• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

example of data analysis research paper

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

NPS Survey Platform

NPS Survey Platform: Types, Tips, 11 Best Platforms & Tools

Apr 26, 2024

user journey vs user flow

User Journey vs User Flow: Differences and Similarities

gap analysis tools

Best 7 Gap Analysis Tools to Empower Your Business

Apr 25, 2024

employee survey tools

12 Best Employee Survey Tools for Organizational Excellence

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Data Analysis in Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

example of data analysis research paper

  • Yong Moon Jung 2  

1762 Accesses

2 Citations

Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility. Conducting quantitative data analysis requires a prerequisite understanding of the statistical knowledge and skills. It also requires rigor in the choice of appropriate analysis model and the interpretation of the analysis outcomes. Basically, the choice of appropriate analysis techniques is determined by the type of research question and the nature of the data. In addition, different analysis techniques require different assumptions of data. This chapter provides introductory guides for readers to assist them with their informed decision-making in choosing the correct analysis models. To this end, it begins with discussion of the levels of measure: nominal, ordinal, and scale. Some commonly used analysis techniques in univariate, bivariate, and multivariate data analysis are presented for practical examples. Example analysis outcomes are produced by the use of SPSS (Statistical Package for Social Sciences).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Armstrong JS. Significance tests harm progress in forecasting. Int J Forecast. 2007;23(2):321–7.

Article   Google Scholar  

Babbie E. The practice of social research. 14th ed. Belmont: Cengage Learning; 2016.

Google Scholar  

Brockopp DY, Hastings-Tolsma MT. Fundamentals of nursing research. Boston: Jones & Bartlett; 2003.

Creswell JW. Research design: qualitative, quantitative, and mixed methods approaches. Thousand Oaks: Sage; 2014.

Fawcett J. The relationship of theory and research. Philadelphia: F. A. Davis; 1999.

Field A. Discovering statistics using IBM SPSS statistics. London: Sage; 2013.

Grove SK, Gray JR, Burns N. Understanding nursing research: building an evidence-based practice. 6th ed. St. Louis: Elsevier Saunders; 2015.

Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RD. Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall; 2006.

Katz MH. Multivariable analysis: a practical guide for clinicians. Cambridge: Cambridge University Press; 2006.

Book   Google Scholar  

McHugh ML. Scientific inquiry. J Specialists Pediatr Nurs. 2007; 8 (1):35–7. Volume 8, Issue 1, Version of Record online: 22 FEB 2007

Pallant J. SPSS survival manual: a step by step guide to data analysis using IBM SPSS. Sydney: Allen & Unwin; 2016.

Polit DF, Beck CT. Nursing research: principles and methods. Philadelphia: Lippincott Williams & Wilkins; 2004.

Trochim WMK, Donnelly JP. Research methods knowledge base. 3rd ed. Mason: Thomson Custom Publishing; 2007.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Boston: Pearson Education.

Wells CS, Hin JM. Dealing with assumptions underlying statistical tests. Psychol Sch. 2007;44(5):495–502.

Download references

Author information

Authors and affiliations.

Centre for Business and Social Innovation, University of Technology Sydney, Ultimo, NSW, Australia

Yong Moon Jung

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Yong Moon Jung .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Jung, Y.M. (2019). Data Analysis in Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_109

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_109

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Grad Coach

Qualitative Data Analysis Methods 101:

The “big 6” methods + examples.

By: Kerryn Warren (PhD) | Reviewed By: Eunice Rautenbach (D.Tech) | May 2020 (Updated April 2023)

Qualitative data analysis methods. Wow, that’s a mouthful. 

If you’re new to the world of research, qualitative data analysis can look rather intimidating. So much bulky terminology and so many abstract, fluffy concepts. It certainly can be a minefield!

Don’t worry – in this post, we’ll unpack the most popular analysis methods , one at a time, so that you can approach your analysis with confidence and competence – whether that’s for a dissertation, thesis or really any kind of research project.

Qualitative data analysis methods

What (exactly) is qualitative data analysis?

To understand qualitative data analysis, we need to first understand qualitative data – so let’s step back and ask the question, “what exactly is qualitative data?”.

Qualitative data refers to pretty much any data that’s “not numbers” . In other words, it’s not the stuff you measure using a fixed scale or complex equipment, nor do you analyse it using complex statistics or mathematics.

So, if it’s not numbers, what is it?

Words, you guessed? Well… sometimes , yes. Qualitative data can, and often does, take the form of interview transcripts, documents and open-ended survey responses – but it can also involve the interpretation of images and videos. In other words, qualitative isn’t just limited to text-based data.

So, how’s that different from quantitative data, you ask?

Simply put, qualitative research focuses on words, descriptions, concepts or ideas – while quantitative research focuses on numbers and statistics . Qualitative research investigates the “softer side” of things to explore and describe , while quantitative research focuses on the “hard numbers”, to measure differences between variables and the relationships between them. If you’re keen to learn more about the differences between qual and quant, we’ve got a detailed post over here .

qualitative data analysis vs quantitative data analysis

So, qualitative analysis is easier than quantitative, right?

Not quite. In many ways, qualitative data can be challenging and time-consuming to analyse and interpret. At the end of your data collection phase (which itself takes a lot of time), you’ll likely have many pages of text-based data or hours upon hours of audio to work through. You might also have subtle nuances of interactions or discussions that have danced around in your mind, or that you scribbled down in messy field notes. All of this needs to work its way into your analysis.

Making sense of all of this is no small task and you shouldn’t underestimate it. Long story short – qualitative analysis can be a lot of work! Of course, quantitative analysis is no piece of cake either, but it’s important to recognise that qualitative analysis still requires a significant investment in terms of time and effort.

Need a helping hand?

example of data analysis research paper

In this post, we’ll explore qualitative data analysis by looking at some of the most common analysis methods we encounter. We’re not going to cover every possible qualitative method and we’re not going to go into heavy detail – we’re just going to give you the big picture. That said, we will of course includes links to loads of extra resources so that you can learn more about whichever analysis method interests you.

Without further delay, let’s get into it.

The “Big 6” Qualitative Analysis Methods 

There are many different types of qualitative data analysis, all of which serve different purposes and have unique strengths and weaknesses . We’ll start by outlining the analysis methods and then we’ll dive into the details for each.

The 6 most popular methods (or at least the ones we see at Grad Coach) are:

  • Content analysis
  • Narrative analysis
  • Discourse analysis
  • Thematic analysis
  • Grounded theory (GT)
  • Interpretive phenomenological analysis (IPA)

Let’s take a look at each of them…

QDA Method #1: Qualitative Content Analysis

Content analysis is possibly the most common and straightforward QDA method. At the simplest level, content analysis is used to evaluate patterns within a piece of content (for example, words, phrases or images) or across multiple pieces of content or sources of communication. For example, a collection of newspaper articles or political speeches.

With content analysis, you could, for instance, identify the frequency with which an idea is shared or spoken about – like the number of times a Kardashian is mentioned on Twitter. Or you could identify patterns of deeper underlying interpretations – for instance, by identifying phrases or words in tourist pamphlets that highlight India as an ancient country.

Because content analysis can be used in such a wide variety of ways, it’s important to go into your analysis with a very specific question and goal, or you’ll get lost in the fog. With content analysis, you’ll group large amounts of text into codes , summarise these into categories, and possibly even tabulate the data to calculate the frequency of certain concepts or variables. Because of this, content analysis provides a small splash of quantitative thinking within a qualitative method.

Naturally, while content analysis is widely useful, it’s not without its drawbacks . One of the main issues with content analysis is that it can be very time-consuming , as it requires lots of reading and re-reading of the texts. Also, because of its multidimensional focus on both qualitative and quantitative aspects, it is sometimes accused of losing important nuances in communication.

Content analysis also tends to concentrate on a very specific timeline and doesn’t take into account what happened before or after that timeline. This isn’t necessarily a bad thing though – just something to be aware of. So, keep these factors in mind if you’re considering content analysis. Every analysis method has its limitations , so don’t be put off by these – just be aware of them ! If you’re interested in learning more about content analysis, the video below provides a good starting point.

QDA Method #2: Narrative Analysis 

As the name suggests, narrative analysis is all about listening to people telling stories and analysing what that means . Since stories serve a functional purpose of helping us make sense of the world, we can gain insights into the ways that people deal with and make sense of reality by analysing their stories and the ways they’re told.

You could, for example, use narrative analysis to explore whether how something is being said is important. For instance, the narrative of a prisoner trying to justify their crime could provide insight into their view of the world and the justice system. Similarly, analysing the ways entrepreneurs talk about the struggles in their careers or cancer patients telling stories of hope could provide powerful insights into their mindsets and perspectives . Simply put, narrative analysis is about paying attention to the stories that people tell – and more importantly, the way they tell them.

Of course, the narrative approach has its weaknesses , too. Sample sizes are generally quite small due to the time-consuming process of capturing narratives. Because of this, along with the multitude of social and lifestyle factors which can influence a subject, narrative analysis can be quite difficult to reproduce in subsequent research. This means that it’s difficult to test the findings of some of this research.

Similarly, researcher bias can have a strong influence on the results here, so you need to be particularly careful about the potential biases you can bring into your analysis when using this method. Nevertheless, narrative analysis is still a very useful qualitative analysis method – just keep these limitations in mind and be careful not to draw broad conclusions . If you’re keen to learn more about narrative analysis, the video below provides a great introduction to this qualitative analysis method.

QDA Method #3: Discourse Analysis 

Discourse is simply a fancy word for written or spoken language or debate . So, discourse analysis is all about analysing language within its social context. In other words, analysing language – such as a conversation, a speech, etc – within the culture and society it takes place. For example, you could analyse how a janitor speaks to a CEO, or how politicians speak about terrorism.

To truly understand these conversations or speeches, the culture and history of those involved in the communication are important factors to consider. For example, a janitor might speak more casually with a CEO in a company that emphasises equality among workers. Similarly, a politician might speak more about terrorism if there was a recent terrorist incident in the country.

So, as you can see, by using discourse analysis, you can identify how culture , history or power dynamics (to name a few) have an effect on the way concepts are spoken about. So, if your research aims and objectives involve understanding culture or power dynamics, discourse analysis can be a powerful method.

Because there are many social influences in terms of how we speak to each other, the potential use of discourse analysis is vast . Of course, this also means it’s important to have a very specific research question (or questions) in mind when analysing your data and looking for patterns and themes, or you might land up going down a winding rabbit hole.

