10 Methods of Data Presentation with 5 Great Tips to Practice, Best in 2024

10 Methods of Data Presentation with 5 Great Tips to Practice, Best in 2024

Leah Nguyen • 05 Apr 2024 • 11 min read

There are different ways of presenting data, so which one is suited you the most? You can end deathly boring and ineffective data presentation right now with our 10 methods of data presentation . Check out the examples from each technique!

Have you ever presented a data report to your boss/coworkers/teachers thinking it was super dope like you’re some cyber hacker living in the Matrix, but all they saw was a pile of static numbers that seemed pointless and didn’t make sense to them?

Understanding digits is rigid . Making people from non-analytical backgrounds understand those digits is even more challenging.

How can you clear up those confusing numbers in the types of presentation that have the flawless clarity of a diamond? So, let’s check out best way to present data. 💎

Table of Contents

  • What are Methods of Data Presentations?
  • #1 – Tabular

#2 – Text

#3 – pie chart, #4 – bar chart, #5 – histogram, #6 – line graph, #7 – pictogram graph, #8 – radar chart, #9 – heat map, #10 – scatter plot.

  • 5 Mistakes to Avoid
  • Best Method of Data Presentation

Frequently Asked Questions

More tips with ahaslides.

  • Marketing Presentation
  • Survey Result Presentation
  • Types of Presentation

Alternative Text

Start in seconds.

Get any of the above examples as templates. Sign up for free and take what you want from the template library!

What are Methods of Data Presentation?

The term ’data presentation’ relates to the way you present data in a way that makes even the most clueless person in the room understand. 

Some say it’s witchcraft (you’re manipulating the numbers in some ways), but we’ll just say it’s the power of turning dry, hard numbers or digits into a visual showcase that is easy for people to digest.

Presenting data correctly can help your audience understand complicated processes, identify trends, and instantly pinpoint whatever is going on without exhausting their brains.

Good data presentation helps…

  • Make informed decisions and arrive at positive outcomes . If you see the sales of your product steadily increase throughout the years, it’s best to keep milking it or start turning it into a bunch of spin-offs (shoutout to Star Wars👀).
  • Reduce the time spent processing data . Humans can digest information graphically 60,000 times faster than in the form of text. Grant them the power of skimming through a decade of data in minutes with some extra spicy graphs and charts.
  • Communicate the results clearly . Data does not lie. They’re based on factual evidence and therefore if anyone keeps whining that you might be wrong, slap them with some hard data to keep their mouths shut.
  • Add to or expand the current research . You can see what areas need improvement, as well as what details often go unnoticed while surfing through those little lines, dots or icons that appear on the data board.

Methods of Data Presentation and Examples

Imagine you have a delicious pepperoni, extra-cheese pizza. You can decide to cut it into the classic 8 triangle slices, the party style 12 square slices, or get creative and abstract on those slices. 

There are various ways for cutting a pizza and you get the same variety with how you present your data. In this section, we will bring you the 10 ways to slice a pizza – we mean to present your data – that will make your company’s most important asset as clear as day. Let’s dive into 10 ways to present data efficiently.

#1 – Tabular 

Among various types of data presentation, tabular is the most fundamental method, with data presented in rows and columns. Excel or Google Sheets would qualify for the job. Nothing fancy.

a table displaying the changes in revenue between the year 2017 and 2018 in the East, West, North, and South region

This is an example of a tabular presentation of data on Google Sheets. Each row and column has an attribute (year, region, revenue, etc.), and you can do a custom format to see the change in revenue throughout the year.

When presenting data as text, all you do is write your findings down in paragraphs and bullet points, and that’s it. A piece of cake to you, a tough nut to crack for whoever has to go through all of the reading to get to the point.

  • 65% of email users worldwide access their email via a mobile device.
  • Emails that are optimised for mobile generate 15% higher click-through rates.
  • 56% of brands using emojis in their email subject lines had a higher open rate.

(Source: CustomerThermometer )

All the above quotes present statistical information in textual form. Since not many people like going through a wall of texts, you’ll have to figure out another route when deciding to use this method, such as breaking the data down into short, clear statements, or even as catchy puns if you’ve got the time to think of them.

A pie chart (or a ‘donut chart’ if you stick a hole in the middle of it) is a circle divided into slices that show the relative sizes of data within a whole. If you’re using it to show percentages, make sure all the slices add up to 100%.

Methods of data presentation

The pie chart is a familiar face at every party and is usually recognised by most people. However, one setback of using this method is our eyes sometimes can’t identify the differences in slices of a circle, and it’s nearly impossible to compare similar slices from two different pie charts, making them the villains in the eyes of data analysts.

a half-eaten pie chart

Bonus example: A literal ‘pie’ chart! 🥧

The bar chart is a chart that presents a bunch of items from the same category, usually in the form of rectangular bars that are placed at an equal distance from each other. Their heights or lengths depict the values they represent.

They can be as simple as this:

a simple bar chart example

Or more complex and detailed like this example of presentation of data. Contributing to an effective statistic presentation, this one is a grouped bar chart that not only allows you to compare categories but also the groups within them as well.

an example of a grouped bar chart

Similar in appearance to the bar chart but the rectangular bars in histograms don’t often have the gap like their counterparts.

Instead of measuring categories like weather preferences or favourite films as a bar chart does, a histogram only measures things that can be put into numbers.

an example of a histogram chart showing the distribution of students' score for the IQ test

Teachers can use presentation graphs like a histogram to see which score group most of the students fall into, like in this example above.

Recordings to ways of displaying data, we shouldn’t overlook the effectiveness of line graphs. Line graphs are represented by a group of data points joined together by a straight line. There can be one or more lines to compare how several related things change over time. 

an example of the line graph showing the population of bears from 2017 to 2022

On a line chart’s horizontal axis, you usually have text labels, dates or years, while the vertical axis usually represents the quantity (e.g.: budget, temperature or percentage).

A pictogram graph uses pictures or icons relating to the main topic to visualise a small dataset. The fun combination of colours and illustrations makes it a frequent use at schools.

How to Create Pictographs and Icon Arrays in Visme-6 pictograph maker

Pictograms are a breath of fresh air if you want to stay away from the monotonous line chart or bar chart for a while. However, they can present a very limited amount of data and sometimes they are only there for displays and do not represent real statistics.

If presenting five or more variables in the form of a bar chart is too stuffy then you should try using a radar chart, which is one of the most creative ways to present data.

Radar charts show data in terms of how they compare to each other starting from the same point. Some also call them ‘spider charts’ because each aspect combined looks like a spider web.

a radar chart showing the text scores between two students

Radar charts can be a great use for parents who’d like to compare their child’s grades with their peers to lower their self-esteem. You can see that each angular represents a subject with a score value ranging from 0 to 100. Each student’s score across 5 subjects is highlighted in a different colour.

a radar chart showing the power distribution of a Pokemon

If you think that this method of data presentation somehow feels familiar, then you’ve probably encountered one while playing Pokémon .

A heat map represents data density in colours. The bigger the number, the more colour intense that data will be represented.

a heatmap showing the electoral votes among the states between two candidates

Most U.S citizens would be familiar with this data presentation method in geography. For elections, many news outlets assign a specific colour code to a state, with blue representing one candidate and red representing the other. The shade of either blue or red in each state shows the strength of the overall vote in that state.

a heatmap showing which parts the visitors click on in a website

Another great thing you can use a heat map for is to map what visitors to your site click on. The more a particular section is clicked the ‘hotter’ the colour will turn, from blue to bright yellow to red.

If you present your data in dots instead of chunky bars, you’ll have a scatter plot. 

A scatter plot is a grid with several inputs showing the relationship between two variables. It’s good at collecting seemingly random data and revealing some telling trends.

a scatter plot example showing the relationship between beach visitors each day and the average daily temperature

For example, in this graph, each dot shows the average daily temperature versus the number of beach visitors across several days. You can see that the dots get higher as the temperature increases, so it’s likely that hotter weather leads to more visitors.

5 Data Presentation Mistakes to Avoid

#1 – assume your audience understands what the numbers represent.

You may know all the behind-the-scenes of your data since you’ve worked with them for weeks, but your audience doesn’t.

a sales data board from Looker

Showing without telling only invites more and more questions from your audience, as they have to constantly make sense of your data, wasting the time of both sides as a result.

While showing your data presentations, you should tell them what the data are about before hitting them with waves of numbers first. You can use interactive activities such as polls , word clouds , online quiz and Q&A sections , combined with icebreaker games , to assess their understanding of the data and address any confusion beforehand.

#2 – Use the wrong type of chart

Charts such as pie charts must have a total of 100% so if your numbers accumulate to 193% like this example below, you’re definitely doing it wrong.

a bad example of using a pie chart in the 2012 presidential run

Before making a chart, ask yourself: what do I want to accomplish with my data? Do you want to see the relationship between the data sets, show the up and down trends of your data, or see how segments of one thing make up a whole?

Remember, clarity always comes first. Some data visualisations may look cool, but if they don’t fit your data, steer clear of them. 

#3 – Make it 3D

3D is a fascinating graphical presentation example. The third dimension is cool, but full of risks.

methods of data presentation in research

Can you see what’s behind those red bars? Because we can’t either. You may think that 3D charts add more depth to the design, but they can create false perceptions as our eyes see 3D objects closer and bigger than they appear, not to mention they cannot be seen from multiple angles.

#4 – Use different types of charts to compare contents in the same category

methods of data presentation in research

This is like comparing a fish to a monkey. Your audience won’t be able to identify the differences and make an appropriate correlation between the two data sets. 

Next time, stick to one type of data presentation only. Avoid the temptation of trying various data visualisation methods in one go and make your data as accessible as possible.

#5 – Bombard the audience with too much information

The goal of data presentation is to make complex topics much easier to understand, and if you’re bringing too much information to the table, you’re missing the point.

a very complicated data presentation with too much information on the screen

The more information you give, the more time it will take for your audience to process it all. If you want to make your data understandable and give your audience a chance to remember it, keep the information within it to an absolute minimum. You should set your session with open-ended questions , to avoid dead-communication!

What are the Best Methods of Data Presentation?

Finally, which is the best way to present data?

The answer is…

There is none 😄 Each type of presentation has its own strengths and weaknesses and the one you choose greatly depends on what you’re trying to do. 

For example:

  • Go for a scatter plot if you’re exploring the relationship between different data values, like seeing whether the sales of ice cream go up because of the temperature or because people are just getting more hungry and greedy each day?
  • Go for a line graph if you want to mark a trend over time. 
  • Go for a heat map if you like some fancy visualisation of the changes in a geographical location, or to see your visitors’ behaviour on your website.
  • Go for a pie chart (especially in 3D) if you want to be shunned by others because it was never a good idea👇

example of how a bad pie chart represents the data in a complicated way

What is chart presentation?

