• Product Management

How to Generate and Validate Product Hypotheses

What is a product hypothesis.

A hypothesis is a testable statement that predicts the relationship between two or more variables. In product development, we generate hypotheses to validate assumptions about customer behavior, market needs, or the potential impact of product changes. These experimental efforts help us refine the user experience and get closer to finding a product-market fit.

Product hypotheses are a key element of data-driven product development and decision-making. Testing them enables us to solve problems more efficiently and remove our own biases from the solutions we put forward.

Here’s an example: ‘If we improve the page load speed on our website (variable 1), then we will increase the number of signups by 15% (variable 2).’ So if we improve the page load speed, and the number of signups increases, then our hypothesis has been proven. If the number did not increase significantly (or not at all), then our hypothesis has been disproven.

In general, product managers are constantly creating and testing hypotheses. But in the context of new product development , hypothesis generation/testing occurs during the validation stage, right after idea screening .

Now before we go any further, let’s get one thing straight: What’s the difference between an idea and a hypothesis?

Idea vs hypothesis

Innovation expert Michael Schrage makes this distinction between hypotheses and ideas – unlike an idea, a hypothesis comes with built-in accountability. “But what’s the accountability for a good idea?” Schrage asks. “The fact that a lot of people think it’s a good idea? That’s a popularity contest.” So, not only should a hypothesis be tested, but by its very nature, it can be tested.

At Railsware, we’ve built our product development services on the careful selection, prioritization, and validation of ideas. Here’s how we distinguish between ideas and hypotheses:

Idea: A creative suggestion about how we might exploit a gap in the market, add value to an existing product, or bring attention to our product. Crucially, an idea is just a thought. It can form the basis of a hypothesis but it is not necessarily expected to be proven or disproven.

  • We should get an interview with the CEO of our company published on TechCrunch.
  • Why don’t we redesign our website?
  • The Coupler.io team should create video tutorials on how to export data from different apps, and publish them on YouTube.
  • Why not add a new ‘email templates’ feature to our Mailtrap product?

Hypothesis: A way of framing an idea or assumption so that it is testable, specific, and aligns with our wider product/team/organizational goals.

Examples: 

  • If we add a new ‘email templates’ feature to Mailtrap, we’ll see an increase in active usage of our email-sending API.
  • Creating relevant video tutorials and uploading them to YouTube will lead to an increase in Coupler.io signups.
  • If we publish an interview with our CEO on TechCrunch, 500 people will visit our website and 10 of them will install our product.

Now, it’s worth mentioning that not all hypotheses require testing . Sometimes, the process of creating hypotheses is just an exercise in critical thinking. And the simple act of analyzing your statement tells whether you should run an experiment or not. Remember: testing isn’t mandatory, but your hypotheses should always be inherently testable.

Let’s consider the TechCrunch article example again. In that hypothesis, we expect 500 readers to visit our product website, and a 2% conversion rate of those unique visitors to product users i.e. 10 people. But is that marginal increase worth all the effort? Conducting an interview with our CEO, creating the content, and collaborating with the TechCrunch content team – all of these tasks take time (and money) to execute. And by formulating that hypothesis, we can clearly see that in this case, the drawbacks (efforts) outweigh the benefits. So, no need to test it.

In a similar vein, a hypothesis statement can be a tool to prioritize your activities based on impact. We typically use the following criteria:

  • The quality of impact
  • The size of the impact
  • The probability of impact

This lets us organize our efforts according to their potential outcomes – not the coolness of the idea, its popularity among the team, etc.

Now that we’ve established what a product hypothesis is, let’s discuss how to create one.

Start with a problem statement

Before you jump into product hypothesis generation, we highly recommend formulating a problem statement. This is a short, concise description of the issue you are trying to solve. It helps teams stay on track as they formalize the hypothesis and design the product experiments. It can also be shared with stakeholders to ensure that everyone is on the same page.

The statement can be worded however you like, as long as it’s actionable, specific, and based on data-driven insights or research. It should clearly outline the problem or opportunity you want to address.

Here’s an example: Our bounce rate is high (more than 90%) and we are struggling to convert website visitors into actual users. How might we improve site performance to boost our conversion rate?

How to generate product hypotheses

Now let’s explore some common, everyday scenarios that lead to product hypothesis generation. For our teams here at Railsware, it’s when:

  • There’s a problem with an unclear root cause e.g. a sudden drop in one part of the onboarding funnel. We identify these issues by checking our product metrics or reviewing customer complaints.
  • We are running ideation sessions on how to reach our goals (increase MRR, increase the number of users invited to an account, etc.)
  • We are exploring growth opportunities e.g. changing a pricing plan, making product improvements , breaking into a new market.
  • We receive customer feedback. For example, some users have complained about difficulties setting up a workspace within the product. So, we build a hypothesis on how to help them with the setup.

BRIDGES framework for ideation

When we are tackling a complex problem or looking for ways to grow the product, our teams use BRIDGeS – a robust decision-making and ideation framework. BRIDGeS makes our product discovery sessions more efficient. It lets us dive deep into the context of our problem so that we can develop targeted solutions worthy of testing.

Between 2-8 stakeholders take part in a BRIDGeS session. The ideation sessions are usually led by a product manager and can include other subject matter experts such as developers, designers, data analysts, or marketing specialists. You can use a virtual whiteboard such as Figjam or Miro (see our Figma template ) to record each colored note.

In the first half of a BRIDGeS session, participants examine the Benefits, Risks, Issues, and Goals of their subject in the ‘Problem Space.’ A subject is anything that is being described or dealt with; for instance, Coupler.io’s growth opportunities. Benefits are the value that a future solution can bring, Risks are potential issues they might face, Issues are their existing problems, and Goals are what the subject hopes to gain from the future solution. Each descriptor should have a designated color.

