Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅

Science Investigatory Project Examples

science investigatory project research paper example

Light Spectrum Experiments

Learning can be spiced up with some hands-on activities that make science exciting and can make learning much more effective. Investigatory projects, or science projects, teach people important ideas about their world and can also be a lot of fun. Read on for some investigatory project examples your kids will love!

Observing a Chemical Spectrum

Use caution when operating a Bunsen burner.

One investigatory project example that's a complex but very impressive project is spectroanalysis. "Spectroanalysis" is a fancy word for analyzing the spectrum of an object, usually given off when the object is burned. To perform this experiment, you'll need a Bunsen burner or other heat source, some things to burn, and a diffraction grating. You can obtain these supplies from Edmonds Scientific (see the link below). As for the objects to burn, wood, salt, sugar, and various nitrate salts work magnificently. Just make sure you have a few samples of each item.

Burn each chemical on a small wood stick individually and observe the color of the flame with and without the diffraction grating, which separates the flame into its component colors or spectrum. Observe that each chemical gives off a different spectrum. This spectrum can be used to identify the chemical very accurately. Each chemical emits a different spectrum when burnt. By recording this spectrum, you can identify a chemical based on how similar its spectrum is to known spectra given off by other chemicals.

The Capillary Effect

Paper towel

This is an investigatory project example that is fun and safe; it demonstrates the capillary effect, also known as capillary action. Lower a rolled-up paper towel into a glass full of water until about two centimeters of the paper towel are in the water. Observe how the water seems to flow up the paper towel, contrary to what one would expect. Eventually, the paper towel will become fully wet. This demonstrates capillary action, because the water has less of a cohesive force than that of the adhesive force between the towel and the water. Hence, the towel pulls water up, against gravity. This also works with a very narrow tube in place of a paper towel.

To add some color to the experiment, try putting food dyes in the water. Also, observe what happens when you put more than one type of food dye in the water. If you use two dyes of different densities, you should observe that the paper towel eventually separates the colors based on their differing densities.

The Curie Point

Hand-held torch

Permanent magnets all have a temperature at which they will lose their magnetism. This temperature is known as the magnet's Curie Point. This can be demonstrated easily with a few permanent magnets, some paperclips, and a propane torch. The demonstration should only be done by an adult familiar with the safe use of a propane torch.

First, take one of the magnets and prove that it is magnetic by using it to pick up a few paperclips. Now, use the propane torch to heat the magnet until it glows red. At that point, it should be past its Curie Point, which is probably around 840 degrees Fahrenheit. Let the magnet cool down, and then try to use it to pick up a paperclip. You should observe that the magnet no longer has any magnetic properties. This is because the heat has rearranged the magnetic particles present within the magnet. Prior to being heated, the particles were all aligned along one axis. Because each particle gave off a magnetic force, they complimented each other and created a large magnetic force along that axis. After being heated, the particles are randomly aligned and oppose one another, canceling out the magnetic force that they once produced entirely.

Magnetism Projects

Battery

Another fun investigatory project example is the demonstration of magnetism, especially for younger audiences, as this experiment is both easy and safe. For this experiment, you will need a nail, a copper wire, electrical tape, a D-cell battery, and some paperclips. Take the copper wire and wrap it around the nail. Make sure the copper wire is relatively thin and that the wraps do not overlap but are as numerous as possible. Also, leave about five inches of wire on each side of the wrapped nail. Take the two ends that protrude from the nail and run them over to the D-cell battery. Use the electrical tape to secure one end of the wire to the positive terminal of the battery and the other end to the negative terminal. Run the nail over some paperclips to make sure that the magnet is working. As long as the D-cell battery is charged and attached to the nail via wire, a magnetic field will be generated. This demonstrates the property of electromagnetism, as the magnet you will have just made is an electromagnet.

Related Articles

Top ten most popular science projects, potato light bulb experiment for kids, things to do with rare earth magnets, how to make objects move with a magnet, water density science experiments, types of magnets, diffusion lab experiments, fun experiments for separating mixtures, how to remove iron filings from magnets, how to make a compass, physics project ideas, food coloring experiments, quick & easy experiments with magnets, kinetic energy experiments for kids, how to build a super magnet, prisms experiments, how to create a powerful magnetic field, convection experiments for kids, magnetic levitation projects for kids.

  • Making an Electromagnet
  • Escaping Water
  • Light and Color: Spectroanalysis

About the Author

David Scott has been a firefighter for the Seattle Fire Department's Technical Rescue Team for almost 20 years. He has been writing primarily since 2005, but did author the book, "The White River Ranger District Trail Guide" in 1988. In addition to his work for Demand Studios, Scott spends much of his time writing poetry and a novel.

Find Your Next Great Science Fair Project! GO

We Have More Great Sciencing Articles!

  • Earth Science
  • Physics & Engineering
  • Science Kits
  • Microscopes
  • Science Curriculum and Kits
  • About Home Science Tools

Teaching Resources & Guides > How to Teach Science Tips > Writing a Science Report  

Writing a Science Report

With science fair season coming up as well as many end of the year projects, students are often required to write a research paper or a report on their project. Use this guide to help you in the process from finding a topic to revising and editing your final paper.

Brainstorming Topics

Sometimes one of the largest barriers to writing a research paper is trying to figure out what to write about. Many times the topic is supplied by the teacher, or the curriculum tells what the student should research and write about. However, this is not always the case. Sometimes the student is given a very broad concept to write a research paper on, for example, water. Within the category of water, there are many topics and subtopics that would be appropriate. Topics about water can include anything from the three states of water, different water sources, minerals found in water, how water is used by living organisms, the water cycle, or how to find water in the desert. The point is that “water” is a very large topic and would be too broad to be adequately covered in a typical 3-5 page research paper.

When given a broad category to write about, it is important to narrow it down to a topic that is much more manageable. Sometimes research needs to be done in order to find the best topic to write about. (Look for searching tips in “Finding and Gathering Information.”) Listed below are some tips and guidelines for picking a suitable research topic:

  • Pick a topic within the category that you find interesting. It makes it that much easier to research and write about a topic if it interests you.
  • You may find while researching a topic that the details of the topic are very boring to you. If this is the case, and you have the option to do this, change your topic.
  • Pick a topic that you are already familiar with and research further into that area to build on your current knowledge.
  • When researching topics to do your paper on, look at how much information you are finding. If you are finding very little information on your topic or you are finding an overwhelming amount, you may need to rethink your topic.
  • If permissible, always leave yourself open to changing your topic. While researching for topics, you may come across one that you find really interesting and can use just as well as the previous topics you were searching for.
  • Most importantly, does your research topic fit the guidelines set forth by your teacher or curriculum?

Finding and Gathering Information

There are numerous resources out there to help you find information on the topic selected for your research paper. One of the first places to begin research is at your local library. Use the Dewey Decimal System or ask the librarian to help you find books related to your topic. There are also a variety of reference materials, such as encyclopedias, available at the library.

A relatively new reference resource has become available with the power of technology – the Internet. While the Internet allows the user to access a wealth of information that is often more up-to-date than printed materials such as books and encyclopedias, there are certainly drawbacks to using it. It can be hard to tell whether or not a site contains factual information or just someone’s opinion. A site can also be dangerous or inappropriate for students to use.

You may find that certain science concepts and science terminology are not easy to find in regular dictionaries and encyclopedias. A science dictionary or science encyclopedia can help you find more in-depth and relevant information for your science report. If your topic is very technical or specific, reference materials such as medical dictionaries and chemistry encyclopedias may also be good resources to use.

If you are writing a report for your science fair project, not only will you be finding information from published sources, you will also be generating your own data, results, and conclusions. Keep a journal that tracks and records your experiments and results. When writing your report, you can either write out your findings from your experiments or display them using graphs or charts .

*As you are gathering information, keep a working bibliography of where you found your sources. Look under “Citing Sources” for more information. This will save you a lot of time in the long run!

Organizing Information

Most people find it hard to just take all the information they have gathered from their research and write it out in paper form. It is hard to get a starting point and go from the beginning to the end. You probably have several ideas you know you want to put in your paper, but you may be having trouble deciding where these ideas should go. Organizing your information in a way where new thoughts can be added to a subtopic at any time is a great way to organize the information you have about your topic. Here are two of the more popular ways to organize information so it can be used in a research paper:

  • Graphic organizers such as a web or mind map . Mind maps are basically stating the main topic of your paper, then branching off into as many subtopics as possible about the main topic. Enchanted Learning has a list of several different types of mind maps as well as information on how to use them and what topics fit best for each type of mind map and graphic organizer.
  • Sub-Subtopic: Low temperatures and adequate amounts of snow are needed to form glaciers.
  • Sub-Subtopic: Glaciers move large amounts of earth and debris.
  • Sub-Subtopic: Two basic types of glaciers: valley and continental.
  • Subtopic: Icebergs – large masses of ice floating on liquid water

Different Formats For Your Paper

Depending on your topic and your writing preference, the layout of your paper can greatly enhance how well the information on your topic is displayed.

1. Process . This method is used to explain how something is done or how it works by listing the steps of the process. For most science fair projects and science experiments, this is the best format. Reports for science fairs need the entire project written out from start to finish. Your report should include a title page, statement of purpose, hypothesis, materials and procedures, results and conclusions, discussion, and credits and bibliography. If applicable, graphs, tables, or charts should be included with the results portion of your report.

2. Cause and effect . This is another common science experiment research paper format. The basic premise is that because event X happened, event Y happened.

3. Specific to general . This method works best when trying to draw conclusions about how little topics and details are connected to support one main topic or idea.

4. Climatic order . Similar to the “specific to general” category, here details are listed in order from least important to most important.

5. General to specific . Works in a similar fashion as the method for organizing your information. The main topic or subtopic is stated first, followed by supporting details that give more information about the topic.

6. Compare and contrast . This method works best when you wish to show the similarities and/or differences between two or more topics. A block pattern is used when you first write about one topic and all its details and then write about the second topic and all its details. An alternating pattern can be used to describe a detail about the first topic and then compare that to the related detail of the second topic. The block pattern and alternating pattern can also be combined to make a format that better fits your research paper.