A chart presentation is a way of presenting data or information using visual aids such as charts, graphs, and diagrams. The purpose of a chart presentation is to make complex information more accessible and understandable for the audience.

When can I use charts for presentation?

Charts can be used to compare data, show trends over time, highlight patterns, and simplify complex information.

Why should use charts for presentation?

You should use charts to ensure your contents and visual look clean, as they are the visual representative, provide clarity, simplicity, comparison, contrast and super time-saving!

What are the 4 graphical methods of presenting data?

Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon.

' src=

Leah Nguyen

Words that convert, stories that stick. I turn complex ideas into engaging narratives - helping audiences learn, remember, and take action.

More from AhaSlides

Business Analyst Skills 101: A Roadmap To Success In The Data-Driven Era

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Present Your Data Like a Pro

  • Joel Schwartzberg

methods of data presentation in research

Demystify the numbers. Your audience will thank you.

While a good presentation has data, data alone doesn’t guarantee a good presentation. It’s all about how that data is presented. The quickest way to confuse your audience is by sharing too many details at once. The only data points you should share are those that significantly support your point — and ideally, one point per chart. To avoid the debacle of sheepishly translating hard-to-see numbers and labels, rehearse your presentation with colleagues sitting as far away as the actual audience would. While you’ve been working with the same chart for weeks or months, your audience will be exposed to it for mere seconds. Give them the best chance of comprehending your data by using simple, clear, and complete language to identify X and Y axes, pie pieces, bars, and other diagrammatic elements. Try to avoid abbreviations that aren’t obvious, and don’t assume labeled components on one slide will be remembered on subsequent slides. Every valuable chart or pie graph has an “Aha!” zone — a number or range of data that reveals something crucial to your point. Make sure you visually highlight the “Aha!” zone, reinforcing the moment by explaining it to your audience.

With so many ways to spin and distort information these days, a presentation needs to do more than simply share great ideas — it needs to support those ideas with credible data. That’s true whether you’re an executive pitching new business clients, a vendor selling her services, or a CEO making a case for change.

methods of data presentation in research

  • JS Joel Schwartzberg oversees executive communications for a major national nonprofit, is a professional presentation coach, and is the author of Get to the Point! Sharpen Your Message and Make Your Words Matter and The Language of Leadership: How to Engage and Inspire Your Team . You can find him on LinkedIn and X. TheJoelTruth

Partner Center

Data presentation: A comprehensive guide

Learn how to create data presentation effectively and communicate your insights in a way that is clear, concise, and engaging.

Raja Bothra

Building presentations

team preparing data presentation

Hey there, fellow data enthusiast!

Welcome to our comprehensive guide on data presentation.

Whether you're an experienced presenter or just starting, this guide will help you present your data like a pro.

We'll dive deep into what data presentation is, why it's crucial, and how to master it. So, let's embark on this data-driven journey together.

What is data presentation?

Data presentation is the art of transforming raw data into a visual format that's easy to understand and interpret. It's like turning numbers and statistics into a captivating story that your audience can quickly grasp. When done right, data presentation can be a game-changer, enabling you to convey complex information effectively.

Why are data presentations important?

Imagine drowning in a sea of numbers and figures. That's how your audience might feel without proper data presentation. Here's why it's essential:

  • Clarity : Data presentations make complex information clear and concise.
  • Engagement : Visuals, such as charts and graphs, grab your audience's attention.
  • Comprehension : Visual data is easier to understand than long, numerical reports.
  • Decision-making : Well-presented data aids informed decision-making.
  • Impact : It leaves a lasting impression on your audience.

Types of data presentation

Now, let's delve into the diverse array of data presentation methods, each with its own unique strengths and applications. We have three primary types of data presentation, and within these categories, numerous specific visualization techniques can be employed to effectively convey your data.

1. Textual presentation

Textual presentation harnesses the power of words and sentences to elucidate and contextualize your data. This method is commonly used to provide a narrative framework for the data, offering explanations, insights, and the broader implications of your findings. It serves as a foundation for a deeper understanding of the data's significance.

2. Tabular presentation

Tabular presentation employs tables to arrange and structure your data systematically. These tables are invaluable for comparing various data groups or illustrating how data evolves over time. They present information in a neat and organized format, facilitating straightforward comparisons and reference points.

3. Graphical presentation

Graphical presentation harnesses the visual impact of charts and graphs to breathe life into your data. Charts and graphs are powerful tools for spotlighting trends, patterns, and relationships hidden within the data. Let's explore some common graphical presentation methods:

  • Bar charts: They are ideal for comparing different categories of data. In this method, each category is represented by a distinct bar, and the height of the bar corresponds to the value it represents. Bar charts provide a clear and intuitive way to discern differences between categories.
  • Pie charts: It excel at illustrating the relative proportions of different data categories. Each category is depicted as a slice of the pie, with the size of each slice corresponding to the percentage of the total value it represents. Pie charts are particularly effective for showcasing the distribution of data.
  • Line graphs: They are the go-to choice when showcasing how data evolves over time. Each point on the line represents a specific value at a particular time period. This method enables viewers to track trends and fluctuations effortlessly, making it perfect for visualizing data with temporal dimensions.
  • Scatter plots: They are the tool of choice when exploring the relationship between two variables. In this method, each point on the plot represents a pair of values for the two variables in question. Scatter plots help identify correlations, outliers, and patterns within data pairs.

The selection of the most suitable data presentation method hinges on the specific dataset and the presentation's objectives. For instance, when comparing sales figures of different products, a bar chart shines in its simplicity and clarity. On the other hand, if your aim is to display how a product's sales have changed over time, a line graph provides the ideal visual narrative.

Additionally, it's crucial to factor in your audience's level of familiarity with data presentations. For a technical audience, more intricate visualization methods may be appropriate. However, when presenting to a general audience, opting for straightforward and easily understandable visuals is often the wisest choice.

In the world of data presentation, choosing the right method is akin to selecting the perfect brush for a masterpiece. Each tool has its place, and understanding when and how to use them is key to crafting compelling and insightful presentations. So, consider your data carefully, align your purpose, and paint a vivid picture that resonates with your audience.

What to include in data presentation

When creating your data presentation, remember these key components:

  • Data points : Clearly state the data points you're presenting.
  • Comparison : Highlight comparisons and trends in your data.
  • Graphical methods : Choose the right chart or graph for your data.
  • Infographics : Use visuals like infographics to make information more digestible.
  • Numerical values : Include numerical values to support your visuals.
  • Qualitative information : Explain the significance of the data.
  • Source citation : Always cite your data sources.

How to structure an effective data presentation

Creating a well-structured data presentation is not just important; it's the backbone of a successful presentation. Here's a step-by-step guide to help you craft a compelling and organized presentation that captivates your audience:

1. Know your audience

Understanding your audience is paramount. Consider their needs, interests, and existing knowledge about your topic. Tailor your presentation to their level of understanding, ensuring that it resonates with them on a personal level. Relevance is the key.

2. Have a clear message

Every effective data presentation should convey a clear and concise message. Determine what you want your audience to learn or take away from your presentation, and make sure your message is the guiding light throughout your presentation. Ensure that all your data points align with and support this central message.

3. Tell a compelling story

Human beings are naturally wired to remember stories. Incorporate storytelling techniques into your presentation to make your data more relatable and memorable. Your data can be the backbone of a captivating narrative, whether it's about a trend, a problem, or a solution. Take your audience on a journey through your data.

4. Leverage visuals

Visuals are a powerful tool in data presentation. They make complex information accessible and engaging. Utilize charts, graphs, and images to illustrate your points and enhance the visual appeal of your presentation. Visuals should not just be an accessory; they should be an integral part of your storytelling.

5. Be clear and concise

Avoid jargon or technical language that your audience may not comprehend. Use plain language and explain your data points clearly. Remember, clarity is king. Each piece of information should be easy for your audience to digest.

6. Practice your delivery

Practice makes perfect. Rehearse your presentation multiple times before the actual delivery. This will help you deliver it smoothly and confidently, reducing the chances of stumbling over your words or losing track of your message.

A basic structure for an effective data presentation

Armed with a comprehensive comprehension of how to construct a compelling data presentation, you can now utilize this fundamental template for guidance:

In the introduction, initiate your presentation by introducing both yourself and the topic at hand. Clearly articulate your main message or the fundamental concept you intend to communicate.

Moving on to the body of your presentation, organize your data in a coherent and easily understandable sequence. Employ visuals generously to elucidate your points and weave a narrative that enhances the overall story. Ensure that the arrangement of your data aligns with and reinforces your central message.

As you approach the conclusion, succinctly recapitulate your key points and emphasize your core message once more. Conclude by leaving your audience with a distinct and memorable takeaway, ensuring that your presentation has a lasting impact.

Additional tips for enhancing your data presentation

To take your data presentation to the next level, consider these additional tips:

  • Consistent design : Maintain a uniform design throughout your presentation. This not only enhances visual appeal but also aids in seamless comprehension.
  • High-quality visuals : Ensure that your visuals are of high quality, easy to read, and directly relevant to your topic.
  • Concise text : Avoid overwhelming your slides with excessive text. Focus on the most critical points, using visuals to support and elaborate.
  • Anticipate questions : Think ahead about the questions your audience might pose. Be prepared with well-thought-out answers to foster productive discussions.

By following these guidelines, you can structure an effective data presentation that not only informs but also engages and inspires your audience. Remember, a well-structured presentation is the bridge that connects your data to your audience's understanding and appreciation.

Do’s and don'ts on a data presentation

  • Use visuals : Incorporate charts and graphs to enhance understanding.
  • Keep it simple : Avoid clutter and complexity.
  • Highlight key points : Emphasize crucial data.
  • Engage the audience : Encourage questions and discussions.
  • Practice : Rehearse your presentation.

Don'ts:

  • Overload with data : Less is often more; don't overwhelm your audience.
  • Fit Unrelated data : Stay on topic; don't include irrelevant information.
  • Neglect the audience : Ensure your presentation suits your audience's level of expertise.
  • Read word-for-word : Avoid reading directly from slides.
  • Lose focus : Stick to your presentation's purpose.