After we have broken down the problem using each of these descriptors, we move into the Solution Space. This is where we develop solution variations based on all of the benefits/risks/issues identified in the Problem Space (see the Uber case study for an in-depth example).

In the Solution Space, we start prioritizing those solutions and deciding which ones are worthy of further exploration outside of the framework – via product hypothesis formulation and testing, for example. At the very least, after the session, we will have a list of epics and nested tasks ready to add to our product roadmap.

How to write a product hypothesis statement

Across organizations, product hypothesis statements might vary in their subject, tone, and precise wording. But some elements never change. As we mentioned earlier, a hypothesis statement must always have two or more variables and a connecting factor.

1. Identify variables

Since these components form the bulk of a hypothesis statement, let’s start with a brief definition.

First of all, variables in a hypothesis statement can be split into two camps: dependent and independent. Without getting too theoretical, we can describe the independent variable as the cause, and the dependent variable as the effect . So in the Mailtrap example we mentioned earlier, the ‘add email templates feature’ is the cause i.e. the element we want to manipulate. Meanwhile, ‘increased usage of email sending API’ is the effect i.e the element we will observe.

Independent variables can be any change you plan to make to your product. For example, tweaking some landing page copy, adding a chatbot to the homepage, or enhancing the search bar filter functionality.

Dependent variables are usually metrics. Here are a few that we often test in product development:

  • Number of sign-ups
  • Number of purchases
  • Activation rate (activation signals differ from product to product)
  • Number of specific plans purchased
  • Feature usage (API activation, for example)
  • Number of active users

Bear in mind that your concept or desired change can be measured with different metrics. Make sure that your variables are well-defined, and be deliberate in how you measure your concepts so that there’s no room for misinterpretation or ambiguity.

For example, in the hypothesis ‘Users drop off because they find it hard to set up a project’ variables are poorly defined. Phrases like ‘drop off’ and ‘hard to set up’ are too vague. A much better way of saying it would be: If project automation rules are pre-defined (email sequence to responsible, scheduled tickets creation), we’ll see a decrease in churn. In this example, it’s clear which dependent variable has been chosen and why.

And remember, when product managers focus on delighting users and building something of value, it’s easier to market and monetize it. That’s why at Railsware, our product hypotheses often focus on how to increase the usage of a feature or product. If users love our product(s) and know how to leverage its benefits, we can spend less time worrying about how to improve conversion rates or actively grow our revenue, and more time enhancing the user experience and nurturing our audience.

2. Make the connection

The relationship between variables should be clear and logical. If it’s not, then it doesn’t matter how well-chosen your variables are – your test results won’t be reliable.

To demonstrate this point, let’s explore a previous example again: page load speed and signups.

Through prior research, you might already know that conversion rates are 3x higher for sites that load in 1 second compared to sites that take 5 seconds to load. Since there appears to be a strong connection between load speed and signups in general, you might want to see if this is also true for your product.

Here are some common pitfalls to avoid when defining the relationship between two or more variables:

Relationship is weak. Let’s say you hypothesize that an increase in website traffic will lead to an increase in sign-ups. This is a weak connection since website visitors aren’t necessarily motivated to use your product; there are more steps involved. A better example is ‘If we change the CTA on the pricing page, then the number of signups will increase.’ This connection is much stronger and more direct.

Relationship is far-fetched. This often happens when one of the variables is founded on a vanity metric. For example, increasing the number of social media subscribers will lead to an increase in sign-ups. However, there’s no particular reason why a social media follower would be interested in using your product. Oftentimes, it’s simply your social media content that appeals to them (and your audience isn’t interested in a product).

Variables are co-dependent. Variables should always be isolated from one another. Let’s say we removed the option “Register with Google” from our app. In this case, we can expect fewer users with Google workspace accounts to register. Obviously, it’s because there’s a direct dependency between variables (no registration with Google→no users with Google workspace accounts).

3. Set validation criteria

First, build some confirmation criteria into your statement . Think in terms of percentages (e.g. increase/decrease by 5%) and choose a relevant product metric to track e.g. activation rate if your hypothesis relates to onboarding. Consider that you don’t always have to hit the bullseye for your hypothesis to be considered valid. Perhaps a 3% increase is just as acceptable as a 5% one. And it still proves that a connection between your variables exists.

Secondly, you should also make sure that your hypothesis statement is realistic . Let’s say you have a hypothesis that ‘If we show users a banner with our new feature, then feature usage will increase by 10%.’ A few questions to ask yourself are: Is 10% a reasonable increase, based on your current feature usage data? Do you have the resources to create the tests (experimenting with multiple variations, distributing on different channels: in-app, emails, blog posts)?

Null hypothesis and alternative hypothesis

In statistical research, there are two ways of stating a hypothesis: null or alternative. But this scientific method has its place in hypothesis-driven development too…

Alternative hypothesis: A statement that you intend to prove as being true by running an experiment and analyzing the results. Hint: it’s the same as the other hypothesis examples we’ve described so far.

Example: If we change the landing page copy, then the number of signups will increase.

Null hypothesis: A statement you want to disprove by running an experiment and analyzing the results. It predicts that your new feature or change to the user experience will not have the desired effect.

Example: The number of signups will not increase if we make a change to the landing page copy.

What’s the point? Well, let’s consider the phrase ‘innocent until proven guilty’ as a version of a null hypothesis. We don’t assume that there is any relationship between the ‘defendant’ and the ‘crime’ until we have proof. So, we run a test, gather data, and analyze our findings — which gives us enough proof to reject the null hypothesis and validate the alternative. All of this helps us to have more confidence in our results.