Discourse analysis can also be very time-consuming  as you need to sample the data to the point of saturation – in other words, until no new information and insights emerge. But this is, of course, part of what makes discourse analysis such a powerful technique. So, keep these factors in mind when considering this QDA method. Again, if you’re keen to learn more, the video below presents a good starting point.

QDA Method #4: Thematic Analysis

Thematic analysis looks at patterns of meaning in a data set – for example, a set of interviews or focus group transcripts. But what exactly does that… mean? Well, a thematic analysis takes bodies of data (which are often quite large) and groups them according to similarities – in other words, themes . These themes help us make sense of the content and derive meaning from it.

Let’s take a look at an example.

With thematic analysis, you could analyse 100 online reviews of a popular sushi restaurant to find out what patrons think about the place. By reviewing the data, you would then identify the themes that crop up repeatedly within the data – for example, “fresh ingredients” or “friendly wait staff”.

So, as you can see, thematic analysis can be pretty useful for finding out about people’s experiences , views, and opinions . Therefore, if your research aims and objectives involve understanding people’s experience or view of something, thematic analysis can be a great choice.

Since thematic analysis is a bit of an exploratory process, it’s not unusual for your research questions to develop , or even change as you progress through the analysis. While this is somewhat natural in exploratory research, it can also be seen as a disadvantage as it means that data needs to be re-reviewed each time a research question is adjusted. In other words, thematic analysis can be quite time-consuming – but for a good reason. So, keep this in mind if you choose to use thematic analysis for your project and budget extra time for unexpected adjustments.

Thematic analysis takes bodies of data and groups them according to similarities (themes), which help us make sense of the content.

QDA Method #5: Grounded theory (GT) 

Grounded theory is a powerful qualitative analysis method where the intention is to create a new theory (or theories) using the data at hand, through a series of “ tests ” and “ revisions ”. Strictly speaking, GT is more a research design type than an analysis method, but we’ve included it here as it’s often referred to as a method.

What’s most important with grounded theory is that you go into the analysis with an open mind and let the data speak for itself – rather than dragging existing hypotheses or theories into your analysis. In other words, your analysis must develop from the ground up (hence the name). 

Let’s look at an example of GT in action.

Assume you’re interested in developing a theory about what factors influence students to watch a YouTube video about qualitative analysis. Using Grounded theory , you’d start with this general overarching question about the given population (i.e., graduate students). First, you’d approach a small sample – for example, five graduate students in a department at a university. Ideally, this sample would be reasonably representative of the broader population. You’d interview these students to identify what factors lead them to watch the video.

After analysing the interview data, a general pattern could emerge. For example, you might notice that graduate students are more likely to read a post about qualitative methods if they are just starting on their dissertation journey, or if they have an upcoming test about research methods.

From here, you’ll look for another small sample – for example, five more graduate students in a different department – and see whether this pattern holds true for them. If not, you’ll look for commonalities and adapt your theory accordingly. As this process continues, the theory would develop . As we mentioned earlier, what’s important with grounded theory is that the theory develops from the data – not from some preconceived idea.

So, what are the drawbacks of grounded theory? Well, some argue that there’s a tricky circularity to grounded theory. For it to work, in principle, you should know as little as possible regarding the research question and population, so that you reduce the bias in your interpretation. However, in many circumstances, it’s also thought to be unwise to approach a research question without knowledge of the current literature . In other words, it’s a bit of a “chicken or the egg” situation.

Regardless, grounded theory remains a popular (and powerful) option. Naturally, it’s a very useful method when you’re researching a topic that is completely new or has very little existing research about it, as it allows you to start from scratch and work your way from the ground up .

Grounded theory is used to create a new theory (or theories) by using the data at hand, as opposed to existing theories and frameworks.

QDA Method #6:   Interpretive Phenomenological Analysis (IPA)

Interpretive. Phenomenological. Analysis. IPA . Try saying that three times fast…

Let’s just stick with IPA, okay?

IPA is designed to help you understand the personal experiences of a subject (for example, a person or group of people) concerning a major life event, an experience or a situation . This event or experience is the “phenomenon” that makes up the “P” in IPA. Such phenomena may range from relatively common events – such as motherhood, or being involved in a car accident – to those which are extremely rare – for example, someone’s personal experience in a refugee camp. So, IPA is a great choice if your research involves analysing people’s personal experiences of something that happened to them.

It’s important to remember that IPA is subject – centred . In other words, it’s focused on the experiencer . This means that, while you’ll likely use a coding system to identify commonalities, it’s important not to lose the depth of experience or meaning by trying to reduce everything to codes. Also, keep in mind that since your sample size will generally be very small with IPA, you often won’t be able to draw broad conclusions about the generalisability of your findings. But that’s okay as long as it aligns with your research aims and objectives.

Another thing to be aware of with IPA is personal bias . While researcher bias can creep into all forms of research, self-awareness is critically important with IPA, as it can have a major impact on the results. For example, a researcher who was a victim of a crime himself could insert his own feelings of frustration and anger into the way he interprets the experience of someone who was kidnapped. So, if you’re going to undertake IPA, you need to be very self-aware or you could muddy the analysis.

IPA can help you understand the personal experiences of a person or group concerning a major life event, an experience or a situation.

How to choose the right analysis method

In light of all of the qualitative analysis methods we’ve covered so far, you’re probably asking yourself the question, “ How do I choose the right one? ”

Much like all the other methodological decisions you’ll need to make, selecting the right qualitative analysis method largely depends on your research aims, objectives and questions . In other words, the best tool for the job depends on what you’re trying to build. For example:

  • Perhaps your research aims to analyse the use of words and what they reveal about the intention of the storyteller and the cultural context of the time.
  • Perhaps your research aims to develop an understanding of the unique personal experiences of people that have experienced a certain event, or
  • Perhaps your research aims to develop insight regarding the influence of a certain culture on its members.

As you can probably see, each of these research aims are distinctly different , and therefore different analysis methods would be suitable for each one. For example, narrative analysis would likely be a good option for the first aim, while grounded theory wouldn’t be as relevant. 

It’s also important to remember that each method has its own set of strengths, weaknesses and general limitations. No single analysis method is perfect . So, depending on the nature of your research, it may make sense to adopt more than one method (this is called triangulation ). Keep in mind though that this will of course be quite time-consuming.

As we’ve seen, all of the qualitative analysis methods we’ve discussed make use of coding and theme-generating techniques, but the intent and approach of each analysis method differ quite substantially. So, it’s very important to come into your research with a clear intention before you decide which analysis method (or methods) to use.

Start by reviewing your research aims , objectives and research questions to assess what exactly you’re trying to find out – then select a qualitative analysis method that fits. Never pick a method just because you like it or have experience using it – your analysis method (or methods) must align with your broader research aims and objectives.

No single analysis method is perfect, so it can often make sense to adopt more than one  method (this is called triangulation).

Let’s recap on QDA methods…

In this post, we looked at six popular qualitative data analysis methods:

  • First, we looked at content analysis , a straightforward method that blends a little bit of quant into a primarily qualitative analysis.
  • Then we looked at narrative analysis , which is about analysing how stories are told.
  • Next up was discourse analysis – which is about analysing conversations and interactions.
  • Then we moved on to thematic analysis – which is about identifying themes and patterns.
  • From there, we went south with grounded theory – which is about starting from scratch with a specific question and using the data alone to build a theory in response to that question.
  • And finally, we looked at IPA – which is about understanding people’s unique experiences of a phenomenon.

Of course, these aren’t the only options when it comes to qualitative data analysis, but they’re a great starting point if you’re dipping your toes into qualitative research for the first time.

If you’re still feeling a bit confused, consider our private coaching service , where we hold your hand through the research process to help you develop your best work.

example of data analysis research paper

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research design for qualitative and quantitative studies

84 Comments

Richard N

This has been very helpful. Thank you.

netaji

Thank you madam,

Mariam Jaiyeola

Thank you so much for this information

Nzube

I wonder it so clear for understand and good for me. can I ask additional query?

Lee

Very insightful and useful

Susan Nakaweesi

Good work done with clear explanations. Thank you.

Titilayo

Thanks so much for the write-up, it’s really good.

Hemantha Gunasekara

Thanks madam . It is very important .

Gumathandra

thank you very good

Pramod Bahulekar

This has been very well explained in simple language . It is useful even for a new researcher.

Derek Jansen

Great to hear that. Good luck with your qualitative data analysis, Pramod!

Adam Zahir

This is very useful information. And it was very a clear language structured presentation. Thanks a lot.

Golit,F.

Thank you so much.

Emmanuel

very informative sequential presentation

Shahzada

Precise explanation of method.

Alyssa

Hi, may we use 2 data analysis methods in our qualitative research?

Thanks for your comment. Most commonly, one would use one type of analysis method, but it depends on your research aims and objectives.

Dr. Manju Pandey

You explained it in very simple language, everyone can understand it. Thanks so much.

Phillip

Thank you very much, this is very helpful. It has been explained in a very simple manner that even a layman understands

Anne

Thank nicely explained can I ask is Qualitative content analysis the same as thematic analysis?

Thanks for your comment. No, QCA and thematic are two different types of analysis. This article might help clarify – https://onlinelibrary.wiley.com/doi/10.1111/nhs.12048

Rev. Osadare K . J

This is my first time to come across a well explained data analysis. so helpful.

Tina King

I have thoroughly enjoyed your explanation of the six qualitative analysis methods. This is very helpful. Thank you!

Bromie

Thank you very much, this is well explained and useful

udayangani

i need a citation of your book.

khutsafalo

Thanks a lot , remarkable indeed, enlighting to the best

jas

Hi Derek, What other theories/methods would you recommend when the data is a whole speech?

M

Keep writing useful artikel.

Adane

It is important concept about QDA and also the way to express is easily understandable, so thanks for all.

Carl Benecke

Thank you, this is well explained and very useful.

Ngwisa

Very helpful .Thanks.

Hajra Aman

Hi there! Very well explained. Simple but very useful style of writing. Please provide the citation of the text. warm regards

Hillary Mophethe

The session was very helpful and insightful. Thank you

This was very helpful and insightful. Easy to read and understand

Catherine

As a professional academic writer, this has been so informative and educative. Keep up the good work Grad Coach you are unmatched with quality content for sure.

Keep up the good work Grad Coach you are unmatched with quality content for sure.

Abdulkerim

Its Great and help me the most. A Million Thanks you Dr.

Emanuela

It is a very nice work

Noble Naade

Very insightful. Please, which of this approach could be used for a research that one is trying to elicit students’ misconceptions in a particular concept ?