Summarizing key takeaways

  • Definition : Data presentation is the art of visualizing complex data for better understanding.
  • Importance : Data presentations enhance clarity, engage the audience, aid decision-making, and leave a lasting impact.
  • Types : Textual, Tabular, and Graphical presentations offer various ways to present data.
  • Choosing methods : Select the right method based on data, audience, and purpose.
  • Components : Include data points, comparisons, visuals, infographics, numerical values, and source citations.
  • Structure : Know your audience, have a clear message, tell a compelling story, use visuals, be concise, and practice.
  • Do's and don'ts : Do use visuals, keep it simple, highlight key points, engage the audience, and practice. Don't overload with data, include unrelated information, neglect the audience's expertise, read word-for-word, or lose focus.

1. What is data presentation, and why is it important in 2023?

Data presentation is the process of visually representing data sets to convey information effectively to an audience. In an era where the amount of data generated is vast, visually presenting data using methods such as diagrams, graphs, and charts has become crucial. By simplifying complex data sets, presentation of the data may helps your audience quickly grasp much information without drowning in a sea of chart's, analytics, facts and figures.

2. What are some common methods of data presentation?

There are various methods of data presentation, including graphs and charts, histograms, and cumulative frequency polygons. Each method has its strengths and is often used depending on the type of data you're using and the message you want to convey. For instance, if you want to show data over time, try using a line graph. If you're presenting geographical data, consider to use a heat map.

3. How can I ensure that my data presentation is clear and readable?

To ensure that your data presentation is clear and readable, pay attention to the design and labeling of your charts. Don't forget to label the axes appropriately, as they are critical for understanding the values they represent. Don't fit all the information in one slide or in a single paragraph. Presentation software like Prezent and PowerPoint can help you simplify your vertical axis, charts and tables, making them much easier to understand.

4. What are some common mistakes presenters make when presenting data?

One common mistake is trying to fit too much data into a single chart, which can distort the information and confuse the audience. Another mistake is not considering the needs of the audience. Remember that your audience won't have the same level of familiarity with the data as you do, so it's essential to present the data effectively and respond to questions during a Q&A session.

5. How can I use data visualization to present important data effectively on platforms like LinkedIn?

When presenting data on platforms like LinkedIn, consider using eye-catching visuals like bar graphs or charts. Use concise captions and e.g., examples to highlight the single most important information in your data report. Visuals, such as graphs and tables, can help you stand out in the sea of textual content, making your data presentation more engaging and shareable among your LinkedIn connections.

Create your data presentation with prezent

Prezent can be a valuable tool for creating data presentations. Here's how Prezent can help you in this regard:

  • Time savings : Prezent saves up to 70% of presentation creation time, allowing you to focus on data analysis and insights.
  • On-brand consistency : Ensure 100% brand alignment with Prezent's brand-approved designs for professional-looking data presentations.
  • Effortless collaboration : Real-time sharing and collaboration features make it easy for teams to work together on data presentations.
  • Data storytelling : Choose from 50+ storylines to effectively communicate data insights and engage your audience.
  • Personalization : Create tailored data presentations that resonate with your audience's preferences, enhancing the impact of your data.

In summary, Prezent streamlines the process of creating data presentations by offering time-saving features, ensuring brand consistency, promoting collaboration, and providing tools for effective data storytelling. Whether you need to present data to clients, stakeholders, or within your organization, Prezent can significantly enhance your presentation-making process.

So, go ahead, present your data with confidence, and watch your audience be wowed by your expertise.

Thank you for joining us on this data-driven journey. Stay tuned for more insights, and remember, data presentation is your ticket to making numbers come alive!

Sign up for our free trial or book a demo !

Get the latest from Prezent community

Join thousands of subscribers who receive our best practices on communication, storytelling, presentation design, and more. New tips weekly. (No spam, we promise!)

websights

Call Us Today! +91 99907 48956 | [email protected]

methods of data presentation in research

It is the simplest form of data Presentation often used in schools or universities to provide a clearer picture to students, who are better able to capture the concepts effectively through a pictorial Presentation of simple data.

2. Column chart

methods of data presentation in research

It is a simplified version of the pictorial Presentation which involves the management of a larger amount of data being shared during the presentations and providing suitable clarity to the insights of the data.

3. Pie Charts

pie-chart

Pie charts provide a very descriptive & a 2D depiction of the data pertaining to comparisons or resemblance of data in two separate fields.

4. Bar charts

Bar-Charts

A bar chart that shows the accumulation of data with cuboid bars with different dimensions & lengths which are directly proportionate to the values they represent. The bars can be placed either vertically or horizontally depending on the data being represented.

5. Histograms

methods of data presentation in research

It is a perfect Presentation of the spread of numerical data. The main differentiation that separates data graphs and histograms are the gaps in the data graphs.

6. Box plots

box-plot

Box plot or Box-plot is a way of representing groups of numerical data through quartiles. Data Presentation is easier with this style of graph dealing with the extraction of data to the minutes of difference.

methods of data presentation in research

Map Data graphs help you with data Presentation over an area to display the areas of concern. Map graphs are useful to make an exact depiction of data over a vast case scenario.

All these visual presentations share a common goal of creating meaningful insights and a platform to understand and manage the data in relation to the growth and expansion of one’s in-depth understanding of data & details to plan or execute future decisions or actions.

Importance of Data Presentation

Data Presentation could be both can be a deal maker or deal breaker based on the delivery of the content in the context of visual depiction.

Data Presentation tools are powerful communication tools that can simplify the data by making it easily understandable & readable at the same time while attracting & keeping the interest of its readers and effectively showcase large amounts of complex data in a simplified manner.

If the user can create an insightful presentation of the data in hand with the same sets of facts and figures, then the results promise to be impressive.

There have been situations where the user has had a great amount of data and vision for expansion but the presentation drowned his/her vision.

To impress the higher management and top brass of a firm, effective presentation of data is needed.

Data Presentation helps the clients or the audience to not spend time grasping the concept and the future alternatives of the business and to convince them to invest in the company & turn it profitable both for the investors & the company.

Although data presentation has a lot to offer, the following are some of the major reason behind the essence of an effective presentation:-

  • Many consumers or higher authorities are interested in the interpretation of data, not the raw data itself. Therefore, after the analysis of the data, users should represent the data with a visual aspect for better understanding and knowledge.
  • The user should not overwhelm the audience with a number of slides of the presentation and inject an ample amount of texts as pictures that will speak for themselves.
  • Data presentation often happens in a nutshell with each department showcasing their achievements towards company growth through a graph or a histogram.
  • Providing a brief description would help the user to attain attention in a small amount of time while informing the audience about the context of the presentation
  • The inclusion of pictures, charts, graphs and tables in the presentation help for better understanding the potential outcomes.
  • An effective presentation would allow the organization to determine the difference with the fellow organization and acknowledge its flaws. Comparison of data would assist them in decision making.

Recommended Courses

Data-Visualization-Using-PowerBI-Tableau

Data Visualization

Using powerbi &tableau.

tableau-course

Tableau for Data Analysis

mysql-course

MySQL Certification Program

powerbi-course

The PowerBI Masterclass

Need help call our support team 7:00 am to 10:00 pm (ist) at (+91 999-074-8956 | 9650-308-956), keep in touch, email: [email protected].

WhatsApp us

methods of data presentation in research

Princeton Correspondents on Undergraduate Research

How to Make a Successful Research Presentation

Turning a research paper into a visual presentation is difficult; there are pitfalls, and navigating the path to a brief, informative presentation takes time and practice. As a TA for  GEO/WRI 201: Methods in Data Analysis & Scientific Writing this past fall, I saw how this process works from an instructor’s standpoint. I’ve presented my own research before, but helping others present theirs taught me a bit more about the process. Here are some tips I learned that may help you with your next research presentation:

More is more

In general, your presentation will always benefit from more practice, more feedback, and more revision. By practicing in front of friends, you can get comfortable with presenting your work while receiving feedback. It is hard to know how to revise your presentation if you never practice. If you are presenting to a general audience, getting feedback from someone outside of your discipline is crucial. Terms and ideas that seem intuitive to you may be completely foreign to someone else, and your well-crafted presentation could fall flat.

Less is more

Limit the scope of your presentation, the number of slides, and the text on each slide. In my experience, text works well for organizing slides, orienting the audience to key terms, and annotating important figures–not for explaining complex ideas. Having fewer slides is usually better as well. In general, about one slide per minute of presentation is an appropriate budget. Too many slides is usually a sign that your topic is too broad.

methods of data presentation in research

Limit the scope of your presentation

Don’t present your paper. Presentations are usually around 10 min long. You will not have time to explain all of the research you did in a semester (or a year!) in such a short span of time. Instead, focus on the highlight(s). Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it.

You will not have time to explain all of the research you did. Instead, focus on the highlights. Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it.

Craft a compelling research narrative

After identifying the focused research question, walk your audience through your research as if it were a story. Presentations with strong narrative arcs are clear, captivating, and compelling.

  • Introduction (exposition — rising action)

Orient the audience and draw them in by demonstrating the relevance and importance of your research story with strong global motive. Provide them with the necessary vocabulary and background knowledge to understand the plot of your story. Introduce the key studies (characters) relevant in your story and build tension and conflict with scholarly and data motive. By the end of your introduction, your audience should clearly understand your research question and be dying to know how you resolve the tension built through motive.

methods of data presentation in research

  • Methods (rising action)

The methods section should transition smoothly and logically from the introduction. Beware of presenting your methods in a boring, arc-killing, ‘this is what I did.’ Focus on the details that set your story apart from the stories other people have already told. Keep the audience interested by clearly motivating your decisions based on your original research question or the tension built in your introduction.

  • Results (climax)

Less is usually more here. Only present results which are clearly related to the focused research question you are presenting. Make sure you explain the results clearly so that your audience understands what your research found. This is the peak of tension in your narrative arc, so don’t undercut it by quickly clicking through to your discussion.

  • Discussion (falling action)

By now your audience should be dying for a satisfying resolution. Here is where you contextualize your results and begin resolving the tension between past research. Be thorough. If you have too many conflicts left unresolved, or you don’t have enough time to present all of the resolutions, you probably need to further narrow the scope of your presentation.

  • Conclusion (denouement)

Return back to your initial research question and motive, resolving any final conflicts and tying up loose ends. Leave the audience with a clear resolution of your focus research question, and use unresolved tension to set up potential sequels (i.e. further research).

Use your medium to enhance the narrative

Visual presentations should be dominated by clear, intentional graphics. Subtle animation in key moments (usually during the results or discussion) can add drama to the narrative arc and make conflict resolutions more satisfying. You are narrating a story written in images, videos, cartoons, and graphs. While your paper is mostly text, with graphics to highlight crucial points, your slides should be the opposite. Adapting to the new medium may require you to create or acquire far more graphics than you included in your paper, but it is necessary to create an engaging presentation.