Now that you have generated your hypotheses, and created statements, it’s time to prepare your list for testing.

Prioritizing hypotheses for testing

Not all hypotheses are created equal. Some will be essential to your immediate goal of growing the product e.g. adding a new data destination for Coupler.io. Others will be based on nice-to-haves or small fixes e.g. updating graphics on the website homepage.

Prioritization helps us focus on the most impactful solutions as we are building a product roadmap or narrowing down the backlog . To determine which hypotheses are the most critical, we use the MoSCoW framework. It allows us to assign a level of urgency and importance to each product hypothesis so we can filter the best 3-5 for testing.

MoSCoW is an acronym for Must-have, Should-have, Could-have, and Won’t-have. Here’s a breakdown:

  • Must-have – hypotheses that must be tested, because they are strongly linked to our immediate project goals.
  • Should-have – hypotheses that are closely related to our immediate project goals, but aren’t the top priority.
  • Could-have – hypotheses of nice-to-haves that can wait until later for testing. 
  • Won’t-have – low-priority hypotheses that we may or may not test later on when we have more time.

How to test product hypotheses

Once you have selected a hypothesis, it’s time to test it. This will involve running one or more product experiments in order to check the validity of your claim.

The tricky part is deciding what type of experiment to run, and how many. Ultimately, this all depends on the subject of your hypothesis – whether it’s a simple copy change or a whole new feature. For instance, it’s not necessary to create a clickable prototype for a landing page redesign. In that case, a user-wide update would do.

On that note, here are some of the approaches we take to hypothesis testing at Railsware:

A/B testing

A/B or split testing involves creating two or more different versions of a webpage/feature/functionality and collecting information about how users respond to them.

Let’s say you wanted to validate a hypothesis about the placement of a search bar on your application homepage. You could design an A/B test that shows two different versions of that search bar’s placement to your users (who have been split equally into two camps: a control group and a variant group). Then, you would choose the best option based on user data. A/B tests are suitable for testing responses to user experience changes, especially if you have more than one solution to test.

Prototyping

When it comes to testing a new product design, prototyping is the method of choice for many Lean startups and organizations. It’s a cost-effective way of collecting feedback from users, fast, and it’s possible to create prototypes of individual features too. You may take this approach to hypothesis testing if you are working on rolling out a significant new change e.g adding a brand-new feature, redesigning some aspect of the user flow, etc. To control costs at this point in the new product development process , choose the right tools — think Figma for clickable walkthroughs or no-code platforms like Bubble.

Deliveroo feature prototype example

Let’s look at how feature prototyping worked for the food delivery app, Deliveroo, when their product team wanted to ‘explore personalized recommendations, better filtering and improved search’ in 2018. To begin, they created a prototype of the customer discovery feature using web design application, Framer.

One of the most important aspects of this feature prototype was that it contained live data — real restaurants, real locations. For test users, this made the hypothetical feature feel more authentic. They were seeing listings and recommendations for real restaurants in their area, which helped immerse them in the user experience, and generate more honest and specific feedback. Deliveroo was then able to implement this feedback in subsequent iterations.

Asking your users

Interviewing customers is an excellent way to validate product hypotheses. It’s a form of qualitative testing that, in our experience, produces better insights than user surveys or general user research. Sessions are typically run by product managers and involve asking  in-depth interview questions  to one customer at a time. They can be conducted in person or online (through a virtual call center , for instance) and last anywhere between 30 minutes to 1 hour.

Although CustDev interviews may require more effort to execute than other tests (the process of finding participants, devising questions, organizing interviews, and honing interview skills can be time-consuming), it’s still a highly rewarding approach. You can quickly validate assumptions by asking customers about their pain points, concerns, habits, processes they follow, and analyzing how your solution fits into all of that.

Wizard of Oz

The Wizard of Oz approach is suitable for gauging user interest in new features or functionalities. It’s done by creating a prototype of a fake or future feature and monitoring how your customers or test users interact with it.

For example, you might have a hypothesis that your number of active users will increase by 15% if you introduce a new feature. So, you design a new bare-bones page or simple button that invites users to access it. But when they click on the button, a pop-up appears with a message such as ‘coming soon.’

By measuring the frequency of those clicks, you could learn a lot about the demand for this new feature/functionality. However, while these tests can deliver fast results, they carry the risk of backfiring. Some customers may find fake features misleading, making them less likely to engage with your product in the future.

User-wide updates

One of the speediest ways to test your hypothesis is by rolling out an update for all users. It can take less time and effort to set up than other tests (depending on how big of an update it is). But due to the risk involved, you should stick to only performing these kinds of tests on small-scale hypotheses. Our teams only take this approach when we are almost certain that our hypothesis is valid.

For example, we once had an assumption that the name of one of Mailtrap ’s entities was the root cause of a low activation rate. Being an active Mailtrap customer meant that you were regularly sending test emails to a place called ‘Demo Inbox.’ We hypothesized that the name was confusing (the word ‘demo’ implied it was not the main inbox) and this was preventing new users from engaging with their accounts. So, we updated the page, changed the name to ‘My Inbox’ and added some ‘to-do’ steps for new users. We saw an increase in our activation rate almost immediately, validating our hypothesis.

Feature flags

Creating feature flags involves only releasing a new feature to a particular subset or small percentage of users. These features come with a built-in kill switch; a piece of code that can be executed or skipped, depending on who’s interacting with your product.

Since you are only showing this new feature to a selected group, feature flags are an especially low-risk method of testing your product hypothesis (compared to Wizard of Oz, for example, where you have much less control). However, they are also a little bit more complex to execute than the others — you will need to have an actual coded product for starters, as well as some technical knowledge, in order to add the modifiers ( only when… ) to your new coded feature.