Citing Sources

When writing a research paper, you must cite your sources! Otherwise you are plagiarizing (claiming someone else’s ideas as your own) which can cause severe penalties from failing your research paper assignment in primary and secondary grades to failing the entire course (most colleges and universities have this policy). To help you avoid plagiarism, follow these simple steps:

  • Find out what format for citing your paper your teacher or curriculum wishes you to use. One of the most widely used and widely accepted citation formats by scholars and schools is the Modern Language Association (MLA) format. We recommended that you do an Internet search for the most recent format of the citation style you will be using in your paper.
  • Keep a working bibliography when researching your topic. Have a document in your computer files or a page in your notebook where you write down every source that you found and may use in your paper. (You probably will not use every resource you find, but it is much easier to delete unused sources later rather than try to find them four weeks down the road.) To make this process even easier, write the source down in the citation format that will be used in your paper. No matter what citation format you use, you should always write down title, author, publisher, published date, page numbers used, and if applicable, the volume and issue number.
  • When collecting ideas and information from your sources, write the author’s last name at the end of the idea. When revising and formatting your paper, keep the author’s last name attached to the end of the idea, no matter where you move that idea. This way, you won’t have to go back and try to remember where the ideas in your paper came from.
  • There are two ways to use the information in your paper: paraphrasing and quotes. The majority of your paper will be paraphrasing the information you found. Paraphrasing is basically restating the idea being used in your own words.   As a general rule of thumb, no more than two of the original words should be used in sequence when paraphrasing information, and similes should be used for as many of the words as possible in the original passage without changing the meaning of the main point. Sometimes, you may find something stated so well by the original author that it would be best to use the author’s original words in your paper. When using the author’s original words, use quotation marks only around the words being directly quoted and work the quote into the body of your paper so that it makes sense grammatically. Search the Internet for more rules on paraphrasing and quoting information.

Revising and Editing Your Paper

Revising your paper basically means you are fixing grammatical errors or changing the meaning of what you wrote. After you have written the rough draft of your paper, read through it again to make sure the ideas in your paper flow and are cohesive. You may need to add in information, delete extra information, use a thesaurus to find a better word to better express a concept, reword a sentence, or just make sure your ideas are stated in a logical and progressive order.

After revising your paper, go back and edit it, correcting the capitalization, punctuation, and spelling errors – the mechanics of writing. If you are not 100% positive a word is spelled correctly, look it up in a dictionary. Ask a parent or teacher for help on the proper usage of commas, hyphens, capitalization, and numbers. You may also be able to find the answers to these questions by doing an Internet search on writing mechanics or by checking you local library for a book on writing mechanics.

It is also always a good idea to have someone else read your paper. Because this person did not write the paper and is not familiar with the topic, he or she is more likely to catch mistakes or ideas that do not quite make sense. This person can also give you insights or suggestions on how to reword or format your paper to make it flow better or convey your ideas better.

More Information:

  • Quick Science Fair Guide
  • Science Fair Project Ideas

Teaching Homeschool

Welcome! After you finish this article, we invite you to read other articles to assist you in teaching science at home on the Resource Center, which consists of hundreds of free science articles!

Shop for Science Supplies!

Home Science Tools offers a wide variety of science products and kits. Find affordable beakers, dissection supplies, chemicals, microscopes, and everything else you need to teach science for all ages!

Related Articles

Next Generation Science Standards (NGSS)

Next Generation Science Standards (NGSS)

What are the Next Generation Science Standards (NGSS)?  These guidelines summarize what students “should” know and be able to do in different learning levels of science. The NGSS is based on research showing that students who are well-prepared for the future need...

The Beginners Guide to Choosing a Homeschool Science Curriculum

The Beginners Guide to Choosing a Homeschool Science Curriculum

Homeschool science offers families incredible flexibility and personalization for their students’ education. There are many wonderful science curriculums available, and while plenty of options offer flexibility, figuring out which option is right for you can be a...

Synthetic Frog Dissection Guide Project

Synthetic Frog Dissection Guide Project

Frog dissections are a great way to learn about the human body, as frogs have many organs and tissues similar to those of humans. It is important to determine which type of dissection is best for your student or child. Some individuals do not enjoy performing...

Snowstorm in a Boiling Flask Density Project

Snowstorm in a Boiling Flask Density Project

You know the mesmerizing feeling of watching the snow fall during a snowstorm? With this project, you can make your own snowstorm in a flask using an adaptation from the lava lamp science experiment! It’s a perfect project for any winter day.

Thanksgiving Family Genetics Activity

Thanksgiving Family Genetics Activity

This Turkey Family Genetics activity is a fun way to teach your student about inheriting different traits and spark a lively conversation about why we look the way that we do.

JOIN OUR COMMUNITY

Get project ideas and special offers delivered to your inbox.

should I learn computer coding

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications

How to Do a Science Investigatory Project

Last Updated: February 2, 2024 Fact Checked

This article was co-authored by Bess Ruff, MA . Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group. There are 7 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 299,290 times.

A Science Investigatory Project (SIP) uses the scientific method to study and test an idea about how something works. It involves researching a topic, formulating a working theory (or hypothesis) that can be tested, conducting the experiment, and recording and reporting the results. You will probably need to follow this procedure if you are planning to enter a project in a school science fair, for instance. However, knowing how to do an SIP is useful for anyone interested in the sciences as well as anyone who wants to improve their problem-solving skills.

Employing the Scientific Method

Step 1 Ask a question.

  • Think about something that interests, surprises, or confuses you, and consider whether it is something you can reasonably investigate for a project. Formulate a single question that sums up you would like to examine. [1] X Research source
  • For instance, say you've heard that you can make a simple solar oven out of a pizza box. [2] X Research source You may, however, be skeptical as to whether this can be done, or done consistently at least. Therefore, your question might be: "Can a simple solar oven be made that works consistently in various conditions?"
  • Make sure the topic you select is manageable within your time frame, budget, and skill level, and that it doesn't break any rules for the assignment/fair/competition (for example, no animal testing). You can search for ideas online if you need help, but don't just copy a project you find there; this will also be against the rules and is unethical.
  • However, you can modify an existing project to test a different hypothesis or look into a question that was not answered by previous experiments. This isn't an ethical breach, and can often make for interesting results and discussions.

Step 2 Research your topic.

  • Be aware of the requirements for your project. Many science fairs require that you have at least three reputable academic sources such as peer-reviewed journal publications to use as references. [4] X Research source
  • Your sources will need to be unbiased (not tied to a product for sale, for instance), timely (not an encyclopedia from 1965), and credible (not some anonymous comment on a blog post). Web sources that are supported by a scientific organization or journal are a good bet. Ask your teacher or project director for guidance if you need it.
  • For instance, the search query "how to make a solar oven out of a pizza box" will produce a bounty of sources, some more scientifically-grounded (and thus reliable) than others. The hit on an on-topic article in a recognized, reputable periodical should be considered a valid source. [5] X Research source
  • On the other hand, blog posts, anonymous articles, and crowd-sourced materials probably won't make the cut. As valuable a resource as wikiHow is, it may not be considered a valid source for your SIP. It can, however, be helpful in introducing you to your chosen experiment and pointing you toward more academic sources. Choosing well-developed articles with numerous footnotes (that link to solid sources themselves) will improve the odds of acceptance, but discuss the issue with your instructor, fair organizer, etc.

Step 3 Form a hypothesis...

  • It is often helpful to turn your question into a hypothesis by thinking in "if / then" terms. You may want to frame your hypothesis (at least initially) as "If [I do this], then [this will happen]."
  • For our example, the hypothesis might be: "A solar oven made from a pizza box can consistently heat foods any time there is abundant sunshine."

Step 4 Design your experiment.

  • Consideration of variables is key in setting up your experiment. Scientific experiments have three types of variables: independent (those changed by you); dependent (those that change in response to the independent variable); and controlled (those that remain the same). [8] X Trustworthy Source Science Buddies Expert-sourced database of science projects, explanations, and educational material Go to source
  • When planning your experiment, consider the materials that you will need. Make sure they are readily available and affordable, or even better, use materials that are already in your house.
  • For our pizza box solar oven, the materials are easy to acquire and assemble. The oven, item cooked (s'mores, for instance), and full sunshine will be controlled variables. Other environmental conditions (time or day or time of year, for instance) could be the independent variable; and "done-ness" of the item the dependent variable.

Step 5 Conduct your experiment.

  • Closely follow the steps that you have planned to test your experiment. However, if your test can not be conducted as planned, reconfigure your steps or try different materials. (If you really want to win the science fair, this will be a big step for you!)
  • It is common practice for science fairs that you will need to conduct your test at least three times to ensure a scientifically-valid result. [10] X Trustworthy Source Science Buddies Expert-sourced database of science projects, explanations, and educational material Go to source
  • For our pizza box oven, then, let's say you decide to test your solar oven by placing it in direct sun on three similar, 90-degree Fahrenheit days in July, at three times each day (10 am, 2 pm, 6 pm).

Step 6 Record and analyze your results.

  • Sometimes your data may be best recorded as a graph, chart, or just a journal entry. However you record the data, make sure it is easy to review and analyze. Keep accurate records of all your results, even if they don't turn out the way you hoped or planned. This is also part of science! [11] X Research source
  • As per the solar oven tests at 10 am, 2 pm, and 6 pm on three sunny days, you will need to utilize your results. By recording the done-ness of your s'mores (by how melted the chocolate and marshmallow is, for instance), you may find that only the 2 pm placement was consistently successful. [12] X Research source

Step 7 Make your conclusion.

  • If you started out with a simple, clear, straightforward question, and a similar hypothesis, it should be easier to craft your conclusion.
  • Remember, concluding that your hypothesis was completely wrong does not make your SIP a failure. If you make clear, scientifically-grounded findings, and present them well, it can and will be a success.
  • In the pizza box solar oven example, our hypothesis was "A solar oven made from a pizza box can consistently heat foods any time there is abundant sunshine." Our conclusion, however, might be: "A solar oven made from a pizza box can only be consistently successful in heating foods in mid-day sun on a hot day."

Explaining and Presenting Your Project

Step 1 Know how your project will be evaluated.