Karen

This is Amazing and well explained, thanks

amirhossein

great overview

Tebogo

What do we call a research data analysis method that one use to advise or determining the best accounting tool or techniques that should be adopted in a company.

Catherine Shimechero

Informative video, explained in a clear and simple way. Kudos

Van Hmung

Waoo! I have chosen method wrong for my data analysis. But I can revise my work according to this guide. Thank you so much for this helpful lecture.

BRIAN ONYANGO MWAGA

This has been very helpful. It gave me a good view of my research objectives and how to choose the best method. Thematic analysis it is.

Livhuwani Reineth

Very helpful indeed. Thanku so much for the insight.

Storm Erlank

This was incredibly helpful.

Jack Kanas

Very helpful.

catherine

very educative

Wan Roslina

Nicely written especially for novice academic researchers like me! Thank you.

Talash

choosing a right method for a paper is always a hard job for a student, this is a useful information, but it would be more useful personally for me, if the author provide me with a little bit more information about the data analysis techniques in type of explanatory research. Can we use qualitative content analysis technique for explanatory research ? or what is the suitable data analysis method for explanatory research in social studies?

ramesh

that was very helpful for me. because these details are so important to my research. thank you very much

Kumsa Desisa

I learnt a lot. Thank you

Tesfa NT

Relevant and Informative, thanks !

norma

Well-planned and organized, thanks much! 🙂

Dr. Jacob Lubuva

I have reviewed qualitative data analysis in a simplest way possible. The content will highly be useful for developing my book on qualitative data analysis methods. Cheers!

Nyi Nyi Lwin

Clear explanation on qualitative and how about Case study

Ogobuchi Otuu

This was helpful. Thank you

Alicia

This was really of great assistance, it was just the right information needed. Explanation very clear and follow.

Wow, Thanks for making my life easy

C. U

This was helpful thanks .

Dr. Alina Atif

Very helpful…. clear and written in an easily understandable manner. Thank you.

Herb

This was so helpful as it was easy to understand. I’m a new to research thank you so much.

cissy

so educative…. but Ijust want to know which method is coding of the qualitative or tallying done?

Ayo

Thank you for the great content, I have learnt a lot. So helpful

Tesfaye

precise and clear presentation with simple language and thank you for that.

nneheng

very informative content, thank you.

Oscar Kuebutornye

You guys are amazing on YouTube on this platform. Your teachings are great, educative, and informative. kudos!

NG

Brilliant Delivery. You made a complex subject seem so easy. Well done.

Ankit Kumar

Beautifully explained.

Thanks a lot

Kidada Owen-Browne

Is there a video the captures the practical process of coding using automated applications?

Thanks for the comment. We don’t recommend using automated applications for coding, as they are not sufficiently accurate in our experience.

Mathewos Damtew

content analysis can be qualitative research?

Hend

THANK YOU VERY MUCH.

Dev get

Thank you very much for such a wonderful content

Kassahun Aman

do you have any material on Data collection

Prince .S. mpofu

What a powerful explanation of the QDA methods. Thank you.

Kassahun

Great explanation both written and Video. i have been using of it on a day to day working of my thesis project in accounting and finance. Thank you very much for your support.

BORA SAMWELI MATUTULI

very helpful, thank you so much

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Basic statistical tools in research and data analysis

Zulfiqar ali.

Department of Anaesthesiology, Division of Neuroanaesthesiology, Sheri Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India

S Bala Bhaskar

1 Department of Anaesthesiology and Critical Care, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India

Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

INTRODUCTION

Statistics is a branch of science that deals with the collection, organisation, analysis of data and drawing of inferences from the samples to the whole population.[ 1 ] This requires a proper design of the study, an appropriate selection of the study sample and choice of a suitable statistical test. An adequate knowledge of statistics is necessary for proper designing of an epidemiological study or a clinical trial. Improper statistical methods may result in erroneous conclusions which may lead to unethical practice.[ 2 ]

Variable is a characteristic that varies from one individual member of population to another individual.[ 3 ] Variables such as height and weight are measured by some type of scale, convey quantitative information and are called as quantitative variables. Sex and eye colour give qualitative information and are called as qualitative variables[ 3 ] [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g001.jpg

Classification of variables

Quantitative variables

Quantitative or numerical data are subdivided into discrete and continuous measurements. Discrete numerical data are recorded as a whole number such as 0, 1, 2, 3,… (integer), whereas continuous data can assume any value. Observations that can be counted constitute the discrete data and observations that can be measured constitute the continuous data. Examples of discrete data are number of episodes of respiratory arrests or the number of re-intubations in an intensive care unit. Similarly, examples of continuous data are the serial serum glucose levels, partial pressure of oxygen in arterial blood and the oesophageal temperature.

A hierarchical scale of increasing precision can be used for observing and recording the data which is based on categorical, ordinal, interval and ratio scales [ Figure 1 ].

Categorical or nominal variables are unordered. The data are merely classified into categories and cannot be arranged in any particular order. If only two categories exist (as in gender male and female), it is called as a dichotomous (or binary) data. The various causes of re-intubation in an intensive care unit due to upper airway obstruction, impaired clearance of secretions, hypoxemia, hypercapnia, pulmonary oedema and neurological impairment are examples of categorical variables.

Ordinal variables have a clear ordering between the variables. However, the ordered data may not have equal intervals. Examples are the American Society of Anesthesiologists status or Richmond agitation-sedation scale.

Interval variables are similar to an ordinal variable, except that the intervals between the values of the interval variable are equally spaced. A good example of an interval scale is the Fahrenheit degree scale used to measure temperature. With the Fahrenheit scale, the difference between 70° and 75° is equal to the difference between 80° and 85°: The units of measurement are equal throughout the full range of the scale.

Ratio scales are similar to interval scales, in that equal differences between scale values have equal quantitative meaning. However, ratio scales also have a true zero point, which gives them an additional property. For example, the system of centimetres is an example of a ratio scale. There is a true zero point and the value of 0 cm means a complete absence of length. The thyromental distance of 6 cm in an adult may be twice that of a child in whom it may be 3 cm.

STATISTICS: DESCRIPTIVE AND INFERENTIAL STATISTICS

Descriptive statistics[ 4 ] try to describe the relationship between variables in a sample or population. Descriptive statistics provide a summary of data in the form of mean, median and mode. Inferential statistics[ 4 ] use a random sample of data taken from a population to describe and make inferences about the whole population. It is valuable when it is not possible to examine each member of an entire population. The examples if descriptive and inferential statistics are illustrated in Table 1 .

Example of descriptive and inferential statistics

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g002.jpg

Descriptive statistics

The extent to which the observations cluster around a central location is described by the central tendency and the spread towards the extremes is described by the degree of dispersion.

Measures of central tendency

The measures of central tendency are mean, median and mode.[ 6 ] Mean (or the arithmetic average) is the sum of all the scores divided by the number of scores. Mean may be influenced profoundly by the extreme variables. For example, the average stay of organophosphorus poisoning patients in ICU may be influenced by a single patient who stays in ICU for around 5 months because of septicaemia. The extreme values are called outliers. The formula for the mean is

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g003.jpg

where x = each observation and n = number of observations. Median[ 6 ] is defined as the middle of a distribution in a ranked data (with half of the variables in the sample above and half below the median value) while mode is the most frequently occurring variable in a distribution. Range defines the spread, or variability, of a sample.[ 7 ] It is described by the minimum and maximum values of the variables. If we rank the data and after ranking, group the observations into percentiles, we can get better information of the pattern of spread of the variables. In percentiles, we rank the observations into 100 equal parts. We can then describe 25%, 50%, 75% or any other percentile amount. The median is the 50 th percentile. The interquartile range will be the observations in the middle 50% of the observations about the median (25 th -75 th percentile). Variance[ 7 ] is a measure of how spread out is the distribution. It gives an indication of how close an individual observation clusters about the mean value. The variance of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g004.jpg

where σ 2 is the population variance, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The variance of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g005.jpg

where s 2 is the sample variance, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. The formula for the variance of a population has the value ‘ n ’ as the denominator. The expression ‘ n −1’ is known as the degrees of freedom and is one less than the number of parameters. Each observation is free to vary, except the last one which must be a defined value. The variance is measured in squared units. To make the interpretation of the data simple and to retain the basic unit of observation, the square root of variance is used. The square root of the variance is the standard deviation (SD).[ 8 ] The SD of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g006.jpg

where σ is the population SD, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The SD of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g007.jpg

where s is the sample SD, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. An example for calculation of variation and SD is illustrated in Table 2 .

Example of mean, variance, standard deviation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g008.jpg

Normal distribution or Gaussian distribution

Most of the biological variables usually cluster around a central value, with symmetrical positive and negative deviations about this point.[ 1 ] The standard normal distribution curve is a symmetrical bell-shaped. In a normal distribution curve, about 68% of the scores are within 1 SD of the mean. Around 95% of the scores are within 2 SDs of the mean and 99% within 3 SDs of the mean [ Figure 2 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g009.jpg

Normal distribution curve

Skewed distribution

It is a distribution with an asymmetry of the variables about its mean. In a negatively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the right of Figure 1 . In a positively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the left of the figure leading to a longer right tail.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g010.jpg

Curves showing negatively skewed and positively skewed distribution

Inferential statistics

In inferential statistics, data are analysed from a sample to make inferences in the larger collection of the population. The purpose is to answer or test the hypotheses. A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. Hypothesis tests are thus procedures for making rational decisions about the reality of observed effects.

Probability is the measure of the likelihood that an event will occur. Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).

In inferential statistics, the term ‘null hypothesis’ ( H 0 ‘ H-naught ,’ ‘ H-null ’) denotes that there is no relationship (difference) between the population variables in question.[ 9 ]

Alternative hypothesis ( H 1 and H a ) denotes that a statement between the variables is expected to be true.[ 9 ]

The P value (or the calculated probability) is the probability of the event occurring by chance if the null hypothesis is true. The P value is a numerical between 0 and 1 and is interpreted by researchers in deciding whether to reject or retain the null hypothesis [ Table 3 ].

P values with interpretation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g011.jpg

If P value is less than the arbitrarily chosen value (known as α or the significance level), the null hypothesis (H0) is rejected [ Table 4 ]. However, if null hypotheses (H0) is incorrectly rejected, this is known as a Type I error.[ 11 ] Further details regarding alpha error, beta error and sample size calculation and factors influencing them are dealt with in another section of this issue by Das S et al .[ 12 ]

Illustration for null hypothesis

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g012.jpg

PARAMETRIC AND NON-PARAMETRIC TESTS

Numerical data (quantitative variables) that are normally distributed are analysed with parametric tests.[ 13 ]

Two most basic prerequisites for parametric statistical analysis are:

  • The assumption of normality which specifies that the means of the sample group are normally distributed
  • The assumption of equal variance which specifies that the variances of the samples and of their corresponding population are equal.