Let’s revisit the landing page copy example again, this time in the context of testing.

So, for the hypothesis ‘If we change the landing page copy, then the number of signups will increase,’ there are several options for experimentation. We could share the copy with a small sample of our users, or even release a user-wide update. But A/B testing is probably the best fit for this task. Depending on our budget and goal, we could test several different pieces of copy, such as:

  • The current landing page copy
  • Copy that we paid a marketing agency 10 grand for
  • Generic copy we wrote ourselves, or removing most of the original copy – just to see how making even a small change might affect our numbers.

Remember, every hypothesis test must have a reasonable endpoint. The exact length of the test will depend on the type of feature/functionality you are testing, the size of your user base, and how much data you need to gather. Just make sure that the experiment running time matches the hypothesis scope. For instance, there is no need to spend 8 weeks experimenting with a piece of landing page copy. That timeline is more appropriate for say, a Wizard of Oz feature.

Recording hypotheses statements and test results

Finally, it’s time to talk about where you will write down and keep track of your hypotheses. Creating a single source of truth will enable you to track all aspects of hypothesis generation and testing with ease.

At Railsware, our product managers create a document for each individual hypothesis, using tools such as Coda or Google Sheets. In that document, we record the hypothesis statement, as well as our plans, process, results, screenshots, product metrics, and assumptions.

We share this document with our team and stakeholders, to ensure transparency and invite feedback. It’s also a resource we can refer back to when we are discussing a new hypothesis — a place where we can quickly access information relating to a previous test.

Understanding test results and taking action

The other half of validating product hypotheses involves evaluating data and drawing reasonable conclusions based on what you find. We do so by analyzing our chosen product metric(s) and deciding whether there is enough data available to make a solid decision. If not, we may extend the test’s duration or run another one. Otherwise, we move forward. An experimental feature becomes a real feature, a chatbot gets implemented on the customer support page, and so on.

Something to keep in mind: the integrity of your data is tied to how well the test was executed, so here are a few points to consider when you are testing and analyzing results:

Gather and analyze data carefully. Ensure that your data is clean and up-to-date when running quantitative tests and tracking responses via analytics dashboards. If you are doing customer interviews, make sure to record the meetings (with consent) so that your notes will be as accurate as possible.

Conduct the right amount of product experiments. It can take more than one test to determine whether your hypothesis is valid or invalid. However, don’t waste too much time experimenting in the hopes of getting the result you want. Know when to accept the evidence and move on.

Choose the right audience segment. Don’t cast your net too wide. Be specific about who you want to collect data from prior to running the test. Otherwise, your test results will be misleading and you won’t learn anything new.

Watch out for bias. Avoid confirmation bias at all costs. Don’t make the mistake of including irrelevant data just because it bolsters your results. For example, if you are gathering data about how users are interacting with your product Monday-Friday, don’t include weekend data just because doing so would alter the data and ‘validate’ your hypothesis.

  • Not all failed hypotheses should be treated as losses. Even if you didn’t get the outcome you were hoping for, you may still have improved your product. Let’s say you implemented SSO authentication for premium users, but unfortunately, your free users didn’t end up switching to premium plans. In this case, you still added value to the product by streamlining the login process for paying users.
  • Yes, taking a hypothesis-driven approach to product development is important. But remember, you don’t have to test everything . Use common sense first. For example, if your website copy is confusing and doesn’t portray the value of the product, then you should still strive to replace it with better copy – regardless of how this affects your numbers in the short term.

Wrapping Up

The process of generating and validating product hypotheses is actually pretty straightforward once you’ve got the hang of it. All you need is a valid question or problem, a testable statement, and a method of validation. Sure, hypothesis-driven development requires more of a time commitment than just ‘giving it a go.’ But ultimately, it will help you tune the product to the wants and needs of your customers.

If you share our data-driven approach to product development and engineering, check out our services page to learn more about how we work with our clients!

Advisory boards aren’t only for executives. Join the LogRocket Content Advisory Board today →

LogRocket blog logo

  • Product Management
  • Solve User-Reported Issues
  • Find Issues Faster
  • Optimize Conversion and Adoption

What is hypothesis-driven development?

hypothesis product development

Uncertainty is one of the biggest challenges of modern product development. Most often, there are more question marks than answers available.

What Is Hypothesis Driven Development

This fact forces us to work in an environment of ambiguity and unpredictability.

Instead of combatting this, we should embrace the circumstances and use tools and solutions that excel in ambiguity. One of these tools is a hypothesis-driven approach to development.

Hypothesis-driven development in a nutshell

As the name suggests, hypothesis-driven development is an approach that focuses development efforts around, you guessed it, hypotheses.

To make this example more tangible, let’s compare it to two other common development approaches: feature-driven and outcome-driven.

In feature-driven development, we prioritize our work and effort based on specific features we planned and decided on upfront. The underlying goal here is predictability.

In outcome-driven development, the priorities are dictated not by specific features but by broader outcomes we want to achieve. This approach helps us maximize the value generated.

When it comes to hypothesis-driven development, the development effort is focused first and foremost on validating the most pressing hypotheses the team has. The goal is to maximize learning speed over all else.

Benefits of hypothesis-driven development

There are numerous benefits of a hypothesis-driven approach to development, but the main ones include:

Continuous learning

Mvp mindset, data-driven decision-making.

Hypothesis-driven development maximizes the amount of knowledge the team acquires with each release.

After all, if all you do is test hypotheses, each test must bring you some insight:

Continuous Learning With Hypothesis Driven Development Cycle Image

Hypothesis-driven development centers the whole prioritization and development process around learning.