  • For a science fair, for example, the judging could be based on the following criteria (adding up to 100%): research paper (50%); oral presentation (30%); display poster (20%).

Step 2 Create an abstract.

  • SIP abstracts are often limited to one page in length, and perhaps 250 words. In this short space, focus on the purpose of your experiment, procedures, results, and any possible applications. [14] X Research source

Step 3 Write a research paper

  • Use the guidelines provide by your teacher or the science fair director for information on how to construct your research paper.
  • As one example, your paper may need to be broken down into categories such as: 1) Title Page; 2) Introduction (where you identify your topic and hypothesis); 3) Materials & Methods (where you describe your experiment); 4) Results & Discoveries (where you identify your findings); 5) Conclusion & Recommendations (where you "answer" your hypothesis); 6) References (where you list your sources).

Step 4 Prepare your oral presentation.

  • Write up your research paper first, and use it as your guide in constructing your oral presentation. Follow a similar framework in outlining your hypothesis, experiments, results, and conclusions.
  • Focus on clarity and concision. Make sure everyone understands what you did, why you did it, and what you discovered in doing it.

Step 5 Make a visual aid.

  • Science fairs commonly use a standard size, three panel display board, approximately 36 inches high by 48 inches wide.
  • You should lay out your poster like the front page of a newspaper, with your title at the top, hypothesis and conclusion front and center, and supporting materials (methods, sources, etc.) clearly placed under headings on either side.
  • Use images, diagrams, and the like to spruce up the visual appeal of your poster, but don't sacrifice content for visual pizzazz.

Expert Q&A

Bess Ruff, MA

You Might Also Like

Conduct a Science Experiment

  • ↑ https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/the-science-of-biology
  • ↑ http://www.education.com/science-fair/article/design-solar-cooker/
  • ↑ https://www.societyforscience.org/isef/international-rules/rules-for-all-projects/
  • ↑ http://www.scientificamerican.com/article/sunny-science-build-a-pizza-box-solar-oven/
  • ↑ http://www.sciencebuddies.org/science-fair-projects/project_guide_index.shtml
  • ↑ http://spaceplace.nasa.gov/science-fair/en/
  • ↑ https://ctsciencefair.org/student-guide/abstract

About This Article

Bess Ruff, MA

To do a science investigatory project, start by thinking about a question you'd like to answer. For example, you may be wondering “Does the same kind of mold grow on different types of bread?” Then, once you have a question that's specific, form a hypothesis about what you think the answer will be. For this experiment, a good hypothesis might be “While all bread will produce the same kind of mold, the type of bread will impact how fast the mold grows.” With this hypothesis in mind, grab a few different kinds of of bread, set up your work station, and do your experiment at least 3 times to make sure the results are right. To learn how to record and analyze your results, keep reading! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Anonymous

Did this article help you?

Anonymous

Rachelle Hart Matthews

Dec 3, 2016

DennisDayline Saga Nuñez

DennisDayline Saga Nuñez

May 30, 2017

Lamberto Garcia

Lamberto Garcia

Nov 19, 2016

Roselyn Fadri

Roselyn Fadri

Dec 7, 2016

Am I a Narcissist or an Empath Quiz

Featured Articles

Enjoy Your Early Teen Years

Trending Articles

What is Golden Child Syndrome? 7 Signs You Were the Golden Child

Watch Articles

Wrap a Round Gift

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

Elsevier QRcode Wechat

  • Research Process

Writing a Scientific Research Project Proposal

  • 5 minute read
  • 90.4K views

Table of Contents

The importance of a well-written research proposal cannot be underestimated. Your research really is only as good as your proposal. A poorly written, or poorly conceived research proposal will doom even an otherwise worthy project. On the other hand, a well-written, high-quality proposal will increase your chances for success.

In this article, we’ll outline the basics of writing an effective scientific research proposal, including the differences between research proposals, grants and cover letters. We’ll also touch on common mistakes made when submitting research proposals, as well as a simple example or template that you can follow.

What is a scientific research proposal?

The main purpose of a scientific research proposal is to convince your audience that your project is worthwhile, and that you have the expertise and wherewithal to complete it. The elements of an effective research proposal mirror those of the research process itself, which we’ll outline below. Essentially, the research proposal should include enough information for the reader to determine if your proposed study is worth pursuing.

It is not an uncommon misunderstanding to think that a research proposal and a cover letter are the same things. However, they are different. The main difference between a research proposal vs cover letter content is distinct. Whereas the research proposal summarizes the proposal for future research, the cover letter connects you to the research, and how you are the right person to complete the proposed research.

There is also sometimes confusion around a research proposal vs grant application. Whereas a research proposal is a statement of intent, related to answering a research question, a grant application is a specific request for funding to complete the research proposed. Of course, there are elements of overlap between the two documents; it’s the purpose of the document that defines one or the other.

Scientific Research Proposal Format

Although there is no one way to write a scientific research proposal, there are specific guidelines. A lot depends on which journal you’re submitting your research proposal to, so you may need to follow their scientific research proposal template.

In general, however, there are fairly universal sections to every scientific research proposal. These include:

  • Title: Make sure the title of your proposal is descriptive and concise. Make it catch and informative at the same time, avoiding dry phrases like, “An investigation…” Your title should pique the interest of the reader.
  • Abstract: This is a brief (300-500 words) summary that includes the research question, your rationale for the study, and any applicable hypothesis. You should also include a brief description of your methodology, including procedures, samples, instruments, etc.
  • Introduction: The opening paragraph of your research proposal is, perhaps, the most important. Here you want to introduce the research problem in a creative way, and demonstrate your understanding of the need for the research. You want the reader to think that your proposed research is current, important and relevant.
  • Background: Include a brief history of the topic and link it to a contemporary context to show its relevance for today. Identify key researchers and institutions also looking at the problem
  • Literature Review: This is the section that may take the longest amount of time to assemble. Here you want to synthesize prior research, and place your proposed research into the larger picture of what’s been studied in the past. You want to show your reader that your work is original, and adds to the current knowledge.
  • Research Design and Methodology: This section should be very clearly and logically written and organized. You are letting your reader know that you know what you are going to do, and how. The reader should feel confident that you have the skills and knowledge needed to get the project done.
  • Preliminary Implications: Here you’ll be outlining how you anticipate your research will extend current knowledge in your field. You might also want to discuss how your findings will impact future research needs.
  • Conclusion: This section reinforces the significance and importance of your proposed research, and summarizes the entire proposal.
  • References/Citations: Of course, you need to include a full and accurate list of any and all sources you used to write your research proposal.

Common Mistakes in Writing a Scientific Research Project Proposal

Remember, the best research proposal can be rejected if it’s not well written or is ill-conceived. The most common mistakes made include:

  • Not providing the proper context for your research question or the problem
  • Failing to reference landmark/key studies
  • Losing focus of the research question or problem
  • Not accurately presenting contributions by other researchers and institutions
  • Incompletely developing a persuasive argument for the research that is being proposed
  • Misplaced attention on minor points and/or not enough detail on major issues
  • Sloppy, low-quality writing without effective logic and flow
  • Incorrect or lapses in references and citations, and/or references not in proper format
  • The proposal is too long – or too short

Scientific Research Proposal Example

There are countless examples that you can find for successful research proposals. In addition, you can also find examples of unsuccessful research proposals. Search for successful research proposals in your field, and even for your target journal, to get a good idea on what specifically your audience may be looking for.

While there’s no one example that will show you everything you need to know, looking at a few will give you a good idea of what you need to include in your own research proposal. Talk, also, to colleagues in your field, especially if you are a student or a new researcher. We can often learn from the mistakes of others. The more prepared and knowledgeable you are prior to writing your research proposal, the more likely you are to succeed.

Language Editing Services

One of the top reasons scientific research proposals are rejected is due to poor logic and flow. Check out our Language Editing Services to ensure a great proposal , that’s clear and concise, and properly referenced. Check our video for more information, and get started today.

Research Fraud: Falsification and Fabrication in Research Data

  • Manuscript Review

Research Fraud: Falsification and Fabrication in Research Data

Research Team Structure

Research Team Structure

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

science investigatory project research paper example

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

choosing the Right Research Methodology

Choosing the Right Research Methodology: A Guide for Researchers

Why is data validation important in research

Why is data validation important in research?

Writing a good review article

Writing a good review article

Input your search keywords and press Enter.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Science Investigatory Project

Profile image of Lucy Heartfilia

Related Papers

Jang Sarvida

This study is a preliminary evaluation of the feasibility of extracting ethanol from corn (Zea maize) stalks mostly left by the farmers in the field after harvest through mechanical extraction, filtration, fermentation and distillation.

science investigatory project research paper example

Arridina Susan Silitonga , Masjuki Haji Hassan , A. H. Sebayang

The increasing consumption of fossil fuels has led to the development of alternative fuels for the future. Domestic biofuel production and the utilization of alternative fuels can decrease dependency on petroleum oil, reduce trade deficits, reduce air pollution and reduce carbon dioxide emission. Bioethanol is a renewable fuel produced by the fermentation of sugar which is derived from plants such as sugarcane or beet, maize, or cassava etc. However, bioethanol consumption in an engine is approximately 51% higher than gasoline since the energy per unit volume of ethanol is 34% lower than for gasoline. Bioethanol is an oxygenated fuel that contains 35% oxygen, which can reduce particulate matter and NO x emissions caused by combustion of the fuel. Therefore, bioethanol–gasoline blends can significantly reduce petroleum use and GHG emission. In addition, utilization of lignocellulosic materials in bioethanol production is the most viable pathway from an environmental point of view. This paper reviews the current status and technologies involved in bioethanol production and the properties and engine performance from various biomass feedstocks which are the recommended sustainable alternative fuel in the future.