The most important thing you can do for your presentation is to practice and revise. Bother your friends, your roommates, TAs–anybody who will sit down and listen to your work. Beyond that, think about presentations you have found compelling and try to incorporate some of those elements into your own. Remember you want your work to be comprehensible; you aren’t creating experts in 10 minutes. Above all, try to stay passionate about what you did and why. You put the time in, so show your audience that it’s worth it.

For more insight into research presentations, check out these past PCUR posts written by Emma and Ellie .

— Alec Getraer, Natural Sciences Correspondent

Share this:

  • Share on Tumblr

methods of data presentation in research

Book cover

Research Techniques for Computer Science, Information Systems and Cybersecurity pp 115–138 Cite as

Data Collection, Presentation and Analysis

  • Uche M. Mbanaso 4 ,
  • Lucienne Abrahams 5 &
  • Kennedy Chinedu Okafor 6  
  • First Online: 25 May 2023

508 Accesses

This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions. One of the interesting features of this chapter is the section dealing with using measurement scales in quantitative research, including nominal scales, ordinal scales, interval scales and ratio scales. It explains key facets of qualitative research including ethical clearance requirements. The chapter discusses the importance of data visualization as key to effective presentation of data, including tabular forms, graphical forms and visual charts such as those generated by Atlas.ti analytical software.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Bibliography

Abdullah, M. F., & Ahmad, K. (2013). The mapping process of unstructured data to structured data. Proceedings of the 2013 International Conference on Research and Innovation in Information Systems (ICRIIS) , Malaysia , 151–155. https://doi.org/10.1109/ICRIIS.2013.6716700

Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6 , 91. https://doi.org/10.1186/s40537-019-0254-8

Article   Google Scholar  

Alsheref, F. K., & Fattoh, I. E. (2020). Medical text annotation tool based on IBM Watson Platform. Proceedings of the 2020 6th international conference on advanced computing and communication systems (ICACCS) , India , 1312–1316. https://doi.org/10.1109/ICACCS48705.2020.9074309

Cinque, M., Cotroneo, D., Della Corte, R., & Pecchia, A. (2014). What logs should you look at when an application fails? Insights from an industrial case study. Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks , USA , 690–695. https://doi.org/10.1109/DSN.2014.69

Gideon, L. (Ed.). (2012). Handbook of survey methodology for the social sciences . Springer.

Google Scholar  

Leedy, P., & Ormrod, J. (2015). Practical research planning and design (12th ed.). Pearson Education.

Madaan, A., Wang, X., Hall, W., & Tiropanis, T. (2018). Observing data in IoT worlds: What and how to observe? In Living in the Internet of Things: Cybersecurity of the IoT – 2018 (pp. 1–7). https://doi.org/10.1049/cp.2018.0032

Chapter   Google Scholar  

Mahajan, P., & Naik, C. (2019). Development of integrated IoT and machine learning based data collection and analysis system for the effective prediction of agricultural residue/biomass availability to regenerate clean energy. Proceedings of the 2019 9th International Conference on Emerging Trends in Engineering and Technology – Signal and Information Processing (ICETET-SIP-19) , India , 1–5. https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092156 .

Mahmud, M. S., Huang, J. Z., Salloum, S., Emara, T. Z., & Sadatdiynov, K. (2020). A survey of data partitioning and sampling methods to support big data analysis. Big Data Mining and Analytics, 3 (2), 85–101. https://doi.org/10.26599/BDMA.2019.9020015

Miswar, S., & Kurniawan, N. B. (2018). A systematic literature review on survey data collection system. Proceedings of the 2018 International Conference on Information Technology Systems and Innovation (ICITSI) , Indonesia , 177–181. https://doi.org/10.1109/ICITSI.2018.8696036

Mosina, C. (2020). Understanding the diffusion of the internet: Redesigning the global diffusion of the internet framework (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/30723

Nkamisa, S. (2021). Investigating the integration of drone management systems to create an enabling remote piloted aircraft regulatory environment in South Africa (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/33883

QuestionPro. (2020). Survey research: Definition, examples and methods . https://www.questionpro.com/article/survey-research.html

Rajanikanth, J. & Kanth, T. V. R. (2017). An explorative data analysis on Bangalore City Weather with hybrid data mining techniques using R. Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) , India , 1121-1125. https://doi/10.1109/CTCEEC.2017.8455008

Rao, R. (2003). From unstructured data to actionable intelligence. IT Professional, 5 , 29–35. https://www.researchgate.net/publication/3426648_From_Unstructured_Data_to_Actionable_Intelligence

Schulze, P. (2009). Design of the research instrument. In P. Schulze (Ed.), Balancing exploitation and exploration: Organizational antecedents and performance effects of innovation strategies (pp. 116–141). Gabler. https://doi.org/10.1007/978-3-8349-8397-8_6

Usanov, A. (2015). Assessing cybersecurity: A meta-analysis of threats, trends and responses to cyber attacks . The Hague Centre for Strategic Studies. https://www.researchgate.net/publication/319677972_Assessing_Cyber_Security_A_Meta-analysis_of_Threats_Trends_and_Responses_to_Cyber_Attacks

Van de Kaa, G., De Vries, H. J., van Heck, E., & van den Ende, J. (2007). The emergence of standards: A meta-analysis. Proceedings of the 2007 40th Annual Hawaii International Conference on Systems Science (HICSS’07) , USA , 173a–173a. https://doi.org/10.1109/HICSS.2007.529

Download references

Author information

Authors and affiliations.

Centre for Cybersecurity Studies, Nasarawa State University, Keffi, Nigeria

Uche M. Mbanaso

LINK Centre, University of the Witwatersrand, Johannesburg, South Africa

Lucienne Abrahams

Department of Mechatronics Engineering, Federal University of Technology, Owerri, Nigeria

Kennedy Chinedu Okafor

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter.

Mbanaso, U.M., Abrahams, L., Okafor, K.C. (2023). Data Collection, Presentation and Analysis. In: Research Techniques for Computer Science, Information Systems and Cybersecurity. Springer, Cham. https://doi.org/10.1007/978-3-031-30031-8_7

Download citation

DOI : https://doi.org/10.1007/978-3-031-30031-8_7

Published : 25 May 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-30030-1

Online ISBN : 978-3-031-30031-8

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

methods of data presentation in research

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

customer advocacy software

21 Best Customer Advocacy Software for Customers in 2024

Apr 19, 2024

quantitative data analysis software

10 Quantitative Data Analysis Software for Every Data Scientist

Apr 18, 2024

Enterprise Feedback Management software

11 Best Enterprise Feedback Management Software in 2024

online reputation management software

17 Best Online Reputation Management Software in 2024

Apr 17, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Am J Pharm Educ
  • v.74(8); 2010 Oct 11

Presenting and Evaluating Qualitative Research

The purpose of this paper is to help authors to think about ways to present qualitative research papers in the American Journal of Pharmaceutical Education . It also discusses methods for reviewers to assess the rigour, quality, and usefulness of qualitative research. Examples of different ways to present data from interviews, observations, and focus groups are included. The paper concludes with guidance for publishing qualitative research and a checklist for authors and reviewers.

INTRODUCTION

Policy and practice decisions, including those in education, increasingly are informed by findings from qualitative as well as quantitative research. Qualitative research is useful to policymakers because it often describes the settings in which policies will be implemented. Qualitative research is also useful to both pharmacy practitioners and pharmacy academics who are involved in researching educational issues in both universities and practice and in developing teaching and learning.

Qualitative research involves the collection, analysis, and interpretation of data that are not easily reduced to numbers. These data relate to the social world and the concepts and behaviors of people within it. Qualitative research can be found in all social sciences and in the applied fields that derive from them, for example, research in health services, nursing, and pharmacy. 1 It looks at X in terms of how X varies in different circumstances rather than how big is X or how many Xs are there? 2 Textbooks often subdivide research into qualitative and quantitative approaches, furthering the common assumption that there are fundamental differences between the 2 approaches. With pharmacy educators who have been trained in the natural and clinical sciences, there is often a tendency to embrace quantitative research, perhaps due to familiarity. A growing consensus is emerging that sees both qualitative and quantitative approaches as useful to answering research questions and understanding the world. Increasingly mixed methods research is being carried out where the researcher explicitly combines the quantitative and qualitative aspects of the study. 3 , 4

Like healthcare, education involves complex human interactions that can rarely be studied or explained in simple terms. Complex educational situations demand complex understanding; thus, the scope of educational research can be extended by the use of qualitative methods. Qualitative research can sometimes provide a better understanding of the nature of educational problems and thus add to insights into teaching and learning in a number of contexts. For example, at the University of Nottingham, we conducted in-depth interviews with pharmacists to determine their perceptions of continuing professional development and who had influenced their learning. We also have used a case study approach using observation of practice and in-depth interviews to explore physiotherapists' views of influences on their leaning in practice. We have conducted in-depth interviews with a variety of stakeholders in Malawi, Africa, to explore the issues surrounding pharmacy academic capacity building. A colleague has interviewed and conducted focus groups with students to explore cultural issues as part of a joint Nottingham-Malaysia pharmacy degree program. Another colleague has interviewed pharmacists and patients regarding their expectations before and after clinic appointments and then observed pharmacist-patient communication in clinics and assessed it using the Calgary Cambridge model in order to develop recommendations for communication skills training. 5 We have also performed documentary analysis on curriculum data to compare pharmacist and nurse supplementary prescribing courses in the United Kingdom.

It is important to choose the most appropriate methods for what is being investigated. Qualitative research is not appropriate to answer every research question and researchers need to think carefully about their objectives. Do they wish to study a particular phenomenon in depth (eg, students' perceptions of studying in a different culture)? Or are they more interested in making standardized comparisons and accounting for variance (eg, examining differences in examination grades after changing the way the content of a module is taught). Clearly a quantitative approach would be more appropriate in the last example. As with any research project, a clear research objective has to be identified to know which methods should be applied.

Types of qualitative data include:

  • Audio recordings and transcripts from in-depth or semi-structured interviews
  • Structured interview questionnaires containing substantial open comments including a substantial number of responses to open comment items.
  • Audio recordings and transcripts from focus group sessions.
  • Field notes (notes taken by the researcher while in the field [setting] being studied)
  • Video recordings (eg, lecture delivery, class assignments, laboratory performance)
  • Case study notes
  • Documents (reports, meeting minutes, e-mails)
  • Diaries, video diaries
  • Observation notes
  • Press clippings
  • Photographs

RIGOUR IN QUALITATIVE RESEARCH

Qualitative research is often criticized as biased, small scale, anecdotal, and/or lacking rigor; however, when it is carried out properly it is unbiased, in depth, valid, reliable, credible and rigorous. In qualitative research, there needs to be a way of assessing the “extent to which claims are supported by convincing evidence.” 1 Although the terms reliability and validity traditionally have been associated with quantitative research, increasingly they are being seen as important concepts in qualitative research as well. Examining the data for reliability and validity assesses both the objectivity and credibility of the research. Validity relates to the honesty and genuineness of the research data, while reliability relates to the reproducibility and stability of the data.

