• Search Search Please fill out this field.
  • Fundamental Analysis

Hypothesis to Be Tested: Definition and 4 Steps for Testing with Example

meaning test of hypothesis

What Is Hypothesis Testing?

Hypothesis testing, sometimes called significance testing, is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used and the reason for the analysis.

Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data. Such data may come from a larger population, or from a data-generating process. The word "population" will be used for both of these cases in the following descriptions.

Key Takeaways

  • Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data.
  • The test provides evidence concerning the plausibility of the hypothesis, given the data.
  • Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed.
  • The four steps of hypothesis testing include stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

How Hypothesis Testing Works

In hypothesis testing, an  analyst  tests a statistical sample, with the goal of providing evidence on the plausibility of the null hypothesis.

Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed. All analysts use a random population sample to test two different hypotheses: the null hypothesis and the alternative hypothesis.

The null hypothesis is usually a hypothesis of equality between population parameters; e.g., a null hypothesis may state that the population mean return is equal to zero. The alternative hypothesis is effectively the opposite of a null hypothesis (e.g., the population mean return is not equal to zero). Thus, they are mutually exclusive , and only one can be true. However, one of the two hypotheses will always be true.

The null hypothesis is a statement about a population parameter, such as the population mean, that is assumed to be true.

4 Steps of Hypothesis Testing

All hypotheses are tested using a four-step process:

  • The first step is for the analyst to state the hypotheses.
  • The second step is to formulate an analysis plan, which outlines how the data will be evaluated.
  • The third step is to carry out the plan and analyze the sample data.
  • The final step is to analyze the results and either reject the null hypothesis, or state that the null hypothesis is plausible, given the data.

Real-World Example of Hypothesis Testing

If, for example, a person wants to test that a penny has exactly a 50% chance of landing on heads, the null hypothesis would be that 50% is correct, and the alternative hypothesis would be that 50% is not correct.

Mathematically, the null hypothesis would be represented as Ho: P = 0.5. The alternative hypothesis would be denoted as "Ha" and be identical to the null hypothesis, except with the equal sign struck-through, meaning that it does not equal 50%.

A random sample of 100 coin flips is taken, and the null hypothesis is then tested. If it is found that the 100 coin flips were distributed as 40 heads and 60 tails, the analyst would assume that a penny does not have a 50% chance of landing on heads and would reject the null hypothesis and accept the alternative hypothesis.

If, on the other hand, there were 48 heads and 52 tails, then it is plausible that the coin could be fair and still produce such a result. In cases such as this where the null hypothesis is "accepted," the analyst states that the difference between the expected results (50 heads and 50 tails) and the observed results (48 heads and 52 tails) is "explainable by chance alone."

Some staticians attribute the first hypothesis tests to satirical writer John Arbuthnot in 1710, who studied male and female births in England after observing that in nearly every year, male births exceeded female births by a slight proportion. Arbuthnot calculated that the probability of this happening by chance was small, and therefore it was due to “divine providence.”

What is Hypothesis Testing?

Hypothesis testing refers to a process used by analysts to assess the plausibility of a hypothesis by using sample data. In hypothesis testing, statisticians formulate two hypotheses: the null hypothesis and the alternative hypothesis. A null hypothesis determines there is no difference between two groups or conditions, while the alternative hypothesis determines that there is a difference. Researchers evaluate the statistical significance of the test based on the probability that the null hypothesis is true.

What are the Four Key Steps Involved in Hypothesis Testing?

Hypothesis testing begins with an analyst stating two hypotheses, with only one that can be right. The analyst then formulates an analysis plan, which outlines how the data will be evaluated. Next, they move to the testing phase and analyze the sample data. Finally, the analyst analyzes the results and either rejects the null hypothesis or states that the null hypothesis is plausible, given the data.

What are the Benefits of Hypothesis Testing?

Hypothesis testing helps assess the accuracy of new ideas or theories by testing them against data. This allows researchers to determine whether the evidence supports their hypothesis, helping to avoid false claims and conclusions. Hypothesis testing also provides a framework for decision-making based on data rather than personal opinions or biases. By relying on statistical analysis, hypothesis testing helps to reduce the effects of chance and confounding variables, providing a robust framework for making informed conclusions.

What are the Limitations of Hypothesis Testing?

Hypothesis testing relies exclusively on data and doesn’t provide a comprehensive understanding of the subject being studied. Additionally, the accuracy of the results depends on the quality of the available data and the statistical methods used. Inaccurate data or inappropriate hypothesis formulation may lead to incorrect conclusions or failed tests. Hypothesis testing can also lead to errors, such as analysts either accepting or rejecting a null hypothesis when they shouldn’t have. These errors may result in false conclusions or missed opportunities to identify significant patterns or relationships in the data.

The Bottom Line

Hypothesis testing refers to a statistical process that helps researchers and/or analysts determine the reliability of a study. By using a well-formulated hypothesis and set of statistical tests, individuals or businesses can make inferences about the population that they are studying and draw conclusions based on the data presented. There are different types of hypothesis testing, each with their own set of rules and procedures. However, all hypothesis testing methods have the same four step process, which includes stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result. Hypothesis testing plays a vital part of the scientific process, helping to test assumptions and make better data-based decisions.

Sage. " Introduction to Hypothesis Testing. " Page 4.

Elder Research. " Who Invented the Null Hypothesis? "

Formplus. " Hypothesis Testing: Definition, Uses, Limitations and Examples. "

meaning test of hypothesis

  • Terms of Service
  • Editorial Policy
  • Privacy Policy
  • Your Privacy Choices

Statology

Statistics Made Easy

Introduction to Hypothesis Testing

A statistical hypothesis is an assumption about a population parameter .

For example, we may assume that the mean height of a male in the U.S. is 70 inches.

The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter .

A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical hypothesis.

The Two Types of Statistical Hypotheses

To test whether a statistical hypothesis about a population parameter is true, we obtain a random sample from the population and perform a hypothesis test on the sample data.

There are two types of statistical hypotheses:

The null hypothesis , denoted as H 0 , is the hypothesis that the sample data occurs purely from chance.

The alternative hypothesis , denoted as H 1 or H a , is the hypothesis that the sample data is influenced by some non-random cause.

Hypothesis Tests

A hypothesis test consists of five steps:

1. State the hypotheses. 

State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false.

2. Determine a significance level to use for the hypothesis.

Decide on a significance level. Common choices are .01, .05, and .1. 

3. Find the test statistic.

Find the test statistic and the corresponding p-value. Often we are analyzing a population mean or proportion and the general formula to find the test statistic is: (sample statistic – population parameter) / (standard deviation of statistic)

4. Reject or fail to reject the null hypothesis.

Using the test statistic or the p-value, determine if you can reject or fail to reject the null hypothesis based on the significance level.

The p-value  tells us the strength of evidence in support of a null hypothesis. If the p-value is less than the significance level, we reject the null hypothesis.

5. Interpret the results. 

Interpret the results of the hypothesis test in the context of the question being asked. 

The Two Types of Decision Errors

There are two types of decision errors that one can make when doing a hypothesis test:

Type I error: You reject the null hypothesis when it is actually true. The probability of committing a Type I error is equal to the significance level, often called  alpha , and denoted as α.

Type II error: You fail to reject the null hypothesis when it is actually false. The probability of committing a Type II error is called the Power of the test or  Beta , denoted as β.

One-Tailed and Two-Tailed Tests

A statistical hypothesis can be one-tailed or two-tailed.

A one-tailed hypothesis involves making a “greater than” or “less than ” statement.

For example, suppose we assume the mean height of a male in the U.S. is greater than or equal to 70 inches. The null hypothesis would be H0: µ ≥ 70 inches and the alternative hypothesis would be Ha: µ < 70 inches.

A two-tailed hypothesis involves making an “equal to” or “not equal to” statement.

For example, suppose we assume the mean height of a male in the U.S. is equal to 70 inches. The null hypothesis would be H0: µ = 70 inches and the alternative hypothesis would be Ha: µ ≠ 70 inches.

Note: The “equal” sign is always included in the null hypothesis, whether it is =, ≥, or ≤.

Related:   What is a Directional Hypothesis?

Types of Hypothesis Tests

There are many different types of hypothesis tests you can perform depending on the type of data you’re working with and the goal of your analysis.

The following tutorials provide an explanation of the most common types of hypothesis tests:

Introduction to the One Sample t-test Introduction to the Two Sample t-test Introduction to the Paired Samples t-test Introduction to the One Proportion Z-Test Introduction to the Two Proportion Z-Test

' src=

Published by Zach

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Tutorial Playlist

Statistics tutorial, everything you need to know about the probability density function in statistics, the best guide to understand central limit theorem, an in-depth guide to measures of central tendency : mean, median and mode, the ultimate guide to understand conditional probability.

A Comprehensive Look at Percentile in Statistics

The Best Guide to Understand Bayes Theorem

Everything you need to know about the normal distribution, an in-depth explanation of cumulative distribution function, a complete guide to chi-square test, a complete guide on hypothesis testing in statistics, understanding the fundamentals of arithmetic and geometric progression, the definitive guide to understand spearman’s rank correlation, a comprehensive guide to understand mean squared error, all you need to know about the empirical rule in statistics, the complete guide to skewness and kurtosis, a holistic look at bernoulli distribution.

All You Need to Know About Bias in Statistics

A Complete Guide to Get a Grasp of Time Series Analysis

The Key Differences Between Z-Test Vs. T-Test

The Complete Guide to Understand Pearson's Correlation

A complete guide on the types of statistical studies, everything you need to know about poisson distribution, your best guide to understand correlation vs. regression, the most comprehensive guide for beginners on what is correlation, what is hypothesis testing in statistics types and examples.

Lesson 10 of 24 By Avijeet Biswal

A Complete Guide on Hypothesis Testing in Statistics

Table of Contents

In today’s data-driven world , decisions are based on data all the time. Hypothesis plays a crucial role in that process, whether it may be making business decisions, in the health sector, academia, or in quality improvement. Without hypothesis & hypothesis tests, you risk drawing the wrong conclusions and making bad decisions. In this tutorial, you will look at Hypothesis Testing in Statistics.

What Is Hypothesis Testing in Statistics?

Hypothesis Testing is a type of statistical analysis in which you put your assumptions about a population parameter to the test. It is used to estimate the relationship between 2 statistical variables.

Let's discuss few examples of statistical hypothesis from real-life - 

  • A teacher assumes that 60% of his college's students come from lower-middle-class families.
  • A doctor believes that 3D (Diet, Dose, and Discipline) is 90% effective for diabetic patients.

Now that you know about hypothesis testing, look at the two types of hypothesis testing in statistics.

Hypothesis Testing Formula

Z = ( x̅ – μ0 ) / (σ /√n)

  • Here, x̅ is the sample mean,
  • μ0 is the population mean,
  • σ is the standard deviation,
  • n is the sample size.

How Hypothesis Testing Works?

An analyst performs hypothesis testing on a statistical sample to present evidence of the plausibility of the null hypothesis. Measurements and analyses are conducted on a random sample of the population to test a theory. Analysts use a random population sample to test two hypotheses: the null and alternative hypotheses.

The null hypothesis is typically an equality hypothesis between population parameters; for example, a null hypothesis may claim that the population means return equals zero. The alternate hypothesis is essentially the inverse of the null hypothesis (e.g., the population means the return is not equal to zero). As a result, they are mutually exclusive, and only one can be correct. One of the two possibilities, however, will always be correct.

Your Dream Career is Just Around The Corner!

Your Dream Career is Just Around The Corner!

Null Hypothesis and Alternate Hypothesis

The Null Hypothesis is the assumption that the event will not occur. A null hypothesis has no bearing on the study's outcome unless it is rejected.

H0 is the symbol for it, and it is pronounced H-naught.

The Alternate Hypothesis is the logical opposite of the null hypothesis. The acceptance of the alternative hypothesis follows the rejection of the null hypothesis. H1 is the symbol for it.

Let's understand this with an example.

A sanitizer manufacturer claims that its product kills 95 percent of germs on average. 

To put this company's claim to the test, create a null and alternate hypothesis.

H0 (Null Hypothesis): Average = 95%.

Alternative Hypothesis (H1): The average is less than 95%.

Another straightforward example to understand this concept is determining whether or not a coin is fair and balanced. The null hypothesis states that the probability of a show of heads is equal to the likelihood of a show of tails. In contrast, the alternate theory states that the probability of a show of heads and tails would be very different.

Become a Data Scientist with Hands-on Training!

Become a Data Scientist with Hands-on Training!

Hypothesis Testing Calculation With Examples

Let's consider a hypothesis test for the average height of women in the United States. Suppose our null hypothesis is that the average height is 5'4". We gather a sample of 100 women and determine that their average height is 5'5". The standard deviation of population is 2.

To calculate the z-score, we would use the following formula:

z = ( x̅ – μ0 ) / (σ /√n)

z = (5'5" - 5'4") / (2" / √100)

z = 0.5 / (0.045)

 We will reject the null hypothesis as the z-score of 11.11 is very large and conclude that there is evidence to suggest that the average height of women in the US is greater than 5'4".

Steps of Hypothesis Testing

Step 1: specify your null and alternate hypotheses.

It is critical to rephrase your original research hypothesis (the prediction that you wish to study) as a null (Ho) and alternative (Ha) hypothesis so that you can test it quantitatively. Your first hypothesis, which predicts a link between variables, is generally your alternate hypothesis. The null hypothesis predicts no link between the variables of interest.

Step 2: Gather Data

For a statistical test to be legitimate, sampling and data collection must be done in a way that is meant to test your hypothesis. You cannot draw statistical conclusions about the population you are interested in if your data is not representative.

Step 3: Conduct a Statistical Test

Other statistical tests are available, but they all compare within-group variance (how to spread out the data inside a category) against between-group variance (how different the categories are from one another). If the between-group variation is big enough that there is little or no overlap between groups, your statistical test will display a low p-value to represent this. This suggests that the disparities between these groups are unlikely to have occurred by accident. Alternatively, if there is a large within-group variance and a low between-group variance, your statistical test will show a high p-value. Any difference you find across groups is most likely attributable to chance. The variety of variables and the level of measurement of your obtained data will influence your statistical test selection.

Step 4: Determine Rejection Of Your Null Hypothesis

Your statistical test results must determine whether your null hypothesis should be rejected or not. In most circumstances, you will base your judgment on the p-value provided by the statistical test. In most circumstances, your preset level of significance for rejecting the null hypothesis will be 0.05 - that is, when there is less than a 5% likelihood that these data would be seen if the null hypothesis were true. In other circumstances, researchers use a lower level of significance, such as 0.01 (1%). This reduces the possibility of wrongly rejecting the null hypothesis.

Step 5: Present Your Results 

The findings of hypothesis testing will be discussed in the results and discussion portions of your research paper, dissertation, or thesis. You should include a concise overview of the data and a summary of the findings of your statistical test in the results section. You can talk about whether your results confirmed your initial hypothesis or not in the conversation. Rejecting or failing to reject the null hypothesis is a formal term used in hypothesis testing. This is likely a must for your statistics assignments.

