Your Modern Business Guide To Data Analysis Methods And Techniques

Data analysis methods and techniques blog post by datapine

Table of Contents

1) What Is Data Analysis?

2) Why Is Data Analysis Important?

3) What Is The Data Analysis Process?

4) Types Of Data Analysis Methods

5) Top Data Analysis Techniques To Apply

6) Quality Criteria For Data Analysis

7) Data Analysis Limitations & Barriers

8) Data Analysis Skills

9) Data Analysis In The Big Data Environment

In our data-rich age, understanding how to analyze and extract true meaning from our business’s digital insights is one of the primary drivers of success.

Despite the colossal volume of data we create every day, a mere 0.5% is actually analyzed and used for data discovery , improvement, and intelligence. While that may not seem like much, considering the amount of digital information we have at our fingertips, half a percent still accounts for a vast amount of data.

With so much data and so little time, knowing how to collect, curate, organize, and make sense of all of this potentially business-boosting information can be a minefield – but online data analysis is the solution.

In science, data analysis uses a more complex approach with advanced techniques to explore and experiment with data. On the other hand, in a business context, data is used to make data-driven decisions that will enable the company to improve its overall performance. In this post, we will cover the analysis of data from an organizational point of view while still going through the scientific and statistical foundations that are fundamental to understanding the basics of data analysis. 

To put all of that into perspective, we will answer a host of important analytical questions, explore analytical methods and techniques, while demonstrating how to perform analysis in the real world with a 17-step blueprint for success.

What Is Data Analysis?

Data analysis is the process of collecting, modeling, and analyzing data using various statistical and logical methods and techniques. Businesses rely on analytics processes and tools to extract insights that support strategic and operational decision-making.

All these various methods are largely based on two core areas: quantitative and qualitative research.

To explain the key differences between qualitative and quantitative research, here’s a video for your viewing pleasure:

Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it’s worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

Apart from qualitative and quantitative categories, there are also other types of data that you should be aware of before dividing into complex data analysis processes. These categories include: 

  • Big data: Refers to massive data sets that need to be analyzed using advanced software to reveal patterns and trends. It is considered to be one of the best analytical assets as it provides larger volumes of data at a faster rate. 
  • Metadata: Putting it simply, metadata is data that provides insights about other data. It summarizes key information about specific data that makes it easier to find and reuse for later purposes. 
  • Real time data: As its name suggests, real time data is presented as soon as it is acquired. From an organizational perspective, this is the most valuable data as it can help you make important decisions based on the latest developments. Our guide on real time analytics will tell you more about the topic. 
  • Machine data: This is more complex data that is generated solely by a machine such as phones, computers, or even websites and embedded systems, without previous human interaction.

Why Is Data Analysis Important?

Before we go into detail about the categories of analysis along with its methods and techniques, you must understand the potential that analyzing data can bring to your organization.

  • Informed decision-making : From a management perspective, you can benefit from analyzing your data as it helps you make decisions based on facts and not simple intuition. For instance, you can understand where to invest your capital, detect growth opportunities, predict your income, or tackle uncommon situations before they become problems. Through this, you can extract relevant insights from all areas in your organization, and with the help of dashboard software , present the data in a professional and interactive way to different stakeholders.
  • Reduce costs : Another great benefit is to reduce costs. With the help of advanced technologies such as predictive analytics, businesses can spot improvement opportunities, trends, and patterns in their data and plan their strategies accordingly. In time, this will help you save money and resources on implementing the wrong strategies. And not just that, by predicting different scenarios such as sales and demand you can also anticipate production and supply. 
  • Target customers better : Customers are arguably the most crucial element in any business. By using analytics to get a 360° vision of all aspects related to your customers, you can understand which channels they use to communicate with you, their demographics, interests, habits, purchasing behaviors, and more. In the long run, it will drive success to your marketing strategies, allow you to identify new potential customers, and avoid wasting resources on targeting the wrong people or sending the wrong message. You can also track customer satisfaction by analyzing your client’s reviews or your customer service department’s performance.

What Is The Data Analysis Process?

Data analysis process graphic

When we talk about analyzing data there is an order to follow in order to extract the needed conclusions. The analysis process consists of 5 key stages. We will cover each of them more in detail later in the post, but to start providing the needed context to understand what is coming next, here is a rundown of the 5 essential steps of data analysis. 

  • Identify: Before you get your hands dirty with data, you first need to identify why you need it in the first place. The identification is the stage in which you establish the questions you will need to answer. For example, what is the customer's perception of our brand? Or what type of packaging is more engaging to our potential customers? Once the questions are outlined you are ready for the next step. 
  • Collect: As its name suggests, this is the stage where you start collecting the needed data. Here, you define which sources of data you will use and how you will use them. The collection of data can come in different forms such as internal or external sources, surveys, interviews, questionnaires, and focus groups, among others.  An important note here is that the way you collect the data will be different in a quantitative and qualitative scenario. 
  • Clean: Once you have the necessary data it is time to clean it and leave it ready for analysis. Not all the data you collect will be useful, when collecting big amounts of data in different formats it is very likely that you will find yourself with duplicate or badly formatted data. To avoid this, before you start working with your data you need to make sure to erase any white spaces, duplicate records, or formatting errors. This way you avoid hurting your analysis with bad-quality data. 
  • Analyze : With the help of various techniques such as statistical analysis, regressions, neural networks, text analysis, and more, you can start analyzing and manipulating your data to extract relevant conclusions. At this stage, you find trends, correlations, variations, and patterns that can help you answer the questions you first thought of in the identify stage. Various technologies in the market assist researchers and average users with the management of their data. Some of them include business intelligence and visualization software, predictive analytics, and data mining, among others. 
  • Interpret: Last but not least you have one of the most important steps: it is time to interpret your results. This stage is where the researcher comes up with courses of action based on the findings. For example, here you would understand if your clients prefer packaging that is red or green, plastic or paper, etc. Additionally, at this stage, you can also find some limitations and work on them. 

Now that you have a basic understanding of the key data analysis steps, let’s look at the top 17 essential methods.

17 Essential Types Of Data Analysis Methods

Before diving into the 17 essential types of methods, it is important that we go over really fast through the main analysis categories. Starting with the category of descriptive up to prescriptive analysis, the complexity and effort of data evaluation increases, but also the added value for the company.

a) Descriptive analysis - What happened.

The descriptive analysis method is the starting point for any analytic reflection, and it aims to answer the question of what happened? It does this by ordering, manipulating, and interpreting raw data from various sources to turn it into valuable insights for your organization.

Performing descriptive analysis is essential, as it enables us to present our insights in a meaningful way. Although it is relevant to mention that this analysis on its own will not allow you to predict future outcomes or tell you the answer to questions like why something happened, it will leave your data organized and ready to conduct further investigations.

b) Exploratory analysis - How to explore data relationships.

As its name suggests, the main aim of the exploratory analysis is to explore. Prior to it, there is still no notion of the relationship between the data and the variables. Once the data is investigated, exploratory analysis helps you to find connections and generate hypotheses and solutions for specific problems. A typical area of ​​application for it is data mining.

c) Diagnostic analysis - Why it happened.

Diagnostic data analytics empowers analysts and executives by helping them gain a firm contextual understanding of why something happened. If you know why something happened as well as how it happened, you will be able to pinpoint the exact ways of tackling the issue or challenge.

Designed to provide direct and actionable answers to specific questions, this is one of the world’s most important methods in research, among its other key organizational functions such as retail analytics , e.g.

c) Predictive analysis - What will happen.

The predictive method allows you to look into the future to answer the question: what will happen? In order to do this, it uses the results of the previously mentioned descriptive, exploratory, and diagnostic analysis, in addition to machine learning (ML) and artificial intelligence (AI). Through this, you can uncover future trends, potential problems or inefficiencies, connections, and casualties in your data.

With predictive analysis, you can unfold and develop initiatives that will not only enhance your various operational processes but also help you gain an all-important edge over the competition. If you understand why a trend, pattern, or event happened through data, you will be able to develop an informed projection of how things may unfold in particular areas of the business.

e) Prescriptive analysis - How will it happen.

Another of the most effective types of analysis methods in research. Prescriptive data techniques cross over from predictive analysis in the way that it revolves around using patterns or trends to develop responsive, practical business strategies.

By drilling down into prescriptive analysis, you will play an active role in the data consumption process by taking well-arranged sets of visual data and using it as a powerful fix to emerging issues in a number of key areas, including marketing, sales, customer experience, HR, fulfillment, finance, logistics analytics , and others.

Top 17 data analysis methods

As mentioned at the beginning of the post, data analysis methods can be divided into two big categories: quantitative and qualitative. Each of these categories holds a powerful analytical value that changes depending on the scenario and type of data you are working with. Below, we will discuss 17 methods that are divided into qualitative and quantitative approaches. 

Without further ado, here are the 17 essential types of data analysis methods with some use cases in the business world: 

A. Quantitative Methods 

To put it simply, quantitative analysis refers to all methods that use numerical data or data that can be turned into numbers (e.g. category variables like gender, age, etc.) to extract valuable insights. It is used to extract valuable conclusions about relationships, differences, and test hypotheses. Below we discuss some of the key quantitative methods. 

1. Cluster analysis

The action of grouping a set of data elements in a way that said elements are more similar (in a particular sense) to each other than to those in other groups – hence the term ‘cluster.’ Since there is no target variable when clustering, the method is often used to find hidden patterns in the data. The approach is also used to provide additional context to a trend or dataset.

Let's look at it from an organizational perspective. In a perfect world, marketers would be able to analyze each customer separately and give them the best-personalized service, but let's face it, with a large customer base, it is timely impossible to do that. That's where clustering comes in. By grouping customers into clusters based on demographics, purchasing behaviors, monetary value, or any other factor that might be relevant for your company, you will be able to immediately optimize your efforts and give your customers the best experience based on their needs.

2. Cohort analysis

This type of data analysis approach uses historical data to examine and compare a determined segment of users' behavior, which can then be grouped with others with similar characteristics. By using this methodology, it's possible to gain a wealth of insight into consumer needs or a firm understanding of a broader target group.

Cohort analysis can be really useful for performing analysis in marketing as it will allow you to understand the impact of your campaigns on specific groups of customers. To exemplify, imagine you send an email campaign encouraging customers to sign up for your site. For this, you create two versions of the campaign with different designs, CTAs, and ad content. Later on, you can use cohort analysis to track the performance of the campaign for a longer period of time and understand which type of content is driving your customers to sign up, repurchase, or engage in other ways.  

A useful tool to start performing cohort analysis method is Google Analytics. You can learn more about the benefits and limitations of using cohorts in GA in this useful guide . In the bottom image, you see an example of how you visualize a cohort in this tool. The segments (devices traffic) are divided into date cohorts (usage of devices) and then analyzed week by week to extract insights into performance.

Cohort analysis chart example from google analytics

3. Regression analysis

Regression uses historical data to understand how a dependent variable's value is affected when one (linear regression) or more independent variables (multiple regression) change or stay the same. By understanding each variable's relationship and how it developed in the past, you can anticipate possible outcomes and make better decisions in the future.

Let's bring it down with an example. Imagine you did a regression analysis of your sales in 2019 and discovered that variables like product quality, store design, customer service, marketing campaigns, and sales channels affected the overall result. Now you want to use regression to analyze which of these variables changed or if any new ones appeared during 2020. For example, you couldn’t sell as much in your physical store due to COVID lockdowns. Therefore, your sales could’ve either dropped in general or increased in your online channels. Through this, you can understand which independent variables affected the overall performance of your dependent variable, annual sales.

If you want to go deeper into this type of analysis, check out this article and learn more about how you can benefit from regression.

4. Neural networks

The neural network forms the basis for the intelligent algorithms of machine learning. It is a form of analytics that attempts, with minimal intervention, to understand how the human brain would generate insights and predict values. Neural networks learn from each and every data transaction, meaning that they evolve and advance over time.

A typical area of application for neural networks is predictive analytics. There are BI reporting tools that have this feature implemented within them, such as the Predictive Analytics Tool from datapine. This tool enables users to quickly and easily generate all kinds of predictions. All you have to do is select the data to be processed based on your KPIs, and the software automatically calculates forecasts based on historical and current data. Thanks to its user-friendly interface, anyone in your organization can manage it; there’s no need to be an advanced scientist. 

Here is an example of how you can use the predictive analysis tool from datapine:

Example on how to use predictive analytics tool from datapine

**click to enlarge**

5. Factor analysis

The factor analysis also called “dimension reduction” is a type of data analysis used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. The aim here is to uncover independent latent variables, an ideal method for streamlining specific segments.

A good way to understand this data analysis method is a customer evaluation of a product. The initial assessment is based on different variables like color, shape, wearability, current trends, materials, comfort, the place where they bought the product, and frequency of usage. Like this, the list can be endless, depending on what you want to track. In this case, factor analysis comes into the picture by summarizing all of these variables into homogenous groups, for example, by grouping the variables color, materials, quality, and trends into a brother latent variable of design.

If you want to start analyzing data using factor analysis we recommend you take a look at this practical guide from UCLA.

6. Data mining

A method of data analysis that is the umbrella term for engineering metrics and insights for additional value, direction, and context. By using exploratory statistical evaluation, data mining aims to identify dependencies, relations, patterns, and trends to generate advanced knowledge.  When considering how to analyze data, adopting a data mining mindset is essential to success - as such, it’s an area that is worth exploring in greater detail.

An excellent use case of data mining is datapine intelligent data alerts . With the help of artificial intelligence and machine learning, they provide automated signals based on particular commands or occurrences within a dataset. For example, if you’re monitoring supply chain KPIs , you could set an intelligent alarm to trigger when invalid or low-quality data appears. By doing so, you will be able to drill down deep into the issue and fix it swiftly and effectively.

In the following picture, you can see how the intelligent alarms from datapine work. By setting up ranges on daily orders, sessions, and revenues, the alarms will notify you if the goal was not completed or if it exceeded expectations.

Example on how to use intelligent alerts from datapine

7. Time series analysis

As its name suggests, time series analysis is used to analyze a set of data points collected over a specified period of time. Although analysts use this method to monitor the data points in a specific interval of time rather than just monitoring them intermittently, the time series analysis is not uniquely used for the purpose of collecting data over time. Instead, it allows researchers to understand if variables changed during the duration of the study, how the different variables are dependent, and how did it reach the end result. 

In a business context, this method is used to understand the causes of different trends and patterns to extract valuable insights. Another way of using this method is with the help of time series forecasting. Powered by predictive technologies, businesses can analyze various data sets over a period of time and forecast different future events. 

A great use case to put time series analysis into perspective is seasonality effects on sales. By using time series forecasting to analyze sales data of a specific product over time, you can understand if sales rise over a specific period of time (e.g. swimwear during summertime, or candy during Halloween). These insights allow you to predict demand and prepare production accordingly.  

8. Decision Trees 

The decision tree analysis aims to act as a support tool to make smart and strategic decisions. By visually displaying potential outcomes, consequences, and costs in a tree-like model, researchers and company users can easily evaluate all factors involved and choose the best course of action. Decision trees are helpful to analyze quantitative data and they allow for an improved decision-making process by helping you spot improvement opportunities, reduce costs, and enhance operational efficiency and production.

But how does a decision tree actually works? This method works like a flowchart that starts with the main decision that you need to make and branches out based on the different outcomes and consequences of each decision. Each outcome will outline its own consequences, costs, and gains and, at the end of the analysis, you can compare each of them and make the smartest decision. 

Businesses can use them to understand which project is more cost-effective and will bring more earnings in the long run. For example, imagine you need to decide if you want to update your software app or build a new app entirely.  Here you would compare the total costs, the time needed to be invested, potential revenue, and any other factor that might affect your decision.  In the end, you would be able to see which of these two options is more realistic and attainable for your company or research.

9. Conjoint analysis 

Last but not least, we have the conjoint analysis. This approach is usually used in surveys to understand how individuals value different attributes of a product or service and it is one of the most effective methods to extract consumer preferences. When it comes to purchasing, some clients might be more price-focused, others more features-focused, and others might have a sustainable focus. Whatever your customer's preferences are, you can find them with conjoint analysis. Through this, companies can define pricing strategies, packaging options, subscription packages, and more. 

A great example of conjoint analysis is in marketing and sales. For instance, a cupcake brand might use conjoint analysis and find that its clients prefer gluten-free options and cupcakes with healthier toppings over super sugary ones. Thus, the cupcake brand can turn these insights into advertisements and promotions to increase sales of this particular type of product. And not just that, conjoint analysis can also help businesses segment their customers based on their interests. This allows them to send different messaging that will bring value to each of the segments. 

10. Correspondence Analysis

Also known as reciprocal averaging, correspondence analysis is a method used to analyze the relationship between categorical variables presented within a contingency table. A contingency table is a table that displays two (simple correspondence analysis) or more (multiple correspondence analysis) categorical variables across rows and columns that show the distribution of the data, which is usually answers to a survey or questionnaire on a specific topic. 

This method starts by calculating an “expected value” which is done by multiplying row and column averages and dividing it by the overall original value of the specific table cell. The “expected value” is then subtracted from the original value resulting in a “residual number” which is what allows you to extract conclusions about relationships and distribution. The results of this analysis are later displayed using a map that represents the relationship between the different values. The closest two values are in the map, the bigger the relationship. Let’s put it into perspective with an example. 

Imagine you are carrying out a market research analysis about outdoor clothing brands and how they are perceived by the public. For this analysis, you ask a group of people to match each brand with a certain attribute which can be durability, innovation, quality materials, etc. When calculating the residual numbers, you can see that brand A has a positive residual for innovation but a negative one for durability. This means that brand A is not positioned as a durable brand in the market, something that competitors could take advantage of. 

11. Multidimensional Scaling (MDS)

MDS is a method used to observe the similarities or disparities between objects which can be colors, brands, people, geographical coordinates, and more. The objects are plotted using an “MDS map” that positions similar objects together and disparate ones far apart. The (dis) similarities between objects are represented using one or more dimensions that can be observed using a numerical scale. For example, if you want to know how people feel about the COVID-19 vaccine, you can use 1 for “don’t believe in the vaccine at all”  and 10 for “firmly believe in the vaccine” and a scale of 2 to 9 for in between responses.  When analyzing an MDS map the only thing that matters is the distance between the objects, the orientation of the dimensions is arbitrary and has no meaning at all. 

Multidimensional scaling is a valuable technique for market research, especially when it comes to evaluating product or brand positioning. For instance, if a cupcake brand wants to know how they are positioned compared to competitors, it can define 2-3 dimensions such as taste, ingredients, shopping experience, or more, and do a multidimensional scaling analysis to find improvement opportunities as well as areas in which competitors are currently leading. 

Another business example is in procurement when deciding on different suppliers. Decision makers can generate an MDS map to see how the different prices, delivery times, technical services, and more of the different suppliers differ and pick the one that suits their needs the best. 

A final example proposed by a research paper on "An Improved Study of Multilevel Semantic Network Visualization for Analyzing Sentiment Word of Movie Review Data". Researchers picked a two-dimensional MDS map to display the distances and relationships between different sentiments in movie reviews. They used 36 sentiment words and distributed them based on their emotional distance as we can see in the image below where the words "outraged" and "sweet" are on opposite sides of the map, marking the distance between the two emotions very clearly.

Example of multidimensional scaling analysis

Aside from being a valuable technique to analyze dissimilarities, MDS also serves as a dimension-reduction technique for large dimensional data. 

B. Qualitative Methods

Qualitative data analysis methods are defined as the observation of non-numerical data that is gathered and produced using methods of observation such as interviews, focus groups, questionnaires, and more. As opposed to quantitative methods, qualitative data is more subjective and highly valuable in analyzing customer retention and product development.

12. Text analysis

Text analysis, also known in the industry as text mining, works by taking large sets of textual data and arranging them in a way that makes it easier to manage. By working through this cleansing process in stringent detail, you will be able to extract the data that is truly relevant to your organization and use it to develop actionable insights that will propel you forward.

Modern software accelerate the application of text analytics. Thanks to the combination of machine learning and intelligent algorithms, you can perform advanced analytical processes such as sentiment analysis. This technique allows you to understand the intentions and emotions of a text, for example, if it's positive, negative, or neutral, and then give it a score depending on certain factors and categories that are relevant to your brand. Sentiment analysis is often used to monitor brand and product reputation and to understand how successful your customer experience is. To learn more about the topic check out this insightful article .

By analyzing data from various word-based sources, including product reviews, articles, social media communications, and survey responses, you will gain invaluable insights into your audience, as well as their needs, preferences, and pain points. This will allow you to create campaigns, services, and communications that meet your prospects’ needs on a personal level, growing your audience while boosting customer retention. There are various other “sub-methods” that are an extension of text analysis. Each of them serves a more specific purpose and we will look at them in detail next. 

13. Content Analysis

This is a straightforward and very popular method that examines the presence and frequency of certain words, concepts, and subjects in different content formats such as text, image, audio, or video. For example, the number of times the name of a celebrity is mentioned on social media or online tabloids. It does this by coding text data that is later categorized and tabulated in a way that can provide valuable insights, making it the perfect mix of quantitative and qualitative analysis.

There are two types of content analysis. The first one is the conceptual analysis which focuses on explicit data, for instance, the number of times a concept or word is mentioned in a piece of content. The second one is relational analysis, which focuses on the relationship between different concepts or words and how they are connected within a specific context. 

Content analysis is often used by marketers to measure brand reputation and customer behavior. For example, by analyzing customer reviews. It can also be used to analyze customer interviews and find directions for new product development. It is also important to note, that in order to extract the maximum potential out of this analysis method, it is necessary to have a clearly defined research question. 

14. Thematic Analysis

Very similar to content analysis, thematic analysis also helps in identifying and interpreting patterns in qualitative data with the main difference being that the first one can also be applied to quantitative analysis. The thematic method analyzes large pieces of text data such as focus group transcripts or interviews and groups them into themes or categories that come up frequently within the text. It is a great method when trying to figure out peoples view’s and opinions about a certain topic. For example, if you are a brand that cares about sustainability, you can do a survey of your customers to analyze their views and opinions about sustainability and how they apply it to their lives. You can also analyze customer service calls transcripts to find common issues and improve your service. 

Thematic analysis is a very subjective technique that relies on the researcher’s judgment. Therefore,  to avoid biases, it has 6 steps that include familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. It is also important to note that, because it is a flexible approach, the data can be interpreted in multiple ways and it can be hard to select what data is more important to emphasize. 

15. Narrative Analysis 

A bit more complex in nature than the two previous ones, narrative analysis is used to explore the meaning behind the stories that people tell and most importantly, how they tell them. By looking into the words that people use to describe a situation you can extract valuable conclusions about their perspective on a specific topic. Common sources for narrative data include autobiographies, family stories, opinion pieces, and testimonials, among others. 

From a business perspective, narrative analysis can be useful to analyze customer behaviors and feelings towards a specific product, service, feature, or others. It provides unique and deep insights that can be extremely valuable. However, it has some drawbacks.  

The biggest weakness of this method is that the sample sizes are usually very small due to the complexity and time-consuming nature of the collection of narrative data. Plus, the way a subject tells a story will be significantly influenced by his or her specific experiences, making it very hard to replicate in a subsequent study. 

16. Discourse Analysis

Discourse analysis is used to understand the meaning behind any type of written, verbal, or symbolic discourse based on its political, social, or cultural context. It mixes the analysis of languages and situations together. This means that the way the content is constructed and the meaning behind it is significantly influenced by the culture and society it takes place in. For example, if you are analyzing political speeches you need to consider different context elements such as the politician's background, the current political context of the country, the audience to which the speech is directed, and so on. 

From a business point of view, discourse analysis is a great market research tool. It allows marketers to understand how the norms and ideas of the specific market work and how their customers relate to those ideas. It can be very useful to build a brand mission or develop a unique tone of voice. 

17. Grounded Theory Analysis

Traditionally, researchers decide on a method and hypothesis and start to collect the data to prove that hypothesis. The grounded theory is the only method that doesn’t require an initial research question or hypothesis as its value lies in the generation of new theories. With the grounded theory method, you can go into the analysis process with an open mind and explore the data to generate new theories through tests and revisions. In fact, it is not necessary to collect the data and then start to analyze it. Researchers usually start to find valuable insights as they are gathering the data. 

All of these elements make grounded theory a very valuable method as theories are fully backed by data instead of initial assumptions. It is a great technique to analyze poorly researched topics or find the causes behind specific company outcomes. For example, product managers and marketers might use the grounded theory to find the causes of high levels of customer churn and look into customer surveys and reviews to develop new theories about the causes. 

How To Analyze Data? Top 17 Data Analysis Techniques To Apply

17 top data analysis techniques by datapine

Now that we’ve answered the questions “what is data analysis’”, why is it important, and covered the different data analysis types, it’s time to dig deeper into how to perform your analysis by working through these 17 essential techniques.

1. Collaborate your needs

Before you begin analyzing or drilling down into any techniques, it’s crucial to sit down collaboratively with all key stakeholders within your organization, decide on your primary campaign or strategic goals, and gain a fundamental understanding of the types of insights that will best benefit your progress or provide you with the level of vision you need to evolve your organization.

2. Establish your questions

Once you’ve outlined your core objectives, you should consider which questions will need answering to help you achieve your mission. This is one of the most important techniques as it will shape the very foundations of your success.

To help you ask the right things and ensure your data works for you, you have to ask the right data analysis questions .

3. Data democratization

After giving your data analytics methodology some real direction, and knowing which questions need answering to extract optimum value from the information available to your organization, you should continue with democratization.

Data democratization is an action that aims to connect data from various sources efficiently and quickly so that anyone in your organization can access it at any given moment. You can extract data in text, images, videos, numbers, or any other format. And then perform cross-database analysis to achieve more advanced insights to share with the rest of the company interactively.  

Once you have decided on your most valuable sources, you need to take all of this into a structured format to start collecting your insights. For this purpose, datapine offers an easy all-in-one data connectors feature to integrate all your internal and external sources and manage them at your will. Additionally, datapine’s end-to-end solution automatically updates your data, allowing you to save time and focus on performing the right analysis to grow your company.

data connectors from datapine

4. Think of governance 

When collecting data in a business or research context you always need to think about security and privacy. With data breaches becoming a topic of concern for businesses, the need to protect your client's or subject’s sensitive information becomes critical. 

To ensure that all this is taken care of, you need to think of a data governance strategy. According to Gartner , this concept refers to “ the specification of decision rights and an accountability framework to ensure the appropriate behavior in the valuation, creation, consumption, and control of data and analytics .” In simpler words, data governance is a collection of processes, roles, and policies, that ensure the efficient use of data while still achieving the main company goals. It ensures that clear roles are in place for who can access the information and how they can access it. In time, this not only ensures that sensitive information is protected but also allows for an efficient analysis as a whole. 