Energy for Sustainable Development

Carlos Rolz , Rolando Cifuentes

Mhlengi Nqoba

Livestock Research for Rural Development

Cristina Chuck

ISBN 978-953-51-0008-9

Cesar M Moreira , Cesar Moreira

M Reza Hadi

Abas Almodares

Innovative Research Publications

present research is focus to synthesis water based silver nanofluids by chemical reduction which increase the thermal conductivity to enhance the rate of heat transfer also to characterize the thermal properties and heat transfer performance of nanofluids over heat exchangers to enhance the efficiency and overall heat transfer coefficient of heat exchanger with simultaneous reduction in the area of heat exchanger. As noted above the basic concept of dispersing solids in fluids to enhance thermal conductivity. Solid particles are added because they conduct heat much better than do liquids. Compared with micro particles, nanoparticles stay suspended much longer and possess a much higher surface area. The surface/volume

RELATED PAPERS

Biomass and Bioenergy

Caleb Dalley

Hazrat Ali , Fazal Haq

Bioresource Technology

Edgard Gnansounou

The Scientific World Journal

Mohd Sofian Azirun

Progress in Energy and Combustion Science

Springer Nature Switzerland AG 2019

Thiruvengadam S

Abdullahi Mohammed

José Monteiro

Felix Takim

SHC120107 Student

Asmamaw Tesfaw

Jitendra Saini

Mohan Jain , Vivek Kumar

Honey Sweet

IJAERS Journal

Ratnavathi Chamarthy

Gheorghe M Stoian

Dr. Pinaki Dey

Justice Rono

Rani Ran Jeeva

Sachin Kumar

Yu-Chung Chiang

abebe alemu

Parvati Rijal

Bioresource technology

Nwabuebo Okem Romanus

Farhan Ramadhan

Dominik Rutz

Plant Breeding

Antonio Figueira

Applied Energy

Yanna Liang

Maria Joan Montemayor

Keith Chapman

Muhammad Nasidi , Yusuf Deeni

ignatius Nzom

Agronomy Journal

IAEME Publication

PROCEEDING OF INDONESIAN STUDENTS’ SCIENTIFIC MEETING, DELFT, THE NETHERLANDS, MAY 2008

Daniel Sondakh

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

StatAnalytica

23+ Science Investigatory Project Topics for Curious Minds

science investigatory project topics

Science investigatory projects are a great way for students to explore various scientific concepts and principles in a fun and engaging way. These projects allow students to apply their knowledge of scientific methods, research skills, and creativity to solve real-world problems.

If you’re looking for science investigatory project topics, you’ve come to the right place. In this blog post, we’ll explore what science investigatory projects are, their significance, and the elements that make up a successful project. We’ll also provide a list of 23+ exciting science investigatory project topics that will surely ignite your curiosity and imagination. Also, we will discuss how you can find the right topic for your Science Investigatory Project.

What is the Science Investigatory Project?

Table of Contents

A Science Investigatory Project (SIP) is a research-based project that allows students to apply scientific methods to investigate a problem or question of interest. It is an opportunity for students to explore their curiosity and creativity while developing important skills such as critical thinking, problem-solving, and communication.

SIPs are typically done by students in high school or college, but they can also be done by younger students under the guidance of a teacher or mentor. These projects can cover a wide range of topics in various fields of science such as biology, chemistry, physics, environmental science, and more.

Significance of Science Investigatory Project

science investigatory project (SIP) is a research project that allows students to explore scientific topics of their choice through hands-on experimentation and analysis. SIPs are often conducted by students in high school or college, and they provide a unique opportunity to develop critical thinking and problem-solving skills while also exploring areas of interest. Here are some of the significant benefits of conducting a science investigatory project:

1. Develops research skills

SIPs help students develop research skills, including gathering and analyzing data, identifying relevant sources, and synthesizing information. These skills are essential for success in college and beyond.

2. Promotes scientific inquiry

SIPs encourage students to ask questions, generate hypotheses, and design experiments to test their ideas. This process promotes scientific inquiry and helps students understand the scientific method.

3. Encourages creativity

SIPs provide students with the opportunity to think creatively and come up with innovative solutions to problems. This encourages creativity and helps students develop new ways of looking at the world.

4. Enhances problem-solving skills

SIPs require students to identify problems and design solutions to address them. This process helps students develop problem-solving skills that are valuable in many fields.

5. Fosters independent learning

SIPs encourage students to take ownership of their learning and work independently. This helps students develop self-directed learning skills that are essential for success in college and beyond.

6. Prepares for college and career

SIPs help students develop skills that are essential for success in college and in many careers, including research, critical thinking, problem-solving, and communication.

7. Contributes to scientific knowledge

SIPs can contribute to the scientific knowledge base by generating new data and insights into scientific topics. This can have a significant impact on the field and can inspire future research.

Overall, science investigatory projects provide students with a unique opportunity to explore scientific topics of their choice and develop important skills that are valuable for success in many fields. By conducting a SIP, students can enhance their understanding of scientific concepts, develop critical thinking and problem-solving skills, and make meaningful contributions to scientific knowledge.

Here in this section, we will tell you the top 23+ science investigatory project topics for curious minds:

1. Investigating the effects of caffeine on plant growth

This project involves growing plants in different concentrations of caffeine and measuring their growth over time.

2. Investigating the effects of temperature on the rate of photosynthesis

This project involves measuring the rate of photosynthesis at different temperatures to determine the optimal temperature for plant growth.

3. Investigating the effects of different types of soil on plant growth

This project involves growing plants in different types of soil to determine which type of soil is best for plant growth.

4. Investigating the effects of music on plant growth

This project involves playing different types of music to plants and measuring their growth over time.

5. Investigating the effects of pH on enzyme activity

This project involves measuring the activity of enzymes at different pH levels to determine the optimal pH for enzyme activity.

6. Investigating the effects of different types of light on plant growth

This project involves growing plants under different types of light to determine which type of light is best for plant growth.

7. Investigating the effects of different types of fertilizer on plant growth

This project involves growing plants in different types of fertilizer to determine which type of fertilizer is best for plant growth.

8. Investigating the effects of water pollution on fish

This project involves exposing fish to different types of water pollutants and measuring their survival rate over time.

9. Investigating the effects of air pollution on plant growth

This project involves exposing plants to different types of air pollutants and measuring their growth over time.

10. Investigating the effects of different types of insulation on heat loss

This project involves measuring the rate of heat loss through different types of insulation to determine which type of insulation is most effective.

11. Investigating the effects of different types of packaging on food preservation

This project involves storing food in different types of packaging to determine which type of packaging is best for food preservation.

12. Investigating the effects of different types of cleaning products on bacteria growth

This project involves testing different types of cleaning products on bacteria growth to determine which product is most effective at killing bacteria.

13. Investigating the effects of different types of water filters on water quality

This project involves testing different types of water filters to determine which type is most effective at removing contaminants from water.

14. Investigating the effects of different types of antacids on stomach acid

This project involves testing different types of antacids on stomach acid to determine which type is most effective at neutralizing acid.

15. Investigating the effects of different types of sunscreen on UV radiation

This project involves testing different types of sunscreen to determine which type is most effective at blocking UV radiation.

16. Investigating the effects of different types of exercise on heart rate

This project involves measuring heart rate during different types of exercise to determine which type of exercise is most effective at increasing heart rate.

17. Investigating the effects of different types of food on blood sugar

This project involves testing the effects of different types of food on blood sugar levels to determine which type of food is best for managing blood sugar.

18. Investigating the effects of different types of disinfectants on bacteria growth

This project involves testing different types of disinfectants on bacteria growth to determine which disinfectant is most effective at killing bacteria.

19. Investigating the effects of different types of music on memory retention

This project involves testing the effects of different types of music on memory retention to determine which type of music is most effective at enhancing memory.

20. Investigating the effects of different types of cooking oils on cholesterol levels

This project involves testing the effects of different types of cooking oils on cholesterol levels to determine which type of oil is best for managing cholesterol.

21. Investigating the effects of different types of toothpaste on tooth decay

This project involves testing different types of toothpaste on tooth decay to determine which type is most effective at preventing tooth decay.

22. Investigating the effects of different types of preservatives on food spoilage

This project involves testing different types of preservatives on food spoilage to determine which type is most effective at preventing food spoilage.

23. Investigating the effects of different types of hand sanitizers on bacteria growth

This project involves testing different types of hand sanitizers on bacteria growth to determine which type is most effective at killing bacteria.

24. Investigating the effects of different types of music on plant growth

This project involves playing different types of music to plants and measuring their growth over time to determine which type of music is most effective at enhancing plant growth.

25. Investigating the effects of different types of exercise on muscle growth

This project involves measuring muscle growth during different types of exercise to determine which type of exercise is most effective at increasing muscle mass.

  • 9 Best Ever Python Projects for Data Science In 2023
  • Top 7+ Popular Data Science Project Ideas In 2023

Elements of Science Investigatory Project

A successful science investigatory project typically consists of several elements. These elements include:

1. Research question or problem statement

The project should have a clear research question or problem statement that the student is attempting to investigate.

2. Hypothesis

The project should have a clear hypothesis that the student is testing.

3. Experimental design

The project should have a clear experimental design that includes the materials and methods used to conduct the experiment.

4. Data collection and analysis

The project should include data collection and analysis methods that are appropriate for the experiment.

The project should include a clear presentation of the results of the experiment.

6. Conclusion

The project should have a clear conclusion that summarizes the findings of the experiment and discusses their significance.

How to Find Science Investigatory Project Topics

Finding the right science investigatory project topics can be challenging, but there are several ways to get started. Here are some tips for finding science investigatory project ideas:

1. Identify your interests

Start by identifying your interests in science. Do you have a particular area of science that you enjoy? What are some problems or questions in that field that you find interesting?

2. Research current events

Look for current events in science that are relevant to your interests. This can help you identify problems or questions that are currently being investigated.

3. Brainstorm with others

Talk to your friends, family, or classmates about their interests in science. Brainstorm together to come up with ideas for science investigatory projects.

4. Use online resources

There are many online resources that can help you find science investigatory project ideas. Check out science websites, blogs, and forums for ideas, or browse through science fair project databases to see what others have done in the past.

5. Consult with a teacher or mentor

If you’re still struggling to find an idea, consult with a science teacher or mentor. They can offer guidance and help you brainstorm ideas based on your interests and skill level.

How to Choose the Right Science Investigatory Project Topics

Choosing the right science investigatory project topics can make all the difference when it comes to the success of your project. Here are some tips to help you choose the right idea:

1. Choose a topic that interests you

Choose a topic that you find interesting and that you’re passionate about. This will make the project more enjoyable and motivate you to do your best.