Instead of designing specific features or focusing on big, multi-release outcomes, a hypothesis-driven approach forces you to focus on minimum viable solutions ( MVPs ).

After all, the primary thing you are aiming for is hypothesis validation. It often doesn’t require scalability, perfect user experience, and fully-fledged features.

hypothesis product development

Over 200k developers and product managers use LogRocket to create better digital experiences

hypothesis product development

By definition, hypothesis-driven development forces you to truly focus on MVPs and avoid overcomplicating.

In hypothesis-driven development, each release focuses on testing a particular assumption. That test then brings you new data points, which help you formulate and prioritize next hypotheses.

That’s truly a data-driven development loop that leaves little room for HiPPOs (the highest-paid person in the room’s opinion).

Guide to hypothesis-driven development

Let’s take a look at what hypothesis-driven development looks like in practice. On a high level, it consists of four steps:

  • Formulate a list of hypotheses and assumptions
  • Prioritize the list
  • Design an MVP
  • Test and repeat

1. Formulate hypotheses

The first step is to list all hypotheses you are interested in.

Everything you wish to know about your users and market, as well as things you believe you know but don’t have tangible evidence to support, is a form of a hypothesis.

At this stage, I’m not a big fan of robust hypotheses such as, “We believe that if <we do something> then <something will happen> because <some user action>.”

To have such robust hypotheses, you need a solid enough understanding of your users, and if you do have it, then odds are you don’t need hypothesis-driven development anymore.

Instead, I prefer simpler statements that are closer to assumptions than hypotheses, such as:

  • “Our users will love the feature X”
  • “The option to do X is very important for student segment”
  • “Exam preparation is an important and underserved need that our users have”

2. Prioritize

The next step in hypothesis-driven development is to prioritize all assumptions and hypotheses you have. This will create your product backlog:

Prioritization Graphic With Cards In Order Of Descending Priority

There are various prioritization frameworks and approaches out there, so choose whichever you prefer. I personally prioritize assumptions based on two main criteria:

  • How much will we gain if we positively validate the hypothesis?
  • How much will we learn during the validation process?

Your priorities, however, might differ depending on your current context.

3. Design an MVP

Hypothesis-driven development is centered around the idea of MVPs — that is, the smallest possible releases that will help you gather enough information to validate whether a given hypothesis is true.

User experience, maintainability, and product excellence are secondary.

4. Test and repeat

The last step is to launch the MVP and validate whether the actual impact and consequent user behavior validate or invalidate the initial hypothesis.

The success isn’t measured by whether the hypothesis turned out to be accurate, but by how many new insights and learnings you captured during the process.

Based on the experiment, revisit your current list of assumptions, and, if needed, adjust the priority list.

Challenges of hypothesis-driven development

Although hypothesis-driven development comes with great benefits, it’s not all wine and roses.

Let’s take a look at a few core challenges that come with a hypothesis-focused approach.

Lack of robust product experience

Focusing on validating hypotheses and underlying MVP mindset comes at a cost. Robust product experience and great UX often require polishes, optimizations, and iterations, which go against speed-focused hypothesis-driven development.

You can’t optimize for both learning and quality simultaneously.

Unfocused direction

Although hypothesis-driven development is great for gathering initial learnings, eventually, you need to start developing a focused and sustainable long-term product strategy. That’s where outcome-driven development shines.

There’s an infinite amount of explorations you can do, but at some point, you must flip the switch and narrow down your focus around particular outcomes.

Over-emphasis on MVPs

Teams that embrace a hypothesis-driven approach often fall into the trap of an “MVP only” approach. However, shipping an actual prototype is not the only way to validate an assumption or hypothesis.

You can utilize tools such as user interviews, usability tests, market research, or willingness to pay (WTP) experiments to validate most of your doubts.

There’s a thin line between being MVP-focused in development and overusing MVPs as a validation tool.

When to use hypothesis-driven development

As you’ve most likely noticed, a hypothesis-driven development isn’t a multi-tool solution that can be used in every context.

On the contrary, its challenges make it an unsuitable development strategy for many companies.

As a rule of thumb, hypothesis-driven development works best in early-stage products with a high dose of ambiguity. Focusing on hypotheses helps bring enough clarity for the product team to understand where even to focus:

When To Use Hypothesis Driven Development Grid

But once you discover your product-market fit and have a solid idea for your long-term strategy, it’s often better to shift into more outcome-focused development. You should still optimize for learning, but it should no longer be the primary focus of your development effort.

While at it, you might also consider feature-driven development as a next step. However, that works only under particular circumstances where predictability is more important than the impact itself — for example, B2B companies delivering custom solutions for their clients or products focused on compliance.

Hypothesis-driven development can be a powerful learning-maximization tool. Its focus on MVP, continuous learning process, and inherent data-driven approach to decision-making are great tools for reducing uncertainty and discovering a path forward in ambiguous settings.

Honestly, the whole process doesn’t differ much from other development processes. The primary difference is that backlog and priories focus on hypotheses rather than features or outcomes.

Start by listing your assumptions, prioritizing them as you would any other backlog, and working your way top-to-bottom by shipping MVPs and adjusting priorities as you learn more about your market and users.

However, since hypothesis-driven development often lacks long-term cohesiveness, focus, and sustainable product experience, it’s rarely a good long-term approach to product development.

I tend to stick to outcome-driven and feature-driven approaches most of the time and resort to hypothesis-driven development if the ambiguity in a particular area is so hard that it becomes challenging to plan sensibly.

Featured image source: IconScout

LogRocket generates product insights that lead to meaningful action

Get your teams on the same page — try LogRocket today.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • #product strategy

hypothesis product development

Stop guessing about your digital experience with LogRocket

Recent posts:.