5. Clean your data

After harvesting from so many sources you will be left with a vast amount of information that can be overwhelming to deal with. At the same time, you can be faced with incorrect data that can be misleading to your analysis. The smartest thing you can do to avoid dealing with this in the future is to clean the data. This is fundamental before visualizing it, as it will ensure that the insights you extract from it are correct.

There are many things that you need to look for in the cleaning process. The most important one is to eliminate any duplicate observations; this usually appears when using multiple internal and external sources of information. You can also add any missing codes, fix empty fields, and eliminate incorrectly formatted data.

Another usual form of cleaning is done with text data. As we mentioned earlier, most companies today analyze customer reviews, social media comments, questionnaires, and several other text inputs. In order for algorithms to detect patterns, text data needs to be revised to avoid invalid characters or any syntax or spelling errors. 

Most importantly, the aim of cleaning is to prevent you from arriving at false conclusions that can damage your company in the long run. By using clean data, you will also help BI solutions to interact better with your information and create better reports for your organization.

6. Set your KPIs

Once you’ve set your sources, cleaned your data, and established clear-cut questions you want your insights to answer, you need to set a host of key performance indicators (KPIs) that will help you track, measure, and shape your progress in a number of key areas.

KPIs are critical to both qualitative and quantitative analysis research. This is one of the primary methods of data analysis you certainly shouldn’t overlook.

To help you set the best possible KPIs for your initiatives and activities, here is an example of a relevant logistics KPI : transportation-related costs. If you want to see more go explore our collection of key performance indicator examples .

Transportation costs logistics KPIs

7. Omit useless data

Having bestowed your data analysis tools and techniques with true purpose and defined your mission, you should explore the raw data you’ve collected from all sources and use your KPIs as a reference for chopping out any information you deem to be useless.

Trimming the informational fat is one of the most crucial methods of analysis as it will allow you to focus your analytical efforts and squeeze every drop of value from the remaining ‘lean’ information.

Any stats, facts, figures, or metrics that don’t align with your business goals or fit with your KPI management strategies should be eliminated from the equation.

8. Build a data management roadmap

While, at this point, this particular step is optional (you will have already gained a wealth of insight and formed a fairly sound strategy by now), creating a data governance roadmap will help your data analysis methods and techniques become successful on a more sustainable basis. These roadmaps, if developed properly, are also built so they can be tweaked and scaled over time.

Invest ample time in developing a roadmap that will help you store, manage, and handle your data internally, and you will make your analysis techniques all the more fluid and functional – one of the most powerful types of data analysis methods available today.

9. Integrate technology

There are many ways to analyze data, but one of the most vital aspects of analytical success in a business context is integrating the right decision support software and technology.

Robust analysis platforms will not only allow you to pull critical data from your most valuable sources while working with dynamic KPIs that will offer you actionable insights; it will also present them in a digestible, visual, interactive format from one central, live dashboard . A data methodology you can count on.

By integrating the right technology within your data analysis methodology, you’ll avoid fragmenting your insights, saving you time and effort while allowing you to enjoy the maximum value from your business’s most valuable insights.

For a look at the power of software for the purpose of analysis and to enhance your methods of analyzing, glance over our selection of dashboard examples .

10. Answer your questions

By considering each of the above efforts, working with the right technology, and fostering a cohesive internal culture where everyone buys into the different ways to analyze data as well as the power of digital intelligence, you will swiftly start to answer your most burning business questions. Arguably, the best way to make your data concepts accessible across the organization is through data visualization.

11. Visualize your data

Online data visualization is a powerful tool as it lets you tell a story with your metrics, allowing users across the organization to extract meaningful insights that aid business evolution – and it covers all the different ways to analyze data.

The purpose of analyzing is to make your entire organization more informed and intelligent, and with the right platform or dashboard, this is simpler than you think, as demonstrated by our marketing dashboard .

An executive dashboard example showcasing high-level marketing KPIs such as cost per lead, MQL, SQL, and cost per customer.

This visual, dynamic, and interactive online dashboard is a data analysis example designed to give Chief Marketing Officers (CMO) an overview of relevant metrics to help them understand if they achieved their monthly goals.

In detail, this example generated with a modern dashboard creator displays interactive charts for monthly revenues, costs, net income, and net income per customer; all of them are compared with the previous month so that you can understand how the data fluctuated. In addition, it shows a detailed summary of the number of users, customers, SQLs, and MQLs per month to visualize the whole picture and extract relevant insights or trends for your marketing reports .

The CMO dashboard is perfect for c-level management as it can help them monitor the strategic outcome of their marketing efforts and make data-driven decisions that can benefit the company exponentially.

12. Be careful with the interpretation

We already dedicated an entire post to data interpretation as it is a fundamental part of the process of data analysis. It gives meaning to the analytical information and aims to drive a concise conclusion from the analysis results. Since most of the time companies are dealing with data from many different sources, the interpretation stage needs to be done carefully and properly in order to avoid misinterpretations. 

To help you through the process, here we list three common practices that you need to avoid at all costs when looking at your data:

  • Correlation vs. causation: The human brain is formatted to find patterns. This behavior leads to one of the most common mistakes when performing interpretation: confusing correlation with causation. Although these two aspects can exist simultaneously, it is not correct to assume that because two things happened together, one provoked the other. A piece of advice to avoid falling into this mistake is never to trust just intuition, trust the data. If there is no objective evidence of causation, then always stick to correlation. 
  • Confirmation bias: This phenomenon describes the tendency to select and interpret only the data necessary to prove one hypothesis, often ignoring the elements that might disprove it. Even if it's not done on purpose, confirmation bias can represent a real problem, as excluding relevant information can lead to false conclusions and, therefore, bad business decisions. To avoid it, always try to disprove your hypothesis instead of proving it, share your analysis with other team members, and avoid drawing any conclusions before the entire analytical project is finalized.
  • Statistical significance: To put it in short words, statistical significance helps analysts understand if a result is actually accurate or if it happened because of a sampling error or pure chance. The level of statistical significance needed might depend on the sample size and the industry being analyzed. In any case, ignoring the significance of a result when it might influence decision-making can be a huge mistake.

13. Build a narrative

Now, we’re going to look at how you can bring all of these elements together in a way that will benefit your business - starting with a little something called data storytelling.

The human brain responds incredibly well to strong stories or narratives. Once you’ve cleansed, shaped, and visualized your most invaluable data using various BI dashboard tools , you should strive to tell a story - one with a clear-cut beginning, middle, and end.

By doing so, you will make your analytical efforts more accessible, digestible, and universal, empowering more people within your organization to use your discoveries to their actionable advantage.

14. Consider autonomous technology

Autonomous technologies, such as artificial intelligence (AI) and machine learning (ML), play a significant role in the advancement of understanding how to analyze data more effectively.

Gartner predicts that by the end of this year, 80% of emerging technologies will be developed with AI foundations. This is a testament to the ever-growing power and value of autonomous technologies.

At the moment, these technologies are revolutionizing the analysis industry. Some examples that we mentioned earlier are neural networks, intelligent alarms, and sentiment analysis.

15. Share the load

If you work with the right tools and dashboards, you will be able to present your metrics in a digestible, value-driven format, allowing almost everyone in the organization to connect with and use relevant data to their advantage.

Modern dashboards consolidate data from various sources, providing access to a wealth of insights in one centralized location, no matter if you need to monitor recruitment metrics or generate reports that need to be sent across numerous departments. Moreover, these cutting-edge tools offer access to dashboards from a multitude of devices, meaning that everyone within the business can connect with practical insights remotely - and share the load.

Once everyone is able to work with a data-driven mindset, you will catalyze the success of your business in ways you never thought possible. And when it comes to knowing how to analyze data, this kind of collaborative approach is essential.

16. Data analysis tools

In order to perform high-quality analysis of data, it is fundamental to use tools and software that will ensure the best results. Here we leave you a small summary of four fundamental categories of data analysis tools for your organization.

  • Business Intelligence: BI tools allow you to process significant amounts of data from several sources in any format. Through this, you can not only analyze and monitor your data to extract relevant insights but also create interactive reports and dashboards to visualize your KPIs and use them for your company's good. datapine is an amazing online BI software that is focused on delivering powerful online analysis features that are accessible to beginner and advanced users. Like this, it offers a full-service solution that includes cutting-edge analysis of data, KPIs visualization, live dashboards, reporting, and artificial intelligence technologies to predict trends and minimize risk.
  • Statistical analysis: These tools are usually designed for scientists, statisticians, market researchers, and mathematicians, as they allow them to perform complex statistical analyses with methods like regression analysis, predictive analysis, and statistical modeling. A good tool to perform this type of analysis is R-Studio as it offers a powerful data modeling and hypothesis testing feature that can cover both academic and general data analysis. This tool is one of the favorite ones in the industry, due to its capability for data cleaning, data reduction, and performing advanced analysis with several statistical methods. Another relevant tool to mention is SPSS from IBM. The software offers advanced statistical analysis for users of all skill levels. Thanks to a vast library of machine learning algorithms, text analysis, and a hypothesis testing approach it can help your company find relevant insights to drive better decisions. SPSS also works as a cloud service that enables you to run it anywhere.
  • SQL Consoles: SQL is a programming language often used to handle structured data in relational databases. Tools like these are popular among data scientists as they are extremely effective in unlocking these databases' value. Undoubtedly, one of the most used SQL software in the market is MySQL Workbench . This tool offers several features such as a visual tool for database modeling and monitoring, complete SQL optimization, administration tools, and visual performance dashboards to keep track of KPIs.
  • Data Visualization: These tools are used to represent your data through charts, graphs, and maps that allow you to find patterns and trends in the data. datapine's already mentioned BI platform also offers a wealth of powerful online data visualization tools with several benefits. Some of them include: delivering compelling data-driven presentations to share with your entire company, the ability to see your data online with any device wherever you are, an interactive dashboard design feature that enables you to showcase your results in an interactive and understandable way, and to perform online self-service reports that can be used simultaneously with several other people to enhance team productivity.

17. Refine your process constantly 

Last is a step that might seem obvious to some people, but it can be easily ignored if you think you are done. Once you have extracted the needed results, you should always take a retrospective look at your project and think about what you can improve. As you saw throughout this long list of techniques, data analysis is a complex process that requires constant refinement. For this reason, you should always go one step further and keep improving. 

Quality Criteria For Data Analysis

So far we’ve covered a list of methods and techniques that should help you perform efficient data analysis. But how do you measure the quality and validity of your results? This is done with the help of some science quality criteria. Here we will go into a more theoretical area that is critical to understanding the fundamentals of statistical analysis in science. However, you should also be aware of these steps in a business context, as they will allow you to assess the quality of your results in the correct way. Let’s dig in. 

  • Internal validity: The results of a survey are internally valid if they measure what they are supposed to measure and thus provide credible results. In other words , internal validity measures the trustworthiness of the results and how they can be affected by factors such as the research design, operational definitions, how the variables are measured, and more. For instance, imagine you are doing an interview to ask people if they brush their teeth two times a day. While most of them will answer yes, you can still notice that their answers correspond to what is socially acceptable, which is to brush your teeth at least twice a day. In this case, you can’t be 100% sure if respondents actually brush their teeth twice a day or if they just say that they do, therefore, the internal validity of this interview is very low. 
  • External validity: Essentially, external validity refers to the extent to which the results of your research can be applied to a broader context. It basically aims to prove that the findings of a study can be applied in the real world. If the research can be applied to other settings, individuals, and times, then the external validity is high. 
  • Reliability : If your research is reliable, it means that it can be reproduced. If your measurement were repeated under the same conditions, it would produce similar results. This means that your measuring instrument consistently produces reliable results. For example, imagine a doctor building a symptoms questionnaire to detect a specific disease in a patient. Then, various other doctors use this questionnaire but end up diagnosing the same patient with a different condition. This means the questionnaire is not reliable in detecting the initial disease. Another important note here is that in order for your research to be reliable, it also needs to be objective. If the results of a study are the same, independent of who assesses them or interprets them, the study can be considered reliable. Let’s see the objectivity criteria in more detail now. 
  • Objectivity: In data science, objectivity means that the researcher needs to stay fully objective when it comes to its analysis. The results of a study need to be affected by objective criteria and not by the beliefs, personality, or values of the researcher. Objectivity needs to be ensured when you are gathering the data, for example, when interviewing individuals, the questions need to be asked in a way that doesn't influence the results. Paired with this, objectivity also needs to be thought of when interpreting the data. If different researchers reach the same conclusions, then the study is objective. For this last point, you can set predefined criteria to interpret the results to ensure all researchers follow the same steps. 

The discussed quality criteria cover mostly potential influences in a quantitative context. Analysis in qualitative research has by default additional subjective influences that must be controlled in a different way. Therefore, there are other quality criteria for this kind of research such as credibility, transferability, dependability, and confirmability. You can see each of them more in detail on this resource . 

Data Analysis Limitations & Barriers

Analyzing data is not an easy task. As you’ve seen throughout this post, there are many steps and techniques that you need to apply in order to extract useful information from your research. While a well-performed analysis can bring various benefits to your organization it doesn't come without limitations. In this section, we will discuss some of the main barriers you might encounter when conducting an analysis. Let’s see them more in detail. 

  • Lack of clear goals: No matter how good your data or analysis might be if you don’t have clear goals or a hypothesis the process might be worthless. While we mentioned some methods that don’t require a predefined hypothesis, it is always better to enter the analytical process with some clear guidelines of what you are expecting to get out of it, especially in a business context in which data is utilized to support important strategic decisions. 
  • Objectivity: Arguably one of the biggest barriers when it comes to data analysis in research is to stay objective. When trying to prove a hypothesis, researchers might find themselves, intentionally or unintentionally, directing the results toward an outcome that they want. To avoid this, always question your assumptions and avoid confusing facts with opinions. You can also show your findings to a research partner or external person to confirm that your results are objective. 
  • Data representation: A fundamental part of the analytical procedure is the way you represent your data. You can use various graphs and charts to represent your findings, but not all of them will work for all purposes. Choosing the wrong visual can not only damage your analysis but can mislead your audience, therefore, it is important to understand when to use each type of data depending on your analytical goals. Our complete guide on the types of graphs and charts lists 20 different visuals with examples of when to use them. 
  • Flawed correlation : Misleading statistics can significantly damage your research. We’ve already pointed out a few interpretation issues previously in the post, but it is an important barrier that we can't avoid addressing here as well. Flawed correlations occur when two variables appear related to each other but they are not. Confusing correlations with causation can lead to a wrong interpretation of results which can lead to building wrong strategies and loss of resources, therefore, it is very important to identify the different interpretation mistakes and avoid them. 
  • Sample size: A very common barrier to a reliable and efficient analysis process is the sample size. In order for the results to be trustworthy, the sample size should be representative of what you are analyzing. For example, imagine you have a company of 1000 employees and you ask the question “do you like working here?” to 50 employees of which 49 say yes, which means 95%. Now, imagine you ask the same question to the 1000 employees and 950 say yes, which also means 95%. Saying that 95% of employees like working in the company when the sample size was only 50 is not a representative or trustworthy conclusion. The significance of the results is way more accurate when surveying a bigger sample size.   
  • Privacy concerns: In some cases, data collection can be subjected to privacy regulations. Businesses gather all kinds of information from their customers from purchasing behaviors to addresses and phone numbers. If this falls into the wrong hands due to a breach, it can affect the security and confidentiality of your clients. To avoid this issue, you need to collect only the data that is needed for your research and, if you are using sensitive facts, make it anonymous so customers are protected. The misuse of customer data can severely damage a business's reputation, so it is important to keep an eye on privacy. 
  • Lack of communication between teams : When it comes to performing data analysis on a business level, it is very likely that each department and team will have different goals and strategies. However, they are all working for the same common goal of helping the business run smoothly and keep growing. When teams are not connected and communicating with each other, it can directly affect the way general strategies are built. To avoid these issues, tools such as data dashboards enable teams to stay connected through data in a visually appealing way. 
  • Innumeracy : Businesses are working with data more and more every day. While there are many BI tools available to perform effective analysis, data literacy is still a constant barrier. Not all employees know how to apply analysis techniques or extract insights from them. To prevent this from happening, you can implement different training opportunities that will prepare every relevant user to deal with data. 

Key Data Analysis Skills

As you've learned throughout this lengthy guide, analyzing data is a complex task that requires a lot of knowledge and skills. That said, thanks to the rise of self-service tools the process is way more accessible and agile than it once was. Regardless, there are still some key skills that are valuable to have when working with data, we list the most important ones below.

  • Critical and statistical thinking: To successfully analyze data you need to be creative and think out of the box. Yes, that might sound like a weird statement considering that data is often tight to facts. However, a great level of critical thinking is required to uncover connections, come up with a valuable hypothesis, and extract conclusions that go a step further from the surface. This, of course, needs to be complemented by statistical thinking and an understanding of numbers. 
  • Data cleaning: Anyone who has ever worked with data before will tell you that the cleaning and preparation process accounts for 80% of a data analyst's work, therefore, the skill is fundamental. But not just that, not cleaning the data adequately can also significantly damage the analysis which can lead to poor decision-making in a business scenario. While there are multiple tools that automate the cleaning process and eliminate the possibility of human error, it is still a valuable skill to dominate. 
  • Data visualization: Visuals make the information easier to understand and analyze, not only for professional users but especially for non-technical ones. Having the necessary skills to not only choose the right chart type but know when to apply it correctly is key. This also means being able to design visually compelling charts that make the data exploration process more efficient. 
  • SQL: The Structured Query Language or SQL is a programming language used to communicate with databases. It is fundamental knowledge as it enables you to update, manipulate, and organize data from relational databases which are the most common databases used by companies. It is fairly easy to learn and one of the most valuable skills when it comes to data analysis. 
  • Communication skills: This is a skill that is especially valuable in a business environment. Being able to clearly communicate analytical outcomes to colleagues is incredibly important, especially when the information you are trying to convey is complex for non-technical people. This applies to in-person communication as well as written format, for example, when generating a dashboard or report. While this might be considered a “soft” skill compared to the other ones we mentioned, it should not be ignored as you most likely will need to share analytical findings with others no matter the context. 

Data Analysis In The Big Data Environment

Big data is invaluable to today’s businesses, and by using different methods for data analysis, it’s possible to view your data in a way that can help you turn insight into positive action.

To inspire your efforts and put the importance of big data into context, here are some insights that you should know:

  • By 2026 the industry of big data is expected to be worth approximately $273.4 billion.
  • 94% of enterprises say that analyzing data is important for their growth and digital transformation. 
  • Companies that exploit the full potential of their data can increase their operating margins by 60% .
  • We already told you the benefits of Artificial Intelligence through this article. This industry's financial impact is expected to grow up to $40 billion by 2025.

Data analysis concepts may come in many forms, but fundamentally, any solid methodology will help to make your business more streamlined, cohesive, insightful, and successful than ever before.

Key Takeaways From Data Analysis 

As we reach the end of our data analysis journey, we leave a small summary of the main methods and techniques to perform excellent analysis and grow your business.

17 Essential Types of Data Analysis Methods:

  • Cluster analysis
  • Cohort analysis
  • Regression analysis
  • Factor analysis
  • Neural Networks
  • Data Mining
  • Text analysis
  • Time series analysis
  • Decision trees
  • Conjoint analysis 
  • Correspondence Analysis
  • Multidimensional Scaling 
  • Content analysis 
  • Thematic analysis
  • Narrative analysis 
  • Grounded theory analysis
  • Discourse analysis 

Top 17 Data Analysis Techniques:

  • Collaborate your needs
  • Establish your questions
  • Data democratization
  • Think of data governance 
  • Clean your data
  • Set your KPIs
  • Omit useless data
  • Build a data management roadmap
  • Integrate technology
  • Answer your questions
  • Visualize your data
  • Interpretation of data
  • Consider autonomous technology
  • Build a narrative
  • Share the load
  • Data Analysis tools
  • Refine your process constantly 

We’ve pondered the data analysis definition and drilled down into the practical applications of data-centric analytics, and one thing is clear: by taking measures to arrange your data and making your metrics work for you, it’s possible to transform raw information into action - the kind of that will push your business to the next level.

Yes, good data analytics techniques result in enhanced business intelligence (BI). To help you understand this notion in more detail, read our exploration of business intelligence reporting .

And, if you’re ready to perform your own analysis, drill down into your facts and figures while interacting with your data on astonishing visuals, you can try our software for a free, 14-day trial .

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

analytical research techniques

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

customer communication tool

Customer Communication Tool: Types, Methods, Uses, & Tools

Apr 23, 2024

sentiment analysis tools

Top 12 Sentiment Analysis Tools for Understanding Emotions

QuestionPro BI: From Research Data to Actionable Dashboards

QuestionPro BI: From Research Data to Actionable Dashboards

Apr 22, 2024

customer experience management software

21 Best Customer Experience Management Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

A data analyst in side profile, looking at a laptop screen

The 7 Most Useful Data Analysis Methods and Techniques

analytical research techniques

Data analytics is the process of analyzing raw data to draw out meaningful insights. These insights are then used to determine the best course of action.

When is the best time to roll out that marketing campaign? Is the current team structure as effective as it could be? Which customer segments are most likely to purchase your new product?

Ultimately, data analytics is a crucial driver of any successful business strategy. But how do data analysts actually turn raw data into something useful? There are a range of methods and techniques that data analysts use depending on the type of data in question and the kinds of insights they want to uncover.

You can get a hands-on introduction to data analytics in this free short course .

In this post, we’ll explore some of the most useful data analysis techniques. By the end, you’ll have a much clearer idea of how you can transform meaningless data into business intelligence. We’ll cover:

  • What is data analysis and why is it important?
  • What is the difference between qualitative and quantitative data?
  • Regression analysis
  • Monte Carlo simulation
  • Factor analysis
  • Cohort analysis
  • Cluster analysis
  • Time series analysis
  • Sentiment analysis
  • The data analysis process
  • The best tools for data analysis
  •  Key takeaways

The first six methods listed are used for quantitative data , while the last technique applies to qualitative data. We briefly explain the difference between quantitative and qualitative data in section two, but if you want to skip straight to a particular analysis technique, just use the clickable menu.

1. What is data analysis and why is it important?

Data analysis is, put simply, the process of discovering useful information by evaluating data. This is done through a process of inspecting, cleaning, transforming, and modeling data using analytical and statistical tools, which we will explore in detail further along in this article.

Why is data analysis important? Analyzing data effectively helps organizations make business decisions. Nowadays, data is collected by businesses constantly: through surveys, online tracking, online marketing analytics, collected subscription and registration data (think newsletters), social media monitoring, among other methods.

These data will appear as different structures, including—but not limited to—the following:

The concept of big data —data that is so large, fast, or complex, that it is difficult or impossible to process using traditional methods—gained momentum in the early 2000s. Then, Doug Laney, an industry analyst, articulated what is now known as the mainstream definition of big data as the three Vs: volume, velocity, and variety. 

  • Volume: As mentioned earlier, organizations are collecting data constantly. In the not-too-distant past it would have been a real issue to store, but nowadays storage is cheap and takes up little space.
  • Velocity: Received data needs to be handled in a timely manner. With the growth of the Internet of Things, this can mean these data are coming in constantly, and at an unprecedented speed.
  • Variety: The data being collected and stored by organizations comes in many forms, ranging from structured data—that is, more traditional, numerical data—to unstructured data—think emails, videos, audio, and so on. We’ll cover structured and unstructured data a little further on.

This is a form of data that provides information about other data, such as an image. In everyday life you’ll find this by, for example, right-clicking on a file in a folder and selecting “Get Info”, which will show you information such as file size and kind, date of creation, and so on.

Real-time data

This is data that is presented as soon as it is acquired. A good example of this is a stock market ticket, which provides information on the most-active stocks in real time.

Machine data

This is data that is produced wholly by machines, without human instruction. An example of this could be call logs automatically generated by your smartphone.

Quantitative and qualitative data

Quantitative data—otherwise known as structured data— may appear as a “traditional” database—that is, with rows and columns. Qualitative data—otherwise known as unstructured data—are the other types of data that don’t fit into rows and columns, which can include text, images, videos and more. We’ll discuss this further in the next section.

2. What is the difference between quantitative and qualitative data?

How you analyze your data depends on the type of data you’re dealing with— quantitative or qualitative . So what’s the difference?

Quantitative data is anything measurable , comprising specific quantities and numbers. Some examples of quantitative data include sales figures, email click-through rates, number of website visitors, and percentage revenue increase. Quantitative data analysis techniques focus on the statistical, mathematical, or numerical analysis of (usually large) datasets. This includes the manipulation of statistical data using computational techniques and algorithms. Quantitative analysis techniques are often used to explain certain phenomena or to make predictions.

Qualitative data cannot be measured objectively , and is therefore open to more subjective interpretation. Some examples of qualitative data include comments left in response to a survey question, things people have said during interviews, tweets and other social media posts, and the text included in product reviews. With qualitative data analysis, the focus is on making sense of unstructured data (such as written text, or transcripts of spoken conversations). Often, qualitative analysis will organize the data into themes—a process which, fortunately, can be automated.

Data analysts work with both quantitative and qualitative data , so it’s important to be familiar with a variety of analysis methods. Let’s take a look at some of the most useful techniques now.

3. Data analysis techniques

Now we’re familiar with some of the different types of data, let’s focus on the topic at hand: different methods for analyzing data. 

a. Regression analysis

Regression analysis is used to estimate the relationship between a set of variables. When conducting any type of regression analysis , you’re looking to see if there’s a correlation between a dependent variable (that’s the variable or outcome you want to measure or predict) and any number of independent variables (factors which may have an impact on the dependent variable). The aim of regression analysis is to estimate how one or more variables might impact the dependent variable, in order to identify trends and patterns. This is especially useful for making predictions and forecasting future trends.

Let’s imagine you work for an ecommerce company and you want to examine the relationship between: (a) how much money is spent on social media marketing, and (b) sales revenue. In this case, sales revenue is your dependent variable—it’s the factor you’re most interested in predicting and boosting. Social media spend is your independent variable; you want to determine whether or not it has an impact on sales and, ultimately, whether it’s worth increasing, decreasing, or keeping the same. Using regression analysis, you’d be able to see if there’s a relationship between the two variables. A positive correlation would imply that the more you spend on social media marketing, the more sales revenue you make. No correlation at all might suggest that social media marketing has no bearing on your sales. Understanding the relationship between these two variables would help you to make informed decisions about the social media budget going forward. However: It’s important to note that, on their own, regressions can only be used to determine whether or not there is a relationship between a set of variables—they don’t tell you anything about cause and effect. So, while a positive correlation between social media spend and sales revenue may suggest that one impacts the other, it’s impossible to draw definitive conclusions based on this analysis alone.