2. Choose a topic that’s feasible

Choose a topic that’s realistic and feasible given your time, resources, and skill level. Avoid choosing a topic that’s too complex or requires expensive equipment or materials that you don’t have access to.

3. Choose a topic that’s relevant

Choose a topic that’s relevant to your community or society. This will make the project more meaningful and have a greater impact.

4. Choose a topic that’s original

Choose a topic that’s original and hasn’t been done before. This will make the project more interesting and unique.

5. Choose a topic that’s challenging

Choose a topic that’s challenging but still achievable. This will make the project more rewarding and help you develop new skills.

Significance of Choosing Science Investigatory Project Topics

Choosing the right science investigatory project topics is crucial to the success of your project. Here are some reasons why choosing the right idea is so important:

1. It determines the success of your project

Choosing the right idea can make all the difference when it comes to the success of your project. A well-chosen idea will make the project more enjoyable, more meaningful, and more likely to succeed.

2. It determines the level of engagement

Choosing the right idea will increase your level of engagement with the project. You’ll be more motivated to work on the project and more interested in the results.

3. It helps develop critical thinking skills

Choosing the right idea requires critical thinking and problem-solving skills. By choosing a challenging and original idea, you’ll develop new skills and improve existing ones.

4. It makes the project more relevant

Choosing a topic that’s relevant to your community or society will make the project more meaningful and have a greater impact.

5. It makes the project more interesting

Choosing a topic that’s interesting and unique will make the project more engaging and enjoyable.

This is the end of this post which is about science investigatory project topics. On the other hand, science investigatory projects are a great way to develop critical thinking and problem-solving skills while exploring topics that interest you. With the right idea and a solid plan, you can create a successful project that has a meaningful impact on your community or society. 

By following the tips outlined in this post and exploring the 23+ science investigatory project topics provided, you’re sure to find an idea that sparks your curiosity and inspires you to explore the fascinating world of science. So, get your science on and start exploring the possibilities today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

110+ Best Science Investigatory Project Topics: Dive into Science

Science Investigatory Project Topics

  • Post author By admin
  • September 29, 2023

Explore a wide range of science investigatory project topics to engage in innovative research and make significant contributions to the field.

Get ready to dive headfirst into the thrilling world of Science Investigatory Project (SIP) topics! Imagine a journey where you become a scientist, an explorer of the unknown, and a solver of real-world puzzles.

This is what SIP offers – a chance to channel your inner curiosity and creativity into the fascinating realm of science.

From unlocking the secrets of life in biology to experimenting with the wonders of chemistry, from unraveling the mysteries of the universe in physics to addressing vital environmental issues – SIP topics are your keys to a world of exploration.

In this adventure, we’ll guide you through an array of captivating SIP ideas. These topics aren’t just assignments; they’re opportunities to uncover new knowledge, make a difference, and have a blast along the way.

So, gear up for an exciting journey, as we unveil the science topics that could spark your imagination and fuel your passion for discovery. Let’s begin!

Table of Contents

What is a Science Investigatory Project?

Imagine stepping into the shoes of a scientist – asking questions, running experiments, and discovering the secrets of the world around you. That’s exactly what a Science Investigatory Project, or SIP, is all about.

At its core, a SIP is a thrilling journey of scientific exploration. It’s a project that challenges you to pick a problem, make educated guesses (that’s your hypothesis), roll up your sleeves for experiments, collect data, and connect the dots to find answers.

Here’s how it works

Step 1: the mystery.

You start with a question – something that piques your curiosity. It could be anything from “Why do plants grow towards the light?” to “What makes the sky blue?” Your SIP is your ticket to unravel these mysteries.

Step 2: The Guess

Next comes your hypothesis – a fancy word for your best guess at the answer. It’s like saying, “I think this is what’s happening, and here’s why.”

Step 3: The Detective Work

Now, it’s time for the fun part – experimenting! You set up tests, tweak variables, and observe closely. Whether you’re mixing chemicals, observing insects, or measuring temperature, you’re the scientist in charge.

Step 4: Clues and Evidence

As you experiment, you collect clues in the form of data – numbers, measurements, observations. It’s like gathering puzzle pieces.

Step 5: The “Aha!” Moment

When you analyze your data, patterns start to emerge. You connect those puzzle pieces until you have a clear picture. Does your data support your guess (hypothesis), or do you need to rethink things?

Step 6: Sharing Your Discovery

Scientists don’t keep their findings to themselves. They share them with the world. Your SIP report or presentation is your chance to do just that. You explain what you did, what you found, and why it matters.

So, why do SIPs matter? They’re not just school projects. They’re your chance to think like a scientist, ask questions like a detective, and discover like an explorer. They’re where you become the expert, the innovator, the problem-solver.

From the mysteries of biology to the wonders of chemistry and the enigmas of physics, SIPs open doors to countless adventures in science. So, what question will you ask? What mystery will you solve? Your SIP journey awaits – embrace it, and you might just uncover something amazing.

Choosing the Right SIP Topic

Choosing the right Science Investigatory Project (SIP) topic is like selecting a path for your scientific adventure. It’s a critical decision, and here’s how to make it count:

Follow Your Passion

Your SIP topic should resonate with your interests. Pick something you’re genuinely curious about. When you’re passionate, the research becomes a thrilling quest, not a chore.

Real-World Relevance

Consider how your topic connects to the real world. Can your research shed light on a problem or offer solutions? SIPs are a chance to make a tangible impact.

Feasibility

Be realistic about the resources at your disposal. Choose a topic that you can explore within your time frame and access to equipment. Avoid overly ambitious projects that might overwhelm you.

Originality Matters

While it’s okay to explore well-trodden paths, strive for a unique angle. What can you add to the existing knowledge? Innovative ideas often lead to exciting discoveries.

Mentor Guidance

If you’re feeling uncertain, don’t hesitate to seek guidance from teachers or mentors. They can help you refine your ideas and offer valuable insights.

Remember, your SIP topic is the compass for your scientific journey. It should excite your curiosity, have real-world significance, and be feasible within your means. So, choose wisely, and let your scientific adventure begin!

Popular Science Investigatory Project Topics

Now that we’ve established the criteria for selecting a SIP topic, let’s explore some captivating ideas across various scientific domains.

  • Investigating the Effects of Various Soil Types on Plant Growth
  • The Impact of Different Water pH Levels on Aquatic Life
  • Studying the Behavior of Insects in Response to Environmental Changes
  • Analyzing the Effect of Different Light Intensities on Photosynthesis
  • Exploring the Microbial Diversity in Different Soil Samples
  • Investigating the Antioxidant Properties of Various Fruit Extracts
  • Studying the Growth Patterns of Mold on Different Types of Food
  • Analyzing the Effects of Temperature on Enzyme Activity
  • Investigating the Impact of Pollution on the Health of Local Wildlife
  • Exploring the Relationship Between Diet and Gut Microbiota Composition
  • Developing Eco-Friendly Cleaning Products from Household Ingredients
  • Investigating the Chemical Composition of Common Food Preservatives
  • Analyzing the Effects of Different Chemical Reactions on Metal Corrosion
  • Studying the Factors Affecting the Rate of Vitamin C Degradation in Fruit Juices
  • Exploring the Chemistry Behind the Colors of Fireworks
  • Investigating the Efficiency of Various Household Water Softeners
  • Synthesizing Biodegradable Polymers from Natural Sources
  • Studying the Chemical Reactions Involved in Baking Soda and Vinegar Reactions
  • Analyzing the Impact of Acids and Bases on Tooth Enamel
  • Investigating the Chemical Composition of Different Brands of Shampoos
  • Designing and Testing a Solar-Powered Water Heater
  • Investigating the Factors Affecting the Bounce Height of Balls
  • Studying the Relationship Between Temperature and Electrical Conductivity in Materials
  • Analyzing the Efficiency of Different Insulating Materials
  • Exploring the Effects of Magnetism on Plant Growth
  • Investigating the Behavior of Sound Waves in Different Environments
  • Studying the Impact of Projectile Launch Angles on Distance
  • Analyzing the Factors Affecting the Speed of Falling Objects
  • Investigating the Reflection and Refraction of Light in Different Media
  • Exploring the Relationship Between the Length of a Pendulum and Its Period

Environmental Science

  • Analyzing the Effects of Urban Green Spaces on Air Quality
  • Investigating the Impact of Microplastics on Marine Life
  • Studying the Relationship Between Temperature and Ocean Acidification
  • Exploring the Effects of Deforestation on Local Ecosystems
  • Investigating the Factors Contributing to Soil Erosion in a Watershed
  • Analyzing the Impact of Noise Pollution on Wildlife Behavior
  • Studying the Relationship Between Temperature and Ice Melt Rates
  • Investigating the Effect of Urbanization on Local Bird Populations
  • Exploring the Impact of Air Pollution on Human Health in Urban Areas
  • Analyzing the Biodiversity of Insects in Urban vs. Rural Environments

Social Sciences

  • Analyzing the Impact of Social Media Use on Teenagers’ Mental Health
  • Investigating the Factors Influencing Online Shopping Behavior
  • Studying the Effects of Different Teaching Methods on Student Engagement
  • Analyzing the Impact of Parenting Styles on Children’s Academic Performance
  • Investigating the Relationship Between Music Preferences and Stress Levels
  • Exploring the Factors Contributing to Workplace Stress and Burnout
  • Studying the Effects of Socioeconomic Status on Access to Healthcare
  • Analyzing the Factors Influencing Voting Behavior in Local Elections
  • Investigating the Impact of Advertising on Consumer Purchasing Decisions
  • Exploring the Effects of Cultural Diversity on Team Performance in the Workplace

These SIP topics offer a wide range of research opportunities for students in biology, chemistry, physics, and environmental science. Students can choose topics that align with their interests and contribute to their understanding of the natural world.

Conducting Your SIP

So, you’ve picked an exciting Science Investigatory Project (SIP) topic and you’re all set to dive into the world of scientific exploration. But how do you go from a brilliant idea to conducting your own experiments? Let’s break it down into easy steps:

Step 1: Dive into Research

Before you start mixing chemicals or setting up experiments, it’s time for some detective work. Dive into research! What’s already out there about your topic? Books, articles, websites – explore them all. This background study gives you the superpower of knowledge before you even start.