Types of Hypothesis Testing

To determine whether a discovery or relationship is statistically significant, hypothesis testing uses a z-test. It usually checks to see if two means are the same (the null hypothesis). Only when the population standard deviation is known and the sample size is 30 data points or more, can a z-test be applied.

A statistical test called a t-test is employed to compare the means of two groups. To determine whether two groups differ or if a procedure or treatment affects the population of interest, it is frequently used in hypothesis testing.

Chi-Square 

You utilize a Chi-square test for hypothesis testing concerning whether your data is as predicted. To determine if the expected and observed results are well-fitted, the Chi-square test analyzes the differences between categorical variables from a random sample. The test's fundamental premise is that the observed values in your data should be compared to the predicted values that would be present if the null hypothesis were true.

Hypothesis Testing and Confidence Intervals

Both confidence intervals and hypothesis tests are inferential techniques that depend on approximating the sample distribution. Data from a sample is used to estimate a population parameter using confidence intervals. Data from a sample is used in hypothesis testing to examine a given hypothesis. We must have a postulated parameter to conduct hypothesis testing.

Bootstrap distributions and randomization distributions are created using comparable simulation techniques. The observed sample statistic is the focal point of a bootstrap distribution, whereas the null hypothesis value is the focal point of a randomization distribution.

A variety of feasible population parameter estimates are included in confidence ranges. In this lesson, we created just two-tailed confidence intervals. There is a direct connection between these two-tail confidence intervals and these two-tail hypothesis tests. The results of a two-tailed hypothesis test and two-tailed confidence intervals typically provide the same results. In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

Simple and Composite Hypothesis Testing

Depending on the population distribution, you can classify the statistical hypothesis into two types.

Simple Hypothesis: A simple hypothesis specifies an exact value for the parameter.

Composite Hypothesis: A composite hypothesis specifies a range of values.

A company is claiming that their average sales for this quarter are 1000 units. This is an example of a simple hypothesis.

Suppose the company claims that the sales are in the range of 900 to 1000 units. Then this is a case of a composite hypothesis.

One-Tailed and Two-Tailed Hypothesis Testing

The One-Tailed test, also called a directional test, considers a critical region of data that would result in the null hypothesis being rejected if the test sample falls into it, inevitably meaning the acceptance of the alternate hypothesis.

In a one-tailed test, the critical distribution area is one-sided, meaning the test sample is either greater or lesser than a specific value.

In two tails, the test sample is checked to be greater or less than a range of values in a Two-Tailed test, implying that the critical distribution area is two-sided.

If the sample falls within this range, the alternate hypothesis will be accepted, and the null hypothesis will be rejected.

Become a Data Scientist With Real-World Experience

Become a Data Scientist With Real-World Experience

Right Tailed Hypothesis Testing

If the larger than (>) sign appears in your hypothesis statement, you are using a right-tailed test, also known as an upper test. Or, to put it another way, the disparity is to the right. For instance, you can contrast the battery life before and after a change in production. Your hypothesis statements can be the following if you want to know if the battery life is longer than the original (let's say 90 hours):

  • The null hypothesis is (H0 <= 90) or less change.
  • A possibility is that battery life has risen (H1) > 90.

The crucial point in this situation is that the alternate hypothesis (H1), not the null hypothesis, decides whether you get a right-tailed test.

Left Tailed Hypothesis Testing

Alternative hypotheses that assert the true value of a parameter is lower than the null hypothesis are tested with a left-tailed test; they are indicated by the asterisk "<".

Suppose H0: mean = 50 and H1: mean not equal to 50

According to the H1, the mean can be greater than or less than 50. This is an example of a Two-tailed test.

In a similar manner, if H0: mean >=50, then H1: mean <50

Here the mean is less than 50. It is called a One-tailed test.

Type 1 and Type 2 Error

A hypothesis test can result in two types of errors.

Type 1 Error: A Type-I error occurs when sample results reject the null hypothesis despite being true.

Type 2 Error: A Type-II error occurs when the null hypothesis is not rejected when it is false, unlike a Type-I error.

Suppose a teacher evaluates the examination paper to decide whether a student passes or fails.

H0: Student has passed

H1: Student has failed

Type I error will be the teacher failing the student [rejects H0] although the student scored the passing marks [H0 was true]. 

Type II error will be the case where the teacher passes the student [do not reject H0] although the student did not score the passing marks [H1 is true].

Level of Significance

The alpha value is a criterion for determining whether a test statistic is statistically significant. In a statistical test, Alpha represents an acceptable probability of a Type I error. Because alpha is a probability, it can be anywhere between 0 and 1. In practice, the most commonly used alpha values are 0.01, 0.05, and 0.1, which represent a 1%, 5%, and 10% chance of a Type I error, respectively (i.e. rejecting the null hypothesis when it is in fact correct).

Future-Proof Your AI/ML Career: Top Dos and Don'ts

Future-Proof Your AI/ML Career: Top Dos and Don'ts

A p-value is a metric that expresses the likelihood that an observed difference could have occurred by chance. As the p-value decreases the statistical significance of the observed difference increases. If the p-value is too low, you reject the null hypothesis.

Here you have taken an example in which you are trying to test whether the new advertising campaign has increased the product's sales. The p-value is the likelihood that the null hypothesis, which states that there is no change in the sales due to the new advertising campaign, is true. If the p-value is .30, then there is a 30% chance that there is no increase or decrease in the product's sales.  If the p-value is 0.03, then there is a 3% probability that there is no increase or decrease in the sales value due to the new advertising campaign. As you can see, the lower the p-value, the chances of the alternate hypothesis being true increases, which means that the new advertising campaign causes an increase or decrease in sales.

Why is Hypothesis Testing Important in Research Methodology?

Hypothesis testing is crucial in research methodology for several reasons:

  • Provides evidence-based conclusions: It allows researchers to make objective conclusions based on empirical data, providing evidence to support or refute their research hypotheses.
  • Supports decision-making: It helps make informed decisions, such as accepting or rejecting a new treatment, implementing policy changes, or adopting new practices.
  • Adds rigor and validity: It adds scientific rigor to research using statistical methods to analyze data, ensuring that conclusions are based on sound statistical evidence.
  • Contributes to the advancement of knowledge: By testing hypotheses, researchers contribute to the growth of knowledge in their respective fields by confirming existing theories or discovering new patterns and relationships.

Limitations of Hypothesis Testing

Hypothesis testing has some limitations that researchers should be aware of:

  • It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question.
  • Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.
  • Possible errors: During hypothesis testing, there is a chance of committing type I error (rejecting a true null hypothesis) or type II error (failing to reject a false null hypothesis).
  • Assumptions and requirements: Different tests have specific assumptions and requirements that must be met to accurately interpret results.

After reading this tutorial, you would have a much better understanding of hypothesis testing, one of the most important concepts in the field of Data Science . The majority of hypotheses are based on speculation about observed behavior, natural phenomena, or established theories.

If you are interested in statistics of data science and skills needed for such a career, you ought to explore Simplilearn’s Post Graduate Program in Data Science.

If you have any questions regarding this ‘Hypothesis Testing In Statistics’ tutorial, do share them in the comment section. Our subject matter expert will respond to your queries. Happy learning!

1. What is hypothesis testing in statistics with example?

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. An example: testing if a new drug improves patient recovery (Ha) compared to the standard treatment (H0) based on collected patient data.

2. What is hypothesis testing and its types?

Hypothesis testing is a statistical method used to make inferences about a population based on sample data. It involves formulating two hypotheses: the null hypothesis (H0), which represents the default assumption, and the alternative hypothesis (Ha), which contradicts H0. The goal is to assess the evidence and determine whether there is enough statistical significance to reject the null hypothesis in favor of the alternative hypothesis.

Types of hypothesis testing:

  • One-sample test: Used to compare a sample to a known value or a hypothesized value.
  • Two-sample test: Compares two independent samples to assess if there is a significant difference between their means or distributions.
  • Paired-sample test: Compares two related samples, such as pre-test and post-test data, to evaluate changes within the same subjects over time or under different conditions.
  • Chi-square test: Used to analyze categorical data and determine if there is a significant association between variables.
  • ANOVA (Analysis of Variance): Compares means across multiple groups to check if there is a significant difference between them.

3. What are the steps of hypothesis testing?

The steps of hypothesis testing are as follows:

  • Formulate the hypotheses: State the null hypothesis (H0) and the alternative hypothesis (Ha) based on the research question.
  • Set the significance level: Determine the acceptable level of error (alpha) for making a decision.
  • Collect and analyze data: Gather and process the sample data.
  • Compute test statistic: Calculate the appropriate statistical test to assess the evidence.
  • Make a decision: Compare the test statistic with critical values or p-values and determine whether to reject H0 in favor of Ha or not.
  • Draw conclusions: Interpret the results and communicate the findings in the context of the research question.

4. What are the 2 types of hypothesis testing?

  • One-tailed (or one-sided) test: Tests for the significance of an effect in only one direction, either positive or negative.
  • Two-tailed (or two-sided) test: Tests for the significance of an effect in both directions, allowing for the possibility of a positive or negative effect.

The choice between one-tailed and two-tailed tests depends on the specific research question and the directionality of the expected effect.

5. What are the 3 major types of hypothesis?

The three major types of hypotheses are:

  • Null Hypothesis (H0): Represents the default assumption, stating that there is no significant effect or relationship in the data.
  • Alternative Hypothesis (Ha): Contradicts the null hypothesis and proposes a specific effect or relationship that researchers want to investigate.
  • Nondirectional Hypothesis: An alternative hypothesis that doesn't specify the direction of the effect, leaving it open for both positive and negative possibilities.

Find our Data Analyst Online Bootcamp in top cities:

About the author.

Avijeet Biswal

Avijeet is a Senior Research Analyst at Simplilearn. Passionate about Data Analytics, Machine Learning, and Deep Learning, Avijeet is also interested in politics, cricket, and football.

Recommended Resources

The Key Differences Between Z-Test Vs. T-Test

Free eBook: Top Programming Languages For A Data Scientist

Normality Test in Minitab: Minitab with Statistics

Normality Test in Minitab: Minitab with Statistics

A Comprehensive Look at Percentile in Statistics

Machine Learning Career Guide: A Playbook to Becoming a Machine Learning Engineer

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

Hypothesis Testing

Hypothesis testing is a tool for making statistical inferences about the population data. It is an analysis tool that tests assumptions and determines how likely something is within a given standard of accuracy. Hypothesis testing provides a way to verify whether the results of an experiment are valid.

A null hypothesis and an alternative hypothesis are set up before performing the hypothesis testing. This helps to arrive at a conclusion regarding the sample obtained from the population. In this article, we will learn more about hypothesis testing, its types, steps to perform the testing, and associated examples.

What is Hypothesis Testing in Statistics?

Hypothesis testing uses sample data from the population to draw useful conclusions regarding the population probability distribution . It tests an assumption made about the data using different types of hypothesis testing methodologies. The hypothesis testing results in either rejecting or not rejecting the null hypothesis.

Hypothesis Testing Definition

Hypothesis testing can be defined as a statistical tool that is used to identify if the results of an experiment are meaningful or not. It involves setting up a null hypothesis and an alternative hypothesis. These two hypotheses will always be mutually exclusive. This means that if the null hypothesis is true then the alternative hypothesis is false and vice versa. An example of hypothesis testing is setting up a test to check if a new medicine works on a disease in a more efficient manner.

Null Hypothesis

The null hypothesis is a concise mathematical statement that is used to indicate that there is no difference between two possibilities. In other words, there is no difference between certain characteristics of data. This hypothesis assumes that the outcomes of an experiment are based on chance alone. It is denoted as \(H_{0}\). Hypothesis testing is used to conclude if the null hypothesis can be rejected or not. Suppose an experiment is conducted to check if girls are shorter than boys at the age of 5. The null hypothesis will say that they are the same height.

Alternative Hypothesis

The alternative hypothesis is an alternative to the null hypothesis. It is used to show that the observations of an experiment are due to some real effect. It indicates that there is a statistical significance between two possible outcomes and can be denoted as \(H_{1}\) or \(H_{a}\). For the above-mentioned example, the alternative hypothesis would be that girls are shorter than boys at the age of 5.

Hypothesis Testing P Value

In hypothesis testing, the p value is used to indicate whether the results obtained after conducting a test are statistically significant or not. It also indicates the probability of making an error in rejecting or not rejecting the null hypothesis.This value is always a number between 0 and 1. The p value is compared to an alpha level, \(\alpha\) or significance level. The alpha level can be defined as the acceptable risk of incorrectly rejecting the null hypothesis. The alpha level is usually chosen between 1% to 5%.

Hypothesis Testing Critical region

All sets of values that lead to rejecting the null hypothesis lie in the critical region. Furthermore, the value that separates the critical region from the non-critical region is known as the critical value.

Hypothesis Testing Formula

Depending upon the type of data available and the size, different types of hypothesis testing are used to determine whether the null hypothesis can be rejected or not. The hypothesis testing formula for some important test statistics are given below:

  • z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\). \(\overline{x}\) is the sample mean, \(\mu\) is the population mean, \(\sigma\) is the population standard deviation and n is the size of the sample.
  • t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\). s is the sample standard deviation.
  • \(\chi ^{2} = \sum \frac{(O_{i}-E_{i})^{2}}{E_{i}}\). \(O_{i}\) is the observed value and \(E_{i}\) is the expected value.

We will learn more about these test statistics in the upcoming section.

Types of Hypothesis Testing

Selecting the correct test for performing hypothesis testing can be confusing. These tests are used to determine a test statistic on the basis of which the null hypothesis can either be rejected or not rejected. Some of the important tests used for hypothesis testing are given below.

Hypothesis Testing Z Test

A z test is a way of hypothesis testing that is used for a large sample size (n ≥ 30). It is used to determine whether there is a difference between the population mean and the sample mean when the population standard deviation is known. It can also be used to compare the mean of two samples. It is used to compute the z test statistic. The formulas are given as follows:

  • One sample: z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).
  • Two samples: z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing t Test

The t test is another method of hypothesis testing that is used for a small sample size (n < 30). It is also used to compare the sample mean and population mean. However, the population standard deviation is not known. Instead, the sample standard deviation is known. The mean of two samples can also be compared using the t test.

  • One sample: t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\).
  • Two samples: t = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing Chi Square

The Chi square test is a hypothesis testing method that is used to check whether the variables in a population are independent or not. It is used when the test statistic is chi-squared distributed.

One Tailed Hypothesis Testing

One tailed hypothesis testing is done when the rejection region is only in one direction. It can also be known as directional hypothesis testing because the effects can be tested in one direction only. This type of testing is further classified into the right tailed test and left tailed test.

Right Tailed Hypothesis Testing

The right tail test is also known as the upper tail test. This test is used to check whether the population parameter is greater than some value. The null and alternative hypotheses for this test are given as follows:

\(H_{0}\): The population parameter is ≤ some value

\(H_{1}\): The population parameter is > some value.

If the test statistic has a greater value than the critical value then the null hypothesis is rejected

Right Tail Hypothesis Testing

Left Tailed Hypothesis Testing

The left tail test is also known as the lower tail test. It is used to check whether the population parameter is less than some value. The hypotheses for this hypothesis testing can be written as follows:

\(H_{0}\): The population parameter is ≥ some value

\(H_{1}\): The population parameter is < some value.