There are many different types of regression analysis, and the model you use depends on the type of data you have for the dependent variable. For example, your dependent variable might be continuous (i.e. something that can be measured on a continuous scale, such as sales revenue in USD), in which case you’d use a different type of regression analysis than if your dependent variable was categorical in nature (i.e. comprising values that can be categorised into a number of distinct groups based on a certain characteristic, such as customer location by continent). You can learn more about different types of dependent variables and how to choose the right regression analysis in this guide .

Regression analysis in action: Investigating the relationship between clothing brand Benetton’s advertising expenditure and sales

b. Monte Carlo simulation

When making decisions or taking certain actions, there are a range of different possible outcomes. If you take the bus, you might get stuck in traffic. If you walk, you might get caught in the rain or bump into your chatty neighbor, potentially delaying your journey. In everyday life, we tend to briefly weigh up the pros and cons before deciding which action to take; however, when the stakes are high, it’s essential to calculate, as thoroughly and accurately as possible, all the potential risks and rewards.

Monte Carlo simulation, otherwise known as the Monte Carlo method, is a computerized technique used to generate models of possible outcomes and their probability distributions. It essentially considers a range of possible outcomes and then calculates how likely it is that each particular outcome will be realized. The Monte Carlo method is used by data analysts to conduct advanced risk analysis, allowing them to better forecast what might happen in the future and make decisions accordingly.

So how does Monte Carlo simulation work, and what can it tell us? To run a Monte Carlo simulation, you’ll start with a mathematical model of your data—such as a spreadsheet. Within your spreadsheet, you’ll have one or several outputs that you’re interested in; profit, for example, or number of sales. You’ll also have a number of inputs; these are variables that may impact your output variable. If you’re looking at profit, relevant inputs might include the number of sales, total marketing spend, and employee salaries. If you knew the exact, definitive values of all your input variables, you’d quite easily be able to calculate what profit you’d be left with at the end. However, when these values are uncertain, a Monte Carlo simulation enables you to calculate all the possible options and their probabilities. What will your profit be if you make 100,000 sales and hire five new employees on a salary of $50,000 each? What is the likelihood of this outcome? What will your profit be if you only make 12,000 sales and hire five new employees? And so on. It does this by replacing all uncertain values with functions which generate random samples from distributions determined by you, and then running a series of calculations and recalculations to produce models of all the possible outcomes and their probability distributions. The Monte Carlo method is one of the most popular techniques for calculating the effect of unpredictable variables on a specific output variable, making it ideal for risk analysis.

Monte Carlo simulation in action: A case study using Monte Carlo simulation for risk analysis

 c. Factor analysis

Factor analysis is a technique used to reduce a large number of variables to a smaller number of factors. It works on the basis that multiple separate, observable variables correlate with each other because they are all associated with an underlying construct. This is useful not only because it condenses large datasets into smaller, more manageable samples, but also because it helps to uncover hidden patterns. This allows you to explore concepts that cannot be easily measured or observed—such as wealth, happiness, fitness, or, for a more business-relevant example, customer loyalty and satisfaction.

Let’s imagine you want to get to know your customers better, so you send out a rather long survey comprising one hundred questions. Some of the questions relate to how they feel about your company and product; for example, “Would you recommend us to a friend?” and “How would you rate the overall customer experience?” Other questions ask things like “What is your yearly household income?” and “How much are you willing to spend on skincare each month?”

Once your survey has been sent out and completed by lots of customers, you end up with a large dataset that essentially tells you one hundred different things about each customer (assuming each customer gives one hundred responses). Instead of looking at each of these responses (or variables) individually, you can use factor analysis to group them into factors that belong together—in other words, to relate them to a single underlying construct. In this example, factor analysis works by finding survey items that are strongly correlated. This is known as covariance . So, if there’s a strong positive correlation between household income and how much they’re willing to spend on skincare each month (i.e. as one increases, so does the other), these items may be grouped together. Together with other variables (survey responses), you may find that they can be reduced to a single factor such as “consumer purchasing power”. Likewise, if a customer experience rating of 10/10 correlates strongly with “yes” responses regarding how likely they are to recommend your product to a friend, these items may be reduced to a single factor such as “customer satisfaction”.

In the end, you have a smaller number of factors rather than hundreds of individual variables. These factors are then taken forward for further analysis, allowing you to learn more about your customers (or any other area you’re interested in exploring).

Factor analysis in action: Using factor analysis to explore customer behavior patterns in Tehran

d. Cohort analysis

Cohort analysis is a data analytics technique that groups users based on a shared characteristic , such as the date they signed up for a service or the product they purchased. Once users are grouped into cohorts, analysts can track their behavior over time to identify trends and patterns.

So what does this mean and why is it useful? Let’s break down the above definition further. A cohort is a group of people who share a common characteristic (or action) during a given time period. Students who enrolled at university in 2020 may be referred to as the 2020 cohort. Customers who purchased something from your online store via the app in the month of December may also be considered a cohort.

With cohort analysis, you’re dividing your customers or users into groups and looking at how these groups behave over time. So, rather than looking at a single, isolated snapshot of all your customers at a given moment in time (with each customer at a different point in their journey), you’re examining your customers’ behavior in the context of the customer lifecycle. As a result, you can start to identify patterns of behavior at various points in the customer journey—say, from their first ever visit to your website, through to email newsletter sign-up, to their first purchase, and so on. As such, cohort analysis is dynamic, allowing you to uncover valuable insights about the customer lifecycle.

This is useful because it allows companies to tailor their service to specific customer segments (or cohorts). Let’s imagine you run a 50% discount campaign in order to attract potential new customers to your website. Once you’ve attracted a group of new customers (a cohort), you’ll want to track whether they actually buy anything and, if they do, whether or not (and how frequently) they make a repeat purchase. With these insights, you’ll start to gain a much better understanding of when this particular cohort might benefit from another discount offer or retargeting ads on social media, for example. Ultimately, cohort analysis allows companies to optimize their service offerings (and marketing) to provide a more targeted, personalized experience. You can learn more about how to run cohort analysis using Google Analytics .

Cohort analysis in action: How Ticketmaster used cohort analysis to boost revenue

e. Cluster analysis

Cluster analysis is an exploratory technique that seeks to identify structures within a dataset. The goal of cluster analysis is to sort different data points into groups (or clusters) that are internally homogeneous and externally heterogeneous. This means that data points within a cluster are similar to each other, and dissimilar to data points in another cluster. Clustering is used to gain insight into how data is distributed in a given dataset, or as a preprocessing step for other algorithms.

There are many real-world applications of cluster analysis. In marketing, cluster analysis is commonly used to group a large customer base into distinct segments, allowing for a more targeted approach to advertising and communication. Insurance firms might use cluster analysis to investigate why certain locations are associated with a high number of insurance claims. Another common application is in geology, where experts will use cluster analysis to evaluate which cities are at greatest risk of earthquakes (and thus try to mitigate the risk with protective measures).

It’s important to note that, while cluster analysis may reveal structures within your data, it won’t explain why those structures exist. With that in mind, cluster analysis is a useful starting point for understanding your data and informing further analysis. Clustering algorithms are also used in machine learning—you can learn more about clustering in machine learning in our guide .

Cluster analysis in action: Using cluster analysis for customer segmentation—a telecoms case study example

f. Time series analysis

Time series analysis is a statistical technique used to identify trends and cycles over time. Time series data is a sequence of data points which measure the same variable at different points in time (for example, weekly sales figures or monthly email sign-ups). By looking at time-related trends, analysts are able to forecast how the variable of interest may fluctuate in the future.

When conducting time series analysis, the main patterns you’ll be looking out for in your data are:

  • Trends: Stable, linear increases or decreases over an extended time period.
  • Seasonality: Predictable fluctuations in the data due to seasonal factors over a short period of time. For example, you might see a peak in swimwear sales in summer around the same time every year.
  • Cyclic patterns: Unpredictable cycles where the data fluctuates. Cyclical trends are not due to seasonality, but rather, may occur as a result of economic or industry-related conditions.

As you can imagine, the ability to make informed predictions about the future has immense value for business. Time series analysis and forecasting is used across a variety of industries, most commonly for stock market analysis, economic forecasting, and sales forecasting. There are different types of time series models depending on the data you’re using and the outcomes you want to predict. These models are typically classified into three broad types: the autoregressive (AR) models, the integrated (I) models, and the moving average (MA) models. For an in-depth look at time series analysis, refer to our guide .

Time series analysis in action: Developing a time series model to predict jute yarn demand in Bangladesh

g. Sentiment analysis

When you think of data, your mind probably automatically goes to numbers and spreadsheets.

Many companies overlook the value of qualitative data, but in reality, there are untold insights to be gained from what people (especially customers) write and say about you. So how do you go about analyzing textual data?

One highly useful qualitative technique is sentiment analysis , a technique which belongs to the broader category of text analysis —the (usually automated) process of sorting and understanding textual data.

With sentiment analysis, the goal is to interpret and classify the emotions conveyed within textual data. From a business perspective, this allows you to ascertain how your customers feel about various aspects of your brand, product, or service.

There are several different types of sentiment analysis models, each with a slightly different focus. The three main types include:

Fine-grained sentiment analysis

If you want to focus on opinion polarity (i.e. positive, neutral, or negative) in depth, fine-grained sentiment analysis will allow you to do so.

For example, if you wanted to interpret star ratings given by customers, you might use fine-grained sentiment analysis to categorize the various ratings along a scale ranging from very positive to very negative.

Emotion detection

This model often uses complex machine learning algorithms to pick out various emotions from your textual data.

You might use an emotion detection model to identify words associated with happiness, anger, frustration, and excitement, giving you insight into how your customers feel when writing about you or your product on, say, a product review site.

Aspect-based sentiment analysis

This type of analysis allows you to identify what specific aspects the emotions or opinions relate to, such as a certain product feature or a new ad campaign.

If a customer writes that they “find the new Instagram advert so annoying”, your model should detect not only a negative sentiment, but also the object towards which it’s directed.

In a nutshell, sentiment analysis uses various Natural Language Processing (NLP) algorithms and systems which are trained to associate certain inputs (for example, certain words) with certain outputs.

For example, the input “annoying” would be recognized and tagged as “negative”. Sentiment analysis is crucial to understanding how your customers feel about you and your products, for identifying areas for improvement, and even for averting PR disasters in real-time!

Sentiment analysis in action: 5 Real-world sentiment analysis case studies

4. The data analysis process

In order to gain meaningful insights from data, data analysts will perform a rigorous step-by-step process. We go over this in detail in our step by step guide to the data analysis process —but, to briefly summarize, the data analysis process generally consists of the following phases:

Defining the question

The first step for any data analyst will be to define the objective of the analysis, sometimes called a ‘problem statement’. Essentially, you’re asking a question with regards to a business problem you’re trying to solve. Once you’ve defined this, you’ll then need to determine which data sources will help you answer this question.

Collecting the data

Now that you’ve defined your objective, the next step will be to set up a strategy for collecting and aggregating the appropriate data. Will you be using quantitative (numeric) or qualitative (descriptive) data? Do these data fit into first-party, second-party, or third-party data?

Learn more: Quantitative vs. Qualitative Data: What’s the Difference? 

Cleaning the data

Unfortunately, your collected data isn’t automatically ready for analysis—you’ll have to clean it first. As a data analyst, this phase of the process will take up the most time. During the data cleaning process, you will likely be:

  • Removing major errors, duplicates, and outliers
  • Removing unwanted data points
  • Structuring the data—that is, fixing typos, layout issues, etc.
  • Filling in major gaps in data

Analyzing the data

Now that we’ve finished cleaning the data, it’s time to analyze it! Many analysis methods have already been described in this article, and it’s up to you to decide which one will best suit the assigned objective. It may fall under one of the following categories:

  • Descriptive analysis , which identifies what has already happened
  • Diagnostic analysis , which focuses on understanding why something has happened
  • Predictive analysis , which identifies future trends based on historical data
  • Prescriptive analysis , which allows you to make recommendations for the future

Visualizing and sharing your findings

We’re almost at the end of the road! Analyses have been made, insights have been gleaned—all that remains to be done is to share this information with others. This is usually done with a data visualization tool, such as Google Charts, or Tableau.

Learn more: 13 of the Most Common Types of Data Visualization

To sum up the process, Will’s explained it all excellently in the following video:

5. The best tools for data analysis

As you can imagine, every phase of the data analysis process requires the data analyst to have a variety of tools under their belt that assist in gaining valuable insights from data. We cover these tools in greater detail in this article , but, in summary, here’s our best-of-the-best list, with links to each product:

The top 9 tools for data analysts

  • Microsoft Excel
  • Jupyter Notebook
  • Apache Spark
  • Microsoft Power BI

6. Key takeaways and further reading

As you can see, there are many different data analysis techniques at your disposal. In order to turn your raw data into actionable insights, it’s important to consider what kind of data you have (is it qualitative or quantitative?) as well as the kinds of insights that will be useful within the given context. In this post, we’ve introduced seven of the most useful data analysis techniques—but there are many more out there to be discovered!

So what now? If you haven’t already, we recommend reading the case studies for each analysis technique discussed in this post (you’ll find a link at the end of each section). For a more hands-on introduction to the kinds of methods and techniques that data analysts use, try out this free introductory data analytics short course. In the meantime, you might also want to read the following:

  • The Best Online Data Analytics Courses for 2024
  • What Is Time Series Data and How Is It Analyzed?
  • What is Spatial Analysis?

Child Care and Early Education Research Connections

Data analysis.

Different statistics and methods used to describe the characteristics of the members of a sample or population, explore the relationships between variables, to test research hypotheses, and to visually represent data are described. Terms relating to the topics covered are defined in the  Research Glossary .

Descriptive Statistics

Tests of Significance

Graphical/Pictorial Methods

Analytical techniques.

Descriptive statistics can be useful for two purposes:

To provide basic information about the characteristics of a sample or population. These characteristics are represented by variables in a research study dataset.

To highlight potential relationships between these characteristics, or the relationships among the variables in the dataset.

The four most common descriptive statistics are:

Proportions, Percentages and Ratios

Measures of central tendency, measures of dispersion, measures of association.

One of the most basic ways of describing the characteristics of a sample or population is to classify its individual members into mutually exclusive categories and counting the number of cases in each of the categories. In research, variables with discrete, qualitative categories are called nominal or categorical variables. The categories can be given numerical codes, but they cannot be ranked, added, or multiplied. Examples of nominal variables include gender (male, female), preschool program attendance (yes, no), and race/ethnicity (White, African American, Hispanic, Asian, American Indian). Researchers calculate proportions, percentages and ratios in order to summarize the data from nominal or categorical variables and to allow for comparisons to be made between groups.

Proportion —The number of cases in a category divided by the total number of cases across all categories of a variable.

Percentage —The proportion multiplied by 100 (or the number of cases in a category divided by the total number of cases across all categories of a value times 100).

Ratio —The number of cases in one category to the number of cases in a second category.

A researcher selects a sample of 100 students from a Head Start program. The sample includes 20 White children, 30 African American children, 40 Hispanic children and 10 children of mixed-race/ethnicity.

Proportion of Hispanic children in the program = 40 / (20+30+40+10) = .40.

Percentage of Hispanic children in the program = .40 x 100 = 40%.

Ratio of Hispanic children to White children in the program = 40/20 = 2.0, or the ratio of Hispanic to White children enrolled in the Head Start program is 2 to 1.

Proportions, percentages and ratios are used to summarize the characteristics of a sample or population that fall into discrete categories. Measures of central tendency are the most basic and, often, the most informative description of a population's characteristics, when those characteristics are measured using an interval scale. The values of an interval variable are ordered where the distance between any two adjacent values is the same but the zero point is arbitrary. Values on an interval scale can be added and subtracted. Examples of interval scales or interval variables include household income, years of schooling, hours a child spends in child care and the cost of child care.

Measures of central tendency describe the "average" member of the sample or population of interest. There are three measures of central tendency:

Mean —The arithmetic average of the values of a variable. To calculate the mean, all the values of a variable are summed and divided by the total number of cases.

Median —The value within a set of values that divides the values in half (i.e. 50% of the variable's values lie above the median, and 50% lie below the median).

Mode —The value of a variable that occurs most often.

The annual incomes of five randomly selected people in the United States are $10,000, $10,000, $45,000, $60,000, and $1,000,000.

Mean Income = (10,000 + 10,000 + 45,000 + 60,000 + 1,000,000) / 5 = $225,000.

Median Income = $45,000.

Modal Income = $10,000.

The mean is the most commonly used measure of central tendency. Medians are generally used when a few values are extremely different from the rest of the values (this is called a skewed distribution). For example, the median income is often the best measure of the average income because, while most individuals earn between $0 and $200,000 annually, a handful of individuals earn millions.

Measures of dispersion provide information about the spread of a variable's values. There are three key measures of dispersion:

Range  is simply the difference between the smallest and largest values in the data. Researchers often report simply the values of the range (e.g., 75 – 100).

Variance  is a commonly used measure of dispersion, or how spread out a set of values are around the mean. It is calculated by taking the average of the squared differences between each value and the mean. The variance is the standard deviation squared.

Standard deviation , like variance, is a measure of the spread of a set of values around the mean of the values. The wider the spread, the greater the standard deviation and the greater the range of the values from their mean. A small standard deviation indicates that most of the values are close to the mean. A large standard deviation on the other hand indicates that the values are more spread out. The standard deviation is the square root of the variance.

Five randomly selected children were administered a standardized reading assessment. Their scores on the assessment were 50, 50, 60,75 and 90 with a mean score of 65.

Range = 90 - 50 = 40.

Variance = [(50 - 65)2 + (50 - 65)2 + (60 - 65)2 + (75 - 65)2 + (90 - 65)2] / 5 = 300.

Standard Deviation = Square Root (150,540,000,000) = 17.32.

Skewness and Kurtosis

The range, variance and standard deviation are measures of dispersion and provide information about the spread of the values of a variable. Two additional measures provide information about the shape of the distribution of values.

Skew  is a measure of whether some values of a variable are extremely different from the majority of the values. Skewness refers to the tendency of the values of a variable to depart from symmetry. A distribution is symmetric if one half of the distribution is exactly equal to the other half. For example, the distribution of annual income in the U.S. is skewed because most people make between $0 and $200,000 a year, but a handful of people earn millions. A variable is positively skewed (skewed to the right) if the extreme values are higher than the majority of values. A variable is negatively skewed (skewed to the left) if the extreme values are lower than the majority of values. In the example of students' standardized test scores, the distribution is slightly positively skewed.

Kurtosis  measures how outlier-prone a distribution is. Outliers are values of a variable that are much smaller or larger than most of the values found in a dataset. The kurtosis of a normal distribution is 0. If the kurtosis is different from 0, then the distribution produces outliers that are either more extreme (positive kurtosis) or less extreme (negative kurtosis) than are produced by the normal distribution.

Measures of association indicate whether two variables are related. Two measures are commonly used:

Chi-square test of independence

Correlation

Chi-Square test of independence  is used to evaluate whether there is an association between two variables. (The chi-square test can also be used as a measure of goodness of fit, to test if data from a sample come from a population with a specific distribution, as an alternative to Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests.)

It is most often used with nominal data (i.e., data that are put into discrete categories: e.g., gender [male, female] and type of job [unskilled, semi-skilled, skilled]) to determine whether they are associated. However, it can also be used with ordinal data.

Assumes that the samples being compared (e.g., males, females) are independent.

Tests the null hypothesis of no difference between the two variables (i.e., type of job is not related to gender).

To test for associations, a chi-square is calculated in the following way: Suppose a researcher wants to know whether there is a relationship between gender and two types of jobs, construction worker and administrative assistant. To perform a chi-square test, the researcher counts the number of female administrative assistants, the number of female construction workers, the number of male administrative assistants, and the number of male construction workers in the data. These counts are compared with the number that would be expected in each category if there were no association between job type and gender (this expected count is based on statistical calculations). The association between the two variables is determined to be significant (the null hypothesis is rejected), if the value of the chi-square test is greater than or equal to the critical value for a given significance level (typically .05) and the degrees of freedom associated with the test found in a chi-square table. The degrees of freedom for the chi-square are calculated using the following formula:  df  = (r-1)(c-1) where r is the number of rows and c is the number of columns in a contingency or cross-tabulation table. For example, the critical value for a 2 x 2 table with 1 degree of freedom ([2-1][2-1]=1) is 3.841.

Correlation coefficient  is used to measure the strength and direction of the relationship between numeric variables (e.g., weight and height).

The most common correlation coefficient is the Pearson's product-moment correlation coefficient (or simply  Pearson's r ), which can range from -1 to +1.

Values closer to 1 (either positive or negative) indicate that a stronger association exists between the two variables.

A positive coefficient (values between 0 and 1) suggests that larger values of one of the variables are accompanied by larger values of the other variable. For example, height and weight are usually positively correlated because taller people tend to weigh more.

A negative association (values between 0 and -1) suggests that larger values of one of the variables are accompanied by smaller values of the other variable. For example, age and hours slept per night are often negatively correlated because older people usually sleep fewer hours per night than younger people.

The findings reported by researchers are typically based on data collected from a single sample that was drawn from the population of interest (e.g., a sample of children selected from the population of children enrolled in Head Start or Early Head Start). If additional random samples of the same size were drawn from this population, the estimated percentages and means calculated using the data from each of these other samples might differ by chance somewhat from the estimates produced from one sample. Researchers use one of several tests to evaluate whether their findings are statistically significant.

Statistical significance refers to the probability or likelihood that the difference between groups or the relationship between variables observed in statistical analyses is not due to random chance (e.g., that differences between the average scores on a measure of language development between 3- and 4-year-olds are likely to be “real” rather than just observed in this sample by chance). If there is a very small probability that an observed difference or relationship is due to chance, the results are said to reach statistical significance. This means that the researcher concludes that there is a real difference between two groups or a real relationship between the observed variables.

Significance tests and the associated  p-  value only tell us how likely it is that a statistical result (e.g., a difference between the means of two or more groups, or a correlation between two variables) is due to chance. The p-value is the probability that the results of a statistical test are due to chance. In the social and behavioral sciences, a p-value less than or equal to .05 is usually interpreted to mean that the results are statistically significant (that the statistical results would occur by chance 5 times or fewer out of 100), although sometimes researchers use a p-value of .10 to indicate whether a result is statistically significant. The lower the p-value, the less likely a statistical result is due to chance. Lower p-values are therefore a more rigorous criteria for concluding significance.

Researchers use a variety of approaches to test whether their findings are statistically significant or not. The choice depends on several factors, including the number of groups being compared, whether the groups are independent from one another, and the type of variables used in the analysis. Three widely used tests are the t-test, F-test, and Chi-square test.

Three of the more widely used tests of statistical significance are described briefly below.

Chi-Square test  is used when testing for associations between categorical variables (e.g., differences in whether a child has been diagnosed as having a cognitive disability by gender or race/ethnicity). It is also used as a goodness-of-fit test to determine whether data from a sample come from a population with a specific distribution.

t-test  is used to compare the means of two independent samples (independent t-test), the means of one sample at different times (paired sample t-test) or the mean of one sample against a known mean (one sample t-test). For example, when comparing the mean assessment scores of boys and girls or the mean scores of 3- and 4-year-old children, an independent t-test would be used. When comparing the mean assessment scores of girls only at two time points (e.g., fall and spring of the program year) a paired t-test would be used. A one sample t-test would be used when comparing the mean scores of a sample of children to the mean score of a population of children. The t- test is appropriate for small sample sizes (less than 30) although it is often used when testing group differences for larger samples. It is also used to test whether correlation and regression coefficients are significantly different from zero.

F-test  is an extension of the t-test and is used to compare the means of three or more independent samples (groups). The F-test is used in Analysis of Variance (ANOVA) to examine the ratio of the between groups to within groups variance. It is also used to test the significance of the total variance explained by a regression model with multiple independent variables.

Significance tests alone do not tell us anything about the size of the difference between groups or the strength of the association between variables. Because significance test results are sensitive to sample size, studies with different sample sizes with the same means and standard deviations would have different t statistics and p values. It is therefore important that researchers provide additional information about the size of the difference between groups or the association and whether the difference/association is substantively meaningful.

See the following for additional information about descriptive statistics and tests of significance:

Descriptive analysis in education: A guide for researchers  (PDF)

Basic Statistics

Effect Sizes and Statistical Significance

Summarizing and Presenting Data

There are several graphical and pictorial methods that enhance understanding of individual variables and the relationships between variables. Graphical and pictorial methods provide a visual representation of the data. Some of these methods include:

Line graphs

Scatter plots.

Geographical Information Systems (GIS)

Bar charts visually represent the frequencies or percentages with which different categories of a variable occur.

Bar charts are most often used when describing the percentages of different groups with a specific characteristic. For example, the percentages of boys and girls who participate in team sports. However, they may also be used when describing averages such as the average boys and girls spend per week participating in team sports.

Each category of a variable (e.g., gender [boys and girls], children's age [3, 4, and 5]) is displayed along the bottom (or horizontal or X axis) of a bar chart.

The vertical axis (or Y axis) includes the values of the statistic on that the groups are being compared (e.g., percentage participating in team sports).

A bar is drawn for each of the categories along the horizontal axis and the height of the bar corresponds to the frequency or percentage with which that value occurs.

A pie chart (or a circle chart) is one of the most commonly used methods for graphically presenting statistical data.

As its name suggests, it is a circular graphic, which is divided into slices to illustrate the proportion or percentage of a sample or population that belong to each of the categories of a variable.

The size of each slice represents the proportion or percentage of the total sample or population with a specific characteristic (found in a specific category). For example, the percentage of children enrolled in Early Head Start who are members of different racial/ethnic groups would be represented by different slices with the size of each slice proportionate to the group's representation in the total population of children enrolled in the Early Head Start program.

A line graph is a type of chart which displays information as a series of data points connected by a straight line.

Line graphs are often used to show changes in a characteristic over time.

It has an X-axis (horizontal axis) and a Y axis (vertical axis). The time segments of interest are displayed on the X-axis (e.g., years, months). The range of values that the characteristic of interest can take are displayed along the Y-axis (e.g., annual household income, mean years of schooling, average cost of child care). A data point is plotted coinciding with the value of the Y variable plotted for each of the values of the X variable, and a line is drawn connecting the points.

