 30-32 and complete heart block. The physician visited with the nurse about possible causes of the complete heart block and slow heart rate. The patient stated he was faint feeling, and his blood pressure was 102/50. The patient had his medications adjusted about a month ago. The nurse was present in the patient’s room and heard the physician ask the patient if he checks his pulse at home. The patient replied, “Yes, and it is always 60.”

What are two assumptions about this case so far? List two assumptions.

The nurse was curious about the heart rate. Something did not seem right. The nurse wanted to check into how the patient checks his pulse.

What assumption is the nurse checking? (Hint: assumptions are usually the most obvious–but so obvious that they can be missed.)

The nurse asked the patient to show how he checked his pulse and asked him if he could see the clock on the wall with the second hand. He answered yes and told her which number on the clock the second hand was pointing. The nurse was checking his vision–the first assumption she was checking.

Next, the nurse asked the patient to show how he checks his pulse. The nurse felt the patient’s radial pulse while he also checked his radial pulse on his other arm. The nurse watched silently as the patient watched the clock and counted to 60. Then he stopped and said his pulse was 60. However, the nurse counted 30 beats per minute. Then she realized what happened! He watched the clock and counted to 60–he was not counting his pulse!

The nurse was checking the assumption the patient knew how to correctly count his pulse. He did not. Once the patient’s heart rate was improved, he was taught how to correctly count his pulse.

Take time to think about assumptions and EBP projects.

For example, should one assume all the staff nurses will be delighted to implement a EBP project?

Should one assume all nurses understand EBP?

Should one assume all nurses value EBP?

Will the organization support an EBP project?

Assumptions and Evidence-Based Practice

Think about the evidence-based practice topic you have chosen for your EBP project. What are two or three assumptions related to your project? Your project may be hypothetical (we won’t actually be implementing your project in a clinical setting) to learn the steps of EBP in a course. Even for a hypothetical EBP interventional project, think of some assumptions that should be checked. List your assumptions. Remember these are usually so obvious that it is easy to miss them, because they may be taken for granted.

Ideas to help start thinking:

Will supplies be needed for the project? Who will pay for the supplies? Who will order the supplies? Are the supplies expensive?

What permissions will be (if any) required for the EBP project?

Who will be involved with the EBP project?

Will staff want to participate with the EBP project?

Will staff need orientation to the EBP project?

why are assumptions and hypothesis important in research

EBP Recommendations for Interventions

Interventions based on research evidence that are suggested as part of an EBP project is one step in the process. Remember from a previous module that EBP interventions are based on research evidence, clinician expertise, and patient/family/community interventions (Schmidt & Brown, 2019). EBP recommendations are founded by current research evidence with findings that support improved outcomes for the patient/family/community. Sometimes EBP recommendations include one single intervention, while other times they are a bundle of interventions. This is where the term bundles came about in EBP. A bundle has a group of interventions implemented together because the best outcomes are found when the interventions are done together.

For the EBP project, you will write statements in the Discussion section explaining the intervention(s) based on the research evidence. Be sure to cite the research evidence on the poster to actually support the intervention choices. State exactly what you are recommending. State in clear and specific terms what is recommended. For example, if you say you recommend an adjustment of how often the central line dressings are changed, will everyone know what you mean?  However, if you say you recommend central line dressing changes be required every 48 hours, this is more specific.  Will in-service/orientation for staff be required? And if so, what will be the time needed to receive the in-service/orientation education about the interventions? The specifics will vary greatly depending on the organization and actual topic/interventions. Insight about these items should be included with the recommendations.

The Words “Proof” and “Proves” and Nursing Science

Again, back to this concept. It cannot be stressed nearly enough. Research evidence only supports what we believe to be true. The word “proof” or “proves” is not used with research as we really do not prove anything (Boswell & Cannon, 2020; Houser, 2018; Siegel, 2017).  Proof is a very strong word that means absolute or definitive. Most nursing science is relative to the times and new innovations. So, research evidence supports what is believed to be true. Avoid using the words proof and proves in nursing science.

For example, years ago, we believed the best way to provide care for patients with acute myocardial infarction was to admit them to a critical care bed with cardiac monitoring and administer morphine sulfate intravenous and xylocaine intravenous drips. Patients would be watched over as they had their myocardial infarctions. We would treat any complications as they happened.  Most patients were quite confused and delirious after the morphine/xylocaine intravenous cocktails. Many patients would describe vivid hallucinations while having their heart attacks!  One lady thought we were at the airport and wanted help with her luggage so she would not miss her flight! She was quite adamant about this hallucination and only after being weaned from her xylocaine intravenous drip, did she stop obsessing about catching the flight.  At the time, this was the best evidence available to help patients. Clinicians literally watched patients have myocardial infarctions and treated the complications as they happen. The goal was to keep them alive.