The null hypothesis is rejected if the test statistic has a value lesser than the critical value.

Left Tail Hypothesis Testing

Two Tailed Hypothesis Testing

In this hypothesis testing method, the critical region lies on both sides of the sampling distribution. It is also known as a non - directional hypothesis testing method. The two-tailed test is used when it needs to be determined if the population parameter is assumed to be different than some value. The hypotheses can be set up as follows:

\(H_{0}\): the population parameter = some value

\(H_{1}\): the population parameter ≠ some value

The null hypothesis is rejected if the test statistic has a value that is not equal to the critical value.

Two Tail Hypothesis Testing

Hypothesis Testing Steps

Hypothesis testing can be easily performed in five simple steps. The most important step is to correctly set up the hypotheses and identify the right method for hypothesis testing. The basic steps to perform hypothesis testing are as follows:

  • Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing.
  • Step 2: Set up the alternative hypothesis.
  • Step 3: Choose the correct significance level, \(\alpha\), and find the critical value.
  • Step 4: Calculate the correct test statistic (z, t or \(\chi\)) and p-value.
  • Step 5: Compare the test statistic with the critical value or compare the p-value with \(\alpha\) to arrive at a conclusion. In other words, decide if the null hypothesis is to be rejected or not.

Hypothesis Testing Example

The best way to solve a problem on hypothesis testing is by applying the 5 steps mentioned in the previous section. Suppose a researcher claims that the mean average weight of men is greater than 100kgs with a standard deviation of 15kgs. 30 men are chosen with an average weight of 112.5 Kgs. Using hypothesis testing, check if there is enough evidence to support the researcher's claim. The confidence interval is given as 95%.

Step 1: This is an example of a right-tailed test. Set up the null hypothesis as \(H_{0}\): \(\mu\) = 100.

Step 2: The alternative hypothesis is given by \(H_{1}\): \(\mu\) > 100.

Step 3: As this is a one-tailed test, \(\alpha\) = 100% - 95% = 5%. This can be used to determine the critical value.

1 - \(\alpha\) = 1 - 0.05 = 0.95

0.95 gives the required area under the curve. Now using a normal distribution table, the area 0.95 is at z = 1.645. A similar process can be followed for a t-test. The only additional requirement is to calculate the degrees of freedom given by n - 1.

Step 4: Calculate the z test statistic. This is because the sample size is 30. Furthermore, the sample and population means are known along with the standard deviation.

z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).

\(\mu\) = 100, \(\overline{x}\) = 112.5, n = 30, \(\sigma\) = 15

z = \(\frac{112.5-100}{\frac{15}{\sqrt{30}}}\) = 4.56

Step 5: Conclusion. As 4.56 > 1.645 thus, the null hypothesis can be rejected.

Hypothesis Testing and Confidence Intervals

Confidence intervals form an important part of hypothesis testing. This is because the alpha level can be determined from a given confidence interval. Suppose a confidence interval is given as 95%. Subtract the confidence interval from 100%. This gives 100 - 95 = 5% or 0.05. This is the alpha value of a one-tailed hypothesis testing. To obtain the alpha value for a two-tailed hypothesis testing, divide this value by 2. This gives 0.05 / 2 = 0.025.

Related Articles:

  • Probability and Statistics
  • Data Handling

Important Notes on Hypothesis Testing

  • Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant.
  • It involves the setting up of a null hypothesis and an alternate hypothesis.
  • There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.
  • Hypothesis testing can be classified as right tail, left tail, and two tail tests.

Examples on Hypothesis Testing

  • Example 1: The average weight of a dumbbell in a gym is 90lbs. However, a physical trainer believes that the average weight might be higher. A random sample of 5 dumbbells with an average weight of 110lbs and a standard deviation of 18lbs. Using hypothesis testing check if the physical trainer's claim can be supported for a 95% confidence level. Solution: As the sample size is lesser than 30, the t-test is used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) > 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 5, s = 18. \(\alpha\) = 0.05 Using the t-distribution table, the critical value is 2.132 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = 2.484 As 2.484 > 2.132, the null hypothesis is rejected. Answer: The average weight of the dumbbells may be greater than 90lbs
  • Example 2: The average score on a test is 80 with a standard deviation of 10. With a new teaching curriculum introduced it is believed that this score will change. On random testing, the score of 38 students, the mean was found to be 88. With a 0.05 significance level, is there any evidence to support this claim? Solution: This is an example of two-tail hypothesis testing. The z test will be used. \(H_{0}\): \(\mu\) = 80, \(H_{1}\): \(\mu\) ≠ 80 \(\overline{x}\) = 88, \(\mu\) = 80, n = 36, \(\sigma\) = 10. \(\alpha\) = 0.05 / 2 = 0.025 The critical value using the normal distribution table is 1.96 z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) z = \(\frac{88-80}{\frac{10}{\sqrt{36}}}\) = 4.8 As 4.8 > 1.96, the null hypothesis is rejected. Answer: There is a difference in the scores after the new curriculum was introduced.
  • Example 3: The average score of a class is 90. However, a teacher believes that the average score might be lower. The scores of 6 students were randomly measured. The mean was 82 with a standard deviation of 18. With a 0.05 significance level use hypothesis testing to check if this claim is true. Solution: The t test will be used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) < 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 6, s = 18 The critical value from the t table is -2.015 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = \(\frac{82-90}{\frac{18}{\sqrt{6}}}\) t = -1.088 As -1.088 > -2.015, we fail to reject the null hypothesis. Answer: There is not enough evidence to support the claim.

go to slide go to slide go to slide

meaning test of hypothesis

Book a Free Trial Class

FAQs on Hypothesis Testing

What is hypothesis testing.

Hypothesis testing in statistics is a tool that is used to make inferences about the population data. It is also used to check if the results of an experiment are valid.

What is the z Test in Hypothesis Testing?

The z test in hypothesis testing is used to find the z test statistic for normally distributed data . The z test is used when the standard deviation of the population is known and the sample size is greater than or equal to 30.

What is the t Test in Hypothesis Testing?

The t test in hypothesis testing is used when the data follows a student t distribution . It is used when the sample size is less than 30 and standard deviation of the population is not known.

What is the formula for z test in Hypothesis Testing?

The formula for a one sample z test in hypothesis testing is z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) and for two samples is z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

What is the p Value in Hypothesis Testing?

The p value helps to determine if the test results are statistically significant or not. In hypothesis testing, the null hypothesis can either be rejected or not rejected based on the comparison between the p value and the alpha level.

What is One Tail Hypothesis Testing?

When the rejection region is only on one side of the distribution curve then it is known as one tail hypothesis testing. The right tail test and the left tail test are two types of directional hypothesis testing.

What is the Alpha Level in Two Tail Hypothesis Testing?

To get the alpha level in a two tail hypothesis testing divide \(\alpha\) by 2. This is done as there are two rejection regions in the curve.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

9.1: Introduction to Hypothesis Testing

  • Last updated
  • Save as PDF
  • Page ID 10211

  • Kyle Siegrist
  • University of Alabama in Huntsville via Random Services

Basic Theory

Preliminaries.

As usual, our starting point is a random experiment with an underlying sample space and a probability measure \(\P\). In the basic statistical model, we have an observable random variable \(\bs{X}\) taking values in a set \(S\). In general, \(\bs{X}\) can have quite a complicated structure. For example, if the experiment is to sample \(n\) objects from a population and record various measurements of interest, then \[ \bs{X} = (X_1, X_2, \ldots, X_n) \] where \(X_i\) is the vector of measurements for the \(i\)th object. The most important special case occurs when \((X_1, X_2, \ldots, X_n)\) are independent and identically distributed. In this case, we have a random sample of size \(n\) from the common distribution.

The purpose of this section is to define and discuss the basic concepts of statistical hypothesis testing . Collectively, these concepts are sometimes referred to as the Neyman-Pearson framework, in honor of Jerzy Neyman and Egon Pearson, who first formalized them.

A statistical hypothesis is a statement about the distribution of \(\bs{X}\). Equivalently, a statistical hypothesis specifies a set of possible distributions of \(\bs{X}\): the set of distributions for which the statement is true. A hypothesis that specifies a single distribution for \(\bs{X}\) is called simple ; a hypothesis that specifies more than one distribution for \(\bs{X}\) is called composite .

In hypothesis testing , the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a conjectured alternative hypothesis . The null hypothesis is usually denoted \(H_0\) while the alternative hypothesis is usually denoted \(H_1\).

An hypothesis test is a statistical decision ; the conclusion will either be to reject the null hypothesis in favor of the alternative, or to fail to reject the null hypothesis. The decision that we make must, of course, be based on the observed value \(\bs{x}\) of the data vector \(\bs{X}\). Thus, we will find an appropriate subset \(R\) of the sample space \(S\) and reject \(H_0\) if and only if \(\bs{x} \in R\). The set \(R\) is known as the rejection region or the critical region . Note the asymmetry between the null and alternative hypotheses. This asymmetry is due to the fact that we assume the null hypothesis, in a sense, and then see if there is sufficient evidence in \(\bs{x}\) to overturn this assumption in favor of the alternative.

An hypothesis test is a statistical analogy to proof by contradiction, in a sense. Suppose for a moment that \(H_1\) is a statement in a mathematical theory and that \(H_0\) is its negation. One way that we can prove \(H_1\) is to assume \(H_0\) and work our way logically to a contradiction. In an hypothesis test, we don't prove anything of course, but there are similarities. We assume \(H_0\) and then see if the data \(\bs{x}\) are sufficiently at odds with that assumption that we feel justified in rejecting \(H_0\) in favor of \(H_1\).

Often, the critical region is defined in terms of a statistic \(w(\bs{X})\), known as a test statistic , where \(w\) is a function from \(S\) into another set \(T\). We find an appropriate rejection region \(R_T \subseteq T\) and reject \(H_0\) when the observed value \(w(\bs{x}) \in R_T\). Thus, the rejection region in \(S\) is then \(R = w^{-1}(R_T) = \left\{\bs{x} \in S: w(\bs{x}) \in R_T\right\}\). As usual, the use of a statistic often allows significant data reduction when the dimension of the test statistic is much smaller than the dimension of the data vector.

The ultimate decision may be correct or may be in error. There are two types of errors, depending on which of the hypotheses is actually true.

Types of errors:

  • A type 1 error is rejecting the null hypothesis \(H_0\) when \(H_0\) is true.
  • A type 2 error is failing to reject the null hypothesis \(H_0\) when the alternative hypothesis \(H_1\) is true.

Similarly, there are two ways to make a correct decision: we could reject \(H_0\) when \(H_1\) is true or we could fail to reject \(H_0\) when \(H_0\) is true. The possibilities are summarized in the following table:

Of course, when we observe \(\bs{X} = \bs{x}\) and make our decision, either we will have made the correct decision or we will have committed an error, and usually we will never know which of these events has occurred. Prior to gathering the data, however, we can consider the probabilities of the various errors.

If \(H_0\) is true (that is, the distribution of \(\bs{X}\) is specified by \(H_0\)), then \(\P(\bs{X} \in R)\) is the probability of a type 1 error for this distribution. If \(H_0\) is composite, then \(H_0\) specifies a variety of different distributions for \(\bs{X}\) and thus there is a set of type 1 error probabilities.

The maximum probability of a type 1 error, over the set of distributions specified by \( H_0 \), is the significance level of the test or the size of the critical region.

The significance level is often denoted by \(\alpha\). Usually, the rejection region is constructed so that the significance level is a prescribed, small value (typically 0.1, 0.05, 0.01).

If \(H_1\) is true (that is, the distribution of \(\bs{X}\) is specified by \(H_1\)), then \(\P(\bs{X} \notin R)\) is the probability of a type 2 error for this distribution. Again, if \(H_1\) is composite then \(H_1\) specifies a variety of different distributions for \(\bs{X}\), and thus there will be a set of type 2 error probabilities. Generally, there is a tradeoff between the type 1 and type 2 error probabilities. If we reduce the probability of a type 1 error, by making the rejection region \(R\) smaller, we necessarily increase the probability of a type 2 error because the complementary region \(S \setminus R\) is larger.

The extreme cases can give us some insight. First consider the decision rule in which we never reject \(H_0\), regardless of the evidence \(\bs{x}\). This corresponds to the rejection region \(R = \emptyset\). A type 1 error is impossible, so the significance level is 0. On the other hand, the probability of a type 2 error is 1 for any distribution defined by \(H_1\). At the other extreme, consider the decision rule in which we always rejects \(H_0\) regardless of the evidence \(\bs{x}\). This corresponds to the rejection region \(R = S\). A type 2 error is impossible, but now the probability of a type 1 error is 1 for any distribution defined by \(H_0\). In between these two worthless tests are meaningful tests that take the evidence \(\bs{x}\) into account.

If \(H_1\) is true, so that the distribution of \(\bs{X}\) is specified by \(H_1\), then \(\P(\bs{X} \in R)\), the probability of rejecting \(H_0\) is the power of the test for that distribution.

Thus the power of the test for a distribution specified by \( H_1 \) is the probability of making the correct decision.

Suppose that we have two tests, corresponding to rejection regions \(R_1\) and \(R_2\), respectively, each having significance level \(\alpha\). The test with region \(R_1\) is uniformly more powerful than the test with region \(R_2\) if \[ \P(\bs{X} \in R_1) \ge \P(\bs{X} \in R_2) \text{ for every distribution of } \bs{X} \text{ specified by } H_1 \]

Naturally, in this case, we would prefer the first test. Often, however, two tests will not be uniformly ordered; one test will be more powerful for some distributions specified by \(H_1\) while the other test will be more powerful for other distributions specified by \(H_1\).

If a test has significance level \(\alpha\) and is uniformly more powerful than any other test with significance level \(\alpha\), then the test is said to be a uniformly most powerful test at level \(\alpha\).

Clearly a uniformly most powerful test is the best we can do.

\(P\)-value

In most cases, we have a general procedure that allows us to construct a test (that is, a rejection region \(R_\alpha\)) for any given significance level \(\alpha \in (0, 1)\). Typically, \(R_\alpha\) decreases (in the subset sense) as \(\alpha\) decreases.

The \(P\)-value of the observed value \(\bs{x}\) of \(\bs{X}\), denoted \(P(\bs{x})\), is defined to be the smallest \(\alpha\) for which \(\bs{x} \in R_\alpha\); that is, the smallest significance level for which \(H_0\) is rejected, given \(\bs{X} = \bs{x}\).

Knowing \(P(\bs{x})\) allows us to test \(H_0\) at any significance level for the given data \(\bs{x}\): If \(P(\bs{x}) \le \alpha\) then we would reject \(H_0\) at significance level \(\alpha\); if \(P(\bs{x}) \gt \alpha\) then we fail to reject \(H_0\) at significance level \(\alpha\). Note that \(P(\bs{X})\) is a statistic . Informally, \(P(\bs{x})\) can often be thought of as the probability of an outcome as or more extreme than the observed value \(\bs{x}\), where extreme is interpreted relative to the null hypothesis \(H_0\).