Scatter plots display the relationship between two quantitative or numeric variables by plotting one variable against the value of another variable

The values of one of the two variables are displayed on the horizontal axis (x axis) and the values of the other variable are displayed on the vertical axis (y axis)

Each person or subject in a study would receive one data point on the scatter plot that corresponds to his or her values on the two variables. For example, a scatter plot could be used to show the relationship between income and children's scores on a math assessment. A data point for each child in the study showing his or her math score and family income would be shown on the scatter plot. Thus, the number of data points would equal the total number of children in the study.

Geographic Information Systems (GIS)

A Geographic Information System is computer software capable of capturing, storing, analyzing, and displaying geographically referenced information; that is, data identified according to location.

Using a GIS program, a researcher can create a map to represent data relationships visually. For example, the National Center for Education Statistics creates maps showing the characteristics of school districts across the United States such as the percentage of children living in married couple households, median family incomes and percentage of population that speaks a language other than English. The data that are linked to school district location come from the American Community Survey.

Display networks of relationships among variables, enabling researchers to identify the nature of relationships that would otherwise be too complex to conceptualize.

See the following for additional information about different graphic methods:

Graphical Analytic Techniques

Geographic Information Systems

Researchers use different analytical techniques to examine complex relationships between variables. There are three basic types of analytical techniques:

Regression Analysis

Grouping methods, multiple equation models.

Regression analysis assumes that the dependent, or outcome, variable is directly affected by one or more independent variables. There are four important types of regression analyses:

Ordinary least squares (OLS) regression

OLS regression (also known as linear regression) is used to determine the relationship between a dependent variable and one or more independent variables.

OLS regression is used when the dependent variable is continuous. Continuous variables, in theory, can take on any value with a range. For example, family child care expenses, measured in dollars, is a continuous variable.

Independent variables may be nominal, ordinal or continuous. Nominal variables, which are also referred to as categorical variables, have two or more non-numeric or qualitative categories. Examples of nominal variables are children's gender (male, female), their parents' marital status (single, married, separated, divorced), and the type of child care children receive (center-based, home-based care). Ordinal variables are similar to nominal variables except it is possible to order the categories and the order has meaning. For example, children's families’ socioeconomic status may be grouped as low, middle and high.

When used to estimate the associations between two or more independent variables and a single dependent variable, it is called multiple linear regression.

In multiple regression, the coefficient (i.e., standardized or unstandardized regression coefficient for each independent variable) tells you how much the dependent variable is expected to change when that independent variable increases by one, holding all the other independent variables constant.

Logistic regression

Logistic regression (or logit regression) is a special form of regression analysis that is used to examine the associations between a set of independent or predictor variables and a dichotomous outcome variable. A dichotomous variable is a variable with only two possible values, e.g. child receives child care before or after the Head Start program day (yes, no).

Like linear regression, the independent variables may be either interval, ordinal, or nominal. A researcher might use logistic regression to study the relationships between parental education, household income, and parental employment and whether children receive child care from someone other than their parents (receives nonparent care/does not receive nonparent care).

Hierarchical linear modeling (HLM)

Used when data are nested. Nested data occur when several individuals belong to the same group under study. For example, in child care research, children enrolled in a center-based child care program are grouped into classrooms with several classrooms in a center. Thus, the children are nested within classrooms and classrooms are nested within centers.

Allows researchers to determine the effects of characteristics for each level of nested data, classrooms and centers, on the outcome variables. HLM is also used to study growth (e.g., growth in children’s reading and math knowledge and skills over time).

Duration models

Used to estimate the length of time before a given event occurs or the length of time spent in a state. For example, in child care policy research, duration models have been used to estimate the length of time that families receive child care subsidies.

Sometimes referred to as survival analysis or event history analysis.

Grouping methods are techniques for classifying observations into meaningful categories. Two of the most common grouping methods are discriminant analysis and cluster analysis.

Discriminant analysis

Identifies characteristics that distinguish between groups. For example, a researcher could use discriminant analysis to determine which characteristics identify families that seek child care subsidies and which identify families that do not.

It is used when the dependent variable is a categorical variable (e.g., family receives child care subsidies [yes, no], child enrolled in family care [yes, no], type of child care child receives [relative care, non-relative care, center-based care]). The independent variables are interval variables (e.g., years of schooling, family income).

Cluster analysis

Used to classify similar individuals together. It uses a set of measured variables to classify a sample of individuals (or organizations) into a number of groups such that individuals with similar values on the variables are placed in the same group. For example, cluster analysis would be used to group together parents who hold similar views of child care or children who are suspended from school.

Its goal is to sort individuals into groups in such a way that individuals in the same group (cluster) are more similar to each other than to individuals in other groups.

The variables used in cluster analysis may be nominal, ordinal or interval.

Multiple equation modeling, which is an extension of regression, is used to examine the causal pathways from independent variables to the dependent variable. For example, what are the variables that link (or explain) the relationship between maternal education (independent variable) and children's early reading skills (dependent variable)? These variables might include the nature and quality of mother-child interactions or the frequency and quality of shared book reading.

There are two main types of multiple equation models:

Path analysis

Structural equation modeling

Path analysis is an extension of multiple regression that allows researchers to examine multiple direct and indirect effects of a set of variables on a dependent, or outcome, variable. In path analysis, a direct effect measures the extent to which the dependent variable is influenced by an independent variable. An indirect effect measures the extent to which an independent variable's influence on the dependent variable is due to another variable.

A path diagram is created that identifies the relationships (paths) between all the variables and the direction of the influence between them.

The paths can run directly from an independent variable to a dependent variable (e.g., X→Y), or they can run indirectly from an independent variable, through an intermediary, or mediating, variable, to the dependent variable (e.g. X1→X2→Y).

The paths in the model are tested to determine the relative importance of each.

Because the relationships between variables in a path model can become complex, researchers often avoid labeling the variables in the model as independent and dependent variables. Instead, two types of variables are found in these models:

Exogenous variables  are not affected by other variables in the model. They have straight arrows emerging from them and not pointing to them.

Endogenous variables  are influenced by at least one other variable in the model. They have at least one straight arrow pointing to them.

Structural equation modeling (SEM)

Structural equation modeling expands path analysis by allowing for multiple indicators of unobserved (or latent) variables in the model. Latent variables are variables that are not directly observed (measured), but instead are inferred from other variables that are observed or directly measured. For example, children's school readiness is a latent variable with multiple indicators of children's development across multiple domains (e.g., children's scores on standardized assessments of early math and literacy, language, scores based on teacher reports of children's social skills and problem behaviors).

There are two parts to a SEM analysis. First, the measurement model is tested. This involves examining the relationships between the latent variables and their measures (indicators). Second, the structural model is tested in order to examine how the latent variables are related to one another. For example, a researcher might use SEM to investigate the relationships between different types of executive functions and word reading and reading comprehension for elementary school children. In this example, the latent variables word reading and reading comprehension might be inferred from a set of standardized reading assessments and the latent variables cognitive flexibility and inhibitory control from a set of executive function tasks. The measurement model of SEM allows the researcher to evaluate how well children's scores on the standardized reading assessments combine to identify children's word reading and reading comprehension. Assuming that the results of these analyses are acceptable, the researcher would move on to an evaluation of the structural model, examining the predicted relationships between two types of executive functions and two dimensions of reading.

SEM has several advantages over traditional path analysis:

Use of multiple indicators for key variables reduces measurement error.

Can test whether the effects of variables in the model and the relationships depicted in the entire model are the same for different groups (e.g., are the direct and indirect effects of parent investments on children's school readiness the same for White, Hispanic and African American children).

Can test models with multiple dependent variables (e.g., models predicting several domains of child development).

See the following for additional information about multiple equation models:

Finding Our Way: An Introduction to Path Analysis (Streiner)

An Introduction to Structural Equation Modeling (Hox & Bechger)  (PDF)

PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

data analysis techniques in research

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

Data Analytics Course

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language:

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

  • Why is Data Analytics Skills Important?

data analytics skills

Data analytics skills are important for candidates to stand out from other candidates during a job interview and better their…

  • Which Course is Best for Business Analyst? (Business Analysts Online Courses)

business analysts online courses

Many reputed platforms and institutions offer online certification courses which can help you land job offers in relevant companies. In…

  • What is Data Analytics in Database?

database analytics

Database analytics is a method of interpreting and analyzing data stored inside the database to extract meaningful insights. Read the…

right adv

Related Articles

  • Finance Data Analysis: What is a Financial Data Analysis?
  • What are Data Analysis Tools?
  • Best Courses For Data Analytics: Top 10 Courses For Your Career in Trend
  • Big Data: What Do You Mean By Big Data?
  • Top 20 Big Data Tools Used By Professionals
  • 10 Most Popular Big Data Analytics Tools
  • Top Best Big Data Analytics Classes 2024

bottom banner

Analyst Answers

Data & Finance for Work & Life

data analysis types, methods, and techniques tree diagram

Data Analysis: Types, Methods & Techniques (a Complete List)

( Updated Version )

While the term sounds intimidating, “data analysis” is nothing more than making sense of information in a table. It consists of filtering, sorting, grouping, and manipulating data tables with basic algebra and statistics.

In fact, you don’t need experience to understand the basics. You have already worked with data extensively in your life, and “analysis” is nothing more than a fancy word for good sense and basic logic.

Over time, people have intuitively categorized the best logical practices for treating data. These categories are what we call today types , methods , and techniques .

This article provides a comprehensive list of types, methods, and techniques, and explains the difference between them.

For a practical intro to data analysis (including types, methods, & techniques), check out our Intro to Data Analysis eBook for free.

Descriptive, Diagnostic, Predictive, & Prescriptive Analysis

If you Google “types of data analysis,” the first few results will explore descriptive , diagnostic , predictive , and prescriptive analysis. Why? Because these names are easy to understand and are used a lot in “the real world.”

Descriptive analysis is an informational method, diagnostic analysis explains “why” a phenomenon occurs, predictive analysis seeks to forecast the result of an action, and prescriptive analysis identifies solutions to a specific problem.

That said, these are only four branches of a larger analytical tree.

Good data analysts know how to position these four types within other analytical methods and tactics, allowing them to leverage strengths and weaknesses in each to uproot the most valuable insights.

Let’s explore the full analytical tree to understand how to appropriately assess and apply these four traditional types.

Tree diagram of Data Analysis Types, Methods, and Techniques

Here’s a picture to visualize the structure and hierarchy of data analysis types, methods, and techniques.

If it’s too small you can view the picture in a new tab . Open it to follow along!

analytical research techniques

Note: basic descriptive statistics such as mean , median , and mode , as well as standard deviation , are not shown because most people are already familiar with them. In the diagram, they would fall under the “descriptive” analysis type.

Tree Diagram Explained

The highest-level classification of data analysis is quantitative vs qualitative . Quantitative implies numbers while qualitative implies information other than numbers.

Quantitative data analysis then splits into mathematical analysis and artificial intelligence (AI) analysis . Mathematical types then branch into descriptive , diagnostic , predictive , and prescriptive .

Methods falling under mathematical analysis include clustering , classification , forecasting , and optimization . Qualitative data analysis methods include content analysis , narrative analysis , discourse analysis , framework analysis , and/or grounded theory .

Moreover, mathematical techniques include regression , Nïave Bayes , Simple Exponential Smoothing , cohorts , factors , linear discriminants , and more, whereas techniques falling under the AI type include artificial neural networks , decision trees , evolutionary programming , and fuzzy logic . Techniques under qualitative analysis include text analysis , coding , idea pattern analysis , and word frequency .

It’s a lot to remember! Don’t worry, once you understand the relationship and motive behind all these terms, it’ll be like riding a bike.

We’ll move down the list from top to bottom and I encourage you to open the tree diagram above in a new tab so you can follow along .

But first, let’s just address the elephant in the room: what’s the difference between methods and techniques anyway?

Difference between methods and techniques

Though often used interchangeably, methods ands techniques are not the same. By definition, methods are the process by which techniques are applied, and techniques are the practical application of those methods.

For example, consider driving. Methods include staying in your lane, stopping at a red light, and parking in a spot. Techniques include turning the steering wheel, braking, and pushing the gas pedal.

Data sets: observations and fields

It’s important to understand the basic structure of data tables to comprehend the rest of the article. A data set consists of one far-left column containing observations, then a series of columns containing the fields (aka “traits” or “characteristics”) that describe each observations. For example, imagine we want a data table for fruit. It might look like this:

Now let’s turn to types, methods, and techniques. Each heading below consists of a description, relative importance, the nature of data it explores, and the motivation for using it.

Quantitative Analysis

  • It accounts for more than 50% of all data analysis and is by far the most widespread and well-known type of data analysis.
  • As you have seen, it holds descriptive, diagnostic, predictive, and prescriptive methods, which in turn hold some of the most important techniques available today, such as clustering and forecasting.
  • It can be broken down into mathematical and AI analysis.
  • Importance : Very high . Quantitative analysis is a must for anyone interesting in becoming or improving as a data analyst.
  • Nature of Data: data treated under quantitative analysis is, quite simply, quantitative. It encompasses all numeric data.
  • Motive: to extract insights. (Note: we’re at the top of the pyramid, this gets more insightful as we move down.)

Qualitative Analysis

  • It accounts for less than 30% of all data analysis and is common in social sciences .
  • It can refer to the simple recognition of qualitative elements, which is not analytic in any way, but most often refers to methods that assign numeric values to non-numeric data for analysis.
  • Because of this, some argue that it’s ultimately a quantitative type.
  • Importance: Medium. In general, knowing qualitative data analysis is not common or even necessary for corporate roles. However, for researchers working in social sciences, its importance is very high .
  • Nature of Data: data treated under qualitative analysis is non-numeric. However, as part of the analysis, analysts turn non-numeric data into numbers, at which point many argue it is no longer qualitative analysis.
  • Motive: to extract insights. (This will be more important as we move down the pyramid.)

Mathematical Analysis

  • Description: mathematical data analysis is a subtype of qualitative data analysis that designates methods and techniques based on statistics, algebra, and logical reasoning to extract insights. It stands in opposition to artificial intelligence analysis.
  • Importance: Very High. The most widespread methods and techniques fall under mathematical analysis. In fact, it’s so common that many people use “quantitative” and “mathematical” analysis interchangeably.
  • Nature of Data: numeric. By definition, all data under mathematical analysis are numbers.
  • Motive: to extract measurable insights that can be used to act upon.

Artificial Intelligence & Machine Learning Analysis

  • Description: artificial intelligence and machine learning analyses designate techniques based on the titular skills. They are not traditionally mathematical, but they are quantitative since they use numbers. Applications of AI & ML analysis techniques are developing, but they’re not yet mainstream enough to show promise across the field.
  • Importance: Medium . As of today (September 2020), you don’t need to be fluent in AI & ML data analysis to be a great analyst. BUT, if it’s a field that interests you, learn it. Many believe that in 10 year’s time its importance will be very high .
  • Nature of Data: numeric.
  • Motive: to create calculations that build on themselves in order and extract insights without direct input from a human.

Descriptive Analysis

  • Description: descriptive analysis is a subtype of mathematical data analysis that uses methods and techniques to provide information about the size, dispersion, groupings, and behavior of data sets. This may sounds complicated, but just think about mean, median, and mode: all three are types of descriptive analysis. They provide information about the data set. We’ll look at specific techniques below.
  • Importance: Very high. Descriptive analysis is among the most commonly used data analyses in both corporations and research today.
  • Nature of Data: the nature of data under descriptive statistics is sets. A set is simply a collection of numbers that behaves in predictable ways. Data reflects real life, and there are patterns everywhere to be found. Descriptive analysis describes those patterns.
  • Motive: the motive behind descriptive analysis is to understand how numbers in a set group together, how far apart they are from each other, and how often they occur. As with most statistical analysis, the more data points there are, the easier it is to describe the set.

Diagnostic Analysis

  • Description: diagnostic analysis answers the question “why did it happen?” It is an advanced type of mathematical data analysis that manipulates multiple techniques, but does not own any single one. Analysts engage in diagnostic analysis when they try to explain why.
  • Importance: Very high. Diagnostics are probably the most important type of data analysis for people who don’t do analysis because they’re valuable to anyone who’s curious. They’re most common in corporations, as managers often only want to know the “why.”
  • Nature of Data : data under diagnostic analysis are data sets. These sets in themselves are not enough under diagnostic analysis. Instead, the analyst must know what’s behind the numbers in order to explain “why.” That’s what makes diagnostics so challenging yet so valuable.
  • Motive: the motive behind diagnostics is to diagnose — to understand why.

Predictive Analysis

  • Description: predictive analysis uses past data to project future data. It’s very often one of the first kinds of analysis new researchers and corporate analysts use because it is intuitive. It is a subtype of the mathematical type of data analysis, and its three notable techniques are regression, moving average, and exponential smoothing.
  • Importance: Very high. Predictive analysis is critical for any data analyst working in a corporate environment. Companies always want to know what the future will hold — especially for their revenue.
  • Nature of Data: Because past and future imply time, predictive data always includes an element of time. Whether it’s minutes, hours, days, months, or years, we call this time series data . In fact, this data is so important that I’ll mention it twice so you don’t forget: predictive analysis uses time series data .
  • Motive: the motive for investigating time series data with predictive analysis is to predict the future in the most analytical way possible.

Prescriptive Analysis

  • Description: prescriptive analysis is a subtype of mathematical analysis that answers the question “what will happen if we do X?” It’s largely underestimated in the data analysis world because it requires diagnostic and descriptive analyses to be done before it even starts. More than simple predictive analysis, prescriptive analysis builds entire data models to show how a simple change could impact the ensemble.
  • Importance: High. Prescriptive analysis is most common under the finance function in many companies. Financial analysts use it to build a financial model of the financial statements that show how that data will change given alternative inputs.
  • Nature of Data: the nature of data in prescriptive analysis is data sets. These data sets contain patterns that respond differently to various inputs. Data that is useful for prescriptive analysis contains correlations between different variables. It’s through these correlations that we establish patterns and prescribe action on this basis. This analysis cannot be performed on data that exists in a vacuum — it must be viewed on the backdrop of the tangibles behind it.
  • Motive: the motive for prescriptive analysis is to establish, with an acceptable degree of certainty, what results we can expect given a certain action. As you might expect, this necessitates that the analyst or researcher be aware of the world behind the data, not just the data itself.

Clustering Method

  • Description: the clustering method groups data points together based on their relativeness closeness to further explore and treat them based on these groupings. There are two ways to group clusters: intuitively and statistically (or K-means).
  • Importance: Very high. Though most corporate roles group clusters intuitively based on management criteria, a solid understanding of how to group them mathematically is an excellent descriptive and diagnostic approach to allow for prescriptive analysis thereafter.
  • Nature of Data : the nature of data useful for clustering is sets with 1 or more data fields. While most people are used to looking at only two dimensions (x and y), clustering becomes more accurate the more fields there are.
  • Motive: the motive for clustering is to understand how data sets group and to explore them further based on those groups.
  • Here’s an example set:

analytical research techniques

Classification Method

  • Description: the classification method aims to separate and group data points based on common characteristics . This can be done intuitively or statistically.
  • Importance: High. While simple on the surface, classification can become quite complex. It’s very valuable in corporate and research environments, but can feel like its not worth the work. A good analyst can execute it quickly to deliver results.
  • Nature of Data: the nature of data useful for classification is data sets. As we will see, it can be used on qualitative data as well as quantitative. This method requires knowledge of the substance behind the data, not just the numbers themselves.
  • Motive: the motive for classification is group data not based on mathematical relationships (which would be clustering), but by predetermined outputs. This is why it’s less useful for diagnostic analysis, and more useful for prescriptive analysis.

Forecasting Method

  • Description: the forecasting method uses time past series data to forecast the future.
  • Importance: Very high. Forecasting falls under predictive analysis and is arguably the most common and most important method in the corporate world. It is less useful in research, which prefers to understand the known rather than speculate about the future.
  • Nature of Data: data useful for forecasting is time series data, which, as we’ve noted, always includes a variable of time.
  • Motive: the motive for the forecasting method is the same as that of prescriptive analysis: the confidently estimate future values.

Optimization Method

  • Description: the optimization method maximized or minimizes values in a set given a set of criteria. It is arguably most common in prescriptive analysis. In mathematical terms, it is maximizing or minimizing a function given certain constraints.
  • Importance: Very high. The idea of optimization applies to more analysis types than any other method. In fact, some argue that it is the fundamental driver behind data analysis. You would use it everywhere in research and in a corporation.
  • Nature of Data: the nature of optimizable data is a data set of at least two points.
  • Motive: the motive behind optimization is to achieve the best result possible given certain conditions.

Content Analysis Method

  • Description: content analysis is a method of qualitative analysis that quantifies textual data to track themes across a document. It’s most common in academic fields and in social sciences, where written content is the subject of inquiry.
  • Importance: High. In a corporate setting, content analysis as such is less common. If anything Nïave Bayes (a technique we’ll look at below) is the closest corporations come to text. However, it is of the utmost importance for researchers. If you’re a researcher, check out this article on content analysis .
  • Nature of Data: data useful for content analysis is textual data.
  • Motive: the motive behind content analysis is to understand themes expressed in a large text

Narrative Analysis Method

  • Description: narrative analysis is a method of qualitative analysis that quantifies stories to trace themes in them. It’s differs from content analysis because it focuses on stories rather than research documents, and the techniques used are slightly different from those in content analysis (very nuances and outside the scope of this article).
  • Importance: Low. Unless you are highly specialized in working with stories, narrative analysis rare.
  • Nature of Data: the nature of the data useful for the narrative analysis method is narrative text.
  • Motive: the motive for narrative analysis is to uncover hidden patterns in narrative text.

Discourse Analysis Method

  • Description: the discourse analysis method falls under qualitative analysis and uses thematic coding to trace patterns in real-life discourse. That said, real-life discourse is oral, so it must first be transcribed into text.
  • Importance: Low. Unless you are focused on understand real-world idea sharing in a research setting, this kind of analysis is less common than the others on this list.
  • Nature of Data: the nature of data useful in discourse analysis is first audio files, then transcriptions of those audio files.
  • Motive: the motive behind discourse analysis is to trace patterns of real-world discussions. (As a spooky sidenote, have you ever felt like your phone microphone was listening to you and making reading suggestions? If it was, the method was discourse analysis.)

Framework Analysis Method

  • Description: the framework analysis method falls under qualitative analysis and uses similar thematic coding techniques to content analysis. However, where content analysis aims to discover themes, framework analysis starts with a framework and only considers elements that fall in its purview.
  • Importance: Low. As with the other textual analysis methods, framework analysis is less common in corporate settings. Even in the world of research, only some use it. Strangely, it’s very common for legislative and political research.
  • Nature of Data: the nature of data useful for framework analysis is textual.
  • Motive: the motive behind framework analysis is to understand what themes and parts of a text match your search criteria.

Grounded Theory Method

  • Description: the grounded theory method falls under qualitative analysis and uses thematic coding to build theories around those themes.
  • Importance: Low. Like other qualitative analysis techniques, grounded theory is less common in the corporate world. Even among researchers, you would be hard pressed to find many using it. Though powerful, it’s simply too rare to spend time learning.
  • Nature of Data: the nature of data useful in the grounded theory method is textual.
  • Motive: the motive of grounded theory method is to establish a series of theories based on themes uncovered from a text.

Clustering Technique: K-Means

  • Description: k-means is a clustering technique in which data points are grouped in clusters that have the closest means. Though not considered AI or ML, it inherently requires the use of supervised learning to reevaluate clusters as data points are added. Clustering techniques can be used in diagnostic, descriptive, & prescriptive data analyses.
  • Importance: Very important. If you only take 3 things from this article, k-means clustering should be part of it. It is useful in any situation where n observations have multiple characteristics and we want to put them in groups.
  • Nature of Data: the nature of data is at least one characteristic per observation, but the more the merrier.
  • Motive: the motive for clustering techniques such as k-means is to group observations together and either understand or react to them.

Regression Technique

  • Description: simple and multivariable regressions use either one independent variable or combination of multiple independent variables to calculate a correlation to a single dependent variable using constants. Regressions are almost synonymous with correlation today.
  • Importance: Very high. Along with clustering, if you only take 3 things from this article, regression techniques should be part of it. They’re everywhere in corporate and research fields alike.
  • Nature of Data: the nature of data used is regressions is data sets with “n” number of observations and as many variables as are reasonable. It’s important, however, to distinguish between time series data and regression data. You cannot use regressions or time series data without accounting for time. The easier way is to use techniques under the forecasting method.
  • Motive: The motive behind regression techniques is to understand correlations between independent variable(s) and a dependent one.

Nïave Bayes Technique

  • Description: Nïave Bayes is a classification technique that uses simple probability to classify items based previous classifications. In plain English, the formula would be “the chance that thing with trait x belongs to class c depends on (=) the overall chance of trait x belonging to class c, multiplied by the overall chance of class c, divided by the overall chance of getting trait x.” As a formula, it’s P(c|x) = P(x|c) * P(c) / P(x).
  • Importance: High. Nïave Bayes is a very common, simplistic classification techniques because it’s effective with large data sets and it can be applied to any instant in which there is a class. Google, for example, might use it to group webpages into groups for certain search engine queries.
  • Nature of Data: the nature of data for Nïave Bayes is at least one class and at least two traits in a data set.
  • Motive: the motive behind Nïave Bayes is to classify observations based on previous data. It’s thus considered part of predictive analysis.

Cohorts Technique

  • Description: cohorts technique is a type of clustering method used in behavioral sciences to separate users by common traits. As with clustering, it can be done intuitively or mathematically, the latter of which would simply be k-means.
  • Importance: Very high. With regard to resembles k-means, the cohort technique is more of a high-level counterpart. In fact, most people are familiar with it as a part of Google Analytics. It’s most common in marketing departments in corporations, rather than in research.
  • Nature of Data: the nature of cohort data is data sets in which users are the observation and other fields are used as defining traits for each cohort.
  • Motive: the motive for cohort analysis techniques is to group similar users and analyze how you retain them and how the churn.

Factor Technique

  • Description: the factor analysis technique is a way of grouping many traits into a single factor to expedite analysis. For example, factors can be used as traits for Nïave Bayes classifications instead of more general fields.
  • Importance: High. While not commonly employed in corporations, factor analysis is hugely valuable. Good data analysts use it to simplify their projects and communicate them more clearly.
  • Nature of Data: the nature of data useful in factor analysis techniques is data sets with a large number of fields on its observations.
  • Motive: the motive for using factor analysis techniques is to reduce the number of fields in order to more quickly analyze and communicate findings.