The validity of research findings refers to the extent to which the findings are an accurate representation of the phenomena they are intended to represent. The reliability of a study refers to the reproducibility of the findings. Validity can be substantiated by a number of techniques including triangulation use of contradictory evidence, respondent validation, and constant comparison. Triangulation is using 2 or more methods to study the same phenomenon. Contradictory evidence, often known as deviant cases, must be sought out, examined, and accounted for in the analysis to ensure that researcher bias does not interfere with or alter their perception of the data and any insights offered. Respondent validation, which is allowing participants to read through the data and analyses and provide feedback on the researchers' interpretations of their responses, provides researchers with a method of checking for inconsistencies, challenges the researchers' assumptions, and provides them with an opportunity to re-analyze their data. The use of constant comparison means that one piece of data (for example, an interview) is compared with previous data and not considered on its own, enabling researchers to treat the data as a whole rather than fragmenting it. Constant comparison also enables the researcher to identify emerging/unanticipated themes within the research project.

STRENGTHS AND LIMITATIONS OF QUALITATIVE RESEARCH

Qualitative researchers have been criticized for overusing interviews and focus groups at the expense of other methods such as ethnography, observation, documentary analysis, case studies, and conversational analysis. Qualitative research has numerous strengths when properly conducted.

Strengths of Qualitative Research

  • Issues can be examined in detail and in depth.
  • Interviews are not restricted to specific questions and can be guided/redirected by the researcher in real time.
  • The research framework and direction can be quickly revised as new information emerges.
  • The data based on human experience that is obtained is powerful and sometimes more compelling than quantitative data.
  • Subtleties and complexities about the research subjects and/or topic are discovered that are often missed by more positivistic enquiries.
  • Data usually are collected from a few cases or individuals so findings cannot be generalized to a larger population. Findings can however be transferable to another setting.

Limitations of Qualitative Research

  • Research quality is heavily dependent on the individual skills of the researcher and more easily influenced by the researcher's personal biases and idiosyncrasies.
  • Rigor is more difficult to maintain, assess, and demonstrate.
  • The volume of data makes analysis and interpretation time consuming.
  • It is sometimes not as well understood and accepted as quantitative research within the scientific community
  • The researcher's presence during data gathering, which is often unavoidable in qualitative research, can affect the subjects' responses.
  • Issues of anonymity and confidentiality can present problems when presenting findings
  • Findings can be more difficult and time consuming to characterize in a visual way.

PRESENTATION OF QUALITATIVE RESEARCH FINDINGS

The following extracts are examples of how qualitative data might be presented:

Data From an Interview.

The following is an example of how to present and discuss a quote from an interview.

The researcher should select quotes that are poignant and/or most representative of the research findings. Including large portions of an interview in a research paper is not necessary and often tedious for the reader. The setting and speakers should be established in the text at the end of the quote.

The student describes how he had used deep learning in a dispensing module. He was able to draw on learning from a previous module, “I found that while using the e learning programme I was able to apply the knowledge and skills that I had gained in last year's diseases and goals of treatment module.” (interviewee 22, male)

This is an excerpt from an article on curriculum reform that used interviews 5 :

The first question was, “Without the accreditation mandate, how much of this curriculum reform would have been attempted?” According to respondents, accreditation played a significant role in prompting the broad-based curricular change, and their comments revealed a nuanced view. Most indicated that the change would likely have occurred even without the mandate from the accreditation process: “It reflects where the profession wants to be … training a professional who wants to take on more responsibility.” However, they also commented that “if it were not mandated, it could have been a very difficult road.” Or it “would have happened, but much later.” The change would more likely have been incremental, “evolutionary,” or far more limited in its scope. “Accreditation tipped the balance” was the way one person phrased it. “Nobody got serious until the accrediting body said it would no longer accredit programs that did not change.”

Data From Observations

The following example is some data taken from observation of pharmacist patient consultations using the Calgary Cambridge guide. 6 , 7 The data are first presented and a discussion follows:

Pharmacist: We will soon be starting a stop smoking clinic. Patient: Is the interview over now? Pharmacist: No this is part of it. (Laughs) You can't tell me to bog off (sic) yet. (pause) We will be starting a stop smoking service here, Patient: Yes. Pharmacist: with one-to-one and we will be able to help you or try to help you. If you want it. In this example, the pharmacist has picked up from the patient's reaction to the stop smoking clinic that she is not receptive to advice about giving up smoking at this time; in fact she would rather end the consultation. The pharmacist draws on his prior relationship with the patient and makes use of a joke to lighten the tone. He feels his message is important enough to persevere but he presents the information in a succinct and non-pressurised way. His final comment of “If you want it” is important as this makes it clear that he is not putting any pressure on the patient to take up this offer. This extract shows that some patient cues were picked up, and appropriately dealt with, but this was not the case in all examples.

Data From Focus Groups

This excerpt from a study involving 11 focus groups illustrates how findings are presented using representative quotes from focus group participants. 8

Those pharmacists who were initially familiar with CPD endorsed the model for their peers, and suggested it had made a meaningful difference in the way they viewed their own practice. In virtually all focus groups sessions, pharmacists familiar with and supportive of the CPD paradigm had worked in collaborative practice environments such as hospital pharmacy practice. For these pharmacists, the major advantage of CPD was the linking of workplace learning with continuous education. One pharmacist stated, “It's amazing how much I have to learn every day, when I work as a pharmacist. With [the learning portfolio] it helps to show how much learning we all do, every day. It's kind of satisfying to look it over and see how much you accomplish.” Within many of the learning portfolio-sharing sessions, debates emerged regarding the true value of traditional continuing education and its outcome in changing an individual's practice. While participants appreciated the opportunity for social and professional networking inherent in some forms of traditional CE, most eventually conceded that the academic value of most CE programming was limited by the lack of a systematic process for following-up and implementing new learning in the workplace. “Well it's nice to go to these [continuing education] events, but really, I don't know how useful they are. You go, you sit, you listen, but then, well I at least forget.”

The following is an extract from a focus group (conducted by the author) with first-year pharmacy students about community placements. It illustrates how focus groups provide a chance for participants to discuss issues on which they might disagree.

Interviewer: So you are saying that you would prefer health related placements? Student 1: Not exactly so long as I could be developing my communication skill. Student 2: Yes but I still think the more health related the placement is the more I'll gain from it. Student 3: I disagree because other people related skills are useful and you may learn those from taking part in a community project like building a garden. Interviewer: So would you prefer a mixture of health and non health related community placements?

GUIDANCE FOR PUBLISHING QUALITATIVE RESEARCH

Qualitative research is becoming increasingly accepted and published in pharmacy and medical journals. Some journals and publishers have guidelines for presenting qualitative research, for example, the British Medical Journal 9 and Biomedcentral . 10 Medical Education published a useful series of articles on qualitative research. 11 Some of the important issues that should be considered by authors, reviewers and editors when publishing qualitative research are discussed below.

Introduction.

A good introduction provides a brief overview of the manuscript, including the research question and a statement justifying the research question and the reasons for using qualitative research methods. This section also should provide background information, including relevant literature from pharmacy, medicine, and other health professions, as well as literature from the field of education that addresses similar issues. Any specific educational or research terminology used in the manuscript should be defined in the introduction.

The methods section should clearly state and justify why the particular method, for example, face to face semistructured interviews, was chosen. The method should be outlined and illustrated with examples such as the interview questions, focusing exercises, observation criteria, etc. The criteria for selecting the study participants should then be explained and justified. The way in which the participants were recruited and by whom also must be stated. A brief explanation/description should be included of those who were invited to participate but chose not to. It is important to consider “fair dealing,” ie, whether the research design explicitly incorporates a wide range of different perspectives so that the viewpoint of 1 group is never presented as if it represents the sole truth about any situation. The process by which ethical and or research/institutional governance approval was obtained should be described and cited.

The study sample and the research setting should be described. Sampling differs between qualitative and quantitative studies. In quantitative survey studies, it is important to select probability samples so that statistics can be used to provide generalizations to the population from which the sample was drawn. Qualitative research necessitates having a small sample because of the detailed and intensive work required for the study. So sample sizes are not calculated using mathematical rules and probability statistics are not applied. Instead qualitative researchers should describe their sample in terms of characteristics and relevance to the wider population. Purposive sampling is common in qualitative research. Particular individuals are chosen with characteristics relevant to the study who are thought will be most informative. Purposive sampling also may be used to produce maximum variation within a sample. Participants being chosen based for example, on year of study, gender, place of work, etc. Representative samples also may be used, for example, 20 students from each of 6 schools of pharmacy. Convenience samples involve the researcher choosing those who are either most accessible or most willing to take part. This may be fine for exploratory studies; however, this form of sampling may be biased and unrepresentative of the population in question. Theoretical sampling uses insights gained from previous research to inform sample selection for a new study. The method for gaining informed consent from the participants should be described, as well as how anonymity and confidentiality of subjects were guaranteed. The method of recording, eg, audio or video recording, should be noted, along with procedures used for transcribing the data.

Data Analysis.

A description of how the data were analyzed also should be included. Was computer-aided qualitative data analysis software such as NVivo (QSR International, Cambridge, MA) used? Arrival at “data saturation” or the end of data collection should then be described and justified. A good rule when considering how much information to include is that readers should have been given enough information to be able to carry out similar research themselves.

One of the strengths of qualitative research is the recognition that data must always be understood in relation to the context of their production. 1 The analytical approach taken should be described in detail and theoretically justified in light of the research question. If the analysis was repeated by more than 1 researcher to ensure reliability or trustworthiness, this should be stated and methods of resolving any disagreements clearly described. Some researchers ask participants to check the data. If this was done, it should be fully discussed in the paper.

An adequate account of how the findings were produced should be included A description of how the themes and concepts were derived from the data also should be included. Was an inductive or deductive process used? The analysis should not be limited to just those issues that the researcher thinks are important, anticipated themes, but also consider issues that participants raised, ie, emergent themes. Qualitative researchers must be open regarding the data analysis and provide evidence of their thinking, for example, were alternative explanations for the data considered and dismissed, and if so, why were they dismissed? It also is important to present outlying or negative/deviant cases that did not fit with the central interpretation.