Analogy with Justice Systems

There is a helpful analogy between statistical hypothesis testing and the criminal justice system in the US and various other countries. Consider a person charged with a crime. The presumed null hypothesis is that the person is innocent of the crime; the conjectured alternative hypothesis is that the person is guilty of the crime. The test of the hypotheses is a trial with evidence presented by both sides playing the role of the data. After considering the evidence, the jury delivers the decision as either not guilty or guilty . Note that innocent is not a possible verdict of the jury, because it is not the point of the trial to prove the person innocent. Rather, the point of the trial is to see whether there is sufficient evidence to overturn the null hypothesis that the person is innocent in favor of the alternative hypothesis of that the person is guilty. A type 1 error is convicting a person who is innocent; a type 2 error is acquitting a person who is guilty. Generally, a type 1 error is considered the more serious of the two possible errors, so in an attempt to hold the chance of a type 1 error to a very low level, the standard for conviction in serious criminal cases is beyond a reasonable doubt .

Tests of an Unknown Parameter

Hypothesis testing is a very general concept, but an important special class occurs when the distribution of the data variable \(\bs{X}\) depends on a parameter \(\theta\) taking values in a parameter space \(\Theta\). The parameter may be vector-valued, so that \(\bs{\theta} = (\theta_1, \theta_2, \ldots, \theta_n)\) and \(\Theta \subseteq \R^k\) for some \(k \in \N_+\). The hypotheses generally take the form \[ H_0: \theta \in \Theta_0 \text{ versus } H_1: \theta \notin \Theta_0 \] where \(\Theta_0\) is a prescribed subset of the parameter space \(\Theta\). In this setting, the probabilities of making an error or a correct decision depend on the true value of \(\theta\). If \(R\) is the rejection region, then the power function \( Q \) is given by \[ Q(\theta) = \P_\theta(\bs{X} \in R), \quad \theta \in \Theta \] The power function gives a lot of information about the test.

The power function satisfies the following properties:

  • \(Q(\theta)\) is the probability of a type 1 error when \(\theta \in \Theta_0\).
  • \(\max\left\{Q(\theta): \theta \in \Theta_0\right\}\) is the significance level of the test.
  • \(1 - Q(\theta)\) is the probability of a type 2 error when \(\theta \notin \Theta_0\).
  • \(Q(\theta)\) is the power of the test when \(\theta \notin \Theta_0\).

If we have two tests, we can compare them by means of their power functions.

Suppose that we have two tests, corresponding to rejection regions \(R_1\) and \(R_2\), respectively, each having significance level \(\alpha\). The test with rejection region \(R_1\) is uniformly more powerful than the test with rejection region \(R_2\) if \( Q_1(\theta) \ge Q_2(\theta)\) for all \( \theta \notin \Theta_0 \).

Most hypothesis tests of an unknown real parameter \(\theta\) fall into three special cases:

Suppose that \( \theta \) is a real parameter and \( \theta_0 \in \Theta \) a specified value. The tests below are respectively the two-sided test , the left-tailed test , and the right-tailed test .

  • \(H_0: \theta = \theta_0\) versus \(H_1: \theta \ne \theta_0\)
  • \(H_0: \theta \ge \theta_0\) versus \(H_1: \theta \lt \theta_0\)
  • \(H_0: \theta \le \theta_0\) versus \(H_1: \theta \gt \theta_0\)

Thus the tests are named after the conjectured alternative. Of course, there may be other unknown parameters besides \(\theta\) (known as nuisance parameters ).

Equivalence Between Hypothesis Test and Confidence Sets

There is an equivalence between hypothesis tests and confidence sets for a parameter \(\theta\).

Suppose that \(C(\bs{x})\) is a \(1 - \alpha\) level confidence set for \(\theta\). The following test has significance level \(\alpha\) for the hypothesis \( H_0: \theta = \theta_0 \) versus \( H_1: \theta \ne \theta_0 \): Reject \(H_0\) if and only if \(\theta_0 \notin C(\bs{x})\)

By definition, \(\P[\theta \in C(\bs{X})] = 1 - \alpha\). Hence if \(H_0\) is true so that \(\theta = \theta_0\), then the probability of a type 1 error is \(P[\theta \notin C(\bs{X})] = \alpha\).

Equivalently, we fail to reject \(H_0\) at significance level \(\alpha\) if and only if \(\theta_0\) is in the corresponding \(1 - \alpha\) level confidence set. In particular, this equivalence applies to interval estimates of a real parameter \(\theta\) and the common tests for \(\theta\) given above .

In each case below, the confidence interval has confidence level \(1 - \alpha\) and the test has significance level \(\alpha\).

  • Suppose that \(\left[L(\bs{X}, U(\bs{X})\right]\) is a two-sided confidence interval for \(\theta\). Reject \(H_0: \theta = \theta_0\) versus \(H_1: \theta \ne \theta_0\) if and only if \(\theta_0 \lt L(\bs{X})\) or \(\theta_0 \gt U(\bs{X})\).
  • Suppose that \(L(\bs{X})\) is a confidence lower bound for \(\theta\). Reject \(H_0: \theta \le \theta_0\) versus \(H_1: \theta \gt \theta_0\) if and only if \(\theta_0 \lt L(\bs{X})\).
  • Suppose that \(U(\bs{X})\) is a confidence upper bound for \(\theta\). Reject \(H_0: \theta \ge \theta_0\) versus \(H_1: \theta \lt \theta_0\) if and only if \(\theta_0 \gt U(\bs{X})\).

Pivot Variables and Test Statistics

Recall that confidence sets of an unknown parameter \(\theta\) are often constructed through a pivot variable , that is, a random variable \(W(\bs{X}, \theta)\) that depends on the data vector \(\bs{X}\) and the parameter \(\theta\), but whose distribution does not depend on \(\theta\) and is known. In this case, a natural test statistic for the basic tests given above is \(W(\bs{X}, \theta_0)\).

  • Hypothesis Testing: Definition, Uses, Limitations + Examples

busayo.longe

Hypothesis testing is as old as the scientific method and is at the heart of the research process. 

Research exists to validate or disprove assumptions about various phenomena. The process of validation involves testing and it is in this context that we will explore hypothesis testing. 

What is a Hypothesis? 

A hypothesis is a calculated prediction or assumption about a population parameter based on limited evidence. The whole idea behind hypothesis formulation is testing—this means the researcher subjects his or her calculated assumption to a series of evaluations to know whether they are true or false. 

Typically, every research starts with a hypothesis—the investigator makes a claim and experiments to prove that this claim is true or false . For instance, if you predict that students who drink milk before class perform better than those who don’t, then this becomes a hypothesis that can be confirmed or refuted using an experiment.  

Read: What is Empirical Research Study? [Examples & Method]

What are the Types of Hypotheses? 

1. simple hypothesis.

Also known as a basic hypothesis, a simple hypothesis suggests that an independent variable is responsible for a corresponding dependent variable. In other words, an occurrence of the independent variable inevitably leads to an occurrence of the dependent variable. 

Typically, simple hypotheses are considered as generally true, and they establish a causal relationship between two variables. 

Examples of Simple Hypothesis  

  • Drinking soda and other sugary drinks can cause obesity. 
  • Smoking cigarettes daily leads to lung cancer.

2. Complex Hypothesis

A complex hypothesis is also known as a modal. It accounts for the causal relationship between two independent variables and the resulting dependent variables. This means that the combination of the independent variables leads to the occurrence of the dependent variables . 

Examples of Complex Hypotheses  

  • Adults who do not smoke and drink are less likely to develop liver-related conditions.
  • Global warming causes icebergs to melt which in turn causes major changes in weather patterns.

3. Null Hypothesis

As the name suggests, a null hypothesis is formed when a researcher suspects that there’s no relationship between the variables in an observation. In this case, the purpose of the research is to approve or disapprove this assumption. 

Examples of Null Hypothesis

  • This is no significant change in a student’s performance if they drink coffee or tea before classes. 
  • There’s no significant change in the growth of a plant if one uses distilled water only or vitamin-rich water. 
Read: Research Report: Definition, Types + [Writing Guide]

4. Alternative Hypothesis 

To disapprove a null hypothesis, the researcher has to come up with an opposite assumption—this assumption is known as the alternative hypothesis. This means if the null hypothesis says that A is false, the alternative hypothesis assumes that A is true. 

An alternative hypothesis can be directional or non-directional depending on the direction of the difference. A directional alternative hypothesis specifies the direction of the tested relationship, stating that one variable is predicted to be larger or smaller than the null value while a non-directional hypothesis only validates the existence of a difference without stating its direction. 

Examples of Alternative Hypotheses  

  • Starting your day with a cup of tea instead of a cup of coffee can make you more alert in the morning. 
  • The growth of a plant improves significantly when it receives distilled water instead of vitamin-rich water. 

5. Logical Hypothesis

Logical hypotheses are some of the most common types of calculated assumptions in systematic investigations. It is an attempt to use your reasoning to connect different pieces in research and build a theory using little evidence. In this case, the researcher uses any data available to him, to form a plausible assumption that can be tested. 

Examples of Logical Hypothesis

  • Waking up early helps you to have a more productive day. 
  • Beings from Mars would not be able to breathe the air in the atmosphere of the Earth. 

6. Empirical Hypothesis  

After forming a logical hypothesis, the next step is to create an empirical or working hypothesis. At this stage, your logical hypothesis undergoes systematic testing to prove or disprove the assumption. An empirical hypothesis is subject to several variables that can trigger changes and lead to specific outcomes. 

Examples of Empirical Testing 

  • People who eat more fish run faster than people who eat meat.
  • Women taking vitamin E grow hair faster than those taking vitamin K.

7. Statistical Hypothesis

When forming a statistical hypothesis, the researcher examines the portion of a population of interest and makes a calculated assumption based on the data from this sample. A statistical hypothesis is most common with systematic investigations involving a large target audience. Here, it’s impossible to collect responses from every member of the population so you have to depend on data from your sample and extrapolate the results to the wider population. 

Examples of Statistical Hypothesis  

  • 45% of students in Louisiana have middle-income parents. 
  • 80% of the UK’s population gets a divorce because of irreconcilable differences.

What is Hypothesis Testing? 

Hypothesis testing is an assessment method that allows researchers to determine the plausibility of a hypothesis. It involves testing an assumption about a specific population parameter to know whether it’s true or false. These population parameters include variance, standard deviation, and median. 

Typically, hypothesis testing starts with developing a null hypothesis and then performing several tests that support or reject the null hypothesis. The researcher uses test statistics to compare the association or relationship between two or more variables. 

Explore: Research Bias: Definition, Types + Examples

Researchers also use hypothesis testing to calculate the coefficient of variation and determine if the regression relationship and the correlation coefficient are statistically significant.

How Hypothesis Testing Works

The basis of hypothesis testing is to examine and analyze the null hypothesis and alternative hypothesis to know which one is the most plausible assumption. Since both assumptions are mutually exclusive, only one can be true. In other words, the occurrence of a null hypothesis destroys the chances of the alternative coming to life, and vice-versa. 

Interesting: 21 Chrome Extensions for Academic Researchers in 2021

What Are The Stages of Hypothesis Testing?  

To successfully confirm or refute an assumption, the researcher goes through five (5) stages of hypothesis testing; 

  • Determine the null hypothesis
  • Specify the alternative hypothesis
  • Set the significance level
  • Calculate the test statistics and corresponding P-value
  • Draw your conclusion
  • Determine the Null Hypothesis

Like we mentioned earlier, hypothesis testing starts with creating a null hypothesis which stands as an assumption that a certain statement is false or implausible. For example, the null hypothesis (H0) could suggest that different subgroups in the research population react to a variable in the same way. 

  • Specify the Alternative Hypothesis

Once you know the variables for the null hypothesis, the next step is to determine the alternative hypothesis. The alternative hypothesis counters the null assumption by suggesting the statement or assertion is true. Depending on the purpose of your research, the alternative hypothesis can be one-sided or two-sided. 

Using the example we established earlier, the alternative hypothesis may argue that the different sub-groups react differently to the same variable based on several internal and external factors. 

  • Set the Significance Level

Many researchers create a 5% allowance for accepting the value of an alternative hypothesis, even if the value is untrue. This means that there is a 0.05 chance that one would go with the value of the alternative hypothesis, despite the truth of the null hypothesis. 

Something to note here is that the smaller the significance level, the greater the burden of proof needed to reject the null hypothesis and support the alternative hypothesis.

Explore: What is Data Interpretation? + [Types, Method & Tools]
  • Calculate the Test Statistics and Corresponding P-Value 

Test statistics in hypothesis testing allow you to compare different groups between variables while the p-value accounts for the probability of obtaining sample statistics if your null hypothesis is true. In this case, your test statistics can be the mean, median and similar parameters. 

If your p-value is 0.65, for example, then it means that the variable in your hypothesis will happen 65 in100 times by pure chance. Use this formula to determine the p-value for your data: 

meaning test of hypothesis

  • Draw Your Conclusions

After conducting a series of tests, you should be able to agree or refute the hypothesis based on feedback and insights from your sample data.  

Applications of Hypothesis Testing in Research

Hypothesis testing isn’t only confined to numbers and calculations; it also has several real-life applications in business, manufacturing, advertising, and medicine. 

In a factory or other manufacturing plants, hypothesis testing is an important part of quality and production control before the final products are approved and sent out to the consumer. 

During ideation and strategy development, C-level executives use hypothesis testing to evaluate their theories and assumptions before any form of implementation. For example, they could leverage hypothesis testing to determine whether or not some new advertising campaign, marketing technique, etc. causes increased sales. 

In addition, hypothesis testing is used during clinical trials to prove the efficacy of a drug or new medical method before its approval for widespread human usage. 

What is an Example of Hypothesis Testing?

An employer claims that her workers are of above-average intelligence. She takes a random sample of 20 of them and gets the following results: 

Mean IQ Scores: 110

Standard Deviation: 15 

Mean Population IQ: 100

Step 1: Using the value of the mean population IQ, we establish the null hypothesis as 100.

Step 2: State that the alternative hypothesis is greater than 100.

Step 3: State the alpha level as 0.05 or 5% 

Step 4: Find the rejection region area (given by your alpha level above) from the z-table. An area of .05 is equal to a z-score of 1.645.

Step 5: Calculate the test statistics using this formula

meaning test of hypothesis

Z = (110–100) ÷ (15÷√20) 

10 ÷ 3.35 = 2.99 

If the value of the test statistics is higher than the value of the rejection region, then you should reject the null hypothesis. If it is less, then you cannot reject the null. 

In this case, 2.99 > 1.645 so we reject the null. 

Importance/Benefits of Hypothesis Testing 

The most significant benefit of hypothesis testing is it allows you to evaluate the strength of your claim or assumption before implementing it in your data set. Also, hypothesis testing is the only valid method to prove that something “is or is not”. Other benefits include: 

  • Hypothesis testing provides a reliable framework for making any data decisions for your population of interest. 
  • It helps the researcher to successfully extrapolate data from the sample to the larger population. 
  • Hypothesis testing allows the researcher to determine whether the data from the sample is statistically significant. 
  • Hypothesis testing is one of the most important processes for measuring the validity and reliability of outcomes in any systematic investigation. 
  • It helps to provide links to the underlying theory and specific research questions.