Linear Discriminants Technique

  • Description: linear discriminant analysis techniques are similar to regressions in that they use one or more independent variable to determine a dependent variable; however, the linear discriminant technique falls under a classifier method since it uses traits as independent variables and class as a dependent variable. In this way, it becomes a classifying method AND a predictive method.
  • Importance: High. Though the analyst world speaks of and uses linear discriminants less commonly, it’s a highly valuable technique to keep in mind as you progress in data analysis.
  • Nature of Data: the nature of data useful for the linear discriminant technique is data sets with many fields.
  • Motive: the motive for using linear discriminants is to classify observations that would be otherwise too complex for simple techniques like Nïave Bayes.

Exponential Smoothing Technique

  • Description: exponential smoothing is a technique falling under the forecasting method that uses a smoothing factor on prior data in order to predict future values. It can be linear or adjusted for seasonality. The basic principle behind exponential smoothing is to use a percent weight (value between 0 and 1 called alpha) on more recent values in a series and a smaller percent weight on less recent values. The formula is f(x) = current period value * alpha + previous period value * 1-alpha.
  • Importance: High. Most analysts still use the moving average technique (covered next) for forecasting, though it is less efficient than exponential moving, because it’s easy to understand. However, good analysts will have exponential smoothing techniques in their pocket to increase the value of their forecasts.
  • Nature of Data: the nature of data useful for exponential smoothing is time series data . Time series data has time as part of its fields .
  • Motive: the motive for exponential smoothing is to forecast future values with a smoothing variable.

Moving Average Technique

  • Description: the moving average technique falls under the forecasting method and uses an average of recent values to predict future ones. For example, to predict rainfall in April, you would take the average of rainfall from January to March. It’s simple, yet highly effective.
  • Importance: Very high. While I’m personally not a huge fan of moving averages due to their simplistic nature and lack of consideration for seasonality, they’re the most common forecasting technique and therefore very important.
  • Nature of Data: the nature of data useful for moving averages is time series data .
  • Motive: the motive for moving averages is to predict future values is a simple, easy-to-communicate way.

Neural Networks Technique

  • Description: neural networks are a highly complex artificial intelligence technique that replicate a human’s neural analysis through a series of hyper-rapid computations and comparisons that evolve in real time. This technique is so complex that an analyst must use computer programs to perform it.
  • Importance: Medium. While the potential for neural networks is theoretically unlimited, it’s still little understood and therefore uncommon. You do not need to know it by any means in order to be a data analyst.
  • Nature of Data: the nature of data useful for neural networks is data sets of astronomical size, meaning with 100s of 1000s of fields and the same number of row at a minimum .
  • Motive: the motive for neural networks is to understand wildly complex phenomenon and data to thereafter act on it.

Decision Tree Technique

  • Description: the decision tree technique uses artificial intelligence algorithms to rapidly calculate possible decision pathways and their outcomes on a real-time basis. It’s so complex that computer programs are needed to perform it.
  • Importance: Medium. As with neural networks, decision trees with AI are too little understood and are therefore uncommon in corporate and research settings alike.
  • Nature of Data: the nature of data useful for the decision tree technique is hierarchical data sets that show multiple optional fields for each preceding field.
  • Motive: the motive for decision tree techniques is to compute the optimal choices to make in order to achieve a desired result.

Evolutionary Programming Technique

  • Description: the evolutionary programming technique uses a series of neural networks, sees how well each one fits a desired outcome, and selects only the best to test and retest. It’s called evolutionary because is resembles the process of natural selection by weeding out weaker options.
  • Importance: Medium. As with the other AI techniques, evolutionary programming just isn’t well-understood enough to be usable in many cases. It’s complexity also makes it hard to explain in corporate settings and difficult to defend in research settings.
  • Nature of Data: the nature of data in evolutionary programming is data sets of neural networks, or data sets of data sets.
  • Motive: the motive for using evolutionary programming is similar to decision trees: understanding the best possible option from complex data.
  • Video example :

Fuzzy Logic Technique

  • Description: fuzzy logic is a type of computing based on “approximate truths” rather than simple truths such as “true” and “false.” It is essentially two tiers of classification. For example, to say whether “Apples are good,” you need to first classify that “Good is x, y, z.” Only then can you say apples are good. Another way to see it helping a computer see truth like humans do: “definitely true, probably true, maybe true, probably false, definitely false.”
  • Importance: Medium. Like the other AI techniques, fuzzy logic is uncommon in both research and corporate settings, which means it’s less important in today’s world.
  • Nature of Data: the nature of fuzzy logic data is huge data tables that include other huge data tables with a hierarchy including multiple subfields for each preceding field.
  • Motive: the motive of fuzzy logic to replicate human truth valuations in a computer is to model human decisions based on past data. The obvious possible application is marketing.

Text Analysis Technique

  • Description: text analysis techniques fall under the qualitative data analysis type and use text to extract insights.
  • Importance: Medium. Text analysis techniques, like all the qualitative analysis type, are most valuable for researchers.
  • Nature of Data: the nature of data useful in text analysis is words.
  • Motive: the motive for text analysis is to trace themes in a text across sets of very long documents, such as books.

Coding Technique

  • Description: the coding technique is used in textual analysis to turn ideas into uniform phrases and analyze the number of times and the ways in which those ideas appear. For this reason, some consider it a quantitative technique as well. You can learn more about coding and the other qualitative techniques here .
  • Importance: Very high. If you’re a researcher working in social sciences, coding is THE analysis techniques, and for good reason. It’s a great way to add rigor to analysis. That said, it’s less common in corporate settings.
  • Nature of Data: the nature of data useful for coding is long text documents.
  • Motive: the motive for coding is to make tracing ideas on paper more than an exercise of the mind by quantifying it and understanding is through descriptive methods.

Idea Pattern Technique

  • Description: the idea pattern analysis technique fits into coding as the second step of the process. Once themes and ideas are coded, simple descriptive analysis tests may be run. Some people even cluster the ideas!
  • Importance: Very high. If you’re a researcher, idea pattern analysis is as important as the coding itself.
  • Nature of Data: the nature of data useful for idea pattern analysis is already coded themes.
  • Motive: the motive for the idea pattern technique is to trace ideas in otherwise unmanageably-large documents.

Word Frequency Technique

  • Description: word frequency is a qualitative technique that stands in opposition to coding and uses an inductive approach to locate specific words in a document in order to understand its relevance. Word frequency is essentially the descriptive analysis of qualitative data because it uses stats like mean, median, and mode to gather insights.
  • Importance: High. As with the other qualitative approaches, word frequency is very important in social science research, but less so in corporate settings.
  • Nature of Data: the nature of data useful for word frequency is long, informative documents.
  • Motive: the motive for word frequency is to locate target words to determine the relevance of a document in question.

Types of data analysis in research

Types of data analysis in research methodology include every item discussed in this article. As a list, they are:

  • Quantitative
  • Qualitative
  • Mathematical
  • Machine Learning and AI
  • Descriptive
  • Prescriptive
  • Classification
  • Forecasting
  • Optimization
  • Grounded theory
  • Artificial Neural Networks
  • Decision Trees
  • Evolutionary Programming
  • Fuzzy Logic
  • Text analysis
  • Idea Pattern Analysis
  • Word Frequency Analysis
  • Nïave Bayes
  • Exponential smoothing
  • Moving average
  • Linear discriminant

Types of data analysis in qualitative research

As a list, the types of data analysis in qualitative research are the following methods:

Types of data analysis in quantitative research

As a list, the types of data analysis in quantitative research are:

Data analysis methods

As a list, data analysis methods are:

  • Content (qualitative)
  • Narrative (qualitative)
  • Discourse (qualitative)
  • Framework (qualitative)
  • Grounded theory (qualitative)

Quantitative data analysis methods

As a list, quantitative data analysis methods are:

Tabular View of Data Analysis Types, Methods, and Techniques

About the author.

Noah is the founder & Editor-in-Chief at AnalystAnswers. He is a transatlantic professional and entrepreneur with 5+ years of corporate finance and data analytics experience, as well as 3+ years in consumer financial products and business software. He started AnalystAnswers to provide aspiring professionals with accessible explanations of otherwise dense finance and data concepts. Noah believes everyone can benefit from an analytical mindset in growing digital world. When he's not busy at work, Noah likes to explore new European cities, exercise, and spend time with friends and family.

File available immediately.

analytical research techniques

Notice: JavaScript is required for this content.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Korean J Anesthesiol
  • v.71(2); 2018 Apr

Introduction to systematic review and meta-analysis

1 Department of Anesthesiology and Pain Medicine, Inje University Seoul Paik Hospital, Seoul, Korea

2 Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine, Seoul, Korea

Systematic reviews and meta-analyses present results by combining and analyzing data from different studies conducted on similar research topics. In recent years, systematic reviews and meta-analyses have been actively performed in various fields including anesthesiology. These research methods are powerful tools that can overcome the difficulties in performing large-scale randomized controlled trials. However, the inclusion of studies with any biases or improperly assessed quality of evidence in systematic reviews and meta-analyses could yield misleading results. Therefore, various guidelines have been suggested for conducting systematic reviews and meta-analyses to help standardize them and improve their quality. Nonetheless, accepting the conclusions of many studies without understanding the meta-analysis can be dangerous. Therefore, this article provides an easy introduction to clinicians on performing and understanding meta-analyses.

Introduction

A systematic review collects all possible studies related to a given topic and design, and reviews and analyzes their results [ 1 ]. During the systematic review process, the quality of studies is evaluated, and a statistical meta-analysis of the study results is conducted on the basis of their quality. A meta-analysis is a valid, objective, and scientific method of analyzing and combining different results. Usually, in order to obtain more reliable results, a meta-analysis is mainly conducted on randomized controlled trials (RCTs), which have a high level of evidence [ 2 ] ( Fig. 1 ). Since 1999, various papers have presented guidelines for reporting meta-analyses of RCTs. Following the Quality of Reporting of Meta-analyses (QUORUM) statement [ 3 ], and the appearance of registers such as Cochrane Library’s Methodology Register, a large number of systematic literature reviews have been registered. In 2009, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [ 4 ] was published, and it greatly helped standardize and improve the quality of systematic reviews and meta-analyses [ 5 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f1.jpg

Levels of evidence.

In anesthesiology, the importance of systematic reviews and meta-analyses has been highlighted, and they provide diagnostic and therapeutic value to various areas, including not only perioperative management but also intensive care and outpatient anesthesia [6–13]. Systematic reviews and meta-analyses include various topics, such as comparing various treatments of postoperative nausea and vomiting [ 14 , 15 ], comparing general anesthesia and regional anesthesia [ 16 – 18 ], comparing airway maintenance devices [ 8 , 19 ], comparing various methods of postoperative pain control (e.g., patient-controlled analgesia pumps, nerve block, or analgesics) [ 20 – 23 ], comparing the precision of various monitoring instruments [ 7 ], and meta-analysis of dose-response in various drugs [ 12 ].

Thus, literature reviews and meta-analyses are being conducted in diverse medical fields, and the aim of highlighting their importance is to help better extract accurate, good quality data from the flood of data being produced. However, a lack of understanding about systematic reviews and meta-analyses can lead to incorrect outcomes being derived from the review and analysis processes. If readers indiscriminately accept the results of the many meta-analyses that are published, incorrect data may be obtained. Therefore, in this review, we aim to describe the contents and methods used in systematic reviews and meta-analyses in a way that is easy to understand for future authors and readers of systematic review and meta-analysis.

Study Planning

It is easy to confuse systematic reviews and meta-analyses. A systematic review is an objective, reproducible method to find answers to a certain research question, by collecting all available studies related to that question and reviewing and analyzing their results. A meta-analysis differs from a systematic review in that it uses statistical methods on estimates from two or more different studies to form a pooled estimate [ 1 ]. Following a systematic review, if it is not possible to form a pooled estimate, it can be published as is without progressing to a meta-analysis; however, if it is possible to form a pooled estimate from the extracted data, a meta-analysis can be attempted. Systematic reviews and meta-analyses usually proceed according to the flowchart presented in Fig. 2 . We explain each of the stages below.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f2.jpg

Flowchart illustrating a systematic review.

Formulating research questions

A systematic review attempts to gather all available empirical research by using clearly defined, systematic methods to obtain answers to a specific question. A meta-analysis is the statistical process of analyzing and combining results from several similar studies. Here, the definition of the word “similar” is not made clear, but when selecting a topic for the meta-analysis, it is essential to ensure that the different studies present data that can be combined. If the studies contain data on the same topic that can be combined, a meta-analysis can even be performed using data from only two studies. However, study selection via a systematic review is a precondition for performing a meta-analysis, and it is important to clearly define the Population, Intervention, Comparison, Outcomes (PICO) parameters that are central to evidence-based research. In addition, selection of the research topic is based on logical evidence, and it is important to select a topic that is familiar to readers without clearly confirmed the evidence [ 24 ].

Protocols and registration

In systematic reviews, prior registration of a detailed research plan is very important. In order to make the research process transparent, primary/secondary outcomes and methods are set in advance, and in the event of changes to the method, other researchers and readers are informed when, how, and why. Many studies are registered with an organization like PROSPERO ( http://www.crd.york.ac.uk/PROSPERO/ ), and the registration number is recorded when reporting the study, in order to share the protocol at the time of planning.

Defining inclusion and exclusion criteria

Information is included on the study design, patient characteristics, publication status (published or unpublished), language used, and research period. If there is a discrepancy between the number of patients included in the study and the number of patients included in the analysis, this needs to be clearly explained while describing the patient characteristics, to avoid confusing the reader.

Literature search and study selection

In order to secure proper basis for evidence-based research, it is essential to perform a broad search that includes as many studies as possible that meet the inclusion and exclusion criteria. Typically, the three bibliographic databases Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) are used. In domestic studies, the Korean databases KoreaMed, KMBASE, and RISS4U may be included. Effort is required to identify not only published studies but also abstracts, ongoing studies, and studies awaiting publication. Among the studies retrieved in the search, the researchers remove duplicate studies, select studies that meet the inclusion/exclusion criteria based on the abstracts, and then make the final selection of studies based on their full text. In order to maintain transparency and objectivity throughout this process, study selection is conducted independently by at least two investigators. When there is a inconsistency in opinions, intervention is required via debate or by a third reviewer. The methods for this process also need to be planned in advance. It is essential to ensure the reproducibility of the literature selection process [ 25 ].

Quality of evidence

However, well planned the systematic review or meta-analysis is, if the quality of evidence in the studies is low, the quality of the meta-analysis decreases and incorrect results can be obtained [ 26 ]. Even when using randomized studies with a high quality of evidence, evaluating the quality of evidence precisely helps determine the strength of recommendations in the meta-analysis. One method of evaluating the quality of evidence in non-randomized studies is the Newcastle-Ottawa Scale, provided by the Ottawa Hospital Research Institute 1) . However, we are mostly focusing on meta-analyses that use randomized studies.

If the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) system ( http://www.gradeworkinggroup.org/ ) is used, the quality of evidence is evaluated on the basis of the study limitations, inaccuracies, incompleteness of outcome data, indirectness of evidence, and risk of publication bias, and this is used to determine the strength of recommendations [ 27 ]. As shown in Table 1 , the study limitations are evaluated using the “risk of bias” method proposed by Cochrane 2) . This method classifies bias in randomized studies as “low,” “high,” or “unclear” on the basis of the presence or absence of six processes (random sequence generation, allocation concealment, blinding participants or investigators, incomplete outcome data, selective reporting, and other biases) [ 28 ].

The Cochrane Collaboration’s Tool for Assessing the Risk of Bias [ 28 ]

Data extraction

Two different investigators extract data based on the objectives and form of the study; thereafter, the extracted data are reviewed. Since the size and format of each variable are different, the size and format of the outcomes are also different, and slight changes may be required when combining the data [ 29 ]. If there are differences in the size and format of the outcome variables that cause difficulties combining the data, such as the use of different evaluation instruments or different evaluation timepoints, the analysis may be limited to a systematic review. The investigators resolve differences of opinion by debate, and if they fail to reach a consensus, a third-reviewer is consulted.

Data Analysis

The aim of a meta-analysis is to derive a conclusion with increased power and accuracy than what could not be able to achieve in individual studies. Therefore, before analysis, it is crucial to evaluate the direction of effect, size of effect, homogeneity of effects among studies, and strength of evidence [ 30 ]. Thereafter, the data are reviewed qualitatively and quantitatively. If it is determined that the different research outcomes cannot be combined, all the results and characteristics of the individual studies are displayed in a table or in a descriptive form; this is referred to as a qualitative review. A meta-analysis is a quantitative review, in which the clinical effectiveness is evaluated by calculating the weighted pooled estimate for the interventions in at least two separate studies.

The pooled estimate is the outcome of the meta-analysis, and is typically explained using a forest plot ( Figs. 3 and ​ and4). 4 ). The black squares in the forest plot are the odds ratios (ORs) and 95% confidence intervals in each study. The area of the squares represents the weight reflected in the meta-analysis. The black diamond represents the OR and 95% confidence interval calculated across all the included studies. The bold vertical line represents a lack of therapeutic effect (OR = 1); if the confidence interval includes OR = 1, it means no significant difference was found between the treatment and control groups.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f3.jpg

Forest plot analyzed by two different models using the same data. (A) Fixed-effect model. (B) Random-effect model. The figure depicts individual trials as filled squares with the relative sample size and the solid line as the 95% confidence interval of the difference. The diamond shape indicates the pooled estimate and uncertainty for the combined effect. The vertical line indicates the treatment group shows no effect (OR = 1). Moreover, if the confidence interval includes 1, then the result shows no evidence of difference between the treatment and control groups.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f4.jpg

Forest plot representing homogeneous data.

Dichotomous variables and continuous variables

In data analysis, outcome variables can be considered broadly in terms of dichotomous variables and continuous variables. When combining data from continuous variables, the mean difference (MD) and standardized mean difference (SMD) are used ( Table 2 ).

Summary of Meta-analysis Methods Available in RevMan [ 28 ]

The MD is the absolute difference in mean values between the groups, and the SMD is the mean difference between groups divided by the standard deviation. When results are presented in the same units, the MD can be used, but when results are presented in different units, the SMD should be used. When the MD is used, the combined units must be shown. A value of “0” for the MD or SMD indicates that the effects of the new treatment method and the existing treatment method are the same. A value lower than “0” means the new treatment method is less effective than the existing method, and a value greater than “0” means the new treatment is more effective than the existing method.

When combining data for dichotomous variables, the OR, risk ratio (RR), or risk difference (RD) can be used. The RR and RD can be used for RCTs, quasi-experimental studies, or cohort studies, and the OR can be used for other case-control studies or cross-sectional studies. However, because the OR is difficult to interpret, using the RR and RD, if possible, is recommended. If the outcome variable is a dichotomous variable, it can be presented as the number needed to treat (NNT), which is the minimum number of patients who need to be treated in the intervention group, compared to the control group, for a given event to occur in at least one patient. Based on Table 3 , in an RCT, if x is the probability of the event occurring in the control group and y is the probability of the event occurring in the intervention group, then x = c/(c + d), y = a/(a + b), and the absolute risk reduction (ARR) = x − y. NNT can be obtained as the reciprocal, 1/ARR.

Calculation of the Number Needed to Treat in the Dichotomous table

Fixed-effect models and random-effect models

In order to analyze effect size, two types of models can be used: a fixed-effect model or a random-effect model. A fixed-effect model assumes that the effect of treatment is the same, and that variation between results in different studies is due to random error. Thus, a fixed-effect model can be used when the studies are considered to have the same design and methodology, or when the variability in results within a study is small, and the variance is thought to be due to random error. Three common methods are used for weighted estimation in a fixed-effect model: 1) inverse variance-weighted estimation 3) , 2) Mantel-Haenszel estimation 4) , and 3) Peto estimation 5) .

A random-effect model assumes heterogeneity between the studies being combined, and these models are used when the studies are assumed different, even if a heterogeneity test does not show a significant result. Unlike a fixed-effect model, a random-effect model assumes that the size of the effect of treatment differs among studies. Thus, differences in variation among studies are thought to be due to not only random error but also between-study variability in results. Therefore, weight does not decrease greatly for studies with a small number of patients. Among methods for weighted estimation in a random-effect model, the DerSimonian and Laird method 6) is mostly used for dichotomous variables, as the simplest method, while inverse variance-weighted estimation is used for continuous variables, as with fixed-effect models. These four methods are all used in Review Manager software (The Cochrane Collaboration, UK), and are described in a study by Deeks et al. [ 31 ] ( Table 2 ). However, when the number of studies included in the analysis is less than 10, the Hartung-Knapp-Sidik-Jonkman method 7) can better reduce the risk of type 1 error than does the DerSimonian and Laird method [ 32 ].

Fig. 3 shows the results of analyzing outcome data using a fixed-effect model (A) and a random-effect model (B). As shown in Fig. 3 , while the results from large studies are weighted more heavily in the fixed-effect model, studies are given relatively similar weights irrespective of study size in the random-effect model. Although identical data were being analyzed, as shown in Fig. 3 , the significant result in the fixed-effect model was no longer significant in the random-effect model. One representative example of the small study effect in a random-effect model is the meta-analysis by Li et al. [ 33 ]. In a large-scale study, intravenous injection of magnesium was unrelated to acute myocardial infarction, but in the random-effect model, which included numerous small studies, the small study effect resulted in an association being found between intravenous injection of magnesium and myocardial infarction. This small study effect can be controlled for by using a sensitivity analysis, which is performed to examine the contribution of each of the included studies to the final meta-analysis result. In particular, when heterogeneity is suspected in the study methods or results, by changing certain data or analytical methods, this method makes it possible to verify whether the changes affect the robustness of the results, and to examine the causes of such effects [ 34 ].

Heterogeneity

Homogeneity test is a method whether the degree of heterogeneity is greater than would be expected to occur naturally when the effect size calculated from several studies is higher than the sampling error. This makes it possible to test whether the effect size calculated from several studies is the same. Three types of homogeneity tests can be used: 1) forest plot, 2) Cochrane’s Q test (chi-squared), and 3) Higgins I 2 statistics. In the forest plot, as shown in Fig. 4 , greater overlap between the confidence intervals indicates greater homogeneity. For the Q statistic, when the P value of the chi-squared test, calculated from the forest plot in Fig. 4 , is less than 0.1, it is considered to show statistical heterogeneity and a random-effect can be used. Finally, I 2 can be used [ 35 ].

I 2 , calculated as shown above, returns a value between 0 and 100%. A value less than 25% is considered to show strong homogeneity, a value of 50% is average, and a value greater than 75% indicates strong heterogeneity.

Even when the data cannot be shown to be homogeneous, a fixed-effect model can be used, ignoring the heterogeneity, and all the study results can be presented individually, without combining them. However, in many cases, a random-effect model is applied, as described above, and a subgroup analysis or meta-regression analysis is performed to explain the heterogeneity. In a subgroup analysis, the data are divided into subgroups that are expected to be homogeneous, and these subgroups are analyzed. This needs to be planned in the predetermined protocol before starting the meta-analysis. A meta-regression analysis is similar to a normal regression analysis, except that the heterogeneity between studies is modeled. This process involves performing a regression analysis of the pooled estimate for covariance at the study level, and so it is usually not considered when the number of studies is less than 10. Here, univariate and multivariate regression analyses can both be considered.

Publication bias

Publication bias is the most common type of reporting bias in meta-analyses. This refers to the distortion of meta-analysis outcomes due to the higher likelihood of publication of statistically significant studies rather than non-significant studies. In order to test the presence or absence of publication bias, first, a funnel plot can be used ( Fig. 5 ). Studies are plotted on a scatter plot with effect size on the x-axis and precision or total sample size on the y-axis. If the points form an upside-down funnel shape, with a broad base that narrows towards the top of the plot, this indicates the absence of a publication bias ( Fig. 5A ) [ 29 , 36 ]. On the other hand, if the plot shows an asymmetric shape, with no points on one side of the graph, then publication bias can be suspected ( Fig. 5B ). Second, to test publication bias statistically, Begg and Mazumdar’s rank correlation test 8) [ 37 ] or Egger’s test 9) [ 29 ] can be used. If publication bias is detected, the trim-and-fill method 10) can be used to correct the bias [ 38 ]. Fig. 6 displays results that show publication bias in Egger’s test, which has then been corrected using the trim-and-fill method using Comprehensive Meta-Analysis software (Biostat, USA).

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f5.jpg

Funnel plot showing the effect size on the x-axis and sample size on the y-axis as a scatter plot. (A) Funnel plot without publication bias. The individual plots are broader at the bottom and narrower at the top. (B) Funnel plot with publication bias. The individual plots are located asymmetrically.

An external file that holds a picture, illustration, etc.
Object name is kjae-2018-71-2-103f6.jpg

Funnel plot adjusted using the trim-and-fill method. White circles: comparisons included. Black circles: inputted comparisons using the trim-and-fill method. White diamond: pooled observed log risk ratio. Black diamond: pooled inputted log risk ratio.

Result Presentation

When reporting the results of a systematic review or meta-analysis, the analytical content and methods should be described in detail. First, a flowchart is displayed with the literature search and selection process according to the inclusion/exclusion criteria. Second, a table is shown with the characteristics of the included studies. A table should also be included with information related to the quality of evidence, such as GRADE ( Table 4 ). Third, the results of data analysis are shown in a forest plot and funnel plot. Fourth, if the results use dichotomous data, the NNT values can be reported, as described above.

The GRADE Evidence Quality for Each Outcome

N: number of studies, ROB: risk of bias, PON: postoperative nausea, POV: postoperative vomiting, PONV: postoperative nausea and vomiting, CI: confidence interval, RR: risk ratio, AR: absolute risk.

When Review Manager software (The Cochrane Collaboration, UK) is used for the analysis, two types of P values are given. The first is the P value from the z-test, which tests the null hypothesis that the intervention has no effect. The second P value is from the chi-squared test, which tests the null hypothesis for a lack of heterogeneity. The statistical result for the intervention effect, which is generally considered the most important result in meta-analyses, is the z-test P value.

A common mistake when reporting results is, given a z-test P value greater than 0.05, to say there was “no statistical significance” or “no difference.” When evaluating statistical significance in a meta-analysis, a P value lower than 0.05 can be explained as “a significant difference in the effects of the two treatment methods.” However, the P value may appear non-significant whether or not there is a difference between the two treatment methods. In such a situation, it is better to announce “there was no strong evidence for an effect,” and to present the P value and confidence intervals. Another common mistake is to think that a smaller P value is indicative of a more significant effect. In meta-analyses of large-scale studies, the P value is more greatly affected by the number of studies and patients included, rather than by the significance of the results; therefore, care should be taken when interpreting the results of a meta-analysis.