Darlene Miranda Leader Spotlight

Leader Spotlight: Linking customer satisfaction metrics to business outcomes, with Darlene Miranda

Darlene Miranda discusses the importance of creating an obvious link between customer experience metrics and the business outcome.

hypothesis product development

A guide to optimizing the digital customer experience

The digital customer experience (DCX) refers to the journey your customers embark on when they interact with your product.

hypothesis product development

Leader Spotlight: Improving product development through documentation, with Mark Francis

Mark Francis discusses the importance of stakeholders across all business groups embracing the need for documentation and transparency.

A Guide To Crafting Your Brand Strategy

A guide to crafting your brand strategy

Brand strategy is one of the most underestimated forces that shapes the trajectory of your products and services.

hypothesis product development

Leave a Reply Cancel reply

  • Work together
  • Product development
  • Ways of working

menu image

Have you read my two bestsellers, Unlearn and Lean Enterprise? If not, please do. If you have, please write a review!

  • Read my story
  • Get in touch

menu image

  • Oval Copy 2 Blog

How to Implement Hypothesis-Driven Development

  • Facebook__x28_alt_x29_ Copy

Remember back to the time when we were in high school science class. Our teachers had a framework for helping us learn – an experimental approach based on the best available evidence at hand. We were asked to make observations about the world around us, then attempt to form an explanation or hypothesis to explain what we had observed. We then tested this hypothesis by predicting an outcome based on our theory that would be achieved in a controlled experiment – if the outcome was achieved, we had proven our theory to be correct.

We could then apply this learning to inform and test other hypotheses by constructing more sophisticated experiments, and tuning, evolving, or abandoning any hypothesis as we made further observations from the results we achieved.

Experimentation is the foundation of the scientific method, which is a systematic means of exploring the world around us. Although some experiments take place in laboratories, it is possible to perform an experiment anywhere, at any time, even in software development.

Practicing Hypothesis-Driven Development [1] is thinking about the development of new ideas, products, and services – even organizational change – as a series of experiments to determine whether an expected outcome will be achieved. The process is iterated upon until a desirable outcome is obtained or the idea is determined to be not viable.

We need to change our mindset to view our proposed solution to a problem statement as a hypothesis, especially in new product or service development – the market we are targeting, how a business model will work, how code will execute and even how the customer will use it.

We do not do projects anymore, only experiments. Customer discovery and Lean Startup strategies are designed to test assumptions about customers. Quality Assurance is testing system behavior against defined specifications. The experimental principle also applies in Test-Driven Development – we write the test first, then use the test to validate that our code is correct, and succeed if the code passes the test. Ultimately, product or service development is a process to test a hypothesis about system behavior in the environment or market it is developed for.

The key outcome of an experimental approach is measurable evidence and learning. Learning is the information we have gained from conducting the experiment. Did what we expect to occur actually happen? If not, what did and how does that inform what we should do next?

In order to learn we need to use the scientific method for investigating phenomena, acquiring new knowledge, and correcting and integrating previous knowledge back into our thinking.

As the software development industry continues to mature, we now have an opportunity to leverage improved capabilities such as Continuous Design and Delivery to maximize our potential to learn quickly what works and what does not. By taking an experimental approach to information discovery, we can more rapidly test our solutions against the problems we have identified in the products or services we are attempting to build. With the goal to optimize our effectiveness of solving the right problems, over simply becoming a feature factory by continually building solutions.

The steps of the scientific method are to:

  • Make observations
  • Formulate a hypothesis
  • Design an experiment to test the hypothesis
  • State the indicators to evaluate if the experiment has succeeded
  • Conduct the experiment
  • Evaluate the results of the experiment
  • Accept or reject the hypothesis
  • If necessary, make and test a new hypothesis

Using an experimentation approach to software development

We need to challenge the concept of having fixed requirements for a product or service. Requirements are valuable when teams execute a well known or understood phase of an initiative and can leverage well-understood practices to achieve the outcome. However, when you are in an exploratory, complex and uncertain phase you need hypotheses. Handing teams a set of business requirements reinforces an order-taking approach and mindset that is flawed. Business does the thinking and ‘knows’ what is right. The purpose of the development team is to implement what they are told. But when operating in an area of uncertainty and complexity, all the members of the development team should be encouraged to think and share insights on the problem and potential solutions. A team simply taking orders from a business owner is not utilizing the full potential, experience and competency that a cross-functional multi-disciplined team offers.

Framing Hypotheses

The traditional user story framework is focused on capturing requirements for what we want to build and for whom, to enable the user to receive a specific benefit from the system.

As A…. <role>

I Want… <goal/desire>

So That… <receive benefit>

Behaviour Driven Development (BDD) and Feature Injection aims to improve the original framework by supporting communication and collaboration between developers, tester and non-technical participants in a software project.

In Order To… <receive benefit>

As A… <role>

When viewing work as an experiment, the traditional story framework is insufficient. As in our high school science experiment, we need to define the steps we will take to achieve the desired outcome. We then need to state the specific indicators (or signals) we expect to observe that provide evidence that our hypothesis is valid. These need to be stated before conducting the test to reduce the bias of interpretation of results.

If we observe signals that indicate our hypothesis is correct, we can be more confident that we are on the right path and can alter the user story framework to reflect this.

Therefore, a user story structure to support Hypothesis-Driven Development would be;

hdd-card

We believe < this capability >

What functionality we will develop to test our hypothesis? By defining a ‘test’ capability of the product or service that we are attempting to build, we identify the functionality and hypothesis we want to test.

Will result in < this outcome >

What is the expected outcome of our experiment? What is the specific result we expect to achieve by building the ‘test’ capability?