However, if the distribution of the sample is skewed towards one side or the distribution is unknown due to the small sample size, non-parametric[ 14 ] statistical techniques are used. Non-parametric tests are used to analyse ordinal and categorical data.

Parametric tests

The parametric tests assume that the data are on a quantitative (numerical) scale, with a normal distribution of the underlying population. The samples have the same variance (homogeneity of variances). The samples are randomly drawn from the population, and the observations within a group are independent of each other. The commonly used parametric tests are the Student's t -test, analysis of variance (ANOVA) and repeated measures ANOVA.

Student's t -test

Student's t -test is used to test the null hypothesis that there is no difference between the means of the two groups. It is used in three circumstances:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g013.jpg

where X = sample mean, u = population mean and SE = standard error of mean

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g014.jpg

where X 1 − X 2 is the difference between the means of the two groups and SE denotes the standard error of the difference.

  • To test if the population means estimated by two dependent samples differ significantly (the paired t -test). A usual setting for paired t -test is when measurements are made on the same subjects before and after a treatment.

The formula for paired t -test is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g015.jpg

where d is the mean difference and SE denotes the standard error of this difference.

The group variances can be compared using the F -test. The F -test is the ratio of variances (var l/var 2). If F differs significantly from 1.0, then it is concluded that the group variances differ significantly.

Analysis of variance

The Student's t -test cannot be used for comparison of three or more groups. The purpose of ANOVA is to test if there is any significant difference between the means of two or more groups.

In ANOVA, we study two variances – (a) between-group variability and (b) within-group variability. The within-group variability (error variance) is the variation that cannot be accounted for in the study design. It is based on random differences present in our samples.

However, the between-group (or effect variance) is the result of our treatment. These two estimates of variances are compared using the F-test.

A simplified formula for the F statistic is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g016.jpg

where MS b is the mean squares between the groups and MS w is the mean squares within groups.

Repeated measures analysis of variance

As with ANOVA, repeated measures ANOVA analyses the equality of means of three or more groups. However, a repeated measure ANOVA is used when all variables of a sample are measured under different conditions or at different points in time.

As the variables are measured from a sample at different points of time, the measurement of the dependent variable is repeated. Using a standard ANOVA in this case is not appropriate because it fails to model the correlation between the repeated measures: The data violate the ANOVA assumption of independence. Hence, in the measurement of repeated dependent variables, repeated measures ANOVA should be used.

Non-parametric tests

When the assumptions of normality are not met, and the sample means are not normally, distributed parametric tests can lead to erroneous results. Non-parametric tests (distribution-free test) are used in such situation as they do not require the normality assumption.[ 15 ] Non-parametric tests may fail to detect a significant difference when compared with a parametric test. That is, they usually have less power.

As is done for the parametric tests, the test statistic is compared with known values for the sampling distribution of that statistic and the null hypothesis is accepted or rejected. The types of non-parametric analysis techniques and the corresponding parametric analysis techniques are delineated in Table 5 .

Analogue of parametric and non-parametric tests

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g017.jpg

Median test for one sample: The sign test and Wilcoxon's signed rank test

The sign test and Wilcoxon's signed rank test are used for median tests of one sample. These tests examine whether one instance of sample data is greater or smaller than the median reference value.

This test examines the hypothesis about the median θ0 of a population. It tests the null hypothesis H0 = θ0. When the observed value (Xi) is greater than the reference value (θ0), it is marked as+. If the observed value is smaller than the reference value, it is marked as − sign. If the observed value is equal to the reference value (θ0), it is eliminated from the sample.

If the null hypothesis is true, there will be an equal number of + signs and − signs.

The sign test ignores the actual values of the data and only uses + or − signs. Therefore, it is useful when it is difficult to measure the values.

Wilcoxon's signed rank test

There is a major limitation of sign test as we lose the quantitative information of the given data and merely use the + or – signs. Wilcoxon's signed rank test not only examines the observed values in comparison with θ0 but also takes into consideration the relative sizes, adding more statistical power to the test. As in the sign test, if there is an observed value that is equal to the reference value θ0, this observed value is eliminated from the sample.

Wilcoxon's rank sum test ranks all data points in order, calculates the rank sum of each sample and compares the difference in the rank sums.

Mann-Whitney test

It is used to test the null hypothesis that two samples have the same median or, alternatively, whether observations in one sample tend to be larger than observations in the other.

Mann–Whitney test compares all data (xi) belonging to the X group and all data (yi) belonging to the Y group and calculates the probability of xi being greater than yi: P (xi > yi). The null hypothesis states that P (xi > yi) = P (xi < yi) =1/2 while the alternative hypothesis states that P (xi > yi) ≠1/2.

Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test was designed as a generic method to test whether two random samples are drawn from the same distribution. The null hypothesis of the KS test is that both distributions are identical. The statistic of the KS test is a distance between the two empirical distributions, computed as the maximum absolute difference between their cumulative curves.

Kruskal-Wallis test

The Kruskal–Wallis test is a non-parametric test to analyse the variance.[ 14 ] It analyses if there is any difference in the median values of three or more independent samples. The data values are ranked in an increasing order, and the rank sums calculated followed by calculation of the test statistic.

Jonckheere test

In contrast to Kruskal–Wallis test, in Jonckheere test, there is an a priori ordering that gives it a more statistical power than the Kruskal–Wallis test.[ 14 ]

Friedman test

The Friedman test is a non-parametric test for testing the difference between several related samples. The Friedman test is an alternative for repeated measures ANOVAs which is used when the same parameter has been measured under different conditions on the same subjects.[ 13 ]

Tests to analyse the categorical data

Chi-square test, Fischer's exact test and McNemar's test are used to analyse the categorical or nominal variables. The Chi-square test compares the frequencies and tests whether the observed data differ significantly from that of the expected data if there were no differences between groups (i.e., the null hypothesis). It is calculated by the sum of the squared difference between observed ( O ) and the expected ( E ) data (or the deviation, d ) divided by the expected data by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g018.jpg

A Yates correction factor is used when the sample size is small. Fischer's exact test is used to determine if there are non-random associations between two categorical variables. It does not assume random sampling, and instead of referring a calculated statistic to a sampling distribution, it calculates an exact probability. McNemar's test is used for paired nominal data. It is applied to 2 × 2 table with paired-dependent samples. It is used to determine whether the row and column frequencies are equal (that is, whether there is ‘marginal homogeneity’). The null hypothesis is that the paired proportions are equal. The Mantel-Haenszel Chi-square test is a multivariate test as it analyses multiple grouping variables. It stratifies according to the nominated confounding variables and identifies any that affects the primary outcome variable. If the outcome variable is dichotomous, then logistic regression is used.

SOFTWARES AVAILABLE FOR STATISTICS, SAMPLE SIZE CALCULATION AND POWER ANALYSIS

Numerous statistical software systems are available currently. The commonly used software systems are Statistical Package for the Social Sciences (SPSS – manufactured by IBM corporation), Statistical Analysis System ((SAS – developed by SAS Institute North Carolina, United States of America), R (designed by Ross Ihaka and Robert Gentleman from R core team), Minitab (developed by Minitab Inc), Stata (developed by StataCorp) and the MS Excel (developed by Microsoft).

There are a number of web resources which are related to statistical power analyses. A few are:

  • StatPages.net – provides links to a number of online power calculators
  • G-Power – provides a downloadable power analysis program that runs under DOS
  • Power analysis for ANOVA designs an interactive site that calculates power or sample size needed to attain a given power for one effect in a factorial ANOVA design
  • SPSS makes a program called SamplePower. It gives an output of a complete report on the computer screen which can be cut and paste into another document.

It is important that a researcher knows the concepts of the basic statistical methods used for conduct of a research study. This will help to conduct an appropriately well-designed study leading to valid and reliable results. Inappropriate use of statistical techniques may lead to faulty conclusions, inducing errors and undermining the significance of the article. Bad statistics may lead to bad research, and bad research may lead to unethical practice. Hence, an adequate knowledge of statistics and the appropriate use of statistical tests are important. An appropriate knowledge about the basic statistical methods will go a long way in improving the research designs and producing quality medical research which can be utilised for formulating the evidence-based guidelines.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Business growth

Business tips

What is data analysis? Examples and how to get started

A hero image with an icon of a line graph / chart

Even with years of professional experience working with data, the term "data analysis" still sets off a panic button in my soul. And yes, when it comes to serious data analysis for your business, you'll eventually want data scientists on your side. But if you're just getting started, no panic attacks are required.

Table of contents:

Quick review: What is data analysis?

Why is data analysis important, types of data analysis (with examples), data analysis process: how to get started, frequently asked questions.

Zapier is the leader in workflow automation—integrating with 6,000+ apps from partners like Google, Salesforce, and Microsoft. Use interfaces, data tables, and logic to build secure, automated systems for your business-critical workflows across your organization's technology stack. Learn more .

Data analysis is the process of examining, filtering, adapting, and modeling data to help solve problems. Data analysis helps determine what is and isn't working, so you can make the changes needed to achieve your business goals. 

Keep in mind that data analysis includes analyzing both quantitative data (e.g., profits and sales) and qualitative data (e.g., surveys and case studies) to paint the whole picture. Here are two simple examples (of a nuanced topic) to show you what I mean.

An example of quantitative data analysis is an online jewelry store owner using inventory data to forecast and improve reordering accuracy. The owner looks at their sales from the past six months and sees that, on average, they sold 210 gold pieces and 105 silver pieces per month, but they only had 100 gold pieces and 100 silver pieces in stock. By collecting and analyzing inventory data on these SKUs, they're forecasting to improve reordering accuracy. The next time they order inventory, they order twice as many gold pieces as silver to meet customer demand.

An example of qualitative data analysis is a fitness studio owner collecting customer feedback to improve class offerings. The studio owner sends out an open-ended survey asking customers what types of exercises they enjoy the most. The owner then performs qualitative content analysis to identify the most frequently suggested exercises and incorporates these into future workout classes.

Here's why it's worth implementing data analysis for your business:

Understand your target audience: You might think you know how to best target your audience, but are your assumptions backed by data? Data analysis can help answer questions like, "What demographics define my target audience?" or "What is my audience motivated by?"

Inform decisions: You don't need to toss and turn over a decision when the data points clearly to the answer. For instance, a restaurant could analyze which dishes on the menu are selling the most, helping them decide which ones to keep and which ones to change.