Criticism and Limitations of Hypothesis Testing

Several limitations of hypothesis testing can affect the quality of data you get from this process. Some of these limitations include: 

  • The interpretation of a p-value for observation depends on the stopping rule and definition of multiple comparisons. This makes it difficult to calculate since the stopping rule is subject to numerous interpretations, plus “multiple comparisons” are unavoidably ambiguous. 
  • Conceptual issues often arise in hypothesis testing, especially if the researcher merges Fisher and Neyman-Pearson’s methods which are conceptually distinct. 
  • In an attempt to focus on the statistical significance of the data, the researcher might ignore the estimation and confirmation by repeated experiments.
  • Hypothesis testing can trigger publication bias, especially when it requires statistical significance as a criterion for publication.
  • When used to detect whether a difference exists between groups, hypothesis testing can trigger absurd assumptions that affect the reliability of your observation.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • alternative hypothesis
  • alternative vs null hypothesis
  • complex hypothesis
  • empirical hypothesis
  • hypothesis testing
  • logical hypothesis
  • simple hypothesis
  • statistical hypothesis
  • busayo.longe

Formplus

You may also like:

Type I vs Type II Errors: Causes, Examples & Prevention

This article will discuss the two different types of errors in hypothesis testing and how you can prevent them from occurring in your research

meaning test of hypothesis

Alternative vs Null Hypothesis: Pros, Cons, Uses & Examples

We are going to discuss alternative hypotheses and null hypotheses in this post and how they work in research.

Internal Validity in Research: Definition, Threats, Examples

In this article, we will discuss the concept of internal validity, some clear examples, its importance, and how to test it.

What is Pure or Basic Research? + [Examples & Method]

Simple guide on pure or basic research, its methods, characteristics, advantages, and examples in science, medicine, education and psychology

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Talk to our experts

1800-120-456-456

  • Hypothesis Testing

ffImage

What is Hypothesis Testing?

Hypothesis testing in statistics refers to analyzing an assumption about a population parameter. It is used to make an educated guess about an assumption using statistics. With the use of sample data, hypothesis testing makes an assumption about how true the assumption is for the entire population from where the sample is being taken.  

Any hypothetical statement we make may or may not be valid, and it is then our responsibility to provide evidence for its possibility. To approach any hypothesis, we follow these four simple steps that test its validity.

First, we formulate two hypothetical statements such that only one of them is true. By doing so, we can check the validity of our own hypothesis.

The next step is to formulate the statistical analysis to be followed based upon the data points.

Then we analyze the given data using our methodology.

The final step is to analyze the result and judge whether the null hypothesis will be rejected or is true.

Let’s look at several hypothesis testing examples:

It is observed that the average recovery time for a knee-surgery patient is 8 weeks. A physician believes that after successful knee surgery if the patient goes for physical therapy twice a week rather than thrice a week, the recovery period will be longer. Conduct hypothesis for this statement. 

David is a ten-year-old who finishes a 25-yard freestyle in the meantime of 16.43 seconds. David’s father bought goggles for his son, believing that it would help him to reduce his time. He then recorded a total of fifteen 25-yard freestyle for David, and the average time came out to be 16 seconds. Conduct a hypothesis.

A tire company claims their A-segment of tires have a running life of 50,000 miles before they need to be replaced, and previous studies show a standard deviation of 8,000 miles. After surveying a total of 28 tires, the mean run time came to be 46,500 miles with a standard deviation of 9800 miles. Is the claim made by the tire company consistent with the given data? Conduct hypothesis testing. 

All of the hypothesis testing examples are from real-life situations, which leads us to believe that hypothesis testing is a very practical topic indeed. It is an integral part of a researcher's study and is used in every research methodology in one way or another. 

Inferential statistics majorly deals with hypothesis testing. The research hypothesis states there is a relationship between the independent variable and dependent variable. Whereas the null hypothesis rejects this claim of any relationship between the two, our job as researchers or students is to check whether there is any relation between the two.  

Hypothesis Testing in Research Methodology

Now that we are clear about what hypothesis testing is? Let's look at the use of hypothesis testing in research methodology. Hypothesis testing is at the centre of research projects. 

What is Hypothesis Testing and Why is it Important in Research Methodology?

Often after formulating research statements, the validity of those statements need to be verified. Hypothesis testing offers a statistical approach to the researcher about the theoretical assumptions he/she made. It can be understood as quantitative results for a qualitative problem. 

(Image will be uploaded soon)

Hypothesis testing provides various techniques to test the hypothesis statement depending upon the variable and the data points. It finds its use in almost every field of research while answering statements such as whether this new medicine will work, a new testing method is appropriate, or if the outcomes of a random experiment are probable or not.

Procedure of Hypothesis Testing

To find the validity of any statement, we have to strictly follow the stepwise procedure of hypothesis testing. After stating the initial hypothesis, we have to re-write them in the form of a null and alternate hypothesis. The alternate hypothesis predicts a relationship between the variables, whereas the null hypothesis predicts no relationship between the variables.

After writing them as H 0 (null hypothesis) and H a (Alternate hypothesis), only one of the statements can be true. For example, taking the hypothesis that, on average, men are taller than women, we write the statements as:

H 0 : On average, men are not taller than women.

H a : On average, men are taller than women. 

Our next aim is to collect sample data, what we call sampling, in a way so that we can test our hypothesis. Your data should come from the concerned population for which you want to make a hypothesis. 

What is the p value in hypothesis testing? P-value gives us information about the probability of occurrence of results as extreme as observed results.

You will obtain your p-value after choosing the hypothesis testing method, which will be the guiding factor in rejecting the hypothesis. Usually, the p-value cutoff for rejecting the null hypothesis is 0.05. So anything below that, you will reject the null hypothesis. 

A low p-value means that the between-group variance is large enough that there is almost no overlapping, and it is unlikely that these came about by chance. A high p-value suggests there is a high within-group variance and low between-group variance, and any difference in the measure is due to chance only.

What is statistical hypothesis testing?

When forming conclusions through research, two sorts of errors are common: A hypothesis must be set and defined in statistics during a statistical survey or research. A statistical hypothesis is what it is called. It is, in fact, a population parameter assumption. However, it is unmistakable that this idea is always proven correct. Hypothesis testing refers to the predetermined formal procedures used by statisticians to determine whether hypotheses should be accepted or rejected. The process of selecting hypotheses for a given probability distribution based on observable data is known as hypothesis testing. Hypothesis testing is a fundamental and crucial issue in statistics. 

Why do I Need to Test it? Why not just prove an alternate one?

The quick answer is that you must as a scientist; it is part of the scientific process. Science employs a variety of methods to test or reject theories, ensuring that any new hypothesis is free of errors. One protection to ensure your research is not incorrect is to include both a null and an alternate hypothesis. The scientific community considers not incorporating the null hypothesis in your research to be poor practice. You are almost certainly setting yourself up for failure if you set out to prove another theory without first examining it. At the very least, your experiment will not be considered seriously.

Types of Hypothesis Testing

There are several types of hypothesis testing, and they are used based on the data provided. Depending on the sample size and the data given, we choose among different hypothesis testing methodologies. Here starts the use of hypothesis testing tools in research methodology.

Normality- This type of testing is used for normal distribution in a population sample. If the data points are grouped around the mean, the probability of them being above or below the mean is equally likely. Its shape resembles a bell curve that is equally distributed on either side of the mean.

T-test- This test is used when the sample size in a normally distributed population is comparatively small, and the standard deviation is unknown. Usually, if the sample size drops below 30, we use a T-test to find the confidence intervals of the population. 

Chi-Square Test- The Chi-Square test is used to test the population variance against the known or assumed value of the population variance. It is also a better choice to test the goodness of fit of a distribution of data. The two most common Chi-Square tests are the Chi-Square test of independence and the chi-square test of variance.

ANOVA- Analysis of Variance or ANOVA compares the data sets of two different populations or samples. It is similar in its use to the t-test or the Z-test, but it allows us to compare more than two sample means. ANOVA allows us to test the significance between an independent variable and a dependent variable, namely X and Y, respectively.

Z-test- It is a statistical measure to test that the means of two population samples are different when their variance is known. For a Z-test, the population is assumed to be normally distributed. A z-test is better suited in the case of large sample sizes greater than 30. This is due to the central limit theorem that as the sample size increases, the samples are considered to be distributed normally. 

arrow-right

FAQs on Hypothesis Testing

1. Mention the types of hypothesis Tests.

There are two types of a hypothesis tests:

Null Hypothesis: It is denoted as H₀.

Alternative Hypothesis: IT is denoted as H₁ or Hₐ.

2. What are the two errors that can be found while performing the null Hypothesis test?

While performing the null hypothesis test there is a possibility of occurring two types of errors,

Type-1: The type-1 error is denoted by (α), it is also known as the significance level. It is the rejection of the true null hypothesis. It is the error of commission.

Type-2: The type-2 error is denoted by (β). (1 - β) is known as the power test. The false null hypothesis is not rejected. It is the error of the omission. 

3. What is the p-value in hypothesis testing?

During hypothetical testing in statistics, the p-value indicates the probability of obtaining the result as extreme as observed results. A smaller p-value provides evidence to accept the alternate hypothesis. The p-value is used as a rejection point that provides the smallest level of significance at which the null hypothesis is rejected. Often p-value is calculated using the p-value tables by calculating the deviation between the observed value and the chosen reference value. 

It may also be calculated mathematically by performing integrals on all the values that fall under the curve and areas far from the reference value as the observed value relative to the total area of the curve. The p-value determines the evidence to reject the null hypothesis in hypothesis testing.

4. What is a null hypothesis?

The null hypothesis in statistics says that there is no certain difference between the population. It serves as a conjecture proposing no difference, whereas the alternate hypothesis says there is a difference. When we perform hypothesis testing, we have to state the null hypothesis and alternative hypotheses such that only one of them is ever true. 

By determining the p-value, we calculate whether the null hypothesis is to be rejected or not. If the difference between groups is low, it is merely by chance, and the null hypothesis, which states that there is no difference among groups, is true. Therefore, we have no evidence to reject the null hypothesis.

Teach yourself statistics

Hypothesis Test for a Mean

This lesson explains how to conduct a hypothesis test of a mean, when the following conditions are met:

  • The sampling method is simple random sampling .
  • The sampling distribution is normal or nearly normal.

Generally, the sampling distribution will be approximately normally distributed if any of the following conditions apply.

  • The population distribution is normal.
  • The population distribution is symmetric , unimodal , without outliers , and the sample size is 15 or less.
  • The population distribution is moderately skewed , unimodal, without outliers, and the sample size is between 16 and 40.
  • The sample size is greater than 40, without outliers.

This approach consists of four steps: (1) state the hypotheses, (2) formulate an analysis plan, (3) analyze sample data, and (4) interpret results.

State the Hypotheses

Every hypothesis test requires the analyst to state a null hypothesis and an alternative hypothesis . The hypotheses are stated in such a way that they are mutually exclusive. That is, if one is true, the other must be false; and vice versa.

The table below shows three sets of hypotheses. Each makes a statement about how the population mean μ is related to a specified value M . (In the table, the symbol ≠ means " not equal to ".)

The first set of hypotheses (Set 1) is an example of a two-tailed test , since an extreme value on either side of the sampling distribution would cause a researcher to reject the null hypothesis. The other two sets of hypotheses (Sets 2 and 3) are one-tailed tests , since an extreme value on only one side of the sampling distribution would cause a researcher to reject the null hypothesis.

Formulate an Analysis Plan

The analysis plan describes how to use sample data to accept or reject the null hypothesis. It should specify the following elements.

  • Significance level. Often, researchers choose significance levels equal to 0.01, 0.05, or 0.10; but any value between 0 and 1 can be used.
  • Test method. Use the one-sample t-test to determine whether the hypothesized mean differs significantly from the observed sample mean.

Analyze Sample Data

Using sample data, conduct a one-sample t-test. This involves finding the standard error, degrees of freedom, test statistic, and the P-value associated with the test statistic.

SE = s * sqrt{ ( 1/n ) * [ ( N - n ) / ( N - 1 ) ] }

SE = s / sqrt( n )

  • Degrees of freedom. The degrees of freedom (DF) is equal to the sample size (n) minus one. Thus, DF = n - 1.

t = ( x - μ) / SE

  • P-value. The P-value is the probability of observing a sample statistic as extreme as the test statistic. Since the test statistic is a t statistic, use the t Distribution Calculator to assess the probability associated with the t statistic, given the degrees of freedom computed above. (See sample problems at the end of this lesson for examples of how this is done.)

Sample Size Calculator

As you probably noticed, the process of hypothesis testing can be complex. When you need to test a hypothesis about a mean score, consider using the Sample Size Calculator. The calculator is fairly easy to use, and it is free. You can find the Sample Size Calculator in Stat Trek's main menu under the Stat Tools tab. Or you can tap the button below.

Interpret Results

If the sample findings are unlikely, given the null hypothesis, the researcher rejects the null hypothesis. Typically, this involves comparing the P-value to the significance level , and rejecting the null hypothesis when the P-value is less than the significance level.

Test Your Understanding

In this section, two sample problems illustrate how to conduct a hypothesis test of a mean score. The first problem involves a two-tailed test; the second problem, a one-tailed test.

Problem 1: Two-Tailed Test

An inventor has developed a new, energy-efficient lawn mower engine. He claims that the engine will run continuously for 5 hours (300 minutes) on a single gallon of regular gasoline. From his stock of 2000 engines, the inventor selects a simple random sample of 50 engines for testing. The engines run for an average of 295 minutes, with a standard deviation of 20 minutes. Test the null hypothesis that the mean run time is 300 minutes against the alternative hypothesis that the mean run time is not 300 minutes. Use a 0.05 level of significance. (Assume that run times for the population of engines are normally distributed.)

Solution: The solution to this problem takes four steps: (1) state the hypotheses, (2) formulate an analysis plan, (3) analyze sample data, and (4) interpret results. We work through those steps below:

Null hypothesis: μ = 300

Alternative hypothesis: μ ≠ 300

  • Formulate an analysis plan . For this analysis, the significance level is 0.05. The test method is a one-sample t-test .

SE = s / sqrt(n) = 20 / sqrt(50) = 20/7.07 = 2.83

DF = n - 1 = 50 - 1 = 49

t = ( x - μ) / SE = (295 - 300)/2.83 = -1.77

where s is the standard deviation of the sample, x is the sample mean, μ is the hypothesized population mean, and n is the sample size.

Since we have a two-tailed test , the P-value is the probability that the t statistic having 49 degrees of freedom is less than -1.77 or greater than 1.77. We use the t Distribution Calculator to find P(t < -1.77) is about 0.04.

  • If you enter 1.77 as the sample mean in the t Distribution Calculator, you will find the that the P(t < 1.77) is about 0.04. Therefore, P(t >  1.77) is 1 minus 0.96 or 0.04. Thus, the P-value = 0.04 + 0.04 = 0.08.
  • Interpret results . Since the P-value (0.08) is greater than the significance level (0.05), we cannot reject the null hypothesis.

Note: If you use this approach on an exam, you may also want to mention why this approach is appropriate. Specifically, the approach is appropriate because the sampling method was simple random sampling, the population was normally distributed, and the sample size was small relative to the population size (less than 5%).