We will have confidence to proceed when < we see a measurable signal >

What signals will indicate that the capability we have built is effective? What key metrics (qualitative or quantitative) we will measure to provide evidence that our experiment has succeeded and give us enough confidence to move to the next stage.

The threshold you use for statistical significance will depend on your understanding of the business and context you are operating within. Not every company has the user sample size of Amazon or Google to run statistically significant experiments in a short period of time. Limits and controls need to be defined by your organization to determine acceptable evidence thresholds that will allow the team to advance to the next step.

For example, if you are building a rocket ship you may want your experiments to have a high threshold for statistical significance. If you are deciding between two different flows intended to help increase user sign up you may be happy to tolerate a lower significance threshold.

The final step is to clearly and visibly state any assumptions made about our hypothesis, to create a feedback loop for the team to provide further input, debate, and understanding of the circumstance under which we are performing the test. Are they valid and make sense from a technical and business perspective?

Hypotheses, when aligned to your MVP, can provide a testing mechanism for your product or service vision. They can test the most uncertain areas of your product or service, in order to gain information and improve confidence.

Examples of Hypothesis-Driven Development user stories are;

Business story.

We Believe That increasing the size of hotel images on the booking page Will Result In improved customer engagement and conversion We Will Have Confidence To Proceed When  we see a 5% increase in customers who review hotel images who then proceed to book in 48 hours.

It is imperative to have effective monitoring and evaluation tools in place when using an experimental approach to software development in order to measure the impact of our efforts and provide a feedback loop to the team. Otherwise, we are essentially blind to the outcomes of our efforts.

In agile software development, we define working software as the primary measure of progress. By combining Continuous Delivery and Hypothesis-Driven Development we can now define working software and validated learning as the primary measures of progress.

Ideally, we should not say we are done until we have measured the value of what is being delivered – in other words, gathered data to validate our hypothesis.

Examples of how to gather data is performing A/B Testing to test a hypothesis and measure to change in customer behavior. Alternative testings options can be customer surveys, paper prototypes, user and/or guerilla testing.

One example of a company we have worked with that uses Hypothesis-Driven Development is lastminute.com . The team formulated a hypothesis that customers are only willing to pay a max price for a hotel based on the time of day they book. Tom Klein, CEO and President of Sabre Holdings shared the story  of how they improved conversion by 400% within a week.

Combining practices such as Hypothesis-Driven Development and Continuous Delivery accelerates experimentation and amplifies validated learning. This gives us the opportunity to accelerate the rate at which we innovate while relentlessly reducing costs, leaving our competitors in the dust. Ideally, we can achieve the ideal of one-piece flow: atomic changes that enable us to identify causal relationships between the changes we make to our products and services, and their impact on key metrics.

As Kent Beck said, “Test-Driven Development is a great excuse to think about the problem before you think about the solution”. Hypothesis-Driven Development is a great opportunity to test what you think the problem is before you work on the solution.

We also run a  workshop to help teams implement Hypothesis-Driven Development . Get in touch to run it at your company. 

[1]  Hypothesis-Driven Development  By Jeffrey L. Taylor

More strategy insights

Say hello to venture capital 3.0, negotiation made simple with dr john lowry, how high performance organizations innovate at scale, read my newsletter.

Insights in every edition. News you can use. No spam, ever. Read the latest edition

We've just sent you your first email. Go check it out!

.

  • Explore Insights
  • Nobody Studios
  • LinkedIn Learning: High Performance Organizations

COMMENTS

  1. How to Generate and Validate Product Hypotheses

    What is a product hypothesis? A hypothesis is a testable statement that predicts the relationship between two or more variables. In product development, we generate hypotheses to validate assumptions about customer behavior, market needs, or the potential impact of product changes.

  2. How to create product design hypotheses: a step-by-step guide

    Which brings us to the next step, writing hypotheses. Take all your ideas and turn them into testable hypotheses. Do this by rewriting each idea as a prediction that claims the causes proposed in Step 2 will be overcome, and furthermore that a change will occur to the metrics you outlined in Step 1 (your outcome).

  3. Hypothesis-driven product management

    Yes, hypothesis-driven practices are ideal for building new features. Since the goal is to test the validity of each hypothesis, the uncertainty around the product development process is significantly reduced. In a way, hypothesis testing helps you make better decisions about your product lifecycle management.

  4. Forming Experimental Product Hypotheses

    A hypothesis is a statement made with limited knowledge about a given situation that requires validation to be confirmed as true or false to such a degree where the team can continue their ...

  5. From Theory to Practice: The Role of Hypotheses in Product Development

    In product development, a hypothesis isn't just a guess or an idea; it's a data-driven assumption about how certain changes can achieve desired outcomes. It serves as a map, guiding you through the ocean of user needs and transforming your product into a true gem. ... Let your product development journey be paved with valuable hypotheses and ...

  6. Product Hypothesis

    Guided product development. A product hypothesis serves as a guiding light in the product development process. In the case of PlaceMakers, the product owner's hypothesis that users would benefit from knowing the availability of items upfront before adding them to the basket helped their team focus on the most critical aspects of the product ...

  7. What is hypothesis-driven development?

    Challenges of hypothesis-driven development. Although hypothesis-driven development comes with great benefits, it's not all wine and roses. Let's take a look at a few core challenges that come with a hypothesis-focused approach. Lack of robust product experience. Focusing on validating hypotheses and underlying MVP mindset comes at a cost.

  8. Data-Driven Product Development: Leveraging Hypotheses for Informed

    These hypotheses aid us in identifying product-market fit and enhancing the user experience, and also: Decrease potential risks and uncertainties. Streamline decision-making by reducing biases and guesswork. Emphasize the principle of continuous learning and development, which is highly valued.