Adjust budgets: Similarly, data analysis can highlight areas in your business that are performing well and are worth investing more in, as well as areas that aren't generating enough revenue and should be cut. For example, a B2B software company might discover their product for enterprises is thriving while their small business solution lags behind. This discovery could prompt them to allocate more budget toward the enterprise product, resulting in better resource utilization.

Identify and solve problems: Let's say a cell phone manufacturer notices data showing a lot of customers returning a certain model. When they investigate, they find that model also happens to have the highest number of crashes. Once they identify and solve the technical issue, they can reduce the number of returns.

There are five main types of data analysis—with increasingly scary-sounding names. Each one serves a different purpose, so take a look to see which makes the most sense for your situation. It's ok if you can't pronounce the one you choose. 

Types of data analysis including text analysis, statistical analysis, diagnostic analysis, predictive analysis, and prescriptive analysis.

Text analysis: What is happening?

Text analysis, AKA data mining , involves pulling insights from large amounts of unstructured, text-based data sources : emails, social media, support tickets, reviews, and so on. You would use text analysis when the volume of data is too large to sift through manually. 

Here are a few methods used to perform text analysis, to give you a sense of how it's different from a human reading through the text: 

Word frequency identifies the most frequently used words. For example, a restaurant monitors social media mentions and measures the frequency of positive and negative keywords like "delicious" or "expensive" to determine how customers feel about their experience. 

Language detection indicates the language of text. For example, a global software company may use language detection on support tickets to connect customers with the appropriate agent. 

Keyword extraction automatically identifies the most used terms. For example, instead of sifting through thousands of reviews, a popular brand uses a keyword extractor to summarize the words or phrases that are most relevant. 

Because text analysis is based on words, not numbers, it's a bit more subjective. Words can have multiple meanings, of course, and Gen Z makes things even tougher with constant coinage. Natural language processing (NLP) software will help you get the most accurate text analysis, but it's rarely as objective as numerical analysis. 

Statistical analysis: What happened?

Statistical analysis pulls past data to identify meaningful trends. Two primary categories of statistical analysis exist: descriptive and inferential.

Descriptive analysis

Descriptive analysis looks at numerical data and calculations to determine what happened in a business. Companies use descriptive analysis to determine customer satisfaction , track campaigns, generate reports, and evaluate performance. 

Here are a few methods used to perform descriptive analysis: 

Measures of frequency identify how frequently an event occurs. For example, a popular coffee chain sends out a survey asking customers what their favorite holiday drink is and uses measures of frequency to determine how often a particular drink is selected. 

Measures of central tendency use mean, median, and mode to identify results. For example, a dating app company might use measures of central tendency to determine the average age of its users.

Measures of dispersion measure how data is distributed across a range. For example, HR may use measures of dispersion to determine what salary to offer in a given field. 

Inferential analysis

Inferential analysis uses a sample of data to draw conclusions about a much larger population. This type of analysis is used when the population you're interested in analyzing is very large. 

Here are a few methods used when performing inferential analysis: 

Hypothesis testing identifies which variables impact a particular topic. For example, a business uses hypothesis testing to determine if increased sales were the result of a specific marketing campaign. 

Confidence intervals indicates how accurate an estimate is. For example, a company using market research to survey customers about a new product may want to determine how confident they are that the individuals surveyed make up their target market. 

Regression analysis shows the effect of independent variables on a dependent variable. For example, a rental car company may use regression analysis to determine the relationship between wait times and number of bad reviews. 

Diagnostic analysis: Why did it happen?

Diagnostic analysis, also referred to as root cause analysis, uncovers the causes of certain events or results. 

Here are a few methods used to perform diagnostic analysis: 

Time-series analysis analyzes data collected over a period of time. A retail store may use time-series analysis to determine that sales increase between October and December every year. 

Data drilling uses business intelligence (BI) to show a more detailed view of data. For example, a business owner could use data drilling to see a detailed view of sales by state to determine if certain regions are driving increased sales.

Correlation analysis determines the strength of the relationship between variables. For example, a local ice cream shop may determine that as the temperature in the area rises, so do ice cream sales. 

Predictive analysis: What is likely to happen?

Predictive analysis aims to anticipate future developments and events. By analyzing past data, companies can predict future scenarios and make strategic decisions.  

Here are a few methods used to perform predictive analysis: 

Machine learning uses AI and algorithms to predict outcomes. For example, search engines employ machine learning to recommend products to online shoppers that they are likely to buy based on their browsing history. 

Decision trees map out possible courses of action and outcomes. For example, a business may use a decision tree when deciding whether to downsize or expand. 

Prescriptive analysis: What action should we take?

The highest level of analysis, prescriptive analysis, aims to find the best action plan. Typically, AI tools model different outcomes to predict the best approach. While these tools serve to provide insight, they don't replace human consideration, so always use your human brain before going with the conclusion of your prescriptive analysis. Otherwise, your GPS might drive you into a lake.

Here are a few methods used to perform prescriptive analysis: 

Lead scoring is used in sales departments to assign values to leads based on their perceived interest. For example, a sales team uses lead scoring to rank leads on a scale of 1-100 depending on the actions they take (e.g., opening an email or downloading an eBook). They then prioritize the leads that are most likely to convert. 

Algorithms are used in technology to perform specific tasks. For example, banks use prescriptive algorithms to monitor customers' spending and recommend that they deactivate their credit card if fraud is suspected. 

The actual analysis is just one step in a much bigger process of using data to move your business forward. Here's a quick look at all the steps you need to take to make sure you're making informed decisions. 

Circle chart with data decision, data collection, data cleaning, data analysis, data interpretation, and data visualization.

Data decision

As with almost any project, the first step is to determine what problem you're trying to solve through data analysis. 

Make sure you get specific here. For example, a food delivery service may want to understand why customers are canceling their subscriptions. But to enable the most effective data analysis, they should pose a more targeted question, such as "How can we reduce customer churn without raising costs?" 

These questions will help you determine your KPIs and what type(s) of data analysis you'll conduct , so spend time honing the question—otherwise your analysis won't provide the actionable insights you want.

Data collection

Next, collect the required data from both internal and external sources. 

Internal data comes from within your business (think CRM software, internal reports, and archives), and helps you understand your business and processes.

External data originates from outside of the company (surveys, questionnaires, public data) and helps you understand your industry and your customers. 

You'll rely heavily on software for this part of the process. Your analytics or business dashboard tool, along with reports from any other internal tools like CRMs , will give you the internal data. For external data, you'll use survey apps and other data collection tools to get the information you need.

Data cleaning

Data can be seriously misleading if it's not clean. So before you analyze, make sure you review the data you collected.  Depending on the type of data you have, cleanup will look different, but it might include: 

Removing unnecessary information 

Addressing structural errors like misspellings

Deleting duplicates

Trimming whitespace

Human checking for accuracy 

You can use your spreadsheet's cleanup suggestions to quickly and effectively clean data, but a human review is always important.

Data analysis

Now that you've compiled and cleaned the data, use one or more of the above types of data analysis to find relationships, patterns, and trends. 

Data analysis tools can speed up the data analysis process and remove the risk of inevitable human error. Here are some examples.

Spreadsheets sort, filter, analyze, and visualize data. 

Business intelligence platforms model data and create dashboards. 

Structured query language (SQL) tools manage and extract data in relational databases. 

Data interpretation

After you analyze the data, you'll need to go back to the original question you posed and draw conclusions from your findings. Here are some common pitfalls to avoid:

Correlation vs. causation: Just because two variables are associated doesn't mean they're necessarily related or dependent on one another. 

Confirmation bias: This occurs when you interpret data in a way that confirms your own preconceived notions. To avoid this, have multiple people interpret the data. 

Small sample size: If your sample size is too small or doesn't represent the demographics of your customers, you may get misleading results. If you run into this, consider widening your sample size to give you a more accurate representation. 

Data visualization

Last but not least, visualizing the data in the form of graphs, maps, reports, charts, and dashboards can help you explain your findings to decision-makers and stakeholders. While it's not absolutely necessary, it will help tell the story of your data in a way that everyone in the business can understand and make decisions based on. 

Automate your data collection

Data doesn't live in one place. To make sure data is where it needs to be—and isn't duplicative or conflicting—make sure all your apps talk to each other. Zapier automates the process of moving data from one place to another, so you can focus on the work that matters to move your business forward.

Need a quick summary or still have a few nagging data analysis questions? I'm here for you.

What are the five types of data analysis?

The five types of data analysis are text analysis, statistical analysis, diagnostic analysis, predictive analysis, and prescriptive analysis. Each type offers a unique lens for understanding data: text analysis provides insights into text-based content, statistical analysis focuses on numerical trends, diagnostic analysis looks into problem causes, predictive analysis deals with what may happen in the future, and prescriptive analysis gives actionable recommendations.

What is the data analysis process?

The data analysis process involves data decision, collection, cleaning, analysis, interpretation, and visualization. Every stage comes together to transform raw data into meaningful insights. Decision determines what data to collect, collection gathers the relevant information, cleaning ensures accuracy, analysis uncovers patterns, interpretation assigns meaning, and visualization presents the insights.

What is the main purpose of data analysis?

In business, the main purpose of data analysis is to uncover patterns, trends, and anomalies, and then use that information to make decisions, solve problems, and reach your business goals.

Related reading: 

How to get started with data collection and analytics at your business

How to conduct your own market research survey

Automatically find and match related data across apps

How to build an analysis assistant with ChatGPT

What can the ChatGPT data analysis chatbot do?

This article was originally published in October 2022 and has since been updated with contributions from Cecilia Gillen. The most recent update was in September 2023.

Get productivity tips delivered straight to your inbox

We’ll email you 1-3 times per week—and never share your information.

Shea Stevens picture

Shea Stevens

Shea is a content writer currently living in Charlotte, North Carolina. After graduating with a degree in Marketing from East Carolina University, she joined the digital marketing industry focusing on content and social media. In her free time, you can find Shea visiting her local farmers market, attending a country music concert, or planning her next adventure.

  • Data & analytics
  • Small business

What is data extraction? And how to automate the process

Data extraction is the process of taking actionable information from larger, less structured sources to be further refined or analyzed. Here's how to do it.

Related articles

A hero image representing automation with a lightning bolt

How to choose the best automation software

Hero image for AI in customer service with a globe in the shape of text bubble

AI in customer service: 11 ways to automate support

AI in customer service: 11 ways to automate...

Hero image of a person at a desk writing

How to write a letter of introduction for your freelance business

How to write a letter of introduction for...