Problem 2: One-Tailed Test

Bon Air Elementary School has 1000 students. The principal of the school thinks that the average IQ of students at Bon Air is at least 110. To prove her point, she administers an IQ test to 20 randomly selected students. Among the sampled students, the average IQ is 108 with a standard deviation of 10. Based on these results, should the principal accept or reject her original hypothesis? Assume a significance level of 0.01. (Assume that test scores in the population of engines are normally distributed.)

Null hypothesis: μ >= 110

Alternative hypothesis: μ < 110

  • Formulate an analysis plan . For this analysis, the significance level is 0.01. The test method is a one-sample t-test .

SE = s / sqrt(n) = 10 / sqrt(20) = 10/4.472 = 2.236

DF = n - 1 = 20 - 1 = 19

t = ( x - μ) / SE = (108 - 110)/2.236 = -0.894

Here is the logic of the analysis: Given the alternative hypothesis (μ < 110), we want to know whether the observed sample mean is small enough to cause us to reject the null hypothesis.

The observed sample mean produced a t statistic test statistic of -0.894. We use the t Distribution Calculator to find P(t < -0.894) is about 0.19.

  • This means we would expect to find a sample mean of 108 or smaller in 19 percent of our samples, if the true population IQ were 110. Thus the P-value in this analysis is 0.19.
  • Interpret results . Since the P-value (0.19) is greater than the significance level (0.01), we cannot reject the null hypothesis.
  • FOR INSTRUCTOR
  • FOR INSTRUCTORS

8.4.3 Hypothesis Testing for the Mean

$\quad$ $H_0$: $\mu=\mu_0$, $\quad$ $H_1$: $\mu \neq \mu_0$.

$\quad$ $H_0$: $\mu \leq \mu_0$, $\quad$ $H_1$: $\mu > \mu_0$.

$\quad$ $H_0$: $\mu \geq \mu_0$, $\quad$ $H_1$: $\mu \lt \mu_0$.

Two-sided Tests for the Mean:

Therefore, we can suggest the following test. Choose a threshold, and call it $c$. If $|W| \leq c$, accept $H_0$, and if $|W|>c$, accept $H_1$. How do we choose $c$? If $\alpha$ is the required significance level, we must have

  • As discussed above, we let \begin{align}%\label{} W(X_1,X_2, \cdots,X_n)=\frac{\overline{X}-\mu_0}{\sigma / \sqrt{n}}. \end{align} Note that, assuming $H_0$, $W \sim N(0,1)$. We will choose a threshold, $c$. If $|W| \leq c$, we accept $H_0$, and if $|W|>c$, accept $H_1$. To choose $c$, we let \begin{align} P(|W| > c \; | \; H_0) =\alpha. \end{align} Since the standard normal PDF is symmetric around $0$, we have \begin{align} P(|W| > c \; | \; H_0) = 2 P(W>c | \; H_0). \end{align} Thus, we conclude $P(W>c | \; H_0)=\frac{\alpha}{2}$. Therefore, \begin{align} c=z_{\frac{\alpha}{2}}. \end{align} Therefore, we accept $H_0$ if \begin{align} \left|\frac{\overline{X}-\mu_0}{\sigma / \sqrt{n}} \right| \leq z_{\frac{\alpha}{2}}, \end{align} and reject it otherwise.
  • We have \begin{align} \beta (\mu) &=P(\textrm{type II error}) = P(\textrm{accept }H_0 \; | \; \mu) \\ &= P\left(\left|\frac{\overline{X}-\mu_0}{\sigma / \sqrt{n}} \right| \lt z_{\frac{\alpha}{2}}\; | \; \mu \right). \end{align} If $X_i \sim N(\mu,\sigma^2)$, then $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$. Thus, \begin{align} \beta (\mu)&=P\left(\left|\frac{\overline{X}-\mu_0}{\sigma / \sqrt{n}} \right| \lt z_{\frac{\alpha}{2}}\; | \; \mu \right)\\ &=P\left(\mu_0- z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leq \overline{X} \leq \mu_0+ z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)\\ &=\Phi\left(z_{\frac{\alpha}{2}}+\frac{\mu_0-\mu}{\sigma / \sqrt{n}}\right)-\Phi\left(-z_{\frac{\alpha}{2}}+\frac{\mu_0-\mu}{\sigma / \sqrt{n}}\right). \end{align}
  • Let $S^2$ be the sample variance for this random sample. Then, the random variable $W$ defined as \begin{equation} W(X_1,X_2, \cdots, X_n)=\frac{\overline{X}-\mu_0}{S / \sqrt{n}} \end{equation} has a $t$-distribution with $n-1$ degrees of freedom, i.e., $W \sim T(n-1)$. Thus, we can repeat the analysis of Example 8.24 here. The only difference is that we need to replace $\sigma$ by $S$ and $z_{\frac{\alpha}{2}}$ by $t_{\frac{\alpha}{2},n-1}$. Therefore, we accept $H_0$ if \begin{align} |W| \leq t_{\frac{\alpha}{2},n-1}, \end{align} and reject it otherwise. Let us look at a numerical example of this case.

$\quad$ $H_0$: $\mu=170$, $\quad$ $H_1$: $\mu \neq 170$.

  • Let's first compute the sample mean and the sample standard deviation. The sample mean is \begin{align}%\label{} \overline{X}&=\frac{X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9}{9}\\ &=165.8 \end{align} The sample variance is given by \begin{align}%\label{} {S}^2=\frac{1}{9-1} \sum_{k=1}^9 (X_k-\overline{X})^2&=68.01 \end{align} The sample standard deviation is given by \begin{align}%\label{} S&= \sqrt{S^2}=8.25 \end{align} The following MATLAB code can be used to obtain these values: x=[176.2,157.9,160.1,180.9,165.1,167.2,162.9,155.7,166.2]; m=mean(x); v=var(x); s=std(x); Now, our test statistic is \begin{align} W(X_1,X_2, \cdots, X_9)&=\frac{\overline{X}-\mu_0}{S / \sqrt{n}}\\ &=\frac{165.8-170}{8.25 / 3}=-1.52 \end{align} Thus, $|W|=1.52$. Also, we have \begin{align} t_{\frac{\alpha}{2},n-1} = t_{0.025,8} \approx 2.31 \end{align} The above value can be obtained in MATLAB using the command $\mathtt{tinv(0.975,8)}$. Thus, we conclude \begin{align} |W| \leq t_{\frac{\alpha}{2},n-1}. \end{align} Therefore, we accept $H_0$. In other words, we do not have enough evidence to conclude that the average height in the city is different from the average height in the country.

Let us summarize what we have obtained for the two-sided test for the mean.

One-sided Tests for the Mean:

  • As before, we define the test statistic as \begin{align}%\label{} W(X_1,X_2, \cdots,X_n)=\frac{\overline{X}-\mu_0}{\sigma / \sqrt{n}}. \end{align} If $H_0$ is true (i.e., $\mu \leq \mu_0$), we expect $\overline{X}$ (and thus $W$) to be relatively small, while if $H_1$ is true, we expect $\overline{X}$ (and thus $W$) to be larger. This suggests the following test: Choose a threshold, and call it $c$. If $W \leq c$, accept $H_0$, and if $W>c$, accept $H_1$. How do we choose $c$? If $\alpha$ is the required significance level, we must have \begin{align} P(\textrm{type I error}) &= P(\textrm{Reject }H_0 \; | \; H_0) \\ &= P(W > c \; | \; \mu \leq \mu_0) \leq \alpha. \end{align} Here, the probability of type I error depends on $\mu$. More specifically, for any $\mu \leq \mu_0$, we can write \begin{align} P(\textrm{type I error} \; | \; \mu) &= P(\textrm{Reject }H_0 \; | \; \mu) \\ &= P(W > c \; | \; \mu)\\ &=P \left(\frac{\overline{X}-\mu_0}{\sigma / \sqrt{n}}> c \; | \; \mu\right)\\ &=P \left(\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}+\frac{\mu-\mu_0}{\sigma / \sqrt{n}}> c \; | \; \mu\right)\\ &=P \left(\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}> c+\frac{\mu_0-\mu}{\sigma / \sqrt{n}} \; | \; \mu\right)\\ &\leq P \left(\frac{\overline{X}-\mu}{\sigma / \sqrt{n}}> c \; | \; \mu\right) \quad (\textrm{ since }\mu \leq \mu_0)\\ &=1-\Phi(c) \quad \big(\textrm{ since given }\mu, \frac{\overline{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \big). \end{align} Thus, we can choose $\alpha=1-\Phi(c)$, which results in \begin{align} c=z_{\alpha}. \end{align} Therefore, we accept $H_0$ if \begin{align} \frac{\overline{X}-\mu_0}{\sigma / \sqrt{n}} \leq z_{\alpha}, \end{align} and reject it otherwise.

$\quad$ $H_0$: $\mu \geq \mu_0$, $\quad$ $H_1$: $\mu \lt \mu_0$,

  • Machine Learning Tutorial
  • Data Analysis Tutorial
  • Python - Data visualization tutorial
  • Machine Learning Projects
  • Machine Learning Interview Questions
  • Machine Learning Mathematics
  • Deep Learning Tutorial
  • Deep Learning Project
  • Deep Learning Interview Questions
  • Computer Vision Tutorial
  • Computer Vision Projects
  • NLP Project
  • NLP Interview Questions
  • Statistics with Python
  • 100 Days of Machine Learning
  • Data Analysis with Python

Introduction to Data Analysis

  • What is Data Analysis?
  • Data Analytics and its type
  • How to Install Numpy on Windows?
  • How to Install Pandas in Python?
  • How to Install Matplotlib on python?
  • How to Install Python Tensorflow in Windows?

Data Analysis Libraries

  • Pandas Tutorial
  • NumPy Tutorial - Python Library
  • Data Analysis with SciPy
  • Introduction to TensorFlow

Data Visulization Libraries

  • Matplotlib Tutorial
  • Python Seaborn Tutorial
  • Plotly tutorial
  • Introduction to Bokeh in Python

Exploratory Data Analysis (EDA)

  • Univariate, Bivariate and Multivariate data and its analysis
  • Measures of Central Tendency in Statistics
  • Measures of spread - Range, Variance, and Standard Deviation
  • Interquartile Range and Quartile Deviation using NumPy and SciPy
  • Anova Formula
  • Skewness of Statistical Data
  • How to Calculate Skewness and Kurtosis in Python?
  • Difference Between Skewness and Kurtosis
  • Histogram | Meaning, Example, Types and Steps to Draw
  • Interpretations of Histogram
  • Quantile Quantile plots
  • What is Univariate, Bivariate & Multivariate Analysis in Data Visualisation?
  • Using pandas crosstab to create a bar plot
  • Exploring Correlation in Python
  • Mathematics | Covariance and Correlation
  • Introduction to Factor Analysis
  • Data Mining - Cluster Analysis
  • MANOVA Test in R Programming
  • Python - Central Limit Theorem
  • Probability Distribution Function
  • Probability Density Estimation & Maximum Likelihood Estimation
  • Exponential Distribution in R Programming - dexp(), pexp(), qexp(), and rexp() Functions
  • Mathematics | Probability Distributions Set 4 (Binomial Distribution)
  • Poisson Distribution - Definition, Formula, Table and Examples
  • P-Value: Comprehensive Guide to Understand, Apply, and Interpret
  • Z-Score in Statistics
  • How to Calculate Point Estimates in R?
  • Confidence Interval
  • Chi-square test in Machine Learning

Understanding Hypothesis Testing

Data preprocessing.

  • ML | Data Preprocessing in Python
  • ML | Overview of Data Cleaning
  • ML | Handling Missing Values
  • Detect and Remove the Outliers using Python

Data Transformation

  • Data Normalization Machine Learning
  • Sampling distribution Using Python

Time Series Data Analysis

  • Data Mining - Time-Series, Symbolic and Biological Sequences Data
  • Basic DateTime Operations in Python
  • Time Series Analysis & Visualization in Python
  • How to deal with missing values in a Timeseries in Python?
  • How to calculate MOVING AVERAGE in a Pandas DataFrame?
  • What is a trend in time series?
  • How to Perform an Augmented Dickey-Fuller Test in R
  • AutoCorrelation

Case Studies and Projects

  • Top 8 Free Dataset Sources to Use for Data Science Projects
  • Step by Step Predictive Analysis - Machine Learning
  • 6 Tips for Creating Effective Data Visualizations

Hypothesis testing involves formulating assumptions about population parameters based on sample statistics and rigorously evaluating these assumptions against empirical evidence. This article sheds light on the significance of hypothesis testing and the critical steps involved in the process.

What is Hypothesis Testing?

Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data. 

Example: You say an average height in the class is 30 or a boy is taller than a girl. All of these is an assumption that we are assuming, and we need some statistical way to prove these. We need some mathematical conclusion whatever we are assuming is true.

Defining Hypotheses

\mu

Key Terms of Hypothesis Testing

\alpha

  • P-value: The P value , or calculated probability, is the probability of finding the observed/extreme results when the null hypothesis(H0) of a study-given problem is true. If your P-value is less than the chosen significance level then you reject the null hypothesis i.e. accept that your sample claims to support the alternative hypothesis.
  • Test Statistic: The test statistic is a numerical value calculated from sample data during a hypothesis test, used to determine whether to reject the null hypothesis. It is compared to a critical value or p-value to make decisions about the statistical significance of the observed results.
  • Critical value : The critical value in statistics is a threshold or cutoff point used to determine whether to reject the null hypothesis in a hypothesis test.
  • Degrees of freedom: Degrees of freedom are associated with the variability or freedom one has in estimating a parameter. The degrees of freedom are related to the sample size and determine the shape.

Why do we use Hypothesis Testing?

Hypothesis testing is an important procedure in statistics. Hypothesis testing evaluates two mutually exclusive population statements to determine which statement is most supported by sample data. When we say that the findings are statistically significant, thanks to hypothesis testing. 

One-Tailed and Two-Tailed Test

One tailed test focuses on one direction, either greater than or less than a specified value. We use a one-tailed test when there is a clear directional expectation based on prior knowledge or theory. The critical region is located on only one side of the distribution curve. If the sample falls into this critical region, the null hypothesis is rejected in favor of the alternative hypothesis.

One-Tailed Test

There are two types of one-tailed test:

\mu \geq 50

Two-Tailed Test

A two-tailed test considers both directions, greater than and less than a specified value.We use a two-tailed test when there is no specific directional expectation, and want to detect any significant difference.

\mu =

What are Type 1 and Type 2 errors in Hypothesis Testing?

In hypothesis testing, Type I and Type II errors are two possible errors that researchers can make when drawing conclusions about a population based on a sample of data. These errors are associated with the decisions made regarding the null hypothesis and the alternative hypothesis.

\alpha

How does Hypothesis Testing work?

Step 1: define null and alternative hypothesis.

H_0

We first identify the problem about which we want to make an assumption keeping in mind that our assumption should be contradictory to one another, assuming Normally distributed data.

Step 2 – Choose significance level

\alpha

Step 3 – Collect and Analyze data.

Gather relevant data through observation or experimentation. Analyze the data using appropriate statistical methods to obtain a test statistic.

Step 4-Calculate Test Statistic

The data for the tests are evaluated in this step we look for various scores based on the characteristics of data. The choice of the test statistic depends on the type of hypothesis test being conducted.