Step 2: Hypothesize Away!

With all that newfound wisdom, formulate a hypothesis. Don your scientist’s hat and make an educated guess about what you think will happen during your experiments. It’s like making a bet with science itself!

Step 3: Time for Action

Now comes the fun part. Design your experiments. What materials do you need? What steps should you follow? Imagine you’re a mad scientist with a plan! Then, go ahead and conduct your experiments. Be precise, follow your plan, and observe like Sherlock.

Step 4: Collect That Data

During your experiments, be a data ninja. Record everything. Measurements, observations, weird surprises – they’re all clues! The more detailed your notes, the better.

Step 5: Decode Your Findings

Time to put on your detective’s hat again. What do your data and observations tell you? Look for patterns, anomalies, and secrets your experiments are revealing. This is where the real magic happens.

Step 6: The Big Reveal

Now, reveal the grand finale – your conclusions! Did your experiments support your hypothesis, or did they throw you a curveball? Discuss what your findings mean and why they matter. It’s like solving the mystery in a thrilling novel.

Step 7: Your SIP Report

Finally, put it all together in your SIP report. Think of it as your scientific storybook. Share your journey with the world. Start with the introduction, add in your methodology, sprinkle your results and discussions, and wrap it up with a conclusion that leaves your readers in awe.

Remember, this isn’t just about science; it’s about your adventure in discovering the unknown. Have fun, be curious, and let your inner scientist shine!

What is a good topic for an investigatory project?

A good topic for an investigatory project depends on your interests and the resources available to you. Here are some broad categories and potential topics to consider:

  • The Impact of Different Fertilizers on Plant Growth
  • Investigating the Effect of Air Pollution on Local Plant Life
  • Analyzing the Quality of Drinking Water from Various Sources
  • Studying the Growth of Microorganisms in Different Water Types
  • Creating Biodegradable Plastics from Natural Materials
  • Investigating the Chemical Composition of Household Cleaning Products
  • Analyzing the Effects of Different Cooking Oils on Food Nutrition
  • Testing the pH Levels of Various Household Substances
  • Studying the Behavior of Ants in Response to Different Food Types
  • Investigating the Impact of Light Exposure on Seed Germination
  • Analyzing the Effects of Different Music Types on Plant Growth
  • Designing and Testing a Simple Wind Turbine
  • Investigating the Relationship Between Temperature and Electrical Conductivity in Materials
  • Studying the Behavior of Different Types of Pendulums
  • Analyzing the Factors Affecting the Efficiency of Solar Panels
  • Analyzing the Impact of Social Media Use on Teenagers’ Sleep Patterns
  • Investigating the Factors Influencing Consumer Behavior in Online Shopping
  • Studying the Effects of Different Teaching Methods on Student Learning
  • Analyzing the Relationship Between Music Preferences and Mood

Computer Science and Technology

  • Developing a Smartphone App for Personal Productivity
  • Investigating the Factors Affecting Wi-Fi Signal Strength in Different Locations
  • Analyzing the Impact of Screen Time on Productivity and Well-being
  • Studying the Efficiency of Different Coding Languages in Software Development

When choosing a topic, consider your interests, available resources, and the potential impact of your project. It’s essential to select a topic that excites you and allows you to conduct meaningful research.

Additionally, check with your school or instructor for any specific guidelines or requirements for your investigatory project.

What should I do in a science investigatory project?

So, you’re all set to embark on a thrilling adventure known as a Science Investigatory Project (SIP). But where do you start, and what should you be doing? Here’s your guide to diving headfirst into the world of scientific exploration:

Choose a Topic That Sparks Your Interest

Begin by picking a topic that genuinely excites you. It should be something you’re curious about, like “Why do plants grow towards the light?” or “How does pollution affect local water quality?”

Unleash Your Inner Detective with Background Research

Dive into the world of books, articles, and online resources. Learn everything you can about your chosen topic. It’s like gathering clues to solve a mystery.

Craft Your Hypothesis – Your Educated Guess

Formulate a hypothesis. Think of it as your scientific prediction. What do you think will happen when you investigate your question? Make an educated guess and write it down.

Plan Your Scientific Experiments

Now, let’s get hands-on! Plan your experiments. What materials will you need? What steps will you follow? Imagine you’re a mad scientist with a plan to uncover the secrets of the universe!

Collect Data – Be a Data Ninja

During your experiments, be a data ninja! Record everything meticulously. Measurements, observations, quirky surprises – they’re all part of your data treasure trove.

Decode Your Findings – Be a Scientific Sleuth

Time to decode the clues! Analyze your data like a scientific sleuth. Look for patterns, unexpected twists, and, most importantly, what your experiments are trying to tell you.

Share Your Scientific Tale: The SIP Report

It’s time to tell your scientific tale. Create your SIP report – your storybook of science. Start with the introduction, add in your experiments, sprinkle with results, and wrap it up with a conclusion that leaves your readers in awe.

Share Your Discoveries with the World

If you can, share your SIP findings. Present your work to your classmates, at science fairs, or anywhere you can. Share your excitement about science with the world!

Remember, SIP isn’t just about following steps; it’s about your adventure in discovering the mysteries of the universe. So, stay curious, have fun, and let your inner scientist shine!

What are the best topics for investigatory project chemistry class 12?

Hey there, future chemists! It’s time to explore the fascinating world of Chemistry with some class 12 investigatory project ideas that will not only challenge your scientific skills but also pique your curiosity:

Water Wizardry

Dive into the world of H2O and analyze water samples from different sources – tap water, well water, and that bottled stuff. Let’s uncover the secrets of your hydration!

Biodiesel Bonanza

Ever wondered if you could turn cooking oil into fuel? Investigate the synthesis of biodiesel from everyday vegetable oils, and let’s see if we can power the future with French fries!

Vitamin C Showdown

Put on your lab coat and determine the vitamin C content in various fruit juices. Is your morning OJ really packed with vitamin C? Let’s find out!

Race Against Time – The Iodine Clock

Get ready to race time itself! Study the kinetics of the iodine clock reaction and see how factors like concentration and temperature affect this chemistry marvel.

Shampoo Chemistry

Let’s turn your shower into a science lab! Test the pH levels of different shampoos – are they gentle or are they acidic? Your hair deserves the best!

Heavy Metal Detectives

Investigate soils for heavy metals. Are there hidden dangers lurking beneath our feet? Let’s discover the truth and protect the environment.

Metal Makeover

Ever dreamed of turning ordinary objects into shimmering treasures? Electroplate items like coins or jewelry with various metals and unveil their magical transformations!

The Dye Chronicles

Explore the vibrant world of food dyes used in your favorite treats. What’s really behind those bright colors? Let’s uncover the secrets of our rainbow foods!

Solubility Sleuths

Unravel the mysteries of solubility! How does temperature impact the solubility of common salts? Let’s dissolve some science questions.

Perfume Alchemy

Dive into the world of fragrances! Analyze the chemical components in different perfumes and discover the magic behind your favorite scents.

Remember, the best project is one that not only challenges you but also stirs your scientific curiosity. Choose a topic that excites you, and let your chemistry adventure begin!

What are good science experiment ideas?

  • Light Dance with Plants: Imagine plants swaying to the rhythm of light! Explore how different types of light affect plant growth – from disco-like colorful LEDs to the soothing glow of natural sunlight.
  • Kitchen Warriors: Don your lab coat and investigate everyday kitchen items like garlic, honey, and vinegar as germ-fighting superheroes. Who knew your kitchen could be a battleground for bacteria?
  • Animal Extravaganza: Dive into the world of critters! Observe and report on the curious behaviors of your chosen animal buddies. It’s like being a wildlife detective in your own backyard.
  • Fizz, Pop, and Bang: Get ready for some explosive fun! Experiment with classic chemical reactions that sizzle and explode, like the volcanic eruption of baking soda and vinegar.
  • Titration Showdown: Become a master of precision with acid-base titration. Unlock the secrets of unknown solutions, like a chemistry detective solving mysteries.
  • Crystal Kingdom: Step into the magical world of crystals. Grow your own dazzling crystals and reveal how factors like temperature and concentration influence their growth.
  • Swingin’ Pendulums: Swing into action with pendulums! Investigate how factors like pendulum length and mass affect the way they sway. It’s like dancing with physics.
  • Machine Marvels: Enter the world of simple machines. Uncover the mechanical magic behind levers, pulleys, and inclined planes as you lift heavy objects with ease.
  • Electromagnet Madness: Get electrified! Build your own electromagnet and experiment with coils and currents to see how they shape magnetic fields.
  • Water Adventure: Dive into water quality testing. Collect samples from different sources and become a water detective, searching for clues about pollution and health.
  • Air Expedition: Take to the skies with your own air quality station. Discover what’s floating in the air around you, from tiny particles to invisible gases.
  • Climate Crusaders: Join the battle against climate change. Investigate how shifts in temperature and precipitation patterns impact your local ecosystem.

Earth Science

  • Rock Detectives: Grab your magnifying glass and investigate rocks and fossils in your area. It’s like traveling through time to uncover Earth’s ancient secrets.
  • Weather Watchers: Become a meteorologist with your own weather station. Predict the weather and marvel at how the atmosphere behaves around you.
  • Volcano Eruption Spectacle: Get ready for volcanic eruptions without the lava! Create a stunning volcano model and watch it come to life with your own eruptions.
  • Starry Nights: Explore the cosmos with a telescope and discover celestial wonders, from the rings of Saturn to the galaxies far, far away.
  • Moon Phases Odyssey: Join the lunar calendar club! Track the Moon’s different faces over weeks and become an expert on lunar phases.
  • Solar Eclipse Spectacle: Witness the sky’s ultimate blockbuster – a solar eclipse! Safely observe this cosmic dance with eclipse glasses and telescopes.

These science experiments are not just about learning; they’re about unleashing your inner scientist and having a blast along the way! So, pick your favorite, put on your lab coat, and let the science adventures begin!