Hero image with an icon representing a sales pipeline

How to create a sales plan (and 3 templates that do it for you)

How to create a sales plan (and 3 templates...

Improve your productivity automatically. Use Zapier to get your apps working together.

A Zap with the trigger 'When I get a new lead from Facebook,' and the action 'Notify my team in Slack'

  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Sun Coast’s Data Analysis: Hypothesis Testing Research Paper

Introduction, correlation: hypothesis testing, simple regression: hypothesis testing, multiple regression: hypothesis testing.

This paper requires the use of statistical analysis to determine relationships among variables. The primary purpose of such analysis is to obtain answers to the organizational questions that Sun Coast asks in order to improve the company’s operational performance. Specifically, this work involves three types of inferential tests supported by descriptive statistics, namely correlation analysis, regression analysis, and multiple regression analysis. Because the results have critical potential for the company and can be used to improve the organizational agenda significantly, their significance must be supported by statistical evidence (Tenny & Abdelgawad, 2021). To determine the significance of the constructed models and results, a p -value parameter is used at a significance level of.05. It follows that when the calculated p -value is more significant than.05, the null hypothesis cannot be rejected; the reverse is also true. Choosing a significance level of.05 corresponds to a 5% probability of making an error in detecting significant differences when in fact, there are none: in other words, there is always a probability of making an error of the first kind. For this reason, the results of statistical analyses need to be read carefully and interpreted carefully, as they are expected to be embodied in a company’s realistic environment.

The first part of the general statistical analysis requires a Pearson correlation test to determine the strength and direction of the relationship between two continuous variables. The end result, the correlation coefficient, will show how strongly the two variables are related and the direction of the relationship between them and will demonstrate whether or not the result is significant. Below are the formulations of the two statistical hypotheses that are evaluated in this section on how to perform a correlation analysis.

  • Ho 1 : There is no statistically significant relationship between particulate matter size and employee sick days.
  • Ha 1 : There is a statistically significant relationship between particulate matter size and employee sick days.

MS Excel output of the correlation analysis results

As shown in Figure 1, the Pearson correlation coefficient between particle size, in microns, and the average number of sick days for an employee is -.716. A negative value of this coefficient indicates a negative direction of the relationship between the two. In other words, the calculation indicates that an increase in particle size leads to a decrease in the average number of absent days for workers, that is, tiny particles are a predictor of an increase in the number of sick days. The absolute value of the Pearson coefficient is.716, indicating a moderately high value for this relationship. To summarize, Figure 1 corresponds to a moderately high negative correlation between the variables. The coefficient of determination R 2 , which, according to the results of the calculations, was 0.513, is also subject to discussion. This implies that this model explains up to 51.3% of the variance between the variables, indicating moderate reliability of the model.

Of great importance for the correlation analysis is the coefficient of significance, that is, the p -value. The calculated p -value coefficient is.0000, which corresponds to the critically low value of this parameter. Calculating a specific p -value makes no sense, as it is only necessary to compare this value to a significance level of.05. It is clear that the p -value is significantly less than the critical level of significance ( p <.05), from which it follows that there is sufficient evidence to reject the null hypothesis and thus accept the null hypothesis. To summarize this section, it follows from the results that increasing the size of the solids leads to a statistically significant reduction in the number of days an employee misses due to illness.

The second part of this paper requires a simple linear regression test to determine if one variable can influence another variable. In fact, the regression test is similar to the correlation test performed because both tests allow testing for a reciprocal relationship between continuous variables. However, unlike Pearson correlation, regression analysis also allows for the construction of a regression equation between the variables, which is used to analyze this relationship in more detail and to predict the values of the factors used. To perform the regression analysis, the following hypotheses were used:

  • Ho 2 : There is no statistically significant relationship between safety training expenditure and lost-time hours.
  • Ha 2 : There is a statistically significant relationship between safety training expenditure and lost-time hours.

MS Excel output of a simple regression analysis

The analysis was performed in MS Excel for the relevant data, and Figure 2 shows the results of these calculations. To check the overall significance of the constructed model, the second table of Fig. 2 is used, namely the results of the ANOVA test. Thus, the overall significance level of the regression model constructed should have been estimated: F(221) = 1664.21, p <.05. This ANOVA data indicates that the model is significant, that is, there is a statistically significant relationship between the tuition expense variables and total hours missed. In other words, the p -value shows that there is sufficient evidence to reject the null hypothesis and accept the alternative hypothesis. Turning to the third table in Figure 2 provides several conclusions about aspects of this model. In particular, both coefficients — slope and y-intercept — are significant because their respective p -values are well below the critical significance level of.05. This indicates that the regression coefficients are significant, and thus they are reliable parameters for assessing the relationship between variables. In addition, the same table shows that the value of the slope coefficient is -0.143, meaning that there is an inverse relationship between the variables. Increasing the number of training expenditures, it follows, reduces the number of hours workers miss. A regression equation can then be constructed for the data in terms of the variables used, viz:

Lost Time Hours = -0.143*[Safety Training Expenditure] + 273.449

From this equation, in particular, it can be seen that an increase in safety training expenditure for each unit results in a drop of 0.143 hours of lost time. The y-intercept of this equation, that is, the value of the number of hours lost when there is zero investment in training, is also noteworthy. When spending is zero, the number of hours wasted is maximum and is 273.449. When spending increases, there is a downward trend, that is, Sun Coast should be interested in maximizing the amount of reasonable spending to minimize inefficient hours. This equation, among others, is interesting to solve to find the x-intercept.

([Lost Time Hours] – 273.449)/ (-0.143) = [Safety Training Expenditure]

(0 – 273.449)/ (-0.143) = [Safety Training Expenditure]

[Safety Training Expenditure] = 1912.24

This answer shows that with a $1912.24 (in units) investment in safety training, there are zero lost hours for the company, which may be the ultimate goal for organizational reforms at Sun Coast. The coefficient of determination for this regression model and the multiple R are also up for discussion. The coefficient of determination, R 2 , for this pair of variables is 0.883, indicating that the model covers up to 88.3 percent of the variance between data. This is a high figure, which is consistent with the reliability of the constructed model. The multiple correlation coefficient for these variables was 0.940, which also indicates a strong positive relationship between training costs and hours lost.

In the third part of our work, it was interesting to analyze the effect of different components on the overall perceived noise level. It is known that excessive noise exposure can lead to hearing loss, headaches, and decreased employee productivity (Meersens, 2021). As a consequence, Sun Coast is interested in maintaining acceptable levels of noise exposure to employees and maintaining their operational efficiency. To perform this analysis, several components were used as independent factors, namely frequency, angle in degrees, chord length, velocity, and displacement. Total noise level, measured in decibels, was used as a dependent factor. Since the number of independent factors has been increased, the usual linear regression is no longer applicable to the analysis; instead, multiple regression should be used in MS Excel. Although the steps performed are virtually the same, the results of this analysis will be extended. The following hypotheses are used to run the regression:

  • Ho 3 : There is no statistically significant relationship between frequency, angle in degrees, chord length, velocity, displacement, and decibel level.
  • Ha 3 : There is a statistically significant relationship between frequency, angle in degrees, chord length, velocity, displacement, and decibel level.

MS Excel output of the results of multiple regression analysis

First, it is worth noting that the constructed regression model is statistically significant because the calculated p -value appears to be less than the critical level, F(1497) = 170.036, p <.001. This means that there is sufficient evidence to reject the null hypothesis, which means that the set of independent variables significantly affects the perceived noise level. For the model constructed, the coefficient of determination was 0.362, which implies that about 36.2 percent of the variance between the variables could be explained by the multiple regression model. The correlation coefficient was 0.602, indicating a moderate positive relationship between the two.

Particular attention should be paid to the significance of specific coefficients in the constructed multiple regression model. To be more precise, to evaluate their significance, the null hypothesis is used, that is, the coefficient is equal to zero, that is, it has no influence on the dependent factor. As shown in Table 3 of Figure 3, the p-values were above the.05 significance level only for the Angle and Chord Length variables, which means that these factors had no significant effect on the perceived noise level. In other words, these variables can be omitted in the overall regression equation because they have no significant effect on the noise level. The Frequency, Velocity, and Offset variables were statistically significant because their p-values were below the critical value, so the null hypotheses of no effect were rejected. Thus, the final regression equation in terms of the variables was as follows:

[Decibel] = 126.822 – 0.001*[Frequency] + 0.083*[Velocity] – 240.506*[Displacement]

It follows from the equation that Frequency and Displacement have a negative effect on noise level, that is, their increase led to a decrease in noise level. On the contrary, increasing Velocity increased the perceived noise level. It follows from the results that in order to reduce the overall noise levels perceived by Sun Coast workers, management should increase Frequency and Displacement and decrease Velocity.

In conclusion, this paper conducted statistical analyses — including Pearson correlation, linear regression, and multiple regression — to find answers to Sun Coast’s organizational questions. Particular attention was given to refining statistical significance in the analyses to make sure that the findings actually made sense for further practical implementation. It was found that the smallest particle size was positively correlated with the most extensive employee absences due to illness. This means that company management should keep a close eye on polluting particulate size in an effort to reduce the number of sick leave absences. In addition, increased spending on safety training for employees reduced the number of missed hours. It follows that Sun Coast management should invest more finances in order to increase employee productivity. Finally, Frequency, Velocity, and Displacement were shown to have differential effects on overall noise levels. Increasing Frequency and Displacement led to a decrease in this parameter, while increasing Velocity led to an increase in noise. Therefore, management should strive to increase Frequency and Displacement and decrease Velocity in order to ensure that the noise level in the company is normal and not destructive to the employees.

Meersens. (2021). Noise at work, what impact on the health of employees? Meersens. Web.

Tenny, S., & Abdelgawad, I. (2021). Statistical significance . NIH. Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, April 25). Sun Coast's Data Analysis: Hypothesis Testing. https://ivypanda.com/essays/sun-coasts-data-analysis-hypothesis-testing/

"Sun Coast's Data Analysis: Hypothesis Testing." IvyPanda , 25 Apr. 2024, ivypanda.com/essays/sun-coasts-data-analysis-hypothesis-testing/.

IvyPanda . (2024) 'Sun Coast's Data Analysis: Hypothesis Testing'. 25 April.

IvyPanda . 2024. "Sun Coast's Data Analysis: Hypothesis Testing." April 25, 2024. https://ivypanda.com/essays/sun-coasts-data-analysis-hypothesis-testing/.

1. IvyPanda . "Sun Coast's Data Analysis: Hypothesis Testing." April 25, 2024. https://ivypanda.com/essays/sun-coasts-data-analysis-hypothesis-testing/.