When performing a systematic literature review or meta-analysis, if the quality of studies is not properly evaluated or if proper methodology is not strictly applied, the results can be biased and the outcomes can be incorrect. However, when systematic reviews and meta-analyses are properly implemented, they can yield powerful results that could usually only be achieved using large-scale RCTs, which are difficult to perform in individual studies. As our understanding of evidence-based medicine increases and its importance is better appreciated, the number of systematic reviews and meta-analyses will keep increasing. However, indiscriminate acceptance of the results of all these meta-analyses can be dangerous, and hence, we recommend that their results be received critically on the basis of a more accurate understanding.

1) http://www.ohri.ca .

2) http://methods.cochrane.org/bias/assessing-risk-bias-included-studies .

3) The inverse variance-weighted estimation method is useful if the number of studies is small with large sample sizes.

4) The Mantel-Haenszel estimation method is useful if the number of studies is large with small sample sizes.

5) The Peto estimation method is useful if the event rate is low or one of the two groups shows zero incidence.

6) The most popular and simplest statistical method used in Review Manager and Comprehensive Meta-analysis software.

7) Alternative random-effect model meta-analysis that has more adequate error rates than does the common DerSimonian and Laird method, especially when the number of studies is small. However, even with the Hartung-Knapp-Sidik-Jonkman method, when there are less than five studies with very unequal sizes, extra caution is needed.

8) The Begg and Mazumdar rank correlation test uses the correlation between the ranks of effect sizes and the ranks of their variances [ 37 ].

9) The degree of funnel plot asymmetry as measured by the intercept from the regression of standard normal deviates against precision [ 29 ].

10) If there are more small studies on one side, we expect the suppression of studies on the other side. Trimming yields the adjusted effect size and reduces the variance of the effects by adding the original studies back into the analysis as a mirror image of each study.

Grad Coach

Qualitative Data Analysis Methods 101:

The “big 6” methods + examples.

By: Kerryn Warren (PhD) | Reviewed By: Eunice Rautenbach (D.Tech) | May 2020 (Updated April 2023)

Qualitative data analysis methods. Wow, that’s a mouthful. 

If you’re new to the world of research, qualitative data analysis can look rather intimidating. So much bulky terminology and so many abstract, fluffy concepts. It certainly can be a minefield!

Don’t worry – in this post, we’ll unpack the most popular analysis methods , one at a time, so that you can approach your analysis with confidence and competence – whether that’s for a dissertation, thesis or really any kind of research project.

Qualitative data analysis methods

What (exactly) is qualitative data analysis?

To understand qualitative data analysis, we need to first understand qualitative data – so let’s step back and ask the question, “what exactly is qualitative data?”.

Qualitative data refers to pretty much any data that’s “not numbers” . In other words, it’s not the stuff you measure using a fixed scale or complex equipment, nor do you analyse it using complex statistics or mathematics.

So, if it’s not numbers, what is it?

Words, you guessed? Well… sometimes , yes. Qualitative data can, and often does, take the form of interview transcripts, documents and open-ended survey responses – but it can also involve the interpretation of images and videos. In other words, qualitative isn’t just limited to text-based data.

So, how’s that different from quantitative data, you ask?

Simply put, qualitative research focuses on words, descriptions, concepts or ideas – while quantitative research focuses on numbers and statistics . Qualitative research investigates the “softer side” of things to explore and describe , while quantitative research focuses on the “hard numbers”, to measure differences between variables and the relationships between them. If you’re keen to learn more about the differences between qual and quant, we’ve got a detailed post over here .

qualitative data analysis vs quantitative data analysis

So, qualitative analysis is easier than quantitative, right?

Not quite. In many ways, qualitative data can be challenging and time-consuming to analyse and interpret. At the end of your data collection phase (which itself takes a lot of time), you’ll likely have many pages of text-based data or hours upon hours of audio to work through. You might also have subtle nuances of interactions or discussions that have danced around in your mind, or that you scribbled down in messy field notes. All of this needs to work its way into your analysis.

Making sense of all of this is no small task and you shouldn’t underestimate it. Long story short – qualitative analysis can be a lot of work! Of course, quantitative analysis is no piece of cake either, but it’s important to recognise that qualitative analysis still requires a significant investment in terms of time and effort.

Need a helping hand?

analytical research techniques

In this post, we’ll explore qualitative data analysis by looking at some of the most common analysis methods we encounter. We’re not going to cover every possible qualitative method and we’re not going to go into heavy detail – we’re just going to give you the big picture. That said, we will of course includes links to loads of extra resources so that you can learn more about whichever analysis method interests you.

Without further delay, let’s get into it.

The “Big 6” Qualitative Analysis Methods 

There are many different types of qualitative data analysis, all of which serve different purposes and have unique strengths and weaknesses . We’ll start by outlining the analysis methods and then we’ll dive into the details for each.

The 6 most popular methods (or at least the ones we see at Grad Coach) are:

  • Content analysis
  • Narrative analysis
  • Discourse analysis
  • Thematic analysis
  • Grounded theory (GT)
  • Interpretive phenomenological analysis (IPA)

Let’s take a look at each of them…

QDA Method #1: Qualitative Content Analysis

Content analysis is possibly the most common and straightforward QDA method. At the simplest level, content analysis is used to evaluate patterns within a piece of content (for example, words, phrases or images) or across multiple pieces of content or sources of communication. For example, a collection of newspaper articles or political speeches.

With content analysis, you could, for instance, identify the frequency with which an idea is shared or spoken about – like the number of times a Kardashian is mentioned on Twitter. Or you could identify patterns of deeper underlying interpretations – for instance, by identifying phrases or words in tourist pamphlets that highlight India as an ancient country.

Because content analysis can be used in such a wide variety of ways, it’s important to go into your analysis with a very specific question and goal, or you’ll get lost in the fog. With content analysis, you’ll group large amounts of text into codes , summarise these into categories, and possibly even tabulate the data to calculate the frequency of certain concepts or variables. Because of this, content analysis provides a small splash of quantitative thinking within a qualitative method.

Naturally, while content analysis is widely useful, it’s not without its drawbacks . One of the main issues with content analysis is that it can be very time-consuming , as it requires lots of reading and re-reading of the texts. Also, because of its multidimensional focus on both qualitative and quantitative aspects, it is sometimes accused of losing important nuances in communication.

Content analysis also tends to concentrate on a very specific timeline and doesn’t take into account what happened before or after that timeline. This isn’t necessarily a bad thing though – just something to be aware of. So, keep these factors in mind if you’re considering content analysis. Every analysis method has its limitations , so don’t be put off by these – just be aware of them ! If you’re interested in learning more about content analysis, the video below provides a good starting point.

QDA Method #2: Narrative Analysis 

As the name suggests, narrative analysis is all about listening to people telling stories and analysing what that means . Since stories serve a functional purpose of helping us make sense of the world, we can gain insights into the ways that people deal with and make sense of reality by analysing their stories and the ways they’re told.

You could, for example, use narrative analysis to explore whether how something is being said is important. For instance, the narrative of a prisoner trying to justify their crime could provide insight into their view of the world and the justice system. Similarly, analysing the ways entrepreneurs talk about the struggles in their careers or cancer patients telling stories of hope could provide powerful insights into their mindsets and perspectives . Simply put, narrative analysis is about paying attention to the stories that people tell – and more importantly, the way they tell them.

Of course, the narrative approach has its weaknesses , too. Sample sizes are generally quite small due to the time-consuming process of capturing narratives. Because of this, along with the multitude of social and lifestyle factors which can influence a subject, narrative analysis can be quite difficult to reproduce in subsequent research. This means that it’s difficult to test the findings of some of this research.

Similarly, researcher bias can have a strong influence on the results here, so you need to be particularly careful about the potential biases you can bring into your analysis when using this method. Nevertheless, narrative analysis is still a very useful qualitative analysis method – just keep these limitations in mind and be careful not to draw broad conclusions . If you’re keen to learn more about narrative analysis, the video below provides a great introduction to this qualitative analysis method.

QDA Method #3: Discourse Analysis 

Discourse is simply a fancy word for written or spoken language or debate . So, discourse analysis is all about analysing language within its social context. In other words, analysing language – such as a conversation, a speech, etc – within the culture and society it takes place. For example, you could analyse how a janitor speaks to a CEO, or how politicians speak about terrorism.

To truly understand these conversations or speeches, the culture and history of those involved in the communication are important factors to consider. For example, a janitor might speak more casually with a CEO in a company that emphasises equality among workers. Similarly, a politician might speak more about terrorism if there was a recent terrorist incident in the country.

So, as you can see, by using discourse analysis, you can identify how culture , history or power dynamics (to name a few) have an effect on the way concepts are spoken about. So, if your research aims and objectives involve understanding culture or power dynamics, discourse analysis can be a powerful method.

Because there are many social influences in terms of how we speak to each other, the potential use of discourse analysis is vast . Of course, this also means it’s important to have a very specific research question (or questions) in mind when analysing your data and looking for patterns and themes, or you might land up going down a winding rabbit hole.

Discourse analysis can also be very time-consuming  as you need to sample the data to the point of saturation – in other words, until no new information and insights emerge. But this is, of course, part of what makes discourse analysis such a powerful technique. So, keep these factors in mind when considering this QDA method. Again, if you’re keen to learn more, the video below presents a good starting point.

QDA Method #4: Thematic Analysis

Thematic analysis looks at patterns of meaning in a data set – for example, a set of interviews or focus group transcripts. But what exactly does that… mean? Well, a thematic analysis takes bodies of data (which are often quite large) and groups them according to similarities – in other words, themes . These themes help us make sense of the content and derive meaning from it.

Let’s take a look at an example.

With thematic analysis, you could analyse 100 online reviews of a popular sushi restaurant to find out what patrons think about the place. By reviewing the data, you would then identify the themes that crop up repeatedly within the data – for example, “fresh ingredients” or “friendly wait staff”.

So, as you can see, thematic analysis can be pretty useful for finding out about people’s experiences , views, and opinions . Therefore, if your research aims and objectives involve understanding people’s experience or view of something, thematic analysis can be a great choice.

Since thematic analysis is a bit of an exploratory process, it’s not unusual for your research questions to develop , or even change as you progress through the analysis. While this is somewhat natural in exploratory research, it can also be seen as a disadvantage as it means that data needs to be re-reviewed each time a research question is adjusted. In other words, thematic analysis can be quite time-consuming – but for a good reason. So, keep this in mind if you choose to use thematic analysis for your project and budget extra time for unexpected adjustments.

Thematic analysis takes bodies of data and groups them according to similarities (themes), which help us make sense of the content.

QDA Method #5: Grounded theory (GT) 

Grounded theory is a powerful qualitative analysis method where the intention is to create a new theory (or theories) using the data at hand, through a series of “ tests ” and “ revisions ”. Strictly speaking, GT is more a research design type than an analysis method, but we’ve included it here as it’s often referred to as a method.

What’s most important with grounded theory is that you go into the analysis with an open mind and let the data speak for itself – rather than dragging existing hypotheses or theories into your analysis. In other words, your analysis must develop from the ground up (hence the name). 

Let’s look at an example of GT in action.

Assume you’re interested in developing a theory about what factors influence students to watch a YouTube video about qualitative analysis. Using Grounded theory , you’d start with this general overarching question about the given population (i.e., graduate students). First, you’d approach a small sample – for example, five graduate students in a department at a university. Ideally, this sample would be reasonably representative of the broader population. You’d interview these students to identify what factors lead them to watch the video.

After analysing the interview data, a general pattern could emerge. For example, you might notice that graduate students are more likely to read a post about qualitative methods if they are just starting on their dissertation journey, or if they have an upcoming test about research methods.

From here, you’ll look for another small sample – for example, five more graduate students in a different department – and see whether this pattern holds true for them. If not, you’ll look for commonalities and adapt your theory accordingly. As this process continues, the theory would develop . As we mentioned earlier, what’s important with grounded theory is that the theory develops from the data – not from some preconceived idea.

So, what are the drawbacks of grounded theory? Well, some argue that there’s a tricky circularity to grounded theory. For it to work, in principle, you should know as little as possible regarding the research question and population, so that you reduce the bias in your interpretation. However, in many circumstances, it’s also thought to be unwise to approach a research question without knowledge of the current literature . In other words, it’s a bit of a “chicken or the egg” situation.

Regardless, grounded theory remains a popular (and powerful) option. Naturally, it’s a very useful method when you’re researching a topic that is completely new or has very little existing research about it, as it allows you to start from scratch and work your way from the ground up .

Grounded theory is used to create a new theory (or theories) by using the data at hand, as opposed to existing theories and frameworks.

QDA Method #6:   Interpretive Phenomenological Analysis (IPA)

Interpretive. Phenomenological. Analysis. IPA . Try saying that three times fast…

Let’s just stick with IPA, okay?

IPA is designed to help you understand the personal experiences of a subject (for example, a person or group of people) concerning a major life event, an experience or a situation . This event or experience is the “phenomenon” that makes up the “P” in IPA. Such phenomena may range from relatively common events – such as motherhood, or being involved in a car accident – to those which are extremely rare – for example, someone’s personal experience in a refugee camp. So, IPA is a great choice if your research involves analysing people’s personal experiences of something that happened to them.

It’s important to remember that IPA is subject – centred . In other words, it’s focused on the experiencer . This means that, while you’ll likely use a coding system to identify commonalities, it’s important not to lose the depth of experience or meaning by trying to reduce everything to codes. Also, keep in mind that since your sample size will generally be very small with IPA, you often won’t be able to draw broad conclusions about the generalisability of your findings. But that’s okay as long as it aligns with your research aims and objectives.

Another thing to be aware of with IPA is personal bias . While researcher bias can creep into all forms of research, self-awareness is critically important with IPA, as it can have a major impact on the results. For example, a researcher who was a victim of a crime himself could insert his own feelings of frustration and anger into the way he interprets the experience of someone who was kidnapped. So, if you’re going to undertake IPA, you need to be very self-aware or you could muddy the analysis.

IPA can help you understand the personal experiences of a person or group concerning a major life event, an experience or a situation.

How to choose the right analysis method

In light of all of the qualitative analysis methods we’ve covered so far, you’re probably asking yourself the question, “ How do I choose the right one? ”

Much like all the other methodological decisions you’ll need to make, selecting the right qualitative analysis method largely depends on your research aims, objectives and questions . In other words, the best tool for the job depends on what you’re trying to build. For example:

  • Perhaps your research aims to analyse the use of words and what they reveal about the intention of the storyteller and the cultural context of the time.
  • Perhaps your research aims to develop an understanding of the unique personal experiences of people that have experienced a certain event, or
  • Perhaps your research aims to develop insight regarding the influence of a certain culture on its members.

As you can probably see, each of these research aims are distinctly different , and therefore different analysis methods would be suitable for each one. For example, narrative analysis would likely be a good option for the first aim, while grounded theory wouldn’t be as relevant. 

It’s also important to remember that each method has its own set of strengths, weaknesses and general limitations. No single analysis method is perfect . So, depending on the nature of your research, it may make sense to adopt more than one method (this is called triangulation ). Keep in mind though that this will of course be quite time-consuming.

As we’ve seen, all of the qualitative analysis methods we’ve discussed make use of coding and theme-generating techniques, but the intent and approach of each analysis method differ quite substantially. So, it’s very important to come into your research with a clear intention before you decide which analysis method (or methods) to use.

Start by reviewing your research aims , objectives and research questions to assess what exactly you’re trying to find out – then select a qualitative analysis method that fits. Never pick a method just because you like it or have experience using it – your analysis method (or methods) must align with your broader research aims and objectives.

No single analysis method is perfect, so it can often make sense to adopt more than one  method (this is called triangulation).

Let’s recap on QDA methods…

In this post, we looked at six popular qualitative data analysis methods:

  • First, we looked at content analysis , a straightforward method that blends a little bit of quant into a primarily qualitative analysis.
  • Then we looked at narrative analysis , which is about analysing how stories are told.
  • Next up was discourse analysis – which is about analysing conversations and interactions.
  • Then we moved on to thematic analysis – which is about identifying themes and patterns.
  • From there, we went south with grounded theory – which is about starting from scratch with a specific question and using the data alone to build a theory in response to that question.
  • And finally, we looked at IPA – which is about understanding people’s unique experiences of a phenomenon.

Of course, these aren’t the only options when it comes to qualitative data analysis, but they’re a great starting point if you’re dipping your toes into qualitative research for the first time.

If you’re still feeling a bit confused, consider our private coaching service , where we hold your hand through the research process to help you develop your best work.

analytical research techniques

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Research design for qualitative and quantitative studies

84 Comments

Richard N

This has been very helpful. Thank you.

netaji

Thank you madam,

Mariam Jaiyeola

Thank you so much for this information

Nzube

I wonder it so clear for understand and good for me. can I ask additional query?

Lee

Very insightful and useful

Susan Nakaweesi

Good work done with clear explanations. Thank you.

Titilayo

Thanks so much for the write-up, it’s really good.

Hemantha Gunasekara

Thanks madam . It is very important .

Gumathandra

thank you very good

Pramod Bahulekar

This has been very well explained in simple language . It is useful even for a new researcher.

Derek Jansen

Great to hear that. Good luck with your qualitative data analysis, Pramod!

Adam Zahir

This is very useful information. And it was very a clear language structured presentation. Thanks a lot.

Golit,F.

Thank you so much.

Emmanuel

very informative sequential presentation

Shahzada

Precise explanation of method.

Alyssa

Hi, may we use 2 data analysis methods in our qualitative research?

Thanks for your comment. Most commonly, one would use one type of analysis method, but it depends on your research aims and objectives.

Dr. Manju Pandey

You explained it in very simple language, everyone can understand it. Thanks so much.

Phillip

Thank you very much, this is very helpful. It has been explained in a very simple manner that even a layman understands

Anne

Thank nicely explained can I ask is Qualitative content analysis the same as thematic analysis?

Thanks for your comment. No, QCA and thematic are two different types of analysis. This article might help clarify – https://onlinelibrary.wiley.com/doi/10.1111/nhs.12048

Rev. Osadare K . J

This is my first time to come across a well explained data analysis. so helpful.

Tina King

I have thoroughly enjoyed your explanation of the six qualitative analysis methods. This is very helpful. Thank you!

Bromie

Thank you very much, this is well explained and useful

udayangani

i need a citation of your book.

khutsafalo

Thanks a lot , remarkable indeed, enlighting to the best

jas

Hi Derek, What other theories/methods would you recommend when the data is a whole speech?

M

Keep writing useful artikel.

Adane

It is important concept about QDA and also the way to express is easily understandable, so thanks for all.

Carl Benecke

Thank you, this is well explained and very useful.

Ngwisa

Very helpful .Thanks.

Hajra Aman

Hi there! Very well explained. Simple but very useful style of writing. Please provide the citation of the text. warm regards

Hillary Mophethe

The session was very helpful and insightful. Thank you

This was very helpful and insightful. Easy to read and understand

Catherine

As a professional academic writer, this has been so informative and educative. Keep up the good work Grad Coach you are unmatched with quality content for sure.

Keep up the good work Grad Coach you are unmatched with quality content for sure.

Abdulkerim

Its Great and help me the most. A Million Thanks you Dr.

Emanuela

It is a very nice work

Noble Naade

Very insightful. Please, which of this approach could be used for a research that one is trying to elicit students’ misconceptions in a particular concept ?

Karen

This is Amazing and well explained, thanks

amirhossein

great overview

Tebogo

What do we call a research data analysis method that one use to advise or determining the best accounting tool or techniques that should be adopted in a company.

Catherine Shimechero

Informative video, explained in a clear and simple way. Kudos

Van Hmung

Waoo! I have chosen method wrong for my data analysis. But I can revise my work according to this guide. Thank you so much for this helpful lecture.

BRIAN ONYANGO MWAGA

This has been very helpful. It gave me a good view of my research objectives and how to choose the best method. Thematic analysis it is.

Livhuwani Reineth

Very helpful indeed. Thanku so much for the insight.

Storm Erlank

This was incredibly helpful.

Jack Kanas

Very helpful.

catherine

very educative

Wan Roslina

Nicely written especially for novice academic researchers like me! Thank you.

Talash

choosing a right method for a paper is always a hard job for a student, this is a useful information, but it would be more useful personally for me, if the author provide me with a little bit more information about the data analysis techniques in type of explanatory research. Can we use qualitative content analysis technique for explanatory research ? or what is the suitable data analysis method for explanatory research in social studies?

ramesh

that was very helpful for me. because these details are so important to my research. thank you very much

Kumsa Desisa

I learnt a lot. Thank you

Tesfa NT

Relevant and Informative, thanks !

norma

Well-planned and organized, thanks much! 🙂

Dr. Jacob Lubuva

I have reviewed qualitative data analysis in a simplest way possible. The content will highly be useful for developing my book on qualitative data analysis methods. Cheers!

Nyi Nyi Lwin

Clear explanation on qualitative and how about Case study

Ogobuchi Otuu

This was helpful. Thank you

Alicia

This was really of great assistance, it was just the right information needed. Explanation very clear and follow.

Wow, Thanks for making my life easy

C. U

This was helpful thanks .

Dr. Alina Atif

Very helpful…. clear and written in an easily understandable manner. Thank you.

Herb

This was so helpful as it was easy to understand. I’m a new to research thank you so much.

cissy

so educative…. but Ijust want to know which method is coding of the qualitative or tallying done?

Ayo

Thank you for the great content, I have learnt a lot. So helpful

Tesfaye

precise and clear presentation with simple language and thank you for that.

nneheng

very informative content, thank you.

Oscar Kuebutornye

You guys are amazing on YouTube on this platform. Your teachings are great, educative, and informative. kudos!

NG

Brilliant Delivery. You made a complex subject seem so easy. Well done.

Ankit Kumar

Beautifully explained.

Thanks a lot

Kidada Owen-Browne

Is there a video the captures the practical process of coding using automated applications?

Thanks for the comment. We don’t recommend using automated applications for coding, as they are not sufficiently accurate in our experience.

Mathewos Damtew

content analysis can be qualitative research?

Hend

THANK YOU VERY MUCH.

Dev get

Thank you very much for such a wonderful content

Kassahun Aman

do you have any material on Data collection

Prince .S. mpofu

What a powerful explanation of the QDA methods. Thank you.

Kassahun

Great explanation both written and Video. i have been using of it on a day to day working of my thesis project in accounting and finance. Thank you very much for your support.

BORA SAMWELI MATUTULI

very helpful, thank you so much

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Research Method

Home » Research Techniques – Methods, Types and Examples

Research Techniques – Methods, Types and Examples

Table of Contents

Research Techniques

Research Techniques

Definition:

Research techniques refer to the various methods, processes, and tools used to collect, analyze, and interpret data for the purpose of answering research questions or testing hypotheses.

Methods of Research Techniques

The methods of research techniques refer to the overall approaches or frameworks that guide a research study, including the theoretical perspective, research design, sampling strategy, data collection and analysis techniques, and ethical considerations. Some common methods of research techniques are:

  • Quantitative research: This is a research method that focuses on collecting and analyzing numerical data to establish patterns, relationships, and cause-and-effect relationships. Examples of quantitative research techniques are surveys, experiments, and statistical analysis.
  • Qualitative research: This is a research method that focuses on collecting and analyzing non-numerical data, such as text, images, and videos, to gain insights into the subjective experiences and perspectives of the participants. Examples of qualitative research techniques are interviews, focus groups, and content analysis.
  • Mixed-methods research: This is a research method that combines quantitative and qualitative research techniques to provide a more comprehensive understanding of a research question. Examples of mixed-methods research techniques are surveys with open-ended questions and case studies with statistical analysis.
  • Action research: This is a research method that focuses on solving real-world problems by collaborating with stakeholders and using a cyclical process of planning, action, and reflection. Examples of action research techniques are participatory action research and community-based participatory research.
  • Experimental research : This is a research method that involves manipulating one or more variables to observe the effect on an outcome, to establish cause-and-effect relationships. Examples of experimental research techniques are randomized controlled trials and quasi-experimental designs.
  • Observational research: This is a research method that involves observing and recording behavior or phenomena in natural settings to gain insights into the subject of study. Examples of observational research techniques are naturalistic observation and structured observation.

Types of Research Techniques

There are several types of research techniques used in various fields. Some of the most common ones are:

  • Surveys : This is a quantitative research technique that involves collecting data through questionnaires or interviews to gather information from a large group of people.
  • Experiments : This is a scientific research technique that involves manipulating one or more variables to observe the effect on an outcome, to establish cause-and-effect relationships.
  • Case studies: This is a qualitative research technique that involves in-depth analysis of a single case, such as an individual, group, or event, to understand the complexities of the case.
  • Observational studies : This is a research technique that involves observing and recording behavior or phenomena in natural settings to gain insights into the subject of study.
  • Content analysis: This is a research technique used to analyze text or other media content to identify patterns, themes, or meanings.
  • Focus groups: This is a research technique that involves gathering a small group of people to discuss a topic or issue and provide feedback on a product or service.
  • Meta-analysis: This is a statistical research technique that involves combining data from multiple studies to assess the overall effect of a treatment or intervention.
  • Action research: This is a research technique used to solve real-world problems by collaborating with stakeholders and using a cyclical process of planning, action, and reflection.
  • Interviews : Interviews are another technique used in research, and they can be conducted in person or over the phone. They are often used to gather in-depth information about an individual’s experiences or opinions. For example, a researcher might conduct interviews with cancer patients to learn more about their experiences with treatment.

Example of Research Techniques

Here’s an example of how research techniques might be used by a student conducting a research project:

Let’s say a high school student is interested in investigating the impact of social media on mental health. They could use a variety of research techniques to gather data and analyze their findings, including:

  • Literature review : The student could conduct a literature review to gather existing research studies, articles, and books that discuss the relationship between social media and mental health. This will provide a foundation of knowledge on the topic and help the student identify gaps in the research that they could address.
  • Surveys : The student could design and distribute a survey to gather information from a sample of individuals about their social media usage and how it affects their mental health. The survey could include questions about the frequency of social media use, the types of content consumed, and how it makes them feel.
  • Interviews : The student could conduct interviews with individuals who have experienced mental health issues and ask them about their social media use, and how it has impacted their mental health. This could provide a more in-depth understanding of how social media affects people on an individual level.
  • Data analysis : The student could use statistical software to analyze the data collected from the surveys and interviews. This would allow them to identify patterns and relationships between social media usage and mental health outcomes.
  • Report writing : Based on the findings from their research, the student could write a report that summarizes their research methods, findings, and conclusions. They could present their report to their peers or their teacher to share their insights on the topic.