There are various hypothesis tests, each appropriate for various goal to calculate our test. This could be a Z-test , Chi-square , T-test , and so on.

  • Z-test : If population means and standard deviations are known. Z-statistic is commonly used.
  • t-test : If population standard deviations are unknown. and sample size is small than t-test statistic is more appropriate.
  • Chi-square test : Chi-square test is used for categorical data or for testing independence in contingency tables
  • F-test : F-test is often used in analysis of variance (ANOVA) to compare variances or test the equality of means across multiple groups.

We have a smaller dataset, So, T-test is more appropriate to test our hypothesis.

T-statistic is a measure of the difference between the means of two groups relative to the variability within each group. It is calculated as the difference between the sample means divided by the standard error of the difference. It is also known as the t-value or t-score.

Step 5 – Comparing Test Statistic:

In this stage, we decide where we should accept the null hypothesis or reject the null hypothesis. There are two ways to decide where we should accept or reject the null hypothesis.

Method A: Using Crtical values

Comparing the test statistic and tabulated critical value we have,

  • If Test Statistic>Critical Value: Reject the null hypothesis.
  • If Test Statistic≤Critical Value: Fail to reject the null hypothesis.

Note: Critical values are predetermined threshold values that are used to make a decision in hypothesis testing. To determine critical values for hypothesis testing, we typically refer to a statistical distribution table , such as the normal distribution or t-distribution tables based on.

Method B: Using P-values

We can also come to an conclusion using the p-value,

p\leq\alpha

Note : The p-value is the probability of obtaining a test statistic as extreme as, or more extreme than, the one observed in the sample, assuming the null hypothesis is true. To determine p-value for hypothesis testing, we typically refer to a statistical distribution table , such as the normal distribution or t-distribution tables based on.

Step 7- Interpret the Results

At last, we can conclude our experiment using method A or B.

Calculating test statistic

To validate our hypothesis about a population parameter we use statistical functions . We use the z-score, p-value, and level of significance(alpha) to make evidence for our hypothesis for normally distributed data .

1. Z-statistics:

When population means and standard deviations are known.

z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}

  • μ represents the population mean, 
  • σ is the standard deviation
  • and n is the size of the sample.

2. T-Statistics

T test is used when n<30,

t-statistic calculation is given by:

t=\frac{x̄-μ}{s/\sqrt{n}}

  • t = t-score,
  • x̄ = sample mean
  • μ = population mean,
  • s = standard deviation of the sample,
  • n = sample size

3. Chi-Square Test

Chi-Square Test for Independence categorical Data (Non-normally distributed) using:

\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}

  • i,j are the rows and columns index respectively.

E_{ij}

Real life Hypothesis Testing example

Let’s examine hypothesis testing using two real life situations,

Case A: D oes a New Drug Affect Blood Pressure?

Imagine a pharmaceutical company has developed a new drug that they believe can effectively lower blood pressure in patients with hypertension. Before bringing the drug to market, they need to conduct a study to assess its impact on blood pressure.

  • Before Treatment: 120, 122, 118, 130, 125, 128, 115, 121, 123, 119
  • After Treatment: 115, 120, 112, 128, 122, 125, 110, 117, 119, 114

Step 1 : Define the Hypothesis

  • Null Hypothesis : (H 0 )The new drug has no effect on blood pressure.
  • Alternate Hypothesis : (H 1 )The new drug has an effect on blood pressure.

Step 2: Define the Significance level

Let’s consider the Significance level at 0.05, indicating rejection of the null hypothesis.

If the evidence suggests less than a 5% chance of observing the results due to random variation.

Step 3 : Compute the test statistic

Using paired T-test analyze the data to obtain a test statistic and a p-value.

The test statistic (e.g., T-statistic) is calculated based on the differences between blood pressure measurements before and after treatment.

t = m/(s/√n)

  • m  = mean of the difference i.e X after, X before
  • s  = standard deviation of the difference (d) i.e d i ​= X after, i ​− X before,
  • n  = sample size,

then, m= -3.9, s= 1.8 and n= 10

we, calculate the , T-statistic = -9 based on the formula for paired t test

Step 4: Find the p-value

The calculated t-statistic is -9 and degrees of freedom df = 9, you can find the p-value using statistical software or a t-distribution table.

thus, p-value = 8.538051223166285e-06

Step 5: Result

  • If the p-value is less than or equal to 0.05, the researchers reject the null hypothesis.
  • If the p-value is greater than 0.05, they fail to reject the null hypothesis.

Conclusion: Since the p-value (8.538051223166285e-06) is less than the significance level (0.05), the researchers reject the null hypothesis. There is statistically significant evidence that the average blood pressure before and after treatment with the new drug is different.

Python Implementation of Hypothesis Testing

Let’s create hypothesis testing with python, where we are testing whether a new drug affects blood pressure. For this example, we will use a paired T-test. We’ll use the scipy.stats library for the T-test.

Scipy is a mathematical library in Python that is mostly used for mathematical equations and computations.

We will implement our first real life problem via python,

In the above example, given the T-statistic of approximately -9 and an extremely small p-value, the results indicate a strong case to reject the null hypothesis at a significance level of 0.05. 

  • The results suggest that the new drug, treatment, or intervention has a significant effect on lowering blood pressure.
  • The negative T-statistic indicates that the mean blood pressure after treatment is significantly lower than the assumed population mean before treatment.

Case B : Cholesterol level in a population

Data: A sample of 25 individuals is taken, and their cholesterol levels are measured.

Cholesterol Levels (mg/dL): 205, 198, 210, 190, 215, 205, 200, 192, 198, 205, 198, 202, 208, 200, 205, 198, 205, 210, 192, 205, 198, 205, 210, 192, 205.

Populations Mean = 200

Population Standard Deviation (σ): 5 mg/dL(given for this problem)

Step 1: Define the Hypothesis

  • Null Hypothesis (H 0 ): The average cholesterol level in a population is 200 mg/dL.
  • Alternate Hypothesis (H 1 ): The average cholesterol level in a population is different from 200 mg/dL.

As the direction of deviation is not given , we assume a two-tailed test, and based on a normal distribution table, the critical values for a significance level of 0.05 (two-tailed) can be calculated through the z-table and are approximately -1.96 and 1.96.

(203.8 - 200) / (5 \div \sqrt{25})

Step 4: Result

Since the absolute value of the test statistic (2.04) is greater than the critical value (1.96), we reject the null hypothesis. And conclude that, there is statistically significant evidence that the average cholesterol level in the population is different from 200 mg/dL

Limitations of Hypothesis Testing

  • Although a useful technique, hypothesis testing does not offer a comprehensive grasp of the topic being studied. Without fully reflecting the intricacy or whole context of the phenomena, it concentrates on certain hypotheses and statistical significance.
  • The accuracy of hypothesis testing results is contingent on the quality of available data and the appropriateness of statistical methods used. Inaccurate data or poorly formulated hypotheses can lead to incorrect conclusions.
  • Relying solely on hypothesis testing may cause analysts to overlook significant patterns or relationships in the data that are not captured by the specific hypotheses being tested. This limitation underscores the importance of complimenting hypothesis testing with other analytical approaches.

Hypothesis testing stands as a cornerstone in statistical analysis, enabling data scientists to navigate uncertainties and draw credible inferences from sample data. By systematically defining null and alternative hypotheses, choosing significance levels, and leveraging statistical tests, researchers can assess the validity of their assumptions. The article also elucidates the critical distinction between Type I and Type II errors, providing a comprehensive understanding of the nuanced decision-making process inherent in hypothesis testing. The real-life example of testing a new drug’s effect on blood pressure using a paired T-test showcases the practical application of these principles, underscoring the importance of statistical rigor in data-driven decision-making.

Frequently Asked Questions (FAQs)

1. what are the 3 types of hypothesis test.

There are three types of hypothesis tests: right-tailed, left-tailed, and two-tailed. Right-tailed tests assess if a parameter is greater, left-tailed if lesser. Two-tailed tests check for non-directional differences, greater or lesser.

2.What are the 4 components of hypothesis testing?

Null Hypothesis ( ): No effect or difference exists. Alternative Hypothesis ( ): An effect or difference exists. Significance Level ( ): Risk of rejecting null hypothesis when it’s true (Type I error). Test Statistic: Numerical value representing observed evidence against null hypothesis.

3.What is hypothesis testing in ML?

Statistical method to evaluate the performance and validity of machine learning models. Tests specific hypotheses about model behavior, like whether features influence predictions or if a model generalizes well to unseen data.

4.What is the difference between Pytest and hypothesis in Python?

Pytest purposes general testing framework for Python code while Hypothesis is a Property-based testing framework for Python, focusing on generating test cases based on specified properties of the code.

Please Login to comment...

  • data-science
  • Data Science
  • Machine Learning
  • How to Delete Whatsapp Business Account?
  • Discord vs Zoom: Select The Efficienct One for Virtual Meetings?
  • Otter AI vs Dragon Speech Recognition: Which is the best AI Transcription Tool?
  • Google Messages To Let You Send Multiple Photos
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Geektonight

  • What is Hypothesis?
  • Post last modified: 20 April 2021
  • Reading time: 20 mins read
  • Post category: Research Methodology

Coursera $100 off 2024

Hypothesis is a proposition which can be put to a test to determine validity and is useful for further research.

Hypothesis is a statement which can be proved or disproved. It is a statement capable of being tested. In a sense, hypothesis is a question which definitely has an answer. Hypothesis aids us a great deal while collecting, tabulating and analyzing data and other relevant information.

Table of Content

  • 1 What is Hypothesis?
  • 2 Hypothesis Definition
  • 3 Meaning of Hypothesis
  • 4.1 Conceptual Clarity
  • 4.2 Need of the empirical referents
  • 4.3 Hypothesis should be specific
  • 4.4 Hypothesis should be within the ambit of the available research techniques
  • 4.5 Hypothesis should be consistent with the theory
  • 4.6 Hypothesis should be concerned with observable facts and empirical events
  • 4.7 Hypothesis should be simple
  • 5 Formulation of Hypothesis
  • 6 Null Hypothesis
  • 7.1 Stating the hypothesis of interest
  • 7.2 Collection of relevant data and information
  • 7.3 Formation of null hypothesis
  • 7.4 Alternative Hypothesis
  • 7.5 Selection of suitable test statistic
  • 7.6 Determine the level of significance
  • 7.7 Decision

Hypothesis thus is inevitable in any kind of research, if it is to be carried out successfully. The meaning and exact nature of hypothesis will become clear from the following definitions.

Hypothesis Definition

Meaning of hypothesis.

From the above mentioned definitions of hypothesis, its meaning can be explained in the following ways:

  • At the primary level, a hypothesis is the possible and probable explanation of the sequence of happenings or data.
  • Sometimes, hypothesis may emerge from an imagination, common sense or a sudden event.
  • Hypothesis can be a probable answer to the research problem undertaken for study.
  • Hypothesis may not always be true. It can get disproven. In other words, hypothesis need not always be a true proposition.
  • Hypothesis, in a sense, is an attempt to present the interrelations that exist in the available data or information.
  • Hypothesis is not an individual opinion or community thought. Instead, it is a philosophical means which is to be used for research purpose. Hypothesis is not to be considered as the ultimate objective; rather it is to be taken as the means of explaining scientifically the prevailing situation.

Characteristics of Hypothesis

Not all the hypotheses are good and useful from the point of view of research. It is only the few hypotheses satisfying certain criteria that are good, useful and directive in the research work undertaken.

The characteristics of a good hypothesis can be listed as below.

Conceptual Clarity

Need of the empirical referents, hypothesis should be specific, hypothesis should be within the ambit of the available research techniques, hypothesis should be consistent with the theory, hypothesis should be concerned with observable facts and empirical events, hypothesis should be simple.

The concepts used while framing hypothesis should be crystal clear and unambiguous. Such concepts must be clearly defined so that they become lucid and acceptable to everyone.

How are the newly developed concepts interrelated and how are they linked with the old one is to be very clear so that the hypothesis framed on their basis also carries the same clarity. A hypothesis embodying unclear and ambiguous concepts can to a great extent undermine the successful completion of the research work.

A hypothesis can be useful in the research work undertaken only when it has links with some empirical referents. Hypothesis based on moral values and ideals are useless as they cannot be tested. Similarly, hypothesis containing opinions as good and bad or expectation with respect to something are not testable and therefore useless.

For example, ‘current account deficit can be lowered if people change their attitude towards gold’ is a hypothesis encompassing expectation. In case of such a hypothesis, the attitude towards gold is something which cannot clearly be described and therefore a hypothesis which embodies such an unclear thing cannot be tested and proved or disproved. In short, the hypothesis should be linked with some testable referents.

For the successful conduction of research, it is necessary that the hypothesis is specific and presented in a precise manner. Hypothesis which is general, too ambitious and grandiose in scope is not to be made as such hypothesis cannot be easily put to test. A hypothesis is to be based on such concepts which are precise and empirical in nature. A hypothesis should give a clear idea about the indicators which are to be used.

For example, a hypothesis that economic power is increasingly getting concentrated in few hands in India should enable us to define the concept of economic power. It should be explicated in terms of the measurable indicator like income, wealth, etc. Such specificity in the formulation of hypothesis ensures that the research is practicable and significant.

While framing the hypothesis, the researcher should be aware of the available research techniques and should see that the hypothesis framed is testable on the basis of them.

In other words, a hypothesis should be researchable and for this, it is important that a due thought has been given to the methods and techniques which can be used to measure the concepts and variables embodied in the hypothesis.

It does not, however, mean that hypotheses which are not testable with the available techniques of research are not to be made. If the problem is too significant and therefore the hypothesis framed becomes too ambitious and complex, it’s testing becomes possible with the development of new research techniques or the hypothesis itself leads to the development of new research techniques.

A hypothesis must be related to the existing theory or should have a theoretical orientation. The growth of the knowledge takes place in the sequence of facts, hypothesis, theory and law or principles.

It means the hypothesis should have a correspondence with the existing facts and theory. If the hypothesis is related to some theory, the research work will enable us to support, modify or refute the existing theory. Theoretical orientation of the hypothesis ensures that it becomes scientifically useful.

According to Prof. Goode and Prof. Hatt, research work can contribute to the existing knowledge only when the hypothesis is related to some theory.

This enables us to explain the observed facts and situations and also verify the framed hypothesis.

In the words of Prof. Cohen and Prof. Nagel, “hypothesis must be formulated in such a manner that deduction can be made from it and that consequently a decision can be reached as to whether it does or does not explain the facts considered.

If the research work based on a hypothesis is to be successful, it is necessary that the later is as simple and easy as possible. An ambition of finding out something new may lead the researcher to frame an unrealistic and unclear hypothesis. Such a temptation is to be avoided.

Framing a simple, easy and testable hypothesis requires that the researcher is well acquainted with the related concepts.

Formulation of Hypothesis

The real beginning of any research is made with the formulation of hypothesis. In a sense, research is nothing but accepting the hypothesis by proving it or rejecting it if it is disproved or modifying it.

Moreover, in any type of research work, the information and data is to be collected with reference to the hypothesis and the concepts embodied in it. Hypothesis therefore occupies an important place in any type of research.