Bibliography

IvyPanda . "Sun Coast's Data Analysis: Hypothesis Testing." April 25, 2024. https://ivypanda.com/essays/sun-coasts-data-analysis-hypothesis-testing/.

  • P-Value Definition and Role
  • Physics: The Term Terminal Velocity
  • The Velocity and Time of Free-Fall Relationship
  • The P-Value: Determining the Statistical Significance of the Results
  • Projectile Motion: Definition and Purpose
  • Report: Tow Tank Statistical Analysis
  • Displacement: Crime Prevention
  • A Null and an Alternate Hypothesis
  • The Dynamics of Oscillations Laboratory Report
  • Towing Ship Trial Report: Short and Fat
  • Concentration of Chlorophyll: Regression Analysis
  • Statistics of the Turbulence in the Atmosphere
  • Compensation Management and Regression Analysis
  • Contingency Tables and Their Related Statistics
  • Statistics: The Self-Reference Effect and Memory

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Latest science news, discoveries and analysis

example of data analysis research paper

Could a rare mutation that causes dwarfism also slow ageing?

example of data analysis research paper

Bird flu in US cows: is the milk supply safe?

example of data analysis research paper

Future of Humanity Institute shuts: what's next for ‘deep future’ research?

example of data analysis research paper

Judge dismisses superconductivity physicist’s lawsuit against university

Nih pay raise for postdocs and phd students could have us ripple effect, hello puffins, goodbye belugas: changing arctic fjord hints at our climate future, china's moon atlas is the most detailed ever made, ‘shut up and calculate’: how einstein lost the battle to explain quantum reality, ecologists: don’t lose touch with the joy of fieldwork chris mantegna.

example of data analysis research paper

Should the Maldives be creating new land?

example of data analysis research paper

Lethal AI weapons are here: how can we control them?

example of data analysis research paper

Algorithm ranks peer reviewers by reputation — but critics warn of bias

example of data analysis research paper

How gliding marsupials got their ‘wings’

Bird flu virus has been spreading in us cows for months, rna reveals, audio long read: why loneliness is bad for your health, nato is boosting ai and climate research as scientific diplomacy remains on ice, rat neurons repair mouse brains — and restore sense of smell.

example of data analysis research paper

Retractions are part of science, but misconduct isn’t — lessons from a superconductivity lab

example of data analysis research paper

Any plan to make smoking obsolete is the right step

example of data analysis research paper

Citizenship privilege harms science

European ruling linking climate change to human rights could be a game changer — here’s how charlotte e. blattner, will ai accelerate or delay the race to net-zero emissions, current issue.

Issue Cover

The Maldives is racing to create new land. Why are so many people concerned?

Surprise hybrid origins of a butterfly species, stripped-envelope supernova light curves argue for central engine activity, optical clocks at sea, research analysis.

example of data analysis research paper

Ancient DNA traces family lines and political shifts in the Avar empire

example of data analysis research paper

A chemical method for selective labelling of the key amino acid tryptophan

example of data analysis research paper

Robust optical clocks promise stable timing in a portable package

example of data analysis research paper

Targeting RNA opens therapeutic avenues for Timothy syndrome

Bioengineered ‘mini-colons’ shed light on cancer progression, galaxy found napping in the primordial universe, tumours form without genetic mutations, marsupial genomes reveal how a skin membrane for gliding evolved.

example of data analysis research paper

Scientists urged to collect royalties from the ‘magic money tree’

example of data analysis research paper

Breaking ice, and helicopter drops: winning photos of working scientists

example of data analysis research paper

Shrouded in secrecy: how science is harmed by the bullying and harassment rumour mill

Want to make a difference try working at an environmental non-profit organization, how ground glass might save crops from drought on a caribbean island, books & culture.

example of data analysis research paper

How volcanoes shaped our planet — and why we need to be ready for the next big eruption

example of data analysis research paper

Dogwhistles, drilling and the roots of Western civilization: Books in brief

example of data analysis research paper

Cosmic rentals

Las borinqueñas remembers the forgotten puerto rican women who tested the first pill, dad always mows on summer saturday mornings, nature podcast.

Nature Podcast

Latest videos

Nature briefing.

An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

example of data analysis research paper

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

What the data says about crime in the U.S.

A growing share of Americans say reducing crime should be a top priority for the president and Congress to address this year. Around six-in-ten U.S. adults (58%) hold that view today, up from 47% at the beginning of Joe Biden’s presidency in 2021.

We conducted this analysis to learn more about U.S. crime patterns and how those patterns have changed over time.

The analysis relies on statistics published by the FBI, which we accessed through the Crime Data Explorer , and the Bureau of Justice Statistics (BJS), which we accessed through the  National Crime Victimization Survey data analysis tool .

To measure public attitudes about crime in the U.S., we relied on survey data from Pew Research Center and Gallup.

Additional details about each data source, including survey methodologies, are available by following the links in the text of this analysis.

A line chart showing that, since 2021, concerns about crime have grown among both Republicans and Democrats.

With the issue likely to come up in this year’s presidential election, here’s what we know about crime in the United States, based on the latest available data from the federal government and other sources.

How much crime is there in the U.S.?

It’s difficult to say for certain. The  two primary sources of government crime statistics  – the Federal Bureau of Investigation (FBI) and the Bureau of Justice Statistics (BJS) – paint an incomplete picture.

The FBI publishes  annual data  on crimes that have been reported to law enforcement, but not crimes that haven’t been reported. Historically, the FBI has also only published statistics about a handful of specific violent and property crimes, but not many other types of crime, such as drug crime. And while the FBI’s data is based on information from thousands of federal, state, county, city and other police departments, not all law enforcement agencies participate every year. In 2022, the most recent full year with available statistics, the FBI received data from 83% of participating agencies .

BJS, for its part, tracks crime by fielding a  large annual survey of Americans ages 12 and older and asking them whether they were the victim of certain types of crime in the past six months. One advantage of this approach is that it captures both reported and unreported crimes. But the BJS survey has limitations of its own. Like the FBI, it focuses mainly on a handful of violent and property crimes. And since the BJS data is based on after-the-fact interviews with crime victims, it cannot provide information about one especially high-profile type of offense: murder.

All those caveats aside, looking at the FBI and BJS statistics side-by-side  does  give researchers a good picture of U.S. violent and property crime rates and how they have changed over time. In addition, the FBI is transitioning to a new data collection system – known as the National Incident-Based Reporting System – that eventually will provide national information on a much larger set of crimes , as well as details such as the time and place they occur and the types of weapons involved, if applicable.

Which kinds of crime are most and least common?

A bar chart showing that theft is most common property crime, and assault is most common violent crime.

Property crime in the U.S. is much more common than violent crime. In 2022, the FBI reported a total of 1,954.4 property crimes per 100,000 people, compared with 380.7 violent crimes per 100,000 people.  

By far the most common form of property crime in 2022 was larceny/theft, followed by motor vehicle theft and burglary. Among violent crimes, aggravated assault was the most common offense, followed by robbery, rape, and murder/nonnegligent manslaughter.

BJS tracks a slightly different set of offenses from the FBI, but it finds the same overall patterns, with theft the most common form of property crime in 2022 and assault the most common form of violent crime.

How have crime rates in the U.S. changed over time?

Both the FBI and BJS data show dramatic declines in U.S. violent and property crime rates since the early 1990s, when crime spiked across much of the nation.

Using the FBI data, the violent crime rate fell 49% between 1993 and 2022, with large decreases in the rates of robbery (-74%), aggravated assault (-39%) and murder/nonnegligent manslaughter (-34%). It’s not possible to calculate the change in the rape rate during this period because the FBI  revised its definition of the offense in 2013 .

Line charts showing that U.S. violent and property crime rates have plunged since 1990s, regardless of data source.

The FBI data also shows a 59% reduction in the U.S. property crime rate between 1993 and 2022, with big declines in the rates of burglary (-75%), larceny/theft (-54%) and motor vehicle theft (-53%).

Using the BJS statistics, the declines in the violent and property crime rates are even steeper than those captured in the FBI data. Per BJS, the U.S. violent and property crime rates each fell 71% between 1993 and 2022.

While crime rates have fallen sharply over the long term, the decline hasn’t always been steady. There have been notable increases in certain kinds of crime in some years, including recently.

In 2020, for example, the U.S. murder rate saw its largest single-year increase on record – and by 2022, it remained considerably higher than before the coronavirus pandemic. Preliminary data for 2023, however, suggests that the murder rate fell substantially last year .

How do Americans perceive crime in their country?

Americans tend to believe crime is up, even when official data shows it is down.

In 23 of 27 Gallup surveys conducted since 1993 , at least 60% of U.S. adults have said there is more crime nationally than there was the year before, despite the downward trend in crime rates during most of that period.

A line chart showing that Americans tend to believe crime is up nationally, less so locally.

While perceptions of rising crime at the national level are common, fewer Americans believe crime is up in their own communities. In every Gallup crime survey since the 1990s, Americans have been much less likely to say crime is up in their area than to say the same about crime nationally.

Public attitudes about crime differ widely by Americans’ party affiliation, race and ethnicity, and other factors . For example, Republicans and Republican-leaning independents are much more likely than Democrats and Democratic leaners to say reducing crime should be a top priority for the president and Congress this year (68% vs. 47%), according to a recent Pew Research Center survey.

How does crime in the U.S. differ by demographic characteristics?

Some groups of Americans are more likely than others to be victims of crime. In the  2022 BJS survey , for example, younger people and those with lower incomes were far more likely to report being the victim of a violent crime than older and higher-income people.

There were no major differences in violent crime victimization rates between male and female respondents or between those who identified as White, Black or Hispanic. But the victimization rate among Asian Americans (a category that includes Native Hawaiians and other Pacific Islanders) was substantially lower than among other racial and ethnic groups.

The same BJS survey asks victims about the demographic characteristics of the offenders in the incidents they experienced.

In 2022, those who are male, younger people and those who are Black accounted for considerably larger shares of perceived offenders in violent incidents than their respective shares of the U.S. population. Men, for instance, accounted for 79% of perceived offenders in violent incidents, compared with 49% of the nation’s 12-and-older population that year. Black Americans accounted for 25% of perceived offenders in violent incidents, about twice their share of the 12-and-older population (12%).

As with all surveys, however, there are several potential sources of error, including the possibility that crime victims’ perceptions about offenders are incorrect.

How does crime in the U.S. differ geographically?

There are big geographic differences in violent and property crime rates.