The interpretation should usually be grounded in interviewees or respondents' contributions and may be semi-quantified, if this is possible or appropriate, for example, “Half of the respondents said …” “The majority said …” “Three said…” Readers should be presented with data that enable them to “see what the researcher is talking about.” 1 Sufficient data should be presented to allow the reader to clearly see the relationship between the data and the interpretation of the data. Qualitative data conventionally are presented by using illustrative quotes. Quotes are “raw data” and should be compiled and analyzed, not just listed. There should be an explanation of how the quotes were chosen and how they are labeled. For example, have pseudonyms been given to each respondent or are the respondents identified using codes, and if so, how? It is important for the reader to be able to see that a range of participants have contributed to the data and that not all the quotes are drawn from 1 or 2 individuals. There is a tendency for authors to overuse quotes and for papers to be dominated by a series of long quotes with little analysis or discussion. This should be avoided.

Participants do not always state the truth and may say what they think the interviewer wishes to hear. A good qualitative researcher should not only examine what people say but also consider how they structured their responses and how they talked about the subject being discussed, for example, the person's emotions, tone, nonverbal communication, etc. If the research was triangulated with other qualitative or quantitative data, this should be discussed.

Discussion.

The findings should be presented in the context of any similar previous research and or theories. A discussion of the existing literature and how this present research contributes to the area should be included. A consideration must also be made about how transferrable the research would be to other settings. Any particular strengths and limitations of the research also should be discussed. It is common practice to include some discussion within the results section of qualitative research and follow with a concluding discussion.

The author also should reflect on their own influence on the data, including a consideration of how the researcher(s) may have introduced bias to the results. The researcher should critically examine their own influence on the design and development of the research, as well as on data collection and interpretation of the data, eg, were they an experienced teacher who researched teaching methods? If so, they should discuss how this might have influenced their interpretation of the results.

Conclusion.

The conclusion should summarize the main findings from the study and emphasize what the study adds to knowledge in the area being studied. Mays and Pope suggest the researcher ask the following 3 questions to determine whether the conclusions of a qualitative study are valid 12 : How well does this analysis explain why people behave in the way they do? How comprehensible would this explanation be to a thoughtful participant in the setting? How well does the explanation cohere with what we already know?

CHECKLIST FOR QUALITATIVE PAPERS

This paper establishes criteria for judging the quality of qualitative research. It provides guidance for authors and reviewers to prepare and review qualitative research papers for the American Journal of Pharmaceutical Education . A checklist is provided in Appendix 1 to assist both authors and reviewers of qualitative data.

ACKNOWLEDGEMENTS

Thank you to the 3 reviewers whose ideas helped me to shape this paper.

Appendix 1. Checklist for authors and reviewers of qualitative research.

Introduction

  • □ Research question is clearly stated.
  • □ Research question is justified and related to the existing knowledge base (empirical research, theory, policy).
  • □ Any specific research or educational terminology used later in manuscript is defined.
  • □ The process by which ethical and or research/institutional governance approval was obtained is described and cited.
  • □ Reason for choosing particular research method is stated.
  • □ Criteria for selecting study participants are explained and justified.
  • □ Recruitment methods are explicitly stated.
  • □ Details of who chose not to participate and why are given.
  • □ Study sample and research setting used are described.
  • □ Method for gaining informed consent from the participants is described.
  • □ Maintenance/Preservation of subject anonymity and confidentiality is described.
  • □ Method of recording data (eg, audio or video recording) and procedures for transcribing data are described.
  • □ Methods are outlined and examples given (eg, interview guide).
  • □ Decision to stop data collection is described and justified.
  • □ Data analysis and verification are described, including by whom they were performed.
  • □ Methods for identifying/extrapolating themes and concepts from the data are discussed.
  • □ Sufficient data are presented to allow a reader to assess whether or not the interpretation is supported by the data.
  • □ Outlying or negative/deviant cases that do not fit with the central interpretation are presented.
  • □ Transferability of research findings to other settings is discussed.
  • □ Findings are presented in the context of any similar previous research and social theories.
  • □ Discussion often is incorporated into the results in qualitative papers.
  • □ A discussion of the existing literature and how this present research contributes to the area is included.
  • □ Any particular strengths and limitations of the research are discussed.
  • □ Reflection of the influence of the researcher(s) on the data, including a consideration of how the researcher(s) may have introduced bias to the results is included.

Conclusions

  • □ The conclusion states the main finings of the study and emphasizes what the study adds to knowledge in the subject area.

Home Blog Presentation Ideas How to Create and Deliver a Research Presentation

How to Create and Deliver a Research Presentation

Cover for Research Presentation Guide

Every research endeavor ends up with the communication of its findings. Graduate-level research culminates in a thesis defense , while many academic and scientific disciplines are published in peer-reviewed journals. In a business context, PowerPoint research presentation is the default format for reporting the findings to stakeholders.

Condensing months of work into a few slides can prove to be challenging. It requires particular skills to create and deliver a research presentation that promotes informed decisions and drives long-term projects forward.

Table of Contents

What is a Research Presentation

Key slides for creating a research presentation, tips when delivering a research presentation, how to present sources in a research presentation, recommended templates to create a research presentation.

A research presentation is the communication of research findings, typically delivered to an audience of peers, colleagues, students, or professionals. In the academe, it is meant to showcase the importance of the research paper , state the findings and the analysis of those findings, and seek feedback that could further the research.

The presentation of research becomes even more critical in the business world as the insights derived from it are the basis of strategic decisions of organizations. Information from this type of report can aid companies in maximizing the sales and profit of their business. Major projects such as research and development (R&D) in a new field, the launch of a new product or service, or even corporate social responsibility (CSR) initiatives will require the presentation of research findings to prove their feasibility.

Market research and technical research are examples of business-type research presentations you will commonly encounter.

In this article, we’ve compiled all the essential tips, including some examples and templates, to get you started with creating and delivering a stellar research presentation tailored specifically for the business context.

Various research suggests that the average attention span of adults during presentations is around 20 minutes, with a notable drop in an engagement at the 10-minute mark . Beyond that, you might see your audience doing other things.

How can you avoid such a mistake? The answer lies in the adage “keep it simple, stupid” or KISS. We don’t mean dumbing down your content but rather presenting it in a way that is easily digestible and accessible to your audience. One way you can do this is by organizing your research presentation using a clear structure.

Here are the slides you should prioritize when creating your research presentation PowerPoint.

1.  Title Page

The title page is the first thing your audience will see during your presentation, so put extra effort into it to make an impression. Of course, writing presentation titles and title pages will vary depending on the type of presentation you are to deliver. In the case of a research presentation, you want a formal and academic-sounding one. It should include:

  • The full title of the report
  • The date of the report
  • The name of the researchers or department in charge of the report
  • The name of the organization for which the presentation is intended

When writing the title of your research presentation, it should reflect the topic and objective of the report. Focus only on the subject and avoid adding redundant phrases like “A research on” or “A study on.” However, you may use phrases like “Market Analysis” or “Feasibility Study” because they help identify the purpose of the presentation. Doing so also serves a long-term purpose for the filing and later retrieving of the document.

Here’s a sample title page for a hypothetical market research presentation from Gillette .

Title slide in a Research Presentation

2. Executive Summary Slide

The executive summary marks the beginning of the body of the presentation, briefly summarizing the key discussion points of the research. Specifically, the summary may state the following:

  • The purpose of the investigation and its significance within the organization’s goals
  • The methods used for the investigation
  • The major findings of the investigation
  • The conclusions and recommendations after the investigation

Although the executive summary encompasses the entry of the research presentation, it should not dive into all the details of the work on which the findings, conclusions, and recommendations were based. Creating the executive summary requires a focus on clarity and brevity, especially when translating it to a PowerPoint document where space is limited.

Each point should be presented in a clear and visually engaging manner to capture the audience’s attention and set the stage for the rest of the presentation. Use visuals, bullet points, and minimal text to convey information efficiently.

Executive Summary slide in a Research Presentation

3. Introduction/ Project Description Slides

In this section, your goal is to provide your audience with the information that will help them understand the details of the presentation. Provide a detailed description of the project, including its goals, objectives, scope, and methods for gathering and analyzing data.

You want to answer these fundamental questions:

  • What specific questions are you trying to answer, problems you aim to solve, or opportunities you seek to explore?
  • Why is this project important, and what prompted it?
  • What are the boundaries of your research or initiative? 
  • How were the data gathered?

Important: The introduction should exclude specific findings, conclusions, and recommendations.

Action Evaluation Matrix in a Research Presentation

4. Data Presentation and Analyses Slides

This is the longest section of a research presentation, as you’ll present the data you’ve gathered and provide a thorough analysis of that data to draw meaningful conclusions. The format and components of this section can vary widely, tailored to the specific nature of your research.

For example, if you are doing market research, you may include the market potential estimate, competitor analysis, and pricing analysis. These elements will help your organization determine the actual viability of a market opportunity.

Visual aids like charts, graphs, tables, and diagrams are potent tools to convey your key findings effectively. These materials may be numbered and sequenced (Figure 1, Figure 2, and so forth), accompanied by text to make sense of the insights.

Data and Analysis slide in a Research Presentation

5. Conclusions

The conclusion of a research presentation is where you pull together the ideas derived from your data presentation and analyses in light of the purpose of the research. For example, if the objective is to assess the market of a new product, the conclusion should determine the requirements of the market in question and tell whether there is a product-market fit.

Designing your conclusion slide should be straightforward and focused on conveying the key takeaways from your research. Keep the text concise and to the point. Present it in bullet points or numbered lists to make the content easily scannable.

Conclusion Slide in a Research Presentation

6. Recommendations

The findings of your research might reveal elements that may not align with your initial vision or expectations. These deviations are addressed in the recommendations section of your presentation, which outlines the best course of action based on the result of the research.

What emerging markets should we target next? Do we need to rethink our pricing strategies? Which professionals should we hire for this special project? — these are some of the questions that may arise when coming up with this part of the research.

Recommendations may be combined with the conclusion, but presenting them separately to reinforce their urgency. In the end, the decision-makers in the organization or your clients will make the final call on whether to accept or decline the recommendations.

Recommendations slide in Research Presentation

7. Questions Slide

Members of your audience are not involved in carrying out your research activity, which means there’s a lot they don’t know about its details. By offering an opportunity for questions, you can invite them to bridge that gap, seek clarification, and engage in a dialogue that enhances their understanding.

If your research is more business-oriented, facilitating a question and answer after your presentation becomes imperative as it’s your final appeal to encourage buy-in for your recommendations.

A simple “Ask us anything” slide can indicate that you are ready to accept questions.