Today, interventional cardiology is used to treat patients having acute myocardial infarctions with the intent to prevent as much permanent damage as possible.  Patients are taken to the catheter lab for immediate intervention.  This dramatic change in cardiology practice is all due to the application of research evidence.  The point is this:  what we believe to be true is relevant to the time and research evidence available. This is why we avoid using prove or proof in nursing and health sciences. We do not seek to prove; we seek to advance the research evidence and application of research evidence in practice.  We use evidence to support practices that promote the best outcomes for patients/families/communities.

Dissemination is extremely important. It simply means “getting the findings of research to the people who can make use of them”. This step is often either delayed or never occurs. Dissemination usually occurs either by written or spoken word. The traditional means to dissemination include academic publishing (e.g. academic journals) and conferences and workshops (e.g. posters, presentations, etc.). It “seems” easy, right? However, unfortunately, there are many reasons that findings are never shared. Mainly, it takes a lot of effort. It is laborious to get published. It often requires financial backing to attend a conference.

To disseminate our EBP Projects, we will be conducting a semi-formal poster session-style presentation much like at a conference setting. It is recommended that you should introduce your poster presentation with a “1 Minute Pitch” that can sometimes stretch a bit longer than one minute. You don’t want to “give everything away” so to speak, but rather capture the audience’s interest, introduce yourself and the project, and spark a dialogue. We will spend time in class going over the parameters for presentation.

why are assumptions and hypothesis important in research

References & Attribution

“ Green check mark ” by rawpixel licensed CC0 .

“ Light bulb doodle ” by rawpixel licensed CC0 .

“ Orange flame ” by rawpixel licensed CC0 .

Boswell, C. & Cannon, S. (2020). Introduction to nursing research: Incorporating evidence-based practice (5th ed.). Jones & Bartlett Learning.

Brookfield, S. (1987). Challenging adults to explore alternative ways of thinking and acting. Jossey-Bass, Inc., Publishers. 

Houser, J. (2018). Nursing research: Reading, using, and creating evidence (4th ed.). Jones & Bartlett Learning.

Paul, R. & Elder, L. (2008).  Critical thinking: The art of Socratic questioning, part III.   Journal of Developmental Education, 31 (3), 34-35.   Retrieved from https://eric.ed.gov/?id=EJ832681

Schmidt, N. A. & Brown, J. M. (2019). Evidence-based practice for nurses: Appraisal and application of research (4th ed.). Jones & Bartlett Learning.

Seigel, E. (2017). Scientific proof is a myth. Forbes , (11), Retrieved from https://www.forbes.com/sites/startswithabang/2017/11/22/scientific-proof-is-a-myth/#3f6972672fb1

Evidence-Based Practice & Research Methodologies Copyright © by Tracy Fawns is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

IMAGES

  1. What is a Hypothesis

    why are assumptions and hypothesis important in research

  2. PPT

    why are assumptions and hypothesis important in research

  3. 😀 Assumptions in research methodology. Assessing the Methodology of the

    why are assumptions and hypothesis important in research

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    why are assumptions and hypothesis important in research

  5. đŸ·ïž Formulation of hypothesis in research. How to Write a Strong

    why are assumptions and hypothesis important in research

  6. Importance of hypothesis and Introduction to Data Collection

    why are assumptions and hypothesis important in research

VIDEO

  1. What is Hypothesis

  2. Research Methods

  3. What is Null Hypothesis Testing Mean? || Academic Research || Ettienne-Murphy

  4. Hypothesis testing and its types

  5. What is Hypothesis? And it's types. #hypothesis

  6. Hypothesis Framing & testing

COMMENTS

  1. Why Are Assumptions Important?

    Assumptions are the foci for any theory and thus any paradigm. It is important to make assumptions explicit and to make a sufficient number of assumptions to describe the phenomenon at hand. Explication of assumptions is even more crucial in research methods used to test the theories. As Mitroff and Bonoma (Evaluation quarterly 2:235-60, 1978 ...

  2. Assumptions and hypotheses: The difference and why it matters

    Why It Matters. It is important to be aware of our assumptions and to challenge them regularly. We should also be open to revising our hypotheses in light of new evidence. Assumptions can be dangerous because they can lead us to make mistakes. For example, if we assume that everyone is honest, we may be more likely to be taken advantage of.

  3. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    A research hypothesis is an assumption or a tentative explanation for a specific process observed during research. Unlike a guess, research hypothesis is a calculated, educated guess proven or disproven through research methods. ... Thus, knowing how to write a hypothesis is very important. Now that you have a firmer grasp on what a good ...

  5. An Introduction to Statistics: Understanding Hypothesis Testing and

    HYPOTHESIS TESTING. A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the "alternate" hypothesis, and the opposite ...