Overall, by using a combination of research techniques, the student can investigate their research question thoroughly and systematically, and make meaningful contributions to the field of social media and mental health research.

Purpose of Research Techniques

The Purposes of Research Techniques are as follows:

  • To investigate and gain knowledge about a particular phenomenon or topic
  • To generate new ideas and theories
  • To test existing theories and hypotheses
  • To identify and evaluate potential solutions to problems
  • To gather data and evidence to inform decision-making
  • To identify trends and patterns in data
  • To explore cause-and-effect relationships between variables
  • To develop and refine measurement tools and methodologies
  • To establish the reliability and validity of research findings
  • To communicate research findings to others in a clear and concise manner.

Applications of Research Techniques

Here are some applications of research techniques:

  • Scientific research: to explore, investigate and understand natural phenomena, and to generate new knowledge and theories.
  • Market research: to collect and analyze data about consumer behavior, preferences, and trends, and to help businesses make informed decisions about product development, pricing, and marketing strategies.
  • Medical research : to study diseases and their treatments, and to develop new medicines, therapies, and medical technologies.
  • Social research : to explore and understand human behavior, attitudes, and values, and to inform public policy decisions related to education, health care, social welfare, and other areas.
  • Educational research : to study teaching and learning processes, and to develop effective teaching methods and instructional materials.
  • Environmental research: to investigate the impact of human activities on the environment, and to develop solutions to environmental problems.
  • Engineering Research: to design, develop, and improve products, processes, and systems, and to optimize their performance and efficiency.
  • Criminal justice research : to study crime patterns, causes, and prevention strategies, and to evaluate the effectiveness of criminal justice policies and programs.
  • Psychological research : to investigate human cognition, emotion, and behavior, and to develop interventions to address mental health issues.
  • Historical research: to study past events, societies, and cultures, and to develop an understanding of how they shape our present.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

  • Open access
  • Published: 22 April 2024

Training nurses in an international emergency medical team using a serious role-playing game: a retrospective comparative analysis

  • Hai Hu 1 , 2 , 3   na1 ,
  • Xiaoqin Lai 2 , 4 , 5   na1 &
  • Longping Yan 6 , 7 , 8  

BMC Medical Education volume  24 , Article number:  432 ( 2024 ) Cite this article

64 Accesses

Metrics details

Although game-based applications have been used in disaster medicine education, no serious computer games have been designed specifically for training these nurses in an IEMT setting. To address this need, we developed a serious computer game called the IEMTtraining game. In this game, players assume the roles of IEMT nurses, assess patient injuries in a virtual environment, and provide suitable treatment options.

The design of this study is a retrospective comparative analysis. The research was conducted with 209 nurses in a hospital. The data collection process of this study was conducted at the 2019-2020 academic year. A retrospective comparative analysis was conducted on the pre-, post-, and final test scores of nurses in the IEMT. Additionally, a survey questionnaire was distributed to trainees to gather insights into teaching methods that were subsequently analyzed.

There was a significant difference in the overall test scores between the two groups, with the game group demonstrating superior performance compared to the control group (odds ratio = 1.363, p value = 0.010). The survey results indicated that the game group exhibited higher learning motivation scores and lower cognitive load compared with the lecture group.

Conclusions

The IEMT training game developed by the instructor team is a promising and effective method for training nurses in disaster rescue within IEMTs. The game equips the trainees with the necessary skills and knowledge to respond effectively to emergencies. It is easily comprehended, enhances knowledge retention and motivation to learn, and reduces cognitive load.

Peer Review reports

Since the beginning of the twenty-first century, the deployment of international emergency medical teams in disaster-stricken regions has increased world wide [ 1 ]. To enhance the efficiency of these teams, the World Health Organization (WHO) has introduced the International Emergency Medical Team (IEMT) initiative to guarantee their competence. Adequate education and training play a vital role in achieving this objective [ 2 ].

Nurses play a vital role as IEMTs by providing essential medical care and support to populations affected by disasters and emergencies. Training newly joined nurses is an integral part of IEMT training.

Typical training methods include lectures, field-simulation exercises, and tabletop exercises [ 3 , 4 , 5 ]. However, lectures, despite requiring fewer teaching resources, are often perceived as boring and abstract. This may not be the most ideal method for training newly joined nurses in the complexities of international medical responses. However, simulation field exercises can be effective in mastering the knowledge and skills of disaster medicine responsiveness. However, they come with significant costs and requirements, such as extended instructional periods, additional teachers or instructors, and thorough preparation. These high costs make it challenging to organize simulation exercises repeatedly, making them less ideal for training newly joined nurses [ 6 ].

Moreover, classic tabletop exercises that use simple props, such as cards in a classroom setting, have limitations. The rules of these exercises are typically simple, which makes it challenging to simulate complex disaster scenarios. In addition, these exercises cannot replicate real-life situations, making them too abstract for newly joined nurses to fully grasp [ 7 , 8 ].

Recently, game-based learning has gained increasing attention as an interactive teaching method [ 9 , 10 ]. Previous studies have validated the efficacy of game-based mobile applications [ 11 , 12 ]. Serious games that align with curricular objectives have shown potential to facilitate more effective learner-centered educational experiences for trainees [ 13 , 14 ]. Although game-based applications have been used in disaster medicine education, no serious computer games have been designed specifically for training newly joined nurses in an international IEMT setting.

Our team is an internationally certified IEMT organization verified by the WHO, underscoring the importance of providing training for newly joined nurses in international medical responses. To address this need, we organized training courses for them. As part of the training, we incorporated a serious computer game called the IEMTtraining game. In this game, players assume the roles of IEMT nurses, assess patient injuries in a virtual environment, and provide suitable treatment options. This study aims to investigate the effectiveness of the IEMTtraining game. To the best of our knowledge, this is the first serious game specifically designed to train newly joined nurses in an IEMT setting.

The IEMTtraining game was subsequently applied to the training course for newly joined nurses, and this study aimed to investigate its effectiveness. To the best of our knowledge, this is the first serious game specifically designedto train newly joined nurses in an IEMT setting.

Study design

This study was conducted using data from the training records database of participants who had completed the training. The database includes comprehensive demographic information, exam scores, and detailed information from post-training questionnaires for all trainees. We reviewed the training scores and questionnaires of participants who took part in the training from Autumn 2019 to Spring 2020.

The local Institutional Review Committee approved the study and waived the requirement for informed consent due to the study design. The study complied with the international ethical guidelines for human research, such as the Declaration of Helsinki. The accessed data were anonymized.

Participants

A total of 209 newly joined nurses needed to participate in the training. Due to limitations in the size of the training venue, the trainees had to be divided into two groups for the training. All trainees were required to choose a group and register online. The training team provided the schedule and training topic for the two training sessions to all trainees before the training commenced. Each trainee had the opportunity to sign up based on their individual circumstances. Furthermore, the training team set a maximum limit of 110 trainees for each group, considering the dimensions of the training venue. Trainees were assigned on a first-come-first-served basis. In the event that a group reached its capacity, any unregistered trainees would be automatically assigned to another group.

In the fall of 2019, 103 newly joined nurses opted for the lecture training course (lecture group). In this group, instructors solely used the traditional teaching methods of lectures and demonstrations. The remaining 106 newly joined nurses underwent game-based training (game group). In addition to the traditional lectures and demonstrations, the instructor incorporated an IEMTtraining game to enhance the training experience in the game group.

The IEMTTraining game

The IEMTtraining game, a role-playing game, was implemented using the RPG Maker MV Version1.6.1 (Kadokawa Corporation, Tokyo, Tokyo Metropolis, Japan). Players assumed the roles of rescuers in a fictional setting of an earthquake (Part1 of Supplemental Digital Content ).

The storyline revolves around an earthquake scenario, with the main character being an IEMT nurse. Within the game simulation, there were 1000 patients in the scenario. The objective for each player was to treat as many patients as possible to earn higher experience points compared to other players. In addition, within the game scene, multiple nonplayer characters played the role of injured patients. The players navigate the movements of the main character using a computer mouse. Upon encountering injured persons, the player can view their injury information by clicking on them and selecting the triage tags. The player can then select the necessary medical supplies from the kit to provide treatment. Additionally, the player is required to act according to the minimum standards for IEMTs, such as registration in the IEMT coordination cell and reporting of injury information following the minimum data set (MDS) designed by the WHO [ 15 , 16 ]. This portion of the training content imposes uniform requirements for all IEMT members, hence it is necessary for IEMT nurses to learn it. All correct choices result in the accumulation of experience points. Game duration can be set by the instructor and the player with the highest experience points at the end of the game.

Measurement

We have collected the test scores of the trainees in our training database to explore their knowledge mastery. Additionally, we have collected post-training questionnaire data from the trainees to investigate their learning motivation, cognitive load, and technology acceptance.

Pre-test, post-test, and final test

All trainees were tested on three separate occasions: (1) a “pre-test”before the educational intervention, (2) a “post-test”following the intervention, and (3) a “final test”at the end of the term (sixweeks after the intervention). Each test comprised 20 multiple-choice questions (0.5 points per item) assessing the trainees’ mastery of crucial points in their knowledge and decision-making. The higher the score, the better the grade will be.

Questionnaires

The questionnaires used in this study can be found in Part 2 of the Supplemental Digital Content .

The learning motivation questionnaire used in this study was based on the measure developed by Hwang and Chang [ 17 ]. It comprises seven items rated on a six-point scale. The reliability of the questionnaire, as indicated by Cronbach’s alpha, was 0.79.

The cognitive load questionnaire was adapted from the questionnaire developed by Hwang et al [ 18 ]. It consisted of five items for assessing “mental load” and three items for evaluating “mental effort.” The items were rated using a six-point Likert scale. The Cronbach’s alpha values for the two parts of the questionnaire were 0.86 and 0.85, respectively.

The technology acceptance questionnaire, which was only administered to the game group, as it specifically focused on novel teaching techniques and lacked relevance tothe lecture group, was derived from the measurement instrument developed by Chu et al [ 19 ]. It comprised seven items for measuring “perceived ease of use” and six items for assessing “perceived usefulness.” The items were rated on a six-point Likert scale. The Cronbach’s alpha values for the two parts of the questionnaire were 0.94 and 0.95, respectively.

The lecture group received 4 hours of traditional lectures. Additionally, 1 week before the lecture, the trainees were provided with a series of references related to the topic and were required to preview the content before the class. A pre-test was conducted before the lecture to assess the trainees’ prior knowledge, followed by a post-test immediately after the lecture, and a final test 6 weeks after training.

In the game group, the delivery and requirements for references were the same as those in the lecture group. However, the training format differed. The game group received a half-hour lecture introducinggeneral principles, followed by 3 hours of gameplay. The last halfhour was dedicated to summarizing the course and addressing questions or concerns. Similar to the lecture group, the trainees in this group also completed pre-, post-, and final tests. Additionally, a brief survey ofthe teaching methods was conducted at the end of the final test (see Fig.  1 ).

figure 1

General overview of the teaching procedure. Figure Legend: The diagram shows the teaching and testing processes for the two groups of trainees. Q&A: questions and answers

Data analysis

All data were analyzed using IBM SPSS Statistics (version 20.0;IBM Inc., Armonk, NY, USA). Only the trainees who participated in all three tests were included in the analysis. In total, there were 209 trainees, but 11 individuals (6 from the lecture group and 5 from the game group) were excluded due to incomplete data. Therefore, the data of 198 trainees were ultimately included in the analysis.

In addition, measurement data with a normal distribution were described as mean (standard deviation, SD). In contrast, measurement data with non-normal distributions were expressed as median [first quartile, third quartile]. Furthermore, enumeration data were constructed using composition ratios.

Moreover, a generalized estimating equation (GEE) was employed to compare the groups’ pre-, post-, and final test scores. The Mann–Whitney U test was used to compare the questionnaire scores between the two groups. The statistical significance was set at a level of 0.05.

Among the data included in the analysis, 97 (48.99%) participants were in the lecture group, and 101 (51.01%)were in the game group.

The number of male trainees in the lecture and game groups was 30 (30.93%) and 33 (32.67%), respectively. The mean age of participants in the lecture group was 27.44 ± 4.31 years, whereas that of the game group was 28.05 ± 4.29 years. There were no significant differences in sex or age (Table  1 ). Regarding the test scores, no significant differences were found between the two groups in the pre- and post-tests. However, a significant difference was observed in the final test scores conducted 6 weeks later (Table 1 ).

According to the GEE analysis, the overall scores for the post-test and final test were higher compared to the pre-test scores. Additionally, there was a significant difference in the overall test scores between the two groups, with the game group demonstrating superior performance compared to the control group (odds ratio = 1.363, p value = 0.010). Further details of the GEE results can be found in Part 3 of the supplementary materials .

Table  2 presents the results of the questionnaire ratings for the two groups. The median [first quartile, third quartile] of the learning motivation questionnaire ratings were 4 [3, 4] for the lecture group and 5 [4, 5] for the game group. There were significant differences between the questionnaire ratings of the two groups ( p  < 0.001), indicating that the game group had higher learning motivation for the learning activity.

The median [first quartile, third quartile] of the overall cognitive load ratings were 3 [3, 4] and 4 [4, 5] for the game and lecture groups, respectively. There was a significant difference between the cognitive load ratings of the two groups ( p  < 0.001).

This study further compared two aspects of cognitive load: mental load and mental effort. The median [first quartile, third quartile] for the mental effort dimension were 3 [2, 3] and 4 [4, 5] for the game and lecture groups, respectively (p < 0.001). For mental load, the median [first quartile, third quartile] were 4 [3, 4] and 4 [3, 4] for the game and lecture groups, respectively. There was no significant difference in the mental load ratings between the two groups ( p  = 0.539).

To better understand the trainees’ perceptions of the use of the serious game, this study collected the feedback of the trainees in the game group regarding “perceived usefulness” and “perceived ease of use,” as shown in Table 2 . Most trainees provided positive feedback on the two dimensions of the serious game.

To the best of our knowledge, this IEMT training game is the first serious game intended for newly joined nurses of IEMTs. Therefore, this study presents an initial investigation into the applicability of serious games.

Both lectures and serious games improved post-class test scores to the same level, consistent with previous studies. Krishnan et al. found that an educational game on hepatitis significantly improved knowledge scores [ 20 ]. Additionally, our study showed higher knowledge retention in the game group after 6 weeks, in line with previous studies on serious games. In a study on sexually transmitted diseases, game-based instruction was found to improve knowledge retention for resident physicians compared to traditional teaching methods [ 21 ]. The IEMTtraining game, designed as a role-playing game, is more likely to enhance knowledge retention in newly joined nurses in the long term. Therefore, serious games should be included in the teaching of IEMT training.

This study demonstrated improved learning motivation in the game group, consistent with previous research indicating that game-based learning enhances motivation due to the enjoyable and challenging nature of the games [ 22 , 23 ]. A systematic review by Allan et al. further supports the positive impact of game-based learning tools on the motivation, attitudes, and engagement of healthcare trainees [ 24 ].

As serious games are a novel learning experience for trainees, it is worth investigating the cognitive load they experience. Our study found that serious games effectively reduce trainees’ overall cognitive load, particularly in terms of lower mental effort. Mental effort refers to the cognitive capacity used to handle task demands, reflecting the cognitive load associated with organizing and presenting learning content, as well as guiding student learning strategies [ 25 , 26 ]. This reduction in cognitive load is a significant advantage of serious gaming, as it helps learners better understand and organize their knowledge. However, our study did not find a significant difference in mental load between the two groups. Mental load considers the interaction between task and subject characteristics, based on students’ understanding of tasks and subject characteristics [ 18 ]. This finding is intriguing as it aligns with similar observations in game-based education for elementary and secondary school students [ 27 ], but is the first mention of game-based education in academic papers related to nursing training.

In our survey of the game group participants, we found that their feedback regarding the perceived ease of use and usefulness of the game was overwhelmingly positive. This indicates that the designed game was helpful to learners during the learning process. Moreover, the game’s mechanics were easily understood by the trainees without requiring them to investsignificant time and effort to understand the game rules and controls.

This study had some limitations. First, this retrospective observational study may have been susceptible to sampling bias due to the non-random grouping of trainees. It only reviewed existing data from the training database, and future research should be conducted to validate our findings through prospective studies. Therefore, randomized controlled trials are required. Second, the serious game is currently available only in China. We are currently developing an English version to better align with the training requirements of international IEMT nurses. Third, the development of such serious gamescan be time-consuming. To address this problem, we propose a meta-model to help researchers and instructors select appropriate game development models to implement effective serious games.

An IEMT training game for newly joined nurses is a highly promising training method. Its potential lies in its ability to offer engaging and interactive learning experiences, thereby effectively enhancing the training process. Furthermore, the game improved knowledge retention, increased motivation to learn, and reduced cognitive load. In addition, the game’s mechanics are easily understood by trainees, which further enhances its effectiveness as a training instrument.

Availability of data and materials

Availability of data and materials can be ensured through direct contact with the author. If you require access to specific data or materials mentioned in a study or research article, reaching out to the author is the best way to obtain them. By contacting the author directly, you can inquire about the availability of the desired data and materials, as well as any necessary procedures or restrictions for accessing them.

Authors are willing to provide data and materials to interested parties. They understand the importance of transparency and the positive impact of data sharing on scientific progress. Whether it is raw data, experimental protocols, or unique materials used in the study, authors can provide valuable insights and resources to support further investigations or replications.

To contact the author, one can refer to the email address provided in the article.

Abbreviations

World Health Organization

International Emergency Medical Team

Minimum Data Set

Generalized estimating eq.

Standard deviation

World Health Organization.Classification and minimum standards for emergency medical teams. https://apps.who.int/iris/rest/bitstreams/1351888/retrieve . Published 2021. Accessed May 6, 2023.

World Health Organization. Classification and Minimum Standards for Foreign Medical Teams in Sudden Onset Disasters. https://cdn.who.int/media/docs/default-source/documents/publications/classification-and-minimum-standards-for-foreign-medical-teams-in-suddent-onset-disasters65829584-c349-4f98-b828-f2ffff4fe089.pdf?sfvrsn=43a8b2f1_1&download=true . Published 2013. Accessed May 6, 2023.

Brunero S, Dunn S, Lamont S. Development and effectiveness of tabletop exercises in preparing health practitioners in violence prevention management: a sequential explanatory mixed methods study. Nurse Educ Today. 2021;103:104976. https://doi.org/10.1016/j.nedt.2021.104976 .

Article   Google Scholar  

Sena A, Forde F, Yu C, Sule H, Masters MM. Disaster preparedness training for emergency medicine residents using a tabletop exercise. Med Ed PORTAL. 2021;17:11119. https://doi.org/10.15766/mep_2374-8265.11119 .

Moss R, Gaarder C. Exercising for mass casualty preparedness. Br J Anaesth. 2022;128(2):e67–70. https://doi.org/10.1016/j.bja.2021.10.016 .

Hu H, Liu Z, Li H. Teaching disaster medicine with a novel game-based computer application: a case study at Sichuan University. Disaster Med Public Health Prep. 2022;16(2):548–54. https://doi.org/10.1017/dmp.2020.309 .

Chi CH, Chao WH, Chuang CC, Tsai MC, Tsai LM. Emergency medical technicians' disaster training by tabletop exercise. Am J Emerg Med. 2001;19(5):433–6. https://doi.org/10.1053/ajem.2001.24467 .

Hu H, Lai X, Li H, et al. Teaching disaster evacuation management education to nursing students using virtual reality Mobile game-based learning. Comput Inform Nurs. 2022;40(10):705–10. https://doi.org/10.1097/CIN.0000000000000856 .

van Gaalen AEJ, Brouwer J, Schönrock-Adema J, et al. Gamification of health professions education: a systematic review. Adv Health Sci Educ Theory Pract. 2021;26(2):683–711. https://doi.org/10.1007/s10459-020-10000-3 .

Adjedj J, Ducrocq G, Bouleti C, et al. Medical student evaluation with a serious game compared to multiple choice questions assessment. JMIR Serious Games. 2017;5(2):e11. https://doi.org/10.2196/games.7033 .

Hu H, Xiao Y, Li H. The effectiveness of a serious game versus online lectures for improving medical Students' coronavirus disease 2019 knowledge. Games Health J. 2021;10(2):139–44. https://doi.org/10.1089/g4h.2020.0140.E .

Pimentel J, Arias A, Ramírez D, et al. Game-based learning interventions to Foster cross-cultural care training: a scoping review. Games Health J. 2020;9(3):164–81. https://doi.org/10.1089/g4h.2019.0078 .

Hu H, Lai X, Yan L. Improving nursing Students' COVID-19 knowledge using a serious game. Comput Inform Nurs. 2021;40(4):285–9. https://doi.org/10.1097/CIN.0000000000000857 .

Menin A, Torchelsen R, Nedel L. An analysis of VR technology used in immersive simulations with a serious game perspective. IEEE Comput Graph Appl. 2018;38(2):57–73. https://doi.org/10.1109/MCG.2018.021951633 .

Kubo T, Chimed-Ochir O, Cossa M, et al. First activation of the WHO emergency medical team minimum data set in the 2019 response to tropical cyclone Idai in Mozambique. Prehosp Disaster Med. 2022;37(6):727–34.

Jafar AJN, Sergeant JC, Lecky F. What is the inter-rater agreement of injury classification using the WHO minimum data set for emergency medical teams? Emerg Med J. 2020;37(2):58–64. https://doi.org/10.1136/emermed-2019-209012 .

Hwang GJ, Chang HF. A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Comput Educ. 2011;56(4):1023–31. https://doi.org/10.1016/j.compedu.2010.12.002 .

Hwang G-J, Yang L-H. Sheng-yuan Wang.Concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Comput Educ. 2013;69:121–30.

Chu HC, Hwang GJ, Tsai CC, et al. A two-tier test approach to developing location-aware mobile learning system for natural science course. Comput Educ. 2010;55(4):1618–27. https://doi.org/10.1016/j.compedu.2010.07.004 .

Krishnan S, Blebil AQ, Dujaili JA, Chuang S, Lim A. Implementation of a hepatitis-themed virtual escape room in pharmacy education: A pilot study. Educ Inf Technol (Dordr). 2023;5:1–13. https://doi.org/10.1007/s10639-023-11745-1 . Epub ahead of print. PMID: 37361790; PMCID: PMC10073791

Butler SK, Runge MA, Milad MP. A game show-based curriculum for teaching principles of reproductive infectious disease (GBS PRIDE trial). South Med J. 2020;113(11):531–7. https://doi.org/10.14423/SMJ.0000000000001165 . PMID: 33140104

Haruna H, Hu X, Chu SKW, et al. Improving sexual health education programs for adolescent students through game-based learning and gamification. Int J Environ Res Public Health. 2018;15(9):2027. https://doi.org/10.3390/ijerph15092027 .

Rewolinski JA, Kelemen A, Liang Y. Type I diabetes self-management with game-based interventions for pediatric and adolescent patients. Comput Inform Nurs. 2020;39(2):78–88. https://doi.org/10.1097/CIN.0000000000000646 .

Allan R, McCann L, Johnson L, Dyson M, Ford J. A systematic review of 'equity-focused' game-based learning in the teaching of health staff. Public Health Pract (Oxf). 2023;27(7):100462. https://doi.org/10.1016/j.puhip.2023.100462 . PMID: 38283754; PMCID: PMC10820634

Zumbach J, Rammerstorfer L, Deibl I. Cognitive and metacognitive support in learning with a serious game about demographic change. Comput Hum Behav. 2020;103:120–9. https://doi.org/10.1016/j.chb.2019.09.026 .

Chang C-C, Liang C, Chou P-N, et al. Is game-based learning better in flow experience and various types of cognitive load than non-game-based learning? Perspective from multimedia and media richness. Comput Hum Behav. 2017;71:218–27. https://doi.org/10.1016/j.chb.2017.01.031 .

Kalmpourtzis G, Romero M. Constructive alignment of learning mechanics and game mechanics in serious game design in higher education. Int J Serious Games. 2020;7(4):75–88. https://doi.org/10.17083/ijsg.v7i4.361 .

Download references

Acknowledgements

We would like to thank all the staffs who contribute to the database. We would like to thank Editage ( www.editage.cn ) for English language editing. We also would like to thank Dr. Yong Yang for statistics help. We would like to thank The 10th Sichuan University Higher Education Teaching Reform Research Project (No. SCU10170) and West China School of Medicine (2023-2024) Teaching Reform Research Project (No. HXBK-B2023016) for the support.

Author information

Both Hai Hu and Xiaoqin Lai contributed equally to this work and should be regarded as co-first authors.

Authors and Affiliations

Emergency Management Office of West China Hospital, Sichuan University, The street address: No. 37. Guoxue Road, Chengdu City, Sichuan Province, China

China International Emergency Medical Team (Sichuan), Chengdu City, Sichuan Province, China

Hai Hu & Xiaoqin Lai

Emergency Medical Rescue Base, Sichuan University, Chengdu City, Sichuan Province, China

Day Surgery Center, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China

Xiaoqin Lai

Department of Thoracic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu City, Sichuan Province, China

West China School of Nursing, Sichuan University, Chengdu City, Sichuan Province, China

Longping Yan

West China School of Public Health, Sichuan University, Chengdu, Sichuan, China

West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China

You can also search for this author in PubMed   Google Scholar

Contributions

HH conceived the study, designed the trial, and obtained research funding. XL supervised the conduct of the data collection from the database, and managed the data, including quality control. HH and LY provided statistical advice on study design and analyzed the data. All the authors drafted the manuscript, and contributed substantially to its revision. HH takes responsibility for the paper as a whole.

Corresponding author

Correspondence to Hai Hu .

Ethics declarations

Ethics approval and consent to participate.