1. Focus on the Most Important Findings

The truth about presenting research findings is that your audience doesn’t need to know everything. Instead, they should receive a distilled, clear, and meaningful overview that focuses on the most critical aspects.

You will likely have to squeeze in the oral presentation of your research into a 10 to 20-minute presentation, so you have to make the most out of the time given to you. In the presentation, don’t soak in the less important elements like historical backgrounds. Decision-makers might even ask you to skip these portions and focus on sharing the findings.

2. Do Not Read Word-per-word

Reading word-for-word from your presentation slides intensifies the danger of losing your audience’s interest. Its effect can be detrimental, especially if the purpose of your research presentation is to gain approval from the audience. So, how can you avoid this mistake?

  • Make a conscious design decision to keep the text on your slides minimal. Your slides should serve as visual cues to guide your presentation.
  • Structure your presentation as a narrative or story. Stories are more engaging and memorable than dry, factual information.
  • Prepare speaker notes with the key points of your research. Glance at it when needed.
  • Engage with the audience by maintaining eye contact and asking rhetorical questions.

3. Don’t Go Without Handouts

Handouts are paper copies of your presentation slides that you distribute to your audience. They typically contain the summary of your key points, but they may also provide supplementary information supporting data presented through tables and graphs.

The purpose of distributing presentation handouts is to easily retain the key points you presented as they become good references in the future. Distributing handouts in advance allows your audience to review the material and come prepared with questions or points for discussion during the presentation.

4. Actively Listen

An equally important skill that a presenter must possess aside from speaking is the ability to listen. We are not just talking about listening to what the audience is saying but also considering their reactions and nonverbal cues. If you sense disinterest or confusion, you can adapt your approach on the fly to re-engage them.

For example, if some members of your audience are exchanging glances, they may be skeptical of the research findings you are presenting. This is the best time to reassure them of the validity of your data and provide a concise overview of how it came to be. You may also encourage them to seek clarification.

5. Be Confident

Anxiety can strike before a presentation – it’s a common reaction whenever someone has to speak in front of others. If you can’t eliminate your stress, try to manage it.

People hate public speaking not because they simply hate it. Most of the time, it arises from one’s belief in themselves. You don’t have to take our word for it. Take Maslow’s theory that says a threat to one’s self-esteem is a source of distress among an individual.

Now, how can you master this feeling? You’ve spent a lot of time on your research, so there is no question about your topic knowledge. Perhaps you just need to rehearse your research presentation. If you know what you will say and how to say it, you will gain confidence in presenting your work.

All sources you use in creating your research presentation should be given proper credit. The APA Style is the most widely used citation style in formal research.

In-text citation

Add references within the text of your presentation slide by giving the author’s last name, year of publication, and page number (if applicable) in parentheses after direct quotations or paraphrased materials. As in:

The alarming rate at which global temperatures rise directly impacts biodiversity (Smith, 2020, p. 27).

If the author’s name and year of publication are mentioned in the text, add only the page number in parentheses after the quotations or paraphrased materials. As in:

According to Smith (2020), the alarming rate at which global temperatures rise directly impacts biodiversity (p. 27).

Image citation

All images from the web, including photos, graphs, and tables, used in your slides should be credited using the format below.

Creator’s Last Name, First Name. “Title of Image.” Website Name, Day Mo. Year, URL. Accessed Day Mo. Year.

Work cited page

A work cited page or reference list should follow after the last slide of your presentation. The list should be alphabetized by the author’s last name and initials followed by the year of publication, the title of the book or article, the place of publication, and the publisher. As in:

Smith, J. A. (2020). Climate Change and Biodiversity: A Comprehensive Study. New York, NY: ABC Publications.

When citing a document from a website, add the source URL after the title of the book or article instead of the place of publication and the publisher. As in:

Smith, J. A. (2020). Climate Change and Biodiversity: A Comprehensive Study. Retrieved from https://www.smith.com/climate-change-and-biodiversity.

1. Research Project Presentation PowerPoint Template

methods of data presentation in research

A slide deck containing 18 different slides intended to take off the weight of how to make a research presentation. With tons of visual aids, presenters can reference existing research on similar projects to this one – or link another research presentation example – provide an accurate data analysis, disclose the methodology used, and much more.

Use This Template

2. Research Presentation Scientific Method Diagram PowerPoint Template

methods of data presentation in research

Whenever you intend to raise questions, expose the methodology you used for your research, or even suggest a scientific method approach for future analysis, this circular wheel diagram is a perfect fit for any presentation study.

Customize all of its elements to suit the demands of your presentation in just minutes.

3. Thesis Research Presentation PowerPoint Template

Layout of Results in Charts

If your research presentation project belongs to academia, then this is the slide deck to pair that presentation. With a formal aesthetic and minimalistic style, this research presentation template focuses only on exposing your information as clearly as possible.

Use its included bar charts and graphs to introduce data, change the background of each slide to suit the topic of your presentation, and customize each of its elements to meet the requirements of your project with ease.

4. Animated Research Cards PowerPoint Template

methods of data presentation in research

Visualize ideas and their connection points with the help of this research card template for PowerPoint. This slide deck, for example, can help speakers talk about alternative concepts to what they are currently managing and its possible outcomes, among different other usages this versatile PPT template has. Zoom Animation effects make a smooth transition between cards (or ideas).

5. Research Presentation Slide Deck for PowerPoint

methods of data presentation in research

With a distinctive professional style, this research presentation PPT template helps business professionals and academics alike to introduce the findings of their work to team members or investors.

By accessing this template, you get the following slides:

  • Introduction
  • Problem Statement
  • Research Questions
  • Conceptual Research Framework (Concepts, Theories, Actors, & Constructs)
  • Study design and methods
  • Population & Sampling
  • Data Collection
  • Data Analysis

Check it out today and craft a powerful research presentation out of it!

A successful research presentation in business is not just about presenting data; it’s about persuasion to take meaningful action. It’s the bridge that connects your research efforts to the strategic initiatives of your organization. To embark on this journey successfully, planning your presentation thoroughly is paramount, from designing your PowerPoint to the delivery.

Take a look and get inspiration from the sample research presentation slides above, put our tips to heart, and transform your research findings into a compelling call to action.

methods of data presentation in research

Like this article? Please share

Academics, Presentation Approaches, Research & Development Filed under Presentation Ideas

Related Articles

How to Make a Presentation Graph

Filed under Design • March 27th, 2024

How to Make a Presentation Graph

Detailed step-by-step instructions to master the art of how to make a presentation graph in PowerPoint and Google Slides. Check it out!

How to Make a Fundraising Presentation (with Thermometer Templates & Slides)

Filed under Presentation Ideas • February 29th, 2024

How to Make a Fundraising Presentation (with Thermometer Templates & Slides)

Meet a new framework to design fundraising presentations by harnessing the power of fundraising thermometer templates. Detailed guide with examples.

How to Create a 5 Minutes Presentation

Filed under Presentation Ideas • February 15th, 2024

How to Create a 5 Minutes Presentation

Master the art of short-format speeches like the 5 minutes presentation with this article. Insights on content structure, audience engagement and more.

Leave a Reply

methods of data presentation in research

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

A Dear Colleague Letter (DCL) is an informal correspondence which is written by a Requesting Office and distributed to communities within a specific program area, to attract individuals eligible under a Visiting Scientist, Engineer, and Educator (VSEE) appointment, an Intergovernmental Personnel Act (IPA) assignment and/or a Federal Temporary appointment. These letters may be circulated in paper form through internal mail, distributed electronically using listservs or accessed through NSF.gov’s Career Page.

Science Advisor for Public Access (Program Director)

Application timeline, position summary.

The Office of Integrative Activities (OIA) within the Office of the Director at the National Science Foundation (NSF) announces a nationwide search to fill the Science Advisor for Public Access position.  The position coordinates agency responses to federal public access mandates, oversees development of the NSF Public Access Repository, coordinates with other agencies via involvement in the NSTC and other cross-agency groups, and contributes to the NSF Knowledge Management activity.

Formal consideration of interested applications will begin immediately and continue until a selection is made.

OIA works across disciplinary boundaries to lead and coordinate strategic programs and opportunities that: advance research excellence and innovation; develop human and infrastructure capacity critical to the U.S. science and engineering enterprise; and promote engagement of scientists and engineers at all career stages and the personnel who support them.

For more information on the NSF Public Access Initiative, see: https://new.nsf.gov/public-access  

Position Description

Serves as the primary representative and point of contact for the NSF Public Access Initiative and Open Science matters, in consultation with other concerned entities within the Foundation (e.g., Office of the Director, Office of General Counsel, etc.) and the members of the cross-agency Public Access and Open Science Working Group (PAOSWG).  Creates and maintains linkages to other NSF units and other Federal agencies in pursuit of the overall NSF mission.

Works closely with the NSF Chief Information Officer staff on implementation and refinement of NSF's public access policies and systems (e.g., NSF-PAR, see: http://par.nsf.gov ).  Provides oversight and direction to system developers at NSF and DOE in the collaborative development and maintenance of the subsystems comprising NSF-PAR.

Contributes to the NSF Knowledge Management activity (e.g., change management) and its work with internal, enterprise-wide policies.

Assists the Office of Legislative and Public Affairs (OLPA) in communicating NSF’s Public Access and Open Science goals to the range of research communities served by NSF. 

Provides strategic and technical advice to the PAOSWG and the Office of the Director on policy development and implementation regarding public access to the outcomes of federally funded research, and other related science policy issues as they arise.

Analyzes and integrates scientific input and policy guidance from OMB, OSTP, Congress, the National Academy of Sciences, professional societies, the National Science Board, NSF policy groups, the Advisory Committee for Cyberinfrastructure, and other agencies and organizations into the Foundation’s plans for implementing public access and other science policy issues.

Advises OIA on advanced technology for knowledge management, including but not limited to taxonomy, ontology, machine learning, artificial intelligence, and semantic search.

Applies contemporary methods of organizing data, information, and knowledge to internal NSF information.

Provides leadership and support for the NSF Public Access Working Group. The NSF Public Access Working Group is charged with oversight of the implementation of the NSF Public Access Plan 2.0 (NSF 23-104, see: https://www.nsf.gov/pubs/2023/nsf23104/nsf23104.pdf ) and is comprised of senior leadership from across the Foundation. 

Serves on or leads NSF-wide groups addressing public access and other policy issues.  Serves on or leads teams of experts on interagency studies and, working with the Public Access working group and the Office of the Director, helps to coordinate NSF involvement in relevant interagency activities. 