In wrapping up our exploration of Science Investigatory Project (SIP) topics, it’s clear that we’ve uncovered a treasure trove of possibilities. These topics are more than just words on a page; they’re gateways to adventure, inquiry, and understanding.

We’ve ventured into diverse realms of science, from the secrets of plant life to the hidden chemistry of everyday items. We’ve danced with the laws of physics, delved into environmental enigmas, and probed the complexities of human behavior. These topics aren’t just ideas; they’re invitations to explore the wonders of our world.

So, as you consider your own SIP journey, let your curiosity be your compass. Pick a topic that truly intrigues you, one that keeps you awake at night with questions. Embrace the process – the experiments, the surprises, and the “Aha!” moments.

Remember, it’s not just about reaching a conclusion; it’s about the exhilarating path you take to get there. SIPs are your chance to be a scientist, an explorer, and a storyteller all at once. So, go ahead, choose your topic, embark on your adventure, and share your discoveries with the world. Science is waiting for your curiosity to light the way!

Frequently Asked Questions

1. how long does it typically take to complete a science investigatory project, the duration of an sip varies, but it generally spans a few months to a year, depending on the complexity of the topic and available resources., 2. can i work on an sip alone, or is it better to collaborate with classmates, you can choose to work on an sip individually or in a group. both approaches have their advantages, so it depends on your preference and the project’s requirements., 3. are there any age restrictions for participating in sips, sips are typically undertaken by students in middle school and high school, but there are no strict age restrictions. anyone with a passion for scientific inquiry can engage in an sip., 4. how can i find a mentor or advisor for my sip, you can seek guidance from science teachers, professors, or professionals in your chosen field. they can provide valuable insights and support throughout your sip journey., 5. where can i showcase my sip findings, you can present your sip findings at science fairs, school exhibitions, or even submit them to relevant scientific journals or conferences for broader recognition..

  • australia (2)
  • duolingo (13)
  • Education (250)
  • General (47)
  • How To (10)
  • IELTS (126)
  • Latest Updates (162)
  • Malta Visa (6)
  • Permanent residency (1)
  • Programming (31)
  • Scholarship (1)
  • Sponsored (4)
  • Study Abroad (187)
  • Technology (11)
  • work permit (8)

Recent Posts

How Will You Explain the Term Unemployment Class 9

science investigatory project research paper example

How To : The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Most of us have conducted an investigatory science project without even knowing it, or at least without knowing that's what it was called. Most science experiments performed, from elementary to high school students and all the way up to professional scientists, are investigatory projects.

What's an Investigatory Project Exactly?

An investigatory project is basically any science experiment where you start with an issue or problem and conduct research or an investigation to decide what you think the outcome will be. After you've created your hypothesis or proposal, you can conduct a controlled experiment using the scientific method to arrive at a conclusion.

What's the Scientific Method?

For those of us who have forgotten the various steps of the scientific method, let me clear that up right here:

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Remember, however, that a successful investigatory science project does not necessarily have to result in the intended outcome. The purpose of these projects is to think critically, and if the solution doesn't work out, that doesn't mean your project will fail.

What Kind of Investigatory Projects Are There?

In order to conduct a great investigatory experiment, you have to ask an interesting question and be able to conduct an experiment that can hopefully answer that question. The harder and more intriguing the initial question is, the better the resulting investigation and experiment will be.

I've listed a few examples below of some of the best investigatory experiments out there, so hopefully you'll have no problem coming up with an idea.

Project #1: Making Soap Out of Guava

Basic hygiene should be available to everyone, but what about people who live in areas without easy access to grocery stores or pharmacies? This is a great question that makes you think about scientific alternatives to store-bought soap.

Below is an example project that creates soap from guava leaf extract and sodium hydroxide, but there's no shortage of materials you can use to replace the guava, like coconut oil or a fat like lard, butter or even the grease from your kitchen .

Project #2: Used Cooking Oil as a Substitute for Diesel

We all know how lucrative the oil business is, but what if the next huge innovation in oil was sitting right inside your kitchen cabinet? With the high prices of regular gasoline and diesel fuel, the possibility of creating a usable diesel fuel from household cooking oils is pretty exciting.

Although creating diesel fuel out of cooking oils that will run a BMW may sound like a reach, it still makes for a great project. And who knows, maybe in doing this you'll actually figure out what was missing from previous attempts . Being an instant billionaire doesn't sound too bad to me.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

If you're interested in trying it for yourself, there's a great step-by-step guide with a full ingredients list and photos over on Make .

Project #3: Create Another Alternative Fuel

If biodiesel isn't your forte, you can try making oxyhydrogen gas or creating hydrogen gas via electrolysis or vice versa, creating electricity from hydrogen gas .

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Project #4: Purifying Used Cooking Oil

Speaking of oil, if you use it to cook, you know that a lot of it goes to waste. But what if you could clean that oil and use it over and over again? Not only would that save money, but it would also benefit the environment since most people do not properly dispose of used cooking oil (no, pouring it down the drain doesn't count).

Your project goal would be to research methods of filtration or purification and test it on cooking oils. To easily demonstrate which method works best, try cooking some food in the oil produced by each one. Good food can go a long way when it comes to winning people over.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Check out the abstract and description of a similar project here .

Project #5: Alternative Methods of Producing Iodized Salt

In areas isolated from the sea, IDD or Iodine Deficiency Disease, is very common. Since these areas do not have easy access to marine foods or grocery stores, the population becomes very susceptible to the disease due to a lack of iodine in the diet. In order to combat this, researchers and doctors have begun infusing iodine into regular table salts.

If not iodine is readily available, it can be chemically made either with sulfuric acid and alkali metal iodide or hydrochloric acid and hydroxide peroxide .

But perhaps there are other more accessible ways to create an iodized salt that people could make at home. For a starting point, take a look at this previous experiment .

Project #6: Making Biodegradable Plastic

Plastic bags are actually illegal in Santa Monica , CA (and soon to be Los Angeles ) because of their threat to the environment due to insane resistance to biodegradation. I didn't think they were that bad, but one plastic bag can take up to 1,000 years to break down completely, and it can even ruin your car along the way. So, creating a better biodegradable plastic bag would be a huge achievement.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

The only question is how one would go about doing so, and what materials could be used? That's the question you can answer for your project. This project used cassava starch as an effective component for a biodegradable plastic, but you could try using a few different starches and see what works best.

Project #7: Solar Water Purification

One of the biggest world problems is finding clean water. While we in the states can find purified or drinkable tap water almost anywhere, millions of people around the world don't have access to clean drinking water.

A few students decided to investigate a potential purification process using the sun's energy and an aluminum sheet. Watch the video below for more information and a complete walkthrough of their scientific process.

And if you're an overachiever, you can step it up a notch and try purifying pee instead .

Project #8: Perfecting the Paper Bridge

Of course, an investigatory project doesn't always have to answer such grand questions. This experiment looks to discover how to build the strongest paper bridge by varying how the pieces are held together. So, the question is, "How do design changes affect a load bearing structure?"

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Check out the video below for more information on replicating the project yourself.

Project #9: Making Instant Ice

It's summer time and the degrees are already hitting triple digits in some areas. When it's this hot, there are few things better than a glass of ice chilled water or lemonade. But what happens if you don't have ice? Can you create your own ice or cool drinks quickly by another method? Check out this clip from King of Random .

Cool, huh? But how does it work? Is there any other way to replicate this? Well, let the investigation begin. Figure out what your hypotheses will be and follow along with this video for you own investigatory project.

For more information and additional photos, be sure to check out the King of Random's full tutorial .

Project #10: Increase the Shelf-Life of Fruits and Veggies

Extending the shelf-life of perishable fruits and vegetables can make a huge difference for small farmers, street-side vendors and even your average Joe—groceries aren't cheap. What is an inexpensive and easily accessible way to make produce stay fresh longer?

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

That's the question behind this great investigatory science project featured here . While these researchers focused exclusively on chitosan coating on bananas, you can branch out (no pun intended) and try an assortment of other fruits, veggies and possible coating materials.

For more information on how to keep your fruits and vegetables fresh for longer, check out my previous article , or Yumi's recent illustration for other ideas.

Project #11: Slow the Ripening of Sliced or Chopped Produce

You could also focus your project on keeping fruits and vegetables from browning after they've already been cut up. There are various methods and materials you can use to slow down the ripening process, such as honey and lemon juice. Watch the video below and read this tutorial for more information and ideas.

Your project could revolve around finding the best option, and testing out some of your own browning-prevention solutions to see if you can come up with a better one.

Project #12: Improve Memory by Thinking Dirty

If my memory was any good I would be fluent in Spanish and never need to look up the Quadratic Formula again. But my problems are more superficial, like forgetting where I put my keys or what time my dentist appointment was supposed to be. There are folks out there who do suffer from real memory problems, so figuring out how to help improve memory makes for a great investigatory project.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

There are tons of studies on memory and memory loss that you can research. But for your investigatory science project, you will want to come up with your own hypothesis based on that information and test it out. Does using colors to form associations help with memory? Does linking an image with a memory increase its hold in the carrier's head? What about drinking grape juice or sniffing rosemary ? These are the types of questions you may look to answer.

This article contends that memory can be improved by looking at NSFW images or thinking of dirty associations. Come up with your own theory and let the brain hacking begin.

Project #13: Improving Social Anxiety by Manipulating the Body & Mind

Science experiments don't always have to include chemicals or test tubes. The science of the mind can be just as interesting. So what's the investigation consist of?

Can you truly affect the way you act and feel by simply changing your posture? Does acting a certain way manipulate the mind drastically enough to actually change the way you feel?

Check out Amy Cuddy's awesome TED Talk for more ideas for additional questions you could ask.

Project #14: Kitchen DNA Extraction

You may think studying DNA is only for professionals with super expensive lab equipment, but you can actually extract DNA from any living thing with a few basic ingredients you probably have in your kitchen like dish soap and rubbing alcohol.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Decide on something to vary, like different fruits and vegetables or types of dish soap, and come up with a hypothesis regarding which will allow you to collect the most DNA material.

You can also find more information, as well as another way to perform the experiment, here .