The local institutional review committee approved the study and waived the need for informed consent from the participants owing to the study design.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary material 1., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Hu, H., Lai, X. & Yan, L. Training nurses in an international emergency medical team using a serious role-playing game: a retrospective comparative analysis. BMC Med Educ 24 , 432 (2024). https://doi.org/10.1186/s12909-024-05442-x

Download citation

Received : 05 November 2023

Accepted : 17 April 2024

Published : 22 April 2024

DOI : https://doi.org/10.1186/s12909-024-05442-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Rescue work
  • Gamification
  • Simulation training

analytical research techniques

Evaluation of the potential of recovering various valuable elements from a vanadiferous titanomagnetite tailing based on chemical and process mineralogical characterization

  • Research Article
  • Published: 23 June 2023
  • Volume 30 , pages 83991–84001, ( 2023 )

Cite this article

analytical research techniques

  • Jinsheng Liu   ORCID: orcid.org/0000-0001-6221-212X 1 , 2 ,
  • Zhenxing Xing 1 , 2 ,
  • Jianxing Liu 1 , 2 ,
  • Xueyong Ding 1 , 2 &
  • Xiangxin Xue 1 , 2  

209 Accesses

Explore all metrics

In order to evaluate the potential of recovering various valuable elements from vanadiferous titanomagnetite tailing (VTMT), the chemical and process mineralogical characterization of VTMT were investigated in this study by various analytical techniques such as XRF, XRD, optical microscopy, SEM, EDS, and AMICS. It was found that VTMT is a coarser powder in general; about 50% of the particle size is greater than 54.30 μm. The total iron content of the VTMT was 22.40 wt.%, and its TiO 2 grade is 14.45 wt.%, even higher than those found in natural ilmenite ores. The majority of iron and titanium were located in ilmenite and hematite; 62.84% of hematite and 90.27% of ilmenite were present in monomeric form. However, there is still a portion of ilmenite and hematite embedded in gangue such as anorthite, diopside, and serpentite. For the recovery of valuable fractions such as Fe and TiO 2 from VTMT, a treatment process including ball milling–high-intensity magnetic separation–one roughing and three refining flotation was proposed. Finally, a concentrate with TiO 2 grade of 47.31% and total Fe (TFe) grade of 35.44% was produced; TiO 2 and TFe had recovery rates of 57.71% and 28.23%, respectively. The recovered product is adequate as a raw material for the production of rutile. This study provides a reference and a new research direction for the recycling and comprehensive utilization of VTMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

analytical research techniques

Similar content being viewed by others

analytical research techniques

Process Mineralogical Analysis of a Typical Vanadium Titano-magnetite Concentrate

analytical research techniques

The Effect of Different Magnetic Separation Procedures of a Korean VTM Ore on Combined Pyro-hydrometallurgical Vanadium Recovery Behavior

Recovery of titanium and vanadium from titanium–vanadium slag obtained by direct reduction of titanomagnetite concentrates, data availability.

The data is publically available, and all source of data used in this research is given in the manuscript.

Abdollahi M, Bahrami A, Mirmohammadi MS, Kazemi F, Danesh A, Ghorbani Y (2020) A process mineralogy approach to optimize molybdenite flotation in copper – molybdenum processing plants. Miner Eng 157:106557

Article   CAS   Google Scholar  

Alfonso P, Ruiz M, Zambrana RN, Sendrós M, Garcia-Valles M, Anticoi H, Sidki-Rius N, Salas A (2022) Process mineralogy of the tailings from Llallagua: towards a sustainable activity. Minerals 12:214–229

Barik K, Prusti P, Soren S, Meikap BC, Biswal SK (2022) Analysis of iron ore pellets properties concerning raw material mineralogy for effective utilization of mining waste. Powder Technol 400:117259

Baum W (2014) Ore characterization, process mineralogy and lab automation a roadmap for future mining. Miner Eng 60:69–73

Brough CP, Warrender R, Bowell RJ, Barnes A, Parbhakar-Fox A (2013) The process mineralogy of mine wastes. Miner Eng 52:125–135

Ciarapica F, Bevilacqua M, Antomarioni S (2019) An approach based on association rules and social network analysis for managing environmental risk: a case study from a process industry. Process Saf Environ Prot 128:50–64

Gan CD, Cui SF, Wu ZZ, Yang JY (2022) Multiple heavy metal distribution and microbial community characteristics of vanadium-titanium magnetite tailing profiles under different management modes. J Hazard Mater 429:128032

Gao ZX, Yang ST, Xue XX, Yang H, Cheng GJ (2020) Extraction method for valuable elements of low-grade vanadia–titania magnetite. J Cleaner Prod 250:119451

Guanira K, Valente TM, Ríos CA, Castellanos OM, Salazar L, Lattanzi D, Jaime P (2020) Methodological approach for mineralogical characterization of tailings from a Cu(Au, Ag) skarn type deposit using QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy). J Geochem Explor 209:106439

Han Y, Kim S, Go B, Lee S, Park S, Jeon HS (2021) Optimized magnetic separation for efficient recovery of V and Ti enriched concentrates from vanadium-titanium magnetite ore: Effect of grinding and magnetic intensity. Powder Technol 391:282–291

Kang X, Cui Y, Shen T, Yan M, Tu W, Shoaib M, Xiang Q, Zhao K, Gu Y, Chen Q, Li S, Liang Y, Ma M, Zou L, Yu X (2020) Changes of root microbial populations of natively grown plants during natural attenuation of V-Ti magnetite tailings. Ecotoxicol Environ Saf 201:110816

Kelvin M, Whiteman E, Petrus J, Leybourne M, Nkuna V (2022) Application of LA-ICP-MS to process mineralogy: Gallium and germanium recovery at Kipushi copper-zinc deposit. Miner Eng 176:107322

Li L, Jiang T, Chen B, Zhou M, Chen C (2020) Overall utilization of vanadium–titanium magnetite tailings to prepare lightweight foam ceramics. Process Saf Environ Prot 139:305–314

Li L, Jiang T, Chen BJ, Wen J, Yang GD (2022a) Integrated utilization of vanadium-titanium magnetite tailings for synthesis of lightweight foamed ceramics: effect of chemical composition on the properties and phase evolution. J Sustainable Metall 8:517–525

Article   Google Scholar  

Li WB, Liu X, Liu DQ, Han YX (2022b) Mineralogical reconstruction of Titanium-Vanadium hematite and magnetic separation mechanism of titanium and iron minerals. Adv Powder Technol 33:103408

Liu J, Liu RZ, Zhang ZJ, Cai YP, Zhang LX (2019) A Bayesian Network-based risk dynamic simulation model for accidental water pollution discharge of mine tailings ponds at watershed-scale. J Environ Manage 246:821–831

Lotter NO (2011) Modern process mineralogy: an integrated multi-disciplined approach to flowsheeting. Miner Eng 24:1229–1237

Mahieux PY, Aubert JE, Cyr M, Coutand M, Husson B (2010) Quantitative mineralogical composition of complex mineral wastes – contribution of the rietveld method. Waste Manage 30:378–388

Ospina-Correa JD, Mejía-Restrepo E, Serna-Zuluaga CM, Posada-Montoya A, Osorio-Cachaya JG, Tamayo-Sepúlveda JA, Calderón-Gutiérrez JA (2018) Process mineralogy of refractory gold ore in thiosulfate solutions. Hydrometallurgy 182:104–113

Simonsen AMT, Solismaa S, Hansen HK, Jensen PE (2020) Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristics. Waste Manage 102:710–721

Sukmara S, Adi WA, Manaf A (2022) Mineral analysis and its extraction process of ilmenite rocks in titanium-rich cumulates from Pandeglang Banten Indonesia. J. Mater. Res. Technol. 17:3384–3393

Wang B, Xia DS, Yu Y, Chen H, Jia J (2018) Source apportionment of soil-contamination in Baotou City (North China) based on a combined magnetic and geochemical approach. Sci Total Environ 642:95–104

Xiao JH, Zhang YS (2019) Recovering Cobalt and Sulfur in Low Grade Cobalt-Bearing V-Ti Magnetite Tailings Using Flotation Process. Processes 7:536–555

Xiao JH, Zou K, Chen T, Peng Y, Ding W, Chen JH, Deng B, Li H, Wang Z (2021) Extraction of Sc from Sc-bearing V-Ti magnetite tailings. JOM 73:1836–1844

Xu CB, Zhang YM, Liu T, Huang J (2017) Characterization and pre-concentration of low-grade vanadium-titanium magnetite ore. Minerals 7:137–146

Xu CL, Zhong CB, Lyu RL, Ruan YY, Zhang ZY, Chi RA (2019) Process mineralogy of Weishan rare earth ore by MLA. J Rare Earths 37:334–338

Xu W, Shi B, Tian Y, Chen Y, Li SQ, Cheng Q, Mei GJ (2021) Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China. Minerals 11:1249–1268

Yu XM, Li YM, Zhang C, Liu HY, Liu J, Zheng WW, Kang X, Leng XJ, Zhao K, Gu YF, Zhang XP, Xiang QJ, Chen Q (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua. China Plos One 9:e106618

Yu JW, Hu N, Xiao HX, Gao P, Sun YS (2021) Reduction behaviors of vanadium-titanium magnetite with H 2 via a fluidized bed. Powder Technol 385:83–91

Zhai JH, Chen P, Sun W, Chen W, Wan S (2020) A review of mineral processing of ilmenite by flotation. Miner Eng 157:106558

Zhang T, He YQ, Wang FF, Ge LH, Zhu XN, Li H (2014) Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques. Waste Manage 34:1051–1058

Zhu XY, Sun N, Huang Y, Zhu YG, Wang WQ (2021) Preparation of full tailings-based foam ceramics and auxiliary foaming effect of vanadium-titanium magnetite tailings. J Non-Cryst Solids 571:121063

Download references

This work was supported by the National Natural Science Foundation of China (grant number 51674084); the National Natural Science Foundation of China—Liaoning United Foundation (grant number U1908226); and the National Key R&D Program of China (No. 2017YFB0603801).

Author information

Authors and affiliations.

Department of Resource and Environment, School of Metallurgy, Northeastern University, Shenyang, 110819, People’s Republic of China

Jinsheng Liu, Zhenxing Xing, Jianxing Liu, Xueyong Ding & Xiangxin Xue

Liaoning Key Laboratory of Recycling Science for Metallurgical Resources, Shenyang, 110819, People’s Republic of China

You can also search for this author in PubMed   Google Scholar

Contributions

Jinsheng Liu: investigation, writing (original draft), data collection and validation. Zhenxing Xing: data analysis. Jianxing Liu: resources and methodology. Xueyong Ding: project administration and supervision. Xiangxin Xue: conceptualization, project administration, and supervision. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangxin Xue .

Ethics declarations

Ethics approval.

We declare that current research fully abides by both local and international guidelines of ethical research regulations.

Consent to participate

Not applicable.

Consent for publication

All authors have explicit consent to publish this article submitted to ESPR.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Ioannis A. Katsoyiannis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Liu, J., Xing, Z., Liu, J. et al. Evaluation of the potential of recovering various valuable elements from a vanadiferous titanomagnetite tailing based on chemical and process mineralogical characterization. Environ Sci Pollut Res 30 , 83991–84001 (2023). https://doi.org/10.1007/s11356-023-27897-z

Download citation

Received : 23 September 2022

Accepted : 21 May 2023

Published : 23 June 2023

Issue Date : July 2023

DOI : https://doi.org/10.1007/s11356-023-27897-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Process mineralogy
  • Valuable elements
  • Process flow
  • Find a journal
  • Publish with us
  • Track your research

Cookies on GOV.UK

We use some essential cookies to make this website work.

We’d like to set additional cookies to understand how you use GOV.UK, remember your settings and improve government services.

We also use cookies set by other sites to help us deliver content from their services.

You have accepted additional cookies. You can change your cookie settings at any time.

You have rejected additional cookies. You can change your cookie settings at any time.

analytical research techniques

  • Education, training and skills
  • Further and higher education, skills and vocational training

Future skills projections and analysis

A one-off assessment of skills forecasting methods.

Applies to England

Ref: ISBN 978-1-83870-542-8 , RR1419

PDF , 910 KB , 150 pages

This report is an evaluation of future skills methodologies at economy-wide and sector level.

It reviews the accuracy, versatility, ease of use and relevance of each method for key users.

  • central planners, for example government
  • local users, such as those involved in local skills improvement plans
  • users engaged in workforce planning, such as employers and training providers
  • those designing qualifications and standards, such as the Institute for Apprenticeships and Technical Education

Is this page useful?

  • Yes this page is useful
  • No this page is not useful

Help us improve GOV.UK

Don’t include personal or financial information like your National Insurance number or credit card details.

To help us improve GOV.UK, we’d like to know more about your visit today. We’ll send you a link to a feedback form. It will take only 2 minutes to fill in. Don’t worry we won’t send you spam or share your email address with anyone.

The independent source for health policy research, polling, and news.

A New Use for Wegovy Opens the Door to Medicare Coverage for Millions of People with Obesity

Juliette Cubanski , Tricia Neuman , Nolan Sroczynski , and Anthony Damico Published: Apr 24, 2024

The FDA recently approved a new use for Wegovy (semaglutide), the blockbuster anti-obesity drug, to reduce the risk of heart attacks and stroke in people with cardiovascular disease who are overweight or obese. Wegovy belongs to a class of medications called GLP-1 (glucagon-like peptide-1) agonists that were initially approved to treat type 2 diabetes but are also highly effective anti-obesity drugs. The new FDA-approved indication for Wegovy paves the way for Medicare coverage of this drug and broader coverage by other insurers. Medicare is currently prohibited by law from covering Wegovy and other medications when used specifically for obesity. However, semaglutide is covered by Medicare as a treatment for diabetes, branded as Ozempic.

What does the FDA’s decision mean for Medicare coverage of Wegovy?

The FDA’s decision opens the door to Medicare coverage of Wegovy, which was first approved by the FDA as an anti-obesity medication. Soon after the FDA’s approval of the new use for Wegovy, the Centers for Medicare & Medicaid Services (CMS) issued a memo indicating that Medicare Part D plans can add Wegovy to their formularies now that it has a medically-accepted indication that is not specifically excluded from Medicare coverage . Because Wegovy is a self-administered injectable drug, coverage will be provided under Part D , Medicare’s outpatient drug benefit offered by private stand-alone drug plans and Medicare Advantage plans, not Part B, which covers physician-administered drugs.

How many Medicare beneficiaries could be eligible for coverage of Wegovy for its new use?

Figure 1: An Estimated 1 in 4 Medicare Beneficiaries With Obesity or Overweight Could Be Eligible for Medicare Part D Coverage of Wegovy to Reduce the Risk of Serious Heart Problems

Of these 3.6 million beneficiaries, 1.9 million also had diabetes (other than Type 1) and may already have been eligible for Medicare coverage of GLP-1s as diabetes treatments prior to the FDA’s approval of the new use of Wegovy.

Not all people who are eligible based on the new indication are likely to take Wegovy, however. Some might be dissuaded by the potential side effects and adverse reactions . Out-of-pocket costs could also be a barrier. Based on the list price of $1,300 per month (not including rebates or other discounts negotiated by pharmacy benefit managers), Wegovy could be covered as a specialty tier drug, where Part D plans are allowed to charge coinsurance of 25% to 33%. Because coinsurance amounts are pegged to the list price, Medicare beneficiaries required to pay coinsurance could face monthly costs of $325 to $430 before they reach the new cap on annual out-of-pocket drug spending established by the Inflation Reduction Act – around $3,300 in 2024, based on brand drugs only, and $2,000 in 2025. But even paying $2,000 out of pocket would still be beyond the reach of many people with Medicare who live on modest incomes . Ultimately, how much beneficiaries pay out of pocket will depend on Part D plan coverage and formulary tier placement of Wegovy.

Further, some people may have difficulty accessing Wegovy if Part D plans apply prior authorization and step therapy tools to manage costs and ensure appropriate use. These factors could have a dampening effect on use by Medicare beneficiaries, even among the target population.

When will Medicare Part D plans begin covering Wegovy?

Some Part D plans have already announced that they will begin covering Wegovy this year, although it is not yet clear how widespread coverage will be in 2024. While Medicare drug plans can add new drugs to their formularies during the year to reflect new approvals and expanded indications, plans are not required to cover every new drug that comes to market. Part D plans are required to cover at least two drugs in each category or class and all or substantially all drugs in six protected classes . However, facing a relatively high price and potentially large patient population for Wegovy, many Part D plans might be reluctant to expand coverage now, since they can’t adjust their premiums mid-year to account for higher costs associated with use of this drug. So, broader coverage in 2025 could be more likely.

How might expanded coverage of Wegovy affect Medicare spending?

The impact on Medicare spending associated with expanded coverage of Wegovy will depend in part on how many Part D plans add coverage for it and the extent to which plans apply restrictions on use like prior authorization; how many people who qualify to take the drug use it; and negotiated prices paid by plans. For example, if plans receive a 50% rebate on the list price of $1,300 per month (or $15,600 per year), that could mean annual net costs per person around $7,800. If 10% of the target population (an estimated 360,000 people) uses Wegovy for a full year, that would amount to additional net Medicare Part D spending of $2.8 billion for one year for this one drug alone.

It’s possible that Medicare could select semaglutide for drug price negotiation as early as 2025, based on the earliest FDA approval of Ozempic in late 2017 . For small-molecule drugs like semaglutide, at least seven years must have passed from its FDA approval date to be eligible for selection, and for drugs with multiple FDA approvals, CMS will use the earliest approval date to make this determination. If semaglutide is selected for negotiation next year, a negotiated price would be available beginning in 2027. This could help to lower Medicare and out-of-pocket spending on semaglutide products, including Wegovy as well as Ozempic and Rybelsus, the oral formulation approved for type 2 diabetes. As of 2022, gross Medicare spending on Ozempic alone placed it sixth among the 10 top-selling drugs in Medicare Part D, with annual gross spending of $4.6 billion, based on KFF analysis . This estimate does not include rebates, which Medicare’s actuaries estimated to be  31.5% overall in 2022  but could be as high as  69%  for Ozempic, according to one estimate.

What does this mean for Medicare coverage of anti-obesity drugs?

For now, use of GLP-1s specifically for obesity continues to be excluded from Medicare coverage by law. But the FDA’s decision signals a turning point for broader Medicare coverage of GLP-1s since Wegovy can now be used to reduce the risk of heart attack and stroke by people with cardiovascular disease and obesity or overweight, and not only as an anti-obesity drug. And more pathways to Medicare coverage could open up if these drugs gain FDA approval for other uses . For example, Eli Lilly has just reported clinical trial results showing the benefits of its GLP-1, Zepbound (tirzepatide), in reducing the occurrence of sleep apnea events among people with obesity or overweight. Lilly reportedly plans to seek FDA approval for this use and if approved, the drug would be the first pharmaceutical treatment on the market for sleep apnea.

If more Medicare beneficiaries with obesity or overweight gain access to GLP-1s based on other approved uses for these medications, that could reduce the cost of proposed legislation to lift the statutory prohibition on Medicare coverage of anti-obesity drugs. This is because the Congressional Budget Office (CBO), Congress’s official scorekeeper for proposed legislation, would incorporate the cost of coverage for these other uses into its baseline estimates for Medicare spending, which means that the incremental cost of changing the law to allow Medicare coverage for anti-obesity drugs would be lower than it would be without FDA’s approval of these drugs for other uses. Ultimately how widely Medicare Part D coverage of GLP-1s expands could have far-reaching effects on people with obesity and on Medicare spending.

  • Medicare Part D
  • Chronic Diseases
  • Heart Disease
  • Medicare Advantage

news release

  • An Estimated 1 in 4 Medicare Beneficiaries With Obesity or Overweight Could Be Eligible for Medicare Coverage of Wegovy, an Anti-Obesity Drug, to Reduce Heart Risk

Also of Interest

  • An Overview of the Medicare Part D Prescription Drug Benefit
  • FAQs about the Inflation Reduction Act’s Medicare Drug Price Negotiation Program
  • What Could New Anti-Obesity Drugs Mean for Medicare?
  • Medicare Spending on Ozempic and Other GLP-1s Is Skyrocketing

IMAGES

  1. Types of Research Methodology: Uses, Types & Benefits

    analytical research techniques

  2. Top 4 Data Analysis Techniques

    analytical research techniques

  3. 15 Types of Research Methods (2024)

    analytical research techniques

  4. Data Analytics And The Six Phases

    analytical research techniques

  5. 5 Steps of the Data Analysis Process

    analytical research techniques

  6. Standard statistical tools in research and data analysis

    analytical research techniques

VIDEO

  1. The scientific approach and alternative approaches to investigation

  2. Analytical Techniques: Analysis #2

  3. some Analytical Techniques #viral #science #motivation #reels #sentix #science

  4. Analytical Research Report

  5. Descriptive and Analytical Research

  6. Data Analysis in Research

COMMENTS

  1. Research Methods

    Qualitative analysis tends to be quite flexible and relies on the researcher's judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias. Quantitative analysis methods. Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive ...

  2. Analytical Research: What is it, Importance + Examples

    Methods of Conducting Analytical Research. Analytical research is the process of gathering, analyzing, and interpreting information to make inferences and reach conclusions. Depending on the purpose of the research and the data you have access to, you can conduct analytical research using a variety of methods. Here are a few typical approaches:

  3. What is data analysis? Methods, techniques, types & how-to

    Gaining a better understanding of different techniques and methods in quantitative research as well as qualitative insights will give your analyzing efforts a more clearly defined direction, so it's worth taking the time to allow this particular knowledge to sink in. Additionally, you will be able to create a comprehensive analytical report that will skyrocket your analysis.

  4. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  5. The 7 Most Useful Data Analysis Techniques [2024 Guide]

    Data analysis techniques. Now we're familiar with some of the different types of data, let's focus on the topic at hand: different methods for analyzing data. a. Regression analysis. Regression analysis is used to estimate the relationship between a set of variables.

  6. Quantitative Data Analysis Methods & Techniques 101

    The two "branches" of quantitative analysis. As I mentioned, quantitative analysis is powered by statistical analysis methods.There are two main "branches" of statistical methods that are used - descriptive statistics and inferential statistics.In your research, you might only use descriptive statistics, or you might use a mix of both, depending on what you're trying to figure out.

  7. Learning to Do Qualitative Data Analysis: A Starting Point

    For many researchers unfamiliar with qualitative research, determining how to conduct qualitative analyses is often quite challenging. Part of this challenge is due to the seemingly limitless approaches that a qualitative researcher might leverage, as well as simply learning to think like a qualitative researcher when analyzing data. From framework analysis (Ritchie & Spencer, 1994) to content ...

  8. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  9. What Is a Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Other interesting articles.

  10. Data Analysis

    Data Analysis. Different statistics and methods used to describe the characteristics of the members of a sample or population, explore the relationships between variables, to test research hypotheses, and to visually represent data are described. Terms relating to the topics covered are defined in the Research Glossary. Descriptive Statistics.

  11. Data Analysis Techniques In Research

    Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.. Data Analysis Techniques in Research: While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence.

  12. Data Analysis: Types, Methods & Techniques (a Complete List)

    Quantitative data analysis then splits into mathematical analysis and artificial intelligence (AI) analysis. Mathematical types then branch into descriptive, diagnostic, predictive, and prescriptive. Methods falling under mathematical analysis include clustering, classification, forecasting, and optimization.

  13. Data analysis

    data analysis, the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data, generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making.Data analysis techniques are used to gain useful insights from datasets, which ...

  14. Basic statistical tools in research and data analysis

    Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if ...

  15. Data Analysis

    Data Analysis. Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

  16. Handbook of Analytical Techniques

    The "Handbook of Analytical Techniques" serves as a concise, one-stop reference source for every professional, researcher, or student using analytical techniques. All relevant spectroscopic, chromatographic, and electrochemical techniques are described, including chemical and biochemical sensors, as well as e. g. thermal analysis, bioanalytical, nuclear or radiochemical techniques. Special ...

  17. Introduction to systematic review and meta-analysis

    It is easy to confuse systematic reviews and meta-analyses. A systematic review is an objective, reproducible method to find answers to a certain research question, by collecting all available studies related to that question and reviewing and analyzing their results. A meta-analysis differs from a systematic review in that it uses statistical ...

  18. Qualitative Data Analysis Methods: Top 6 + Examples

    QDA Method #3: Discourse Analysis. Discourse is simply a fancy word for written or spoken language or debate. So, discourse analysis is all about analysing language within its social context. In other words, analysing language - such as a conversation, a speech, etc - within the culture and society it takes place.

  19. Research Techniques

    Some common methods of research techniques are: Quantitative research: This is a research method that focuses on collecting and analyzing numerical data to establish patterns, relationships, and cause-and-effect relationships. Examples of quantitative research techniques are surveys, experiments, and statistical analysis.

  20. What Is a Research Methodology?

    Step 1: Explain your methodological approach. Step 2: Describe your data collection methods. Step 3: Describe your analysis method. Step 4: Evaluate and justify the methodological choices you made. Tips for writing a strong methodology chapter. Other interesting articles. Frequently asked questions about methodology.

  21. Descriptive and Analytical Research: What's the Difference?

    Descriptive research classifies, describes, compares, and measures data. Meanwhile, analytical research focuses on cause and effect. For example, take numbers on the changing trade deficits between the United States and the rest of the world in 2015-2018. This is descriptive research.

  22. Analytical techniques in pharmaceutical analysis: A review

    The review highlights a variety of analytical techniques such as titrimetric, chromatographic, spectroscopic, electrophoretic, and electrochemical and their corresponding methods that have been applied in the analysis of pharmaceuticals. ... In the field of pharmaceutical research, the analytical investigation of bulk drug materials ...

  23. Pew Research Center

    Pew Research Center

  24. JoF

    Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

  25. Training nurses in an international emergency medical team using a

    Methods. The design of this study is a retrospective comparative analysis. The research was conducted with 209 nurses in a hospital. The data collection process of this study was conducted at the 2019-2020 academic year. A retrospective comparative analysis was conducted on the pre-, post-, and final test scores of nurses in the IEMT.

  26. Evaluation of the potential of recovering various valuable ...

    In order to evaluate the potential of recovering various valuable elements from vanadiferous titanomagnetite tailing (VTMT), the chemical and process mineralogical characterization of VTMT were investigated in this study by various analytical techniques such as XRF, XRD, optical microscopy, SEM, EDS, and AMICS. It was found that VTMT is a coarser powder in general; about 50% of the particle ...

  27. Future skills projections and analysis

    This report is an evaluation of future skills methodologies at economy-wide and sector level. It reviews the accuracy, versatility, ease of use and relevance of each method for key users. It is ...

  28. What Is Qualitative Research?

    Qualitative research involves collecting and analyzing non-numerical data (e.g., text, video, or audio) to understand concepts, opinions, or experiences. It can be used to gather in-depth insights into a problem or generate new ideas for research. Qualitative research is the opposite of quantitative research, which involves collecting and ...

  29. A New Use for Wegovy Opens the Door to Medicare Coverage for ...

    KFF Headquarters: 185 Berry St., Suite 2000, San Francisco, CA 94107 | Phone 650-854-9400 Washington Offices and Barbara Jordan Conference Center: 1330 G Street, NW, Washington, DC 20005 | Phone ...