  6. Research Hypothesis: What It Is, Types + How to Develop?

    A research hypothesis helps test theories. A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior. It serves as a great platform for investigation activities.

  7. Research: Articulating Questions, Generating Hypotheses, and Choosing

    Articulating a clear and concise research question is fundamental to conducting a robust and useful research study. Although "getting stuck into" the data collection is the exciting part of research, this preparation stage is crucial. Clear and concise research questions are needed for a number of reasons. Initially, they are needed to ...

  8. The Research Hypothesis: Role and Construction

    A hypothesis (from the Greek, foundation) is a logical construct, interposed between a problem and its solution, which represents a proposed answer to a research question. It gives direction to the investigator's thinking about the problem and, therefore, facilitates a solution. Unlike facts and assumptions (presumed true and, therefore, not ...

  9. The power (and dangers) of assumptions

    Research has played (and continues to play) an important role in challenging assumptions in that it exposes us to new knowledge that disrupts what we already think we know. However, to have such an impact requires that we are able to access and utilise research findings in practice. This in turn places a responsibility on us as researchers to ...

  10. The Role of Hypotheses in Research Studies: A Simple Guide

    Essentially, a hypothesis is a tentative statement that predicts the relationship between two or more variables in a research study. It is usually derived from a theoretical framework or previous ...

  11. Assumptions in Research: Foundation, 5 Types, and Impact

    Some of the common sense assumptions are taken to conduct a research. For example: Heart attack is more common in urban areas as compared to rural areas. 4. Warranted. This assumption is supported by certain evidence. For example: Regular walk can reduce obesity. 5.

  12. Why Are Assumptions Important In Research: Understanding The Role They

    Assumptions play an important role in research, as they help researchers to make predictions, create hypothesis, and develop research designs. There are different types of assumptions that researchers make, which include: Statistical Assumptions: These are assumptions that are made when conducting statistical analyses.

  13. Unpacking Assumptions in Research Synthesis: A Critical Construct

    The identification of underlying assumptions in the research synthesis process is not a warrant for "anything-goes" relativism or a call to increase objectivity. Rather it supports the position that methodological decisions about what research designs to include in a research synthesis, and constructs that inform and emanate from those ...

  14. 28.2 About hypotheses and assumptions

    Alternative hypotheses can be one-tailed or two-tailed.A two-tailed alternative hypothesis means, for example, that the population mean could be either smaller or larger than what is claimed. A one-tailed alternative hypothesis admits only one of those two possibilities.Most (but not all) hypothesis tests are two-tailed. The decision about whether the alternative hypothesis is one- or two ...

  15. Why are Assumptions Important?

    Abstract. Assumptions are the foci for any theory and thus any paradigm. It is also important that assumptions are made explicit, and that the number of assumptions is sufficient to describe the phenomenon at hand. Explication of assumptions is even more crucial in research methods used to test the theories.

  16. (PDF) Significance of Hypothesis in Research

    Process of formulating the hypothesis Hypothesis a forerunner for a research problem and many a times is encircled as an enquiry or question. ... Research generates assumptions, possibilities and ...

  17. Why are Assumptions Important?

    Abstract. Assumptions are the foci for any theory and thus any paradigm. It is also important that assumptions are made explicit, and that the number of assumptions is sufficient to describe the ...

  18. How Do You Formulate (Important) Hypotheses?

    Research questions can play an important role in the research process. They provide a succinct way of capturing your research interests and communicating them to others. ... Following the usual assumptions at the time and recognizing the new curriculum would introduce the concepts, the researchers predicted that, before instruction, most ...

  19. Understanding the importance of a research hypothesis

    When conducting research, there are certain assumptions that are made by the researcher. According to the available information, the goal is to present the expected outcome after testing them. A hypothesis should be precise and accurate. A hypothesis is a clear statement of the information that the researcher intends to investigate.

  20. Research questions, hypotheses and objectives

    Research question. Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know "where the boundary between current ...

  21. Assumptions and Hypothesis Tests (Chapter 8)

    Summary. This short chapter formally defines hypothesis tests in terms of decision rules paired with assumptions. It defines when one set of assumptions is more restrictive than another set. It further defines a multiple perspective decision rule, where one decision rule (and hence its p-value function) can be applied under different sets of ...

  22. Assumptions, Making Recommendations, and Dissemination

    Appendix D3 Reading the Research Problem, Research Question, and Hypothesis for Critical Appraisal. Appendix E EBP Project Group Members. ... Remember, assumptions are an important part of critical thinking because assumptions are often the basis for thinking. So, if the assumptions are unchecked and incorrect, this may be the root cause of ...

  23. Why Are Assumptions Important?

    Assumptions are the foci for any theory and thus any paradigm. It is important to make assumptions explicit and to make a sufficient number of assumptions to describe the phenomenon at hand ...