Project #15: Make Homemade Glue from Milk

With milk, white vinegar and baking soda, you can make your own glue right at home. Make it an investigatory project by changing up the recipe and testing which results in the strongest glue. You could also try varying the ingredients to make it dry faster, or work on different materials (wood vs. plastic vs. paper).

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Project #16: Make a Battery Out of Fruits and Vegetables

How can you power a small light or device without electricity? You can make a DIY battery with a few different types of fruits and vegetables. Anything from a lemon to an apple , potato , or even passion fruit will work.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Pick a few different fruits or vegetables and form a hypothesis as to which will make the battery that puts out the most energy or lasts the longest. Once you've built your batteries, hook up a volt meter to read the output and see which one is the best.

What's Your Favorite?

Know of an awesome investigatory project that's not on the list, like wireless electricity or cheaper x-ray machines ? Let us know in the comments below. If you decide to use any of these ideas for your own project, be sure to take some photos and show off your results over in the Inspiration section !

Have an iPhone? See everything that's new on Apple's latest iOS update:

  • iOS 17.2 Has 59 New Features and Changes for iPhone You Won't Want to Miss

15 Comments

It's the best thing av seen

these things are really useful............

All of this was perfect for my Investigatory Project . ! :D

"All of this 'were' perfect for my Investigatory Project"

"all of 'these' were perfect for my investigatory project

heheh !! all of these examples above are usefull.. great job kuya's ang ate's heheh muah muah

how i can make a gameor a toy based on a scientific principal for class x

It really helps me to find a good topic for my investigatory project. Thanks. :)

how about devices that remove particles from the smoke/gas

yes biodegradable plastic bag is better but how ?

i like it so much i have now a science investigatory project

thanx for these I`ve enjoy it... i have now a sip

Is it possible to invent a machine that automatically segregate our trash? I want to make it possible through SIP...

nice and amazing

Share Your Thoughts

Make slime without borax : 5 easy recipes for gooey homemade ooze, how to : make soap out of guava leaf extract for a science investigatory project, how to : make a crazy foam explosion science experiment, how to : do a yeast experiment to see how much c02 it produces, how to : make graphene sheets from graphite flakes and cellophane tape, how to : make this amazing 9-layer density tower from things found in your kitchen, how to : isolate the sugar in a can of soda, classic chemistry : colorize colorless liquids with "black" magic, aka the iodine clock reaction, how to : make fire 4 ways without matches by using chemistry, how to : purify aluminum nitrate by recrystallization, how to : make hydrochloric acid from salt, how to : make silver nitrate from silver and nitric acid, how to : make a chemiluminescent reaction with home chemicals, how to : there's metal hiding in your pepto-bismol and here's how you extract it, how to : measure the volume of a balloon, how to : determine the empirical and molecular formulas for a compound in chemistry, how to : prove that water molecules are polar with a home-science experiment, how to : make black snake fireworks with & without fire, how to : make an iodine clock reaction at home.

  • All Features

How To : Make crystal iodine

  • All Hot Posts

COMMENTS

  1. Writing a Research Paper for Your Science Fair Project

    These notes will help you write a better summary. The purpose of your research paper is to give you the information to understand why your experiment turns out the way it does. The research paper should include: The history of similar experiments or inventions. Definitions of all important words and concepts that describe your experiment.

  2. (PDF) Science Investigatory Project Instruction: The ...

    Previous research has shown that students' engagement was enhanced through project-based learning units (Juuti et al., 2021), robotics courses (Verner et al., 2021), science investigatory projects ...

  3. (DOC) SCIENCE INVESTIGATORY PROJECT Homemade Organic Insecticide with

    Academia.edu is a platform for academics to share research papers. SCIENCE INVESTIGATORY PROJECT Homemade Organic Insecticide with the Use of Lemongrass Oil Chapter 1: The Problem and Its Background ... SCIENCE INVESTIGATORY PROJECT Research Proposal by Groups 5 & 6 Homemade Organic Insecticide with the Use of Lemongrass Oil Maddela, Miguel ...

  4. Science Fair Project Final Report

    Here is a sample science fair project final report. Note: The author's teacher did not require source citations and required a different format for the bibliography. ... Background research (your Research Paper). Materials list. Experimental procedure. Data analysis and discussion (including data table and graph(s)). Conclusions. Ideas for ...

  5. Science Investigatory Project Examples

    The Capillary Effect. This is an investigatory project example that is fun and safe; it demonstrates the capillary effect, also known as capillary action. Lower a rolled-up paper towel into a glass full of water until about two centimeters of the paper towel are in the water. Observe how the water seems to flow up the paper towel, contrary to ...

  6. What are the parts of a scientific investigatory project (SIP)?

    Hypotheses is a scientific guess which intends subject for thorough investigation. It is recommended to use null hypothesis in your research project. 4. Significance of the Study. The Significance of the Study indicates how important is your investigatory project for the people, environment and community as a whole.

  7. Writing a Science Project Report or Research Paper

    Depending on your topic and your writing preference, the layout of your paper can greatly enhance how well the information on your topic is displayed. 1. Process. This method is used to explain how something is done or how it works by listing the steps of the process. For most science fair projects and science experiments, this is the best format.

  8. How to Do a Science Investigatory Project: 12 Steps

    For a science fair, for example, the judging could be based on the following criteria (adding up to 100%): research paper (50%); oral presentation (30%); display poster (20%). 2. Create an abstract. More than likely, you will be required to write a brief summary of your SIP, known as an abstract.

  9. Writing a Scientific Research Project Proposal

    Abstract: This is a brief (300-500 words) summary that includes the research question, your rationale for the study, and any applicable hypothesis. You should also include a brief description of your methodology, including procedures, samples, instruments, etc. Introduction: The opening paragraph of your research proposal is, perhaps, the most ...

  10. (DOC) Science Investigatory Project

    Science Investigatory Project. Science Investigatory Project. Science Investigatory Project. ... 26 SAMPLE RESEARCH FIRST PLACE WINNER REGIONAL SCIENCE FAIR COMPETITION REGIONAL OFFICE DEPED, CANDAHUG, PALO, LEYTE OCTOBER 2-3, 2010 26 26 EXTRACTION OF ETHANOL FROM CORN (Zea maize) STALKS A Research Paper Presented to REGIONAL SCIENCE FAIR 2010 ...

  11. PDF This is a collection of reports of student award winning science ...

    This is a PDF document from the ERIC database that provides a historical overview of the Nuffield Science Teaching Project, a curriculum reform initiative in the UK that aimed to improve science education for secondary students. The document discusses the origins, objectives, methods, outcomes, and evaluation of the project, as well as its impact on science teaching and learning.

  12. Science Investigatory Project

    Science Investigatory Project. i hope it helps. Course. BS Medical Laboratory Science (MLS 024) ... SAMPLE RESEARCH FIRST PLACE WINNER REGIONAL SCIENCE FAIR COMPETITION REGIONAL OFFICE ... OCTOBER 2-3, 2010. EXTRACTION OF ETHANOL FROM CORN ( Zea maize) STALKS. A Research Paper Presented to REGISeptember 11-12, 2010ONAL SCIENCE FAIR 2010 DepED ...

  13. [PDF] Science Investigatory Project Instruction: The Secondary Schools

    Science investigatory projects (SIPs) are authentic tasks that science teachers implement in science curriculum. With this, the study investigated the journey of the secondary schools in SIP instruction through the lens of the teachers. Narrative inquiry from 12 purposively selected and interviewed science teachers/winning coaches from six schools in an SIP consistent winning Division in ...

  14. Guide: Science Investigatory Paper

    OUTLINE OF THE SCIENCE INVESTIGATORY PROJECT RESEARCH PAPER OUTLINE. Cover Page/Title Page (first page) Acknowledgement (second page) Table of Contents (third page or more) CHAPTERS. INTRODUCTION. A. Background of the Study - Why did you choose that project/topic? - Talk about your topic B. Statement of the Problem - What is the problem?

  15. 23+ Science Investigatory Project Topics for Curious Minds

    A Science Investigatory Project (SIP) is a research-based project that allows students to apply scientific methods to investigate a problem or question of interest. It is an opportunity for students to explore their curiosity and creativity while developing important skills such as critical thinking, problem-solving, and communication.

  16. 110+ Best Science Investigatory Project Topics: Dive into Science

    Whether you're mixing chemicals, observing insects, or measuring temperature, you're the scientist in charge. Step 4: Clues and Evidence. As you experiment, you collect clues in the form of data - numbers, measurements, observations. It's like gathering puzzle pieces. Step 5: The "Aha!".

  17. Complete SIP 10

    Science Investigatory Project submitted to the: Rogationist Academy-Davao. In Partial Fulfillment of the Subject Requirement. Practical Science 10. Submitted by: Alvarez, Julianne P. Andres, Lance Ranielle J. Cabusas, Michaela P. Saba, Christian James A. March 2020. ACKNOWLEGDEMENT

  18. The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to

    An investigatory project is basically any science experiment where you start with an issue or problem and conduct research or an investigation to decide what you think the outcome will be. After you've created your hypothesis or proposal, you can conduct a controlled experiment using the scientific method to arrive at a conclusion.

  19. Investigatory Project Research Paper Example

    Preparation of Ampalaya Additive. To get the 3/4 cup Ampalaya additive, only one piece of ampalaya fruit is needed. And toget 1/2 cup of sweet potato, only one piece of ampalaya is needed too. First the Ampalaya was washed with tap water. It was sliced into half to get its seeds or the inside pulp.

  20. Research Paper Example Science Investigatory Project (2023)

    research-paper-example-science-investigatory-project 3 Downloaded from resources.caih.jhu.edu on 2022-04-06 by guest ESRC National Centre for Research Methods, University of Southampton, UK "This is a highly practical book about the art of communicating why your research ideas are worthwhile, feasible and should be supported.

  21. science investigatory project

    tips science investigatory project format sample titles comparative study on the response of to !orse and study on the insecticidal activity of tinoparumpii ... %e o%served. #pper and 'o1er Cases and / inch margin up. do1n. left and right this is true to all the parts of this research paper It states the reason 1hy the study is 1orth maing and ...

  22. Science Investigatory Project Sample Research Paper

    2 min read · Jan 12, 2021--Listen