  9. Product development through hypotheses: formulating hypotheses

    For the development of new products, features and services as well as the development of start-ups, we at etventure rely on a hypothesis-driven method that is strongly oriented towards the "Lean Startup" 1 philosophy. Having already revealed our remedy for successful product development last week, we now want to take a closer look at the first step of an experiment - the formulation of ...

  10. How to Pick a Product Hypothesis

    Key Takeaways: You need a hypothesis because it clearly defines a change you want to make and the impact you expect to have on your product. A good hypothesis can be proven false, validated with ...

  11. How to Implement Hypothesis-Driven Development

    The experimental principle also applies in Test-Driven Development - we write the test first, then use the test to validate that our code is correct, and succeed if the code passes the test. Ultimately, product or service development is a process to test a hypothesis about system behaviour in the environment or market it is developed for.

  12. The 6 Steps that We Use for Hypothesis-Driven Development

    Hypothesis-driven development is a prototype methodology that allows product designers to develop, test, and rebuild a product until it's acceptable by the users. It is an iterative measure that explores assumptions defined during the project and attempts to validate it with users' feedbacks.

  13. How to Implement Hypothesis-Driven Development

    The experimental principle also applies in Test-Driven Development - we write the test first, then use the test to validate that our code is correct, and succeed if the code passes the test. Ultimately, product or service development is a process to test a hypothesis about system behavior in the environment or market it is developed for.

  14. Guide for Hypothesis-Driven Development: How to Form a List of

    How to Test the Hypothesis of Product Demand and Value Without Development. ... The hypothesis-driven development management cycle begins with formulating a hypothesis according to the "if" and "then" principles. In the second stage, it is necessary to carry out several works to launch the experiment (Action), then collect data for a ...

  15. Hypothesis-driven development: Definition, why and implementation

    Hypothesis-driven development emphasizes a data-driven and iterative approach to product development, allowing teams to make more informed decisions, validate assumptions, and ultimately deliver products that better meet user needs. Hypothesis-driven development (HDD) is an approach used in software development and product management.

  16. How to test hypotheses as a product manager

    Simple product development hypothesis testing using a Z-test. There are a few statistical hypothesis tests we could implement. A common one is a Z-Test. It allows us to take and test data samples and check if the observed differences deviate from what we would expect given the hypothesis. Let's look at an example:

  17. A Guide to Product Hypothesis Testing

    A/B Testing. One of the most common use cases to achieve hypothesis validation is randomized A/B testing, in which a change or feature is released at random to one-half of users (A) and withheld from the other half (B). Returning to the hypothesis of bigger product images improving conversion on Amazon, one-half of users will be shown the ...

  18. Hypothesis-Driven Development

    Hypothesis-Driven Development (HDD) is a software development approach rooted in the philosophy of systematically formulating and testing hypotheses to drive decision-making and improvements in a product or system. At its core, HDD seeks to align development efforts with the goal of discovering what resonates with users.

  19. Practicing Hypothesis-Driven Development in Azure DevOps

    Hypothesis-Driven Development. Hypothesis-Driven Development (HDD) is a complementary practice that incorporates an experimentation-based approach to product development. With HDD, each Product Backlog item (e.g. feature or user story) begins with a clearly defined hypothesis that predicts how this new capability will impact user behavior or ...

  20. Hypothesis Driven Product Management

    Richard P. Feynman. Lean hypothesis testing is an approach to agile product development that's designed to minimize risk, increase the speed of development, and hone business outcomes by building and iterating on a minimum viable product (MVP). The minimum viable product is a concept famously championed by Eric Ries as part of the lean ...

  21. Tips to Create and Test a Value Hypothesis: A Step-by-Step Guide

    Developing a robust value hypothesis is crucial as you bring a new product to market, guiding your startup toward answering a genuine market need. Constructing a verifiable value hypothesis anchors your product's development process in customer feedback and data-driven insight rather than assumptions. This framework enables you to clarify the

  22. Theory of New Product Development and Its Applications

    Figure 1. Components of marketing mix. According to Fojt [], the general view about new product development (NPD) is that it brings considerable profits to the businesses if new product is introduced to the market at the right time, is priced at the suitable amount and targets suitable customer group.Accuracy of this view was questioned by Fojt [], and it was stated that NPD can result in new ...

  23. How To Present Hypothesis Testing Results To Clients

    In the realm of technical product development, hypothesis testing acts as a bridge between design, data and decision-making. ... It is a critical omnichannel or product development step that is ...

  24. CSWP 33, Product Development Cybersecurity Handbook: Concepts and

    As interest in Internet of Things (IoT) technologies has grown, so have concerns and attention to cybersecurity of the newly network-connected products and services offered in many sectors, including energy services, water/waste-water services, automobiles, consumer electronics, and government. This Product Development Cybersecurity Handbook will describe concepts important to developing and ...

  25. Novartis to cut 680 jobs in product development

    ZURICH, April 9 (Reuters) - Novartis (NOVN.S) is to cut up to 680 jobs in its development organisation, which helps bring its drugs to market, the Swiss pharmaceuticals company said on Tuesday ...

  26. Protocase Reimagines One-Stop Product Development

    Protomentum launch. Today, Protocase just announced the official arrival of Protomentum, a new division of Protocase that revolutionizes product development for entrepreneurs, innovators and ...

  27. Android Studio uses Gemini Pro to make Android development faster and

    Posted by Sandhya Mohan - Product Manager, Android Studio. As part of the next chapter of our Gemini era, we announced we were bringing Gemini to more products.Today we're excited to announce that Android Studio is using the Gemini 1.0 Pro model to make Android development faster and easier, and we've seen significant improvements in response quality over the last several months through ...