Working with the Office of the Director and other NSF leadership, works to coordinate with the international science community on public access (and related policy issues as they arise) with the appropriate units within NSF, and to facilitate NSF interaction/participation in international science policy bodies.

Represents NSF as appropriate on internal committees, interagency committees, at meetings of other Federal agencies, professional organizations, and universities; participating, providing advice, and drafting recommendations and reports representing the outcome of such meetings.

Prepares background papers, presentations, and reports for use by senior NSF leadership in discussions with the National Science Board and for hearings and congressional testimony, as needed. Initiates, conducts, and manages studies and analyses to assess the scientific and technological contributions of public access to the achievement of national goals and objectives, as needed.

Serves as liaison with other Federal agencies, particularly in interagency programs involving public access policy development and implementation, and conducts other duties as assigned.

Appointment options

The position recruited under this announcement will be filled under the following appointment option(s):

Intergovernmental Personnel Act (IPA) Assignment: Individuals eligible for an IPA assignment with a Federal agency include employees of State and local government agencies or institutions of higher education, Indian tribal governments, and other eligible organizations in instances where such assignments would be of mutual benefit to the organizations involved. Initial assignments under IPA provisions may be made for a period up to two years, with a possible extension for up to an additional two-year period. The individual remains an employee of the home institution and NSF provides the negotiated funding toward the assignee's salary and benefits. Initial IPA assignments are made for a one-year period and may be extended by mutual agreement. 

Eligibility information

It is NSF policy that NSF personnel employed at or IPAs detailed to NSF are not permitted to participate in foreign government talent recruitment programs.  Failure to comply with this NSF policy could result in disciplinary action up to and including removal from Federal Service or termination of an IPA assignment and referral to the Office of Inspector General. https://www.nsf.gov/careers/Definition-of-Foreign-Talent-HRM.pdf .

Applications will be accepted from U.S. Citizens. Recent changes in Federal Appropriations Law require Non-Citizens to meet certain eligibility criteria to be considered. Therefore, Non-Citizens must certify eligibility by signing and attaching this Citizenship Affidavit to their application. Non-Citizens who do not provide the affidavit at the time of application will not be considered eligible. Non-Citizens are not eligible for positions requiring a security clearance.

To ensure compliance with an applicable preliminary nationwide injunction, which may be supplemented, modified, or vacated, depending on the course of ongoing litigation, the Federal Government will take no action to implement or enforce the COVID-19 vaccination requirement pursuant to Executive Order 14043 on Requiring Coronavirus Disease 2019 Vaccination for Federal Employees. Federal agencies may request information regarding the vaccination status of selected applicants for the purposes of implementing other workplace safety protocols, such as protocols related to masking, physical distancing, testing, travel, and quarantine.

Qualifications

Candidates must have a Ph.D. in an appropriate field plus after award of the Ph.D., six or more years of successful research, research administration, and/or managerial experience pertinent to the position; OR a Master's degree in an appropriate field plus after award of the degree, eight or more years of successful research, research administration, and/or managerial experience pertinent to the position.

Knowledge of current and historical developments in federal public access policies and mandates is highly desirable, as is familiarity with scientific communication practices and research data practices. Candidates must be able to communicate and interact with senior science, engineering and managerial personnel throughout the Foundation, with other agencies, and the general science and engineering community, and are expected to know and diplomatically express the views and goals of the NSF on Public Access topics in many situations both within and outside of the National Science Foundation. Candidates must also be skilled and experienced in operating both independently and interdependently with others. Outstanding oral and writing skills and the capability to deal with a wide variety of materials, frequently changing venues, and tight deadlines is imperative.

How to apply

To apply, email the following (i) a cover letter outlining qualifications and interest in the position, and (ii) an up-to-date curriculum vitae, to [email protected] .

IMAGES

  1. Data Presentation

    methods of data presentation in research

  2. Quantitative Research Methods PowerPoint Template

    methods of data presentation in research

  3. Five common ways of displaying qualitative data [Presenting qualitative

    methods of data presentation in research

  4. Unleashing Insights: Mastering the Art of Research and Data Analysis

    methods of data presentation in research

  5. 5 Steps of the Data Analysis Process

    methods of data presentation in research

  6. What is Data Analysis in Research

    methods of data presentation in research

VIDEO

  1. Research Methodology Presentations

  2. RESEARCH METHODOLOGY (PRESENTATION)

  3. Presentation of Data (lec. and SGT)

  4. Presentation of Data |Chapter 2 |Statistics

  5. Biostatistics: Data Collection & presentation

  6. CHAPTER FOUR DATA ANALYSIS AND GENERATING CHAPTER FIVE

COMMENTS

  1. Understanding Data Presentations (Guide + Examples)

    Step 1: Define Your Data Hierarchy. While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project. Example:

  2. 10 Methods of Data Presentation with 5 Great Tips to ...

    Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon. Tags: Types of Presentation. How to present the data in a way that even the clueless person in the room can understand? Check out our 10 methods of data presentation for a better idea.

  3. Present Your Data Like a Pro

    TheJoelTruth. While a good presentation has data, data alone doesn't guarantee a good presentation. It's all about how that data is presented. The quickest way to confuse your audience is by ...

  4. Data Presentation: A Comprehensive Guide

    Types of data presentation. Now, let's delve into the diverse array of data presentation methods, each with its own unique strengths and applications. We have three primary types of data presentation, and within these categories, numerous specific visualization techniques can be employed to effectively convey your data. ‍ 1. Textual presentation

  5. What Is Data Presentation? (Definition, Types And How-To)

    This method of displaying data uses diagrams and images. It is the most visual type for presenting data and provides a quick glance at statistical data. There are four basic types of diagrams, including: Pictograms: This diagram uses images to represent data. For example, to show the number of books sold in the first release week, you may draw ...

  6. Data Presentation in Research Reports: Key Principles and Tips

    1. Choose the right format. 2. Follow the design principles. 3. Adapt to your audience. 4. Here's what else to consider. Data presentation is a crucial aspect of any research report, as it ...

  7. PDF METHODS OF PRESENTING DATA FROM EXPERIMENTS

    Statements. The most common way of presentation of data is in the form of statements. This works best for simple observations, such as: "When viewed by light microscopy, all of the cells appeared dead." When data are more quantitative, such as- "7 out of 10 cells were dead", a table is the preferred form. Tables.

  8. Data Presentation

    Methods of Data Presentation in Statistics. 1. Pictorial Presentation. It is the simplest form of data Presentation often used in schools or universities to provide a clearer picture to students, who are better able to capture the concepts effectively through a pictorial Presentation of simple data. 2.

  9. Statistical data presentation

    In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and ...

  10. How to Make a Successful Research Presentation

    Turning a research paper into a visual presentation is difficult; there are pitfalls, and navigating the path to a brief, informative presentation takes time and practice. As a TA for GEO/WRI 201: Methods in Data Analysis & Scientific Writing this past fall, I saw how this process works from an instructor's standpoint.

  11. Qualitative Presentation Strategies

    Qualitative Presentation Strategies. Nov 14, 2023. By Dr. Linda Bloomberg, and hosted by Janet Salmons, Ph.D., Research Community Manager for Sage Methodspace. Dr. Bloomberg is the author of Completing Your Qualitative Dissertation: A Road Map From Beginning to End. Use the code COMMUNITY3 for a 20% discount when you order her book, valid ...

  12. Data Display in Qualitative Research

    Visual displays help in the presentation of inferences and conclusions and represent ways of organizing, summarizing, simplifying, or transforming data. Data displays such as matrices and networks are often utilized to enhance data analysis and are more commonly seen in quantitative than in qualitative studies.

  13. Data Collection, Presentation and Analysis

    To effectively generate usable data, the methods and techniques used must include the following: 7.2.1 Data Identification. This requires planning what data to collect and interrogating the reasons why and how this data relates to the research problem, the particular research sub-questions and the overall research design.

  14. (PDF) Statistical data presentation

    Data Presentation. Data can be presented in one of the three wa ys: - as text; - in tabular form; or. - in graphical form. Methods of presenta tion must be determined according. to the data ...

  15. (PDF) CHAPTER FOUR DATA PRESENTATION, ANALYSIS AND ...

    DATA PRESENTATION, ANALYSIS AND INTERPRETATION. 4.0 Introduction. This chapter is concerned with data pres entation, of the findings obtained through the study. The. findings are presented in ...

  16. Data Collection

    Data Collection | Definition, Methods & Examples. Published on June 5, 2020 by Pritha Bhandari.Revised on June 21, 2023. Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem.

  17. How To Present Research Data?

    Start with response rate and description of research participants (these information give the readers an idea of the representativeness of the research data), then the key findings and relevant statistical analyses. Data should answer the research questions identified earlier. Leave the process of data collection to the methods section.

  18. Data Presentation Methods Guide

    Data Presentation Methods Guide - Download as a PDF or view online for free ... Expand upon earlier research by trying different data collection approaches 16. 17. TEXT PRESENTATION • Is the main method of conveying information as it is used to explain results and trends, and provide contextual information. • Data are fundamentally ...

  19. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  20. (PDF) Data Presentation in Qualitative Research: The Outcomes of the

    The data presentation is one of the segments of the methodology in every research depending on the approach. The methodology, therefore, refers to the design and the theory that underpins the ...

  21. Presenting and Evaluating Qualitative Research

    The purpose of this paper is to help authors to think about ways to present qualitative research papers in the American Journal of Pharmaceutical Education. It also discusses methods for reviewers to assess the rigour, quality, and usefulness of qualitative research. Examples of different ways to present data from interviews, observations, and ...

  22. How to Create and Deliver a Research Presentation

    In the case of a research presentation, you want a formal and academic-sounding one. It should include: The full title of the report. The date of the report. The name of the researchers or department in charge of the report. The name of the organization for which the presentation is intended.

  23. (PDF) DATA PRESENTATION AND ANALYSINGf

    Data is the basis of information, reasoning, or calcul ation, it is analysed to obtain. information. Data analysis is a process of inspecting, cleansing, transforming, and data. modeling with the ...

  24. Analysis of metacognition ability in solving mathematical problem

    The techniques for data analysis were reduction of data, presentation of data, and conclusions in drawing. The validity of data guarantee technique is technical triangulation. The research results shown that there are three categories of students' metacognitive abilities, namely high, medium, and low metacognitive ability.

  25. Science Advisor for Public Access (Program Director)

    Serves as the primary representative and point of contact for the NSF Public Access Initiative and Open Science matters, in consultation with other concerned entities within the Foundation (e.g., Office of the Director, Office of General Counsel, etc.) and the members of the cross-agency Public Access and Open Science Working Group (PAOSWG). Creates and maintains linkages to other NSF units ...