For example, in 2022, there were more than 700 violent crimes per 100,000 residents in New Mexico and Alaska. That compares with fewer than 200 per 100,000 people in Rhode Island, Connecticut, New Hampshire and Maine, according to the FBI.

The FBI notes that various factors might influence an area’s crime rate, including its population density and economic conditions.

What percentage of crimes are reported to police? What percentage are solved?

Line charts showing that fewer than half of crimes in the U.S. are reported, and fewer than half of reported crimes are solved.

Most violent and property crimes in the U.S. are not reported to police, and most of the crimes that  are  reported are not solved.

In its annual survey, BJS asks crime victims whether they reported their crime to police. It found that in 2022, only 41.5% of violent crimes and 31.8% of household property crimes were reported to authorities. BJS notes that there are many reasons why crime might not be reported, including fear of reprisal or of “getting the offender in trouble,” a feeling that police “would not or could not do anything to help,” or a belief that the crime is “a personal issue or too trivial to report.”

Most of the crimes that are reported to police, meanwhile,  are not solved , at least based on an FBI measure known as the clearance rate . That’s the share of cases each year that are closed, or “cleared,” through the arrest, charging and referral of a suspect for prosecution, or due to “exceptional” circumstances such as the death of a suspect or a victim’s refusal to cooperate with a prosecution. In 2022, police nationwide cleared 36.7% of violent crimes that were reported to them and 12.1% of the property crimes that came to their attention.

Which crimes are most likely to be reported to police? Which are most likely to be solved?

Bar charts showing that most vehicle thefts are reported to police, but relatively few result in arrest.

Around eight-in-ten motor vehicle thefts (80.9%) were reported to police in 2022, making them by far the most commonly reported property crime tracked by BJS. Household burglaries and trespassing offenses were reported to police at much lower rates (44.9% and 41.2%, respectively), while personal theft/larceny and other types of theft were only reported around a quarter of the time.

Among violent crimes – excluding homicide, which BJS doesn’t track – robbery was the most likely to be reported to law enforcement in 2022 (64.0%). It was followed by aggravated assault (49.9%), simple assault (36.8%) and rape/sexual assault (21.4%).

The list of crimes  cleared  by police in 2022 looks different from the list of crimes reported. Law enforcement officers were generally much more likely to solve violent crimes than property crimes, according to the FBI.

The most frequently solved violent crime tends to be homicide. Police cleared around half of murders and nonnegligent manslaughters (52.3%) in 2022. The clearance rates were lower for aggravated assault (41.4%), rape (26.1%) and robbery (23.2%).

When it comes to property crime, law enforcement agencies cleared 13.0% of burglaries, 12.4% of larcenies/thefts and 9.3% of motor vehicle thefts in 2022.

Are police solving more or fewer crimes than they used to?

Nationwide clearance rates for both violent and property crime are at their lowest levels since at least 1993, the FBI data shows.

Police cleared a little over a third (36.7%) of the violent crimes that came to their attention in 2022, down from nearly half (48.1%) as recently as 2013. During the same period, there were decreases for each of the four types of violent crime the FBI tracks:

Line charts showing that police clearance rates for violent crimes have declined in recent years.

  • Police cleared 52.3% of reported murders and nonnegligent homicides in 2022, down from 64.1% in 2013.
  • They cleared 41.4% of aggravated assaults, down from 57.7%.
  • They cleared 26.1% of rapes, down from 40.6%.
  • They cleared 23.2% of robberies, down from 29.4%.

The pattern is less pronounced for property crime. Overall, law enforcement agencies cleared 12.1% of reported property crimes in 2022, down from 19.7% in 2013. The clearance rate for burglary didn’t change much, but it fell for larceny/theft (to 12.4% in 2022 from 22.4% in 2013) and motor vehicle theft (to 9.3% from 14.2%).

Note: This is an update of a post originally published on Nov. 20, 2020.

  • Criminal Justice

John Gramlich's photo

John Gramlich is an associate director at Pew Research Center

8 facts about Black Lives Matter

#blacklivesmatter turns 10, support for the black lives matter movement has dropped considerably from its peak in 2020, fewer than 1% of federal criminal defendants were acquitted in 2022, before release of video showing tyre nichols’ beating, public views of police conduct had improved modestly, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

IMAGES

  1. Analysis In A Research Paper

    example of data analysis research paper

  2. (PDF) Statistical Analysis of Data in Research Methodology

    example of data analysis research paper

  3. thesis secondary data analysis

    example of data analysis research paper

  4. Data Analysis Introduction Example

    example of data analysis research paper

  5. data analysis in research

    example of data analysis research paper

  6. Free photo: Sample Analysis

    example of data analysis research paper

VIDEO

  1. Analysis of Data? Some Examples to Explore

  2. How to Assess the Quantitative Data Collected from Questionnaire

  3. Data organization in Biology

  4. Want to Become Data Analyst with No experience? ➤ What is Data Analysis? #dataanalysis

  5. DATA ANALYSIS

  6. Data Analysis in Research

COMMENTS

  1. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  2. (PDF) Practical Data Analysis: An Example

    18 2 Practical Data Analysis: An Example. Fig. 2.1 A histogram for the distribution of the value of attribute age using 8 bins. Fig. 2.2 A histogram for the distribution of the value of attribute ...

  3. PDF Structure of a Data Analysis Report

    Examples of distractions include: - Extra sentences, overly formal or flowery prose, or at the oth er extreme overly casual or overly ... The data analysis report isn't quite like a research paper or term paper in a class, nor like aresearch article in a journal. It is meant, primarily, to start an organized conversation between you and ...

  4. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  5. A Really Simple Guide to Quantitative Data Analysis

    nominal. It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1 ...

  6. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  7. A Practical Guide to Writing Quantitative and Qualitative Research

    A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study ... we provide some examples of ambiguous research question and hypotheses that ...

  8. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims ...

  9. Data Analysis in Quantitative Research

    Abstract. Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility.

  10. How to Write a Results Section

    The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share: A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression). A more detailed description of your analysis should go in your methodology section.

  11. Creating a Data Analysis Plan: What to Consider When Choosing

    For those interested in conducting qualitative research, previous articles in this Research Primer series have provided information on the design and analysis of such studies. 2, 3 Information in the current article is divided into 3 main sections: an overview of terms and concepts used in data analysis, a review of common methods used to ...

  12. Qualitative data analysis: a practical example

    The aim of this paper is to equip readers with an understanding of the principles of qualitative data analysis and offer a practical example of how analysis might be undertaken in an interview-based study. Qualitative research is a generic term that refers to a group of methods, and ways of collecting and analysing data that are interpretative or explanatory in nature and focus on meaning.

  13. Qualitative Data Analysis Methods: Top 6 + Examples

    QDA Method #1: Qualitative Content Analysis. Content analysis is possibly the most common and straightforward QDA method. At the simplest level, content analysis is used to evaluate patterns within a piece of content (for example, words, phrases or images) or across multiple pieces of content or sources of communication. For example, a collection of newspaper articles or political speeches.

  14. PDF Qualitative data analysis: a practical example

    The aim of this paper is to equip readers with an under-standing of the principles of qualitative data analysis and offer a practical example of how analysis might be undertaken in an interview-based study. What is qualitative data analysis? Qualitative research is a generic term that refers to a group of methods, and ways of collecting and ...

  15. How to Write an APA Methods Section

    In the methods section of an APA research paper, you report in detail the participants, measures, and procedure of your study. ... Data analysis strategy (e.g., comparison or regression tests) ... Example: Reporting data collection methods and research design All participants were told that the survey concerned students' general knowledge and ...

  16. Basic statistical tools in research and data analysis

    Abstract. Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise ...

  17. What is data analysis? Examples and how to start

    Data analysis is the process of examining, filtering, adapting, and modeling data to help solve problems. Data analysis helps determine what is and isn't working, so you can make the changes needed to achieve your business goals. Keep in mind that data analysis includes analyzing both quantitative data (e.g., profits and sales) and qualitative ...

  18. (PDF) Different Types of Data Analysis; Data Analysis Methods and

    Data analysis is simply the process of converting the gathered data to meanin gf ul information. Different techniques such as modeling to reach trends, relatio nships, and therefore conclusions to ...

  19. A Step-by-Step Process of Thematic Analysis to Develop a Conceptual

    Thematic analysis is a research method used to identify and interpret patterns or themes in a data set; it often leads to new insights and understanding (Boyatzis, 1998; Elliott, 2018; Thomas, 2006).However, it is critical that researchers avoid letting their own preconceptions interfere with the identification of key themes (Morse & Mitcham, 2002; Patton, 2015).

  20. Research Paper

    Research Paper Example. Note: The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors.

  21. PDF Chapter 4: Analysis and Interpretation of Results

    To complete this study properly, it is necessary to analyse the data collected in order to test the hypothesis and answer the research questions. As already indicated in the preceding chapter, data is interpreted in a descriptive form. This chapter comprises the analysis, presentation and interpretation of the findings resulting from this study.

  22. Research Methods

    To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations). Meta-analysis. Quantitative. To statistically analyze the results of a large collection of studies. Can only be applied to studies that collected data in a statistically valid manner.

  23. Sun Coast's Data Analysis: Hypothesis Testing Research Paper

    We will write a custom essay on your topic a custom Research Paper on Sun Coast's Data Analysis: Hypothesis Testing. 808 writers online . Learn More . ... It contains thousands of paper examples on a wide variety of topics, all donated by helpful students. You can use them for inspiration, an insight into a particular topic, a handy source of ...

  24. Latest science news, discoveries and analysis

    Find breaking science news and analysis from the world's leading research journal.

  25. 23 Data Analytics Portfolio Examples [2024 Edition]

    This top data analyst portfolio example is unique, sticking to a minimalistic website design. The entire site sticks to a consistent, centralized layout, making it easy for screen readers to focus on the data analysis projects. Animated icons add a personal touch to the website design, one of the few visual representations.

  26. Crime in the U.S.: Key questions answered

    The analysis relies on statistics published by the FBI, which we accessed through the Crime Data Explorer, and the Bureau of Justice Statistics (BJS), which we accessed through the National Crime Victimization Survey data analysis tool. To measure public attitudes about crime in the U.S., we relied on survey data from Pew Research Center and ...

  27. Analysis of Determinants of Corporate Cash Holding of Listed

    In this study, we identify the determinants of cash holding in Macedonian manufacturing companies. The analysis was conducted using accounting data from publicly available financial statements of the sample of Macedonian industrial companies for the 2005 to 2019 period. The research was conducted through the prism of the postulates of the three main theories in corporate finance, i.e., the ...