Formulation of hypothesis, however, requires that the difficulties encountered are overcome. A researcher may suffer from a number of difficulties at the stage of formulating a good hypothesis

  • The researcher should have a thorough knowledge of the accepted theories and basic concepts of that research area where he has decided to work in.
  • The researcher should also acquire the logical and scientific thinking power to frame a hypothesis based on the theories and basic concepts known to him.
  • The researcher should also be well acquainted with the available research methods and techniques.

Normally, the hypothesis made in the beginning of research is of crude or working nature. Such a working hypothesis is to be made while planning a research work. As the research work proceeds with the working hypothesis, new information, data and evidence becomes available. In the light of new information and evidence, the working hypothesis is to be modified and revised.

Sometimes, the working hypothesis changes in a significant way after the modifications are made. In some researches, the hypothesis is formulated not in the beginning but at the time of classification and analysis of data and information.

In the case of such a hypothesis also it becomes necessary that new or additional information is collected. It thus implies that every hypothesis is subject to change. In order to put the research work in an operative mode, several alternative hypotheses are made in the beginning.

While framing such hypotheses utmost care is to be taken while using the concepts. The nature of the hypothesis should be such that it enables the researcher to find out something new, something which is previously unknown.

In the context of research work and while performing the hypothesis testing exercise, both the alternative hypothesis which is to be proved and accepted and null hypothesis, which is to be disproved, are important and required.

The main hypothesis of the research work is the research hypothesis or the alternative hypothesis. Researcher’s job is to collect information and data so as to prove the alternative hypothesis so that it can be accepted. Null hypothesis on the other hand is the exact opposite of research or alternative hypothesis.

Null hypothesis is also called a hypothesis with no difference. Like the research or alternative hypothesis, the null hypothesis is also a statement.

The logic behind formulating a null hypothesis is that it is always easy to prove that a statement is wrong than to prove that a statement (research hypothesis) is cent percent true.

In short, while framing hypothesis for research work, it is important that at least two hypotheses are framed, one of which is a null hypothesis and the other one is an alternative hypothesis.

For instance, a null hypothesis and alternative hypothesis can be as below.

Null Hypothesis

The average age of entry in to the labour market of commerce graduates is 22 years.

However, the collected data and information, when analysed, reveals that Hypothesis the average entry age is greater than or less than 22 years, then the null hypothesis gets rejected.

In such a case the alternative hypothesis can be as under

  • The average age of entry into the labour market is greater than 22 years (> 22)
  • The average age of entry into the labour market is less than 22 years (< 22)
  • The average age of entry into the labour market is not 22 years (‘“ 22)

Test of Hypothesis

As stated in the beginning, the hypothesis formulation marks the beginning of any research. After the hypothesis is formulated in the context of a research problem, next process involves a collection of relevant data and information and analysis of the same using an appropriate statistical technique, which proves or disproves the hypothesis formulated in the beginning.

The testing of hypothesis thus represents the end of the research work. Testing of hypothesis can be considered as the most important step in any type of research work as it determines the fruitfulness of the research work.

Unless the hypothesis is tested, it will only remain an inference or a proposition. The act of determining the validity of the hypothesis based on the collected data is called the testing of hypothesis.

The exercise of hypothesis testing is a systematic work and normally involves following stages or steps:

Stating the hypothesis of interest

Collection of relevant data and information, formation of null hypothesis, alternative hypothesis, selection of suitable test statistic, determine the level of significance.

Based on the research problem and a primitive understanding of the relationship between the variables involved, a researcher formulates a hypothesis of interest or a research hypothesis which he wants to prove.

Given the research problem and the formulated hypothesis of interest, the next step is to collect the relevant data and information to proceed further towards the end objective (i.e. proving the research hypothesis).

For the testing purpose, a null hypothesis is formed based on the statistical data. The null hypothesis is also called as the hypothesis with no difference.

In other words, null hypothesis states that there is no difference between the variables involved in the hypothesis or the variables are not related.

For example, if the research hypothesis is that the commerce graduates are more employable than the arts graduates, then the null hypothesis will be that both are equally employable or that there is no difference in the employment opportunities available to both.

If in research hypothesis, price and demand are said to be inversely related, the null hypothesis assumes them independent or states that price and demand are not related.

After the formulation of null hypothesis, alternative hypothesis can be derived. Alternative hypothesis is the negation of null hypothesis and can be more than one and conform to the research hypothesis.

In the example of employability, the alternative hypothesis can be

  • commerce graduates are more employable or arts graduates are more employable
  • commerce graduates are having more employability
  • arts graduates are having more employability.

The next step in the hypothesis testing exercise is that of selecting an appropriate statistical test. It can be chi-square test, t-test or f-test or any other test. Such a test is carried out at a given level of significance.

As stated in the above step a statistical test is conducted at a given level of significance

  • A level of significance indicates the probability of rejecting or accepting the null hypothesis.

The last step in testing hypothesis is that of taking a decision on the basis of the given level of significance

  • It is seen whether the null hypothesis falls in the accepting region or in rejecting region and accordingly a decision is taken. In this way, the acceptance or rejection of null hypothesis determines the acceptance or rejection of the initial research hypothesis.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • Sampling Method
  • Research Methods
  • Data Collection in Research

Methods of Collecting Data

  • Application of Business Research

Levels of Measurement

  • What is Sampling?
  • Hypothesis Testing

Research Report

  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is hypothesis definition, meaning, characteristics, sources, types of errors affecting research design, what is measure of skewness, what is research design features, components, measures of relationship, what is measure of dispersion, what is sampling need, advantages, limitations, what is scaling techniques types, classifications, techniques, types of charts used in data analysis, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal growth.

meaning test of hypothesis

Development

meaning test of hypothesis

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

An Introduction to t Tests | Definitions, Formula and Examples

Published on January 31, 2020 by Rebecca Bevans . Revised on June 22, 2023.

A t test is a statistical test that is used to compare the means of two groups. It is often used in hypothesis testing to determine whether a process or treatment actually has an effect on the population of interest, or whether two groups are different from one another.

  • The null hypothesis ( H 0 ) is that the true difference between these group means is zero.
  • The alternate hypothesis ( H a ) is that the true difference is different from zero.

Table of contents

When to use a t test, what type of t test should i use, performing a t test, interpreting test results, presenting the results of a t test, other interesting articles, frequently asked questions about t tests.

A t test can only be used when comparing the means of two groups (a.k.a. pairwise comparison). If you want to compare more than two groups, or if you want to do multiple pairwise comparisons, use an   ANOVA test  or a post-hoc test.

The t test is a parametric test of difference, meaning that it makes the same assumptions about your data as other parametric tests. The t test assumes your data:

  • are independent
  • are (approximately) normally distributed
  • have a similar amount of variance within each group being compared (a.k.a. homogeneity of variance)

If your data do not fit these assumptions, you can try a nonparametric alternative to the t test, such as the Wilcoxon Signed-Rank test for data with unequal variances .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

When choosing a t test, you will need to consider two things: whether the groups being compared come from a single population or two different populations, and whether you want to test the difference in a specific direction.

What type of t-test should I use

One-sample, two-sample, or paired t test?

  • If the groups come from a single population (e.g., measuring before and after an experimental treatment), perform a paired t test . This is a within-subjects design .
  • If the groups come from two different populations (e.g., two different species, or people from two separate cities), perform a two-sample t test (a.k.a. independent t test ). This is a between-subjects design .
  • If there is one group being compared against a standard value (e.g., comparing the acidity of a liquid to a neutral pH of 7), perform a one-sample t test .

One-tailed or two-tailed t test?

  • If you only care whether the two populations are different from one another, perform a two-tailed t test .
  • If you want to know whether one population mean is greater than or less than the other, perform a one-tailed t test.
  • Your observations come from two separate populations (separate species), so you perform a two-sample t test.
  • You don’t care about the direction of the difference, only whether there is a difference, so you choose to use a two-tailed t test.

The t test estimates the true difference between two group means using the ratio of the difference in group means over the pooled standard error of both groups. You can calculate it manually using a formula, or use statistical analysis software.

T test formula

The formula for the two-sample t test (a.k.a. the Student’s t-test) is shown below.

\begin{equation*}t=\dfrac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{(s^2(\frac{1}{n_{1}}+\frac{1}{n_{2}}))}}}\end{equation*}

In this formula, t is the t value, x 1 and x 2 are the means of the two groups being compared, s 2 is the pooled standard error of the two groups, and n 1 and n 2 are the number of observations in each of the groups.

A larger t value shows that the difference between group means is greater than the pooled standard error, indicating a more significant difference between the groups.

You can compare your calculated t value against the values in a critical value chart (e.g., Student’s t table) to determine whether your t value is greater than what would be expected by chance. If so, you can reject the null hypothesis and conclude that the two groups are in fact different.

T test function in statistical software

Most statistical software (R, SPSS, etc.) includes a t test function. This built-in function will take your raw data and calculate the t value. It will then compare it to the critical value, and calculate a p -value . This way you can quickly see whether your groups are statistically different.

In your comparison of flower petal lengths, you decide to perform your t test using R. The code looks like this:

Download the data set to practice by yourself.

Sample data set

If you perform the t test for your flower hypothesis in R, you will receive the following output:

T-test output in R

The output provides:

  • An explanation of what is being compared, called data in the output table.
  • The t value : -33.719. Note that it’s negative; this is fine! In most cases, we only care about the absolute value of the difference, or the distance from 0. It doesn’t matter which direction.
  • The degrees of freedom : 30.196. Degrees of freedom is related to your sample size, and shows how many ‘free’ data points are available in your test for making comparisons. The greater the degrees of freedom, the better your statistical test will work.
  • The p value : 2.2e-16 (i.e. 2.2 with 15 zeros in front). This describes the probability that you would see a t value as large as this one by chance.
  • A statement of the alternative hypothesis ( H a ). In this test, the H a is that the difference is not 0.
  • The 95% confidence interval . This is the range of numbers within which the true difference in means will be 95% of the time. This can be changed from 95% if you want a larger or smaller interval, but 95% is very commonly used.
  • The mean petal length for each group.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

meaning test of hypothesis

When reporting your t test results, the most important values to include are the t value , the p value , and the degrees of freedom for the test. These will communicate to your audience whether the difference between the two groups is statistically significant (a.k.a. that it is unlikely to have happened by chance).

You can also include the summary statistics for the groups being compared, namely the mean and standard deviation . In R, the code for calculating the mean and the standard deviation from the data looks like this:

flower.data %>% group_by(Species) %>% summarize(mean_length = mean(Petal.Length), sd_length = sd(Petal.Length))

In our example, you would report the results like this:

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis

Methodology

  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

A t-test is a statistical test that compares the means of two samples . It is used in hypothesis testing , with a null hypothesis that the difference in group means is zero and an alternate hypothesis that the difference in group means is different from zero.

A t-test measures the difference in group means divided by the pooled standard error of the two group means.

In this way, it calculates a number (the t-value) illustrating the magnitude of the difference between the two group means being compared, and estimates the likelihood that this difference exists purely by chance (p-value).

Your choice of t-test depends on whether you are studying one group or two groups, and whether you care about the direction of the difference in group means.

If you are studying one group, use a paired t-test to compare the group mean over time or after an intervention, or use a one-sample t-test to compare the group mean to a standard value. If you are studying two groups, use a two-sample t-test .

If you want to know only whether a difference exists, use a two-tailed test . If you want to know if one group mean is greater or less than the other, use a left-tailed or right-tailed one-tailed test .

A one-sample t-test is used to compare a single population to a standard value (for example, to determine whether the average lifespan of a specific town is different from the country average).

A paired t-test is used to compare a single population before and after some experimental intervention or at two different points in time (for example, measuring student performance on a test before and after being taught the material).

A t-test should not be used to measure differences among more than two groups, because the error structure for a t-test will underestimate the actual error when many groups are being compared.

If you want to compare the means of several groups at once, it’s best to use another statistical test such as ANOVA or a post-hoc test.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). An Introduction to t Tests | Definitions, Formula and Examples. Scribbr. Retrieved March 30, 2024, from https://www.scribbr.com/statistics/t-test/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, hypothesis testing | a step-by-step guide with easy examples, test statistics | definition, interpretation, and examples, what is your plagiarism score.

X is testing NSFW adult communities, according to screenshots

meaning test of hypothesis

X is living up to its name. The platform, formerly Twitter, is working on an addition to its Communities feature that would let X users create groups for X-rated material, according to app researchers.

Researcher Daniel Buchuk of Watchful , which analyzes app development and performance, spotted the feature in development. He shared screenshots with TechCrunch exclusively that show what X’s NSFW Communities could look like.

meaning test of hypothesis

Image Credits: Watchful (opens in a new window)

An independent researcher, Nima Owji , also spotted the feature in development last month.

This is how it'll look like on the community page! pic.twitter.com/Sou18ze7Va — Nima Owji (@nima_owji) February 28, 2024

Twitter introduced its Communities feature in 2021. It allows users to post within smaller, interest-based subgroups, like a subreddit. When Elon Musk bought Twitter in 2022, he enacted sweeping changes to the app’s brand identity , verification systems and creator monetization efforts — but some features, like Communities, remained stagnant.

X also hasn’t taken much initiative in working with its sizable population of online sex workers , who turn to the platform — one of few that allows adult content — to promote their paid offerings from sites like OnlyFans.

“Twitter really is the primary advertising venue at this point for sex workers ,” Dr. Olivia Snow, a dominatrix and researcher at UCLA’s Center for Critical Internet Inquiry, told TechCrunch last year. So, the platform’s more lenient policy on adult content is critical for online sex workers to grow their businesses.

X did not reply to a request for comment.

Adult creators are allowed to post explicit content on X, though they can’t monetize it on the platform. But if they can create their own fan communities, this feature could give creators a more direct way to reach their audience.

Even though X seems to be working on this NSFW Communities feature, that doesn’t mean it’ll come to fruition. Shortly after Musk took control of the platform, reverse engineers uncovered possible features that would allow creators to monetize paywalled videos or charge money for DMs. These mock-ups looked similar to features on OnlyFans, which could be a strategy for Musk to recoup his $44 billion investment: monetizing “X videos.”

But as it stands, X doesn’t seem poised to reverse its stance on adult content monetization. Even before Musk’s takeover, Twitter had been working on an OnlyFans competitor , but it was shelved because Twitter could not adequately detect non-consensual content and child sexual exploitation (CSE). But X says it’s mitigating that dire problem. According to X CEO Linda Yaccarino, in 2023 the platform suspended 12.4 million accounts for violating child sexual exploitation policies, up from 2.3 million accounts removed in 2022.

Should Twitter embrace porn and compete with OnlyFans?
Sex workers explain why blue check stigma and #BlockTheBlue aren’t so straightforward
  • Share full article

Advertisement

Supported by

The Man Who Helped Redefine Campus Antisemitism

In government and as an outsider, Kenneth Marcus has tried to douse what he says is rising bias against Jews. Some see a crackdown on pro-Palestinian speech.

Kenneth Marcus sits in front of a dark bookcase, dressed in a suit and striped tie.

By Vimal Patel

In the early 2000s, as the uprising known as the second intifada instilled fear in Israelis through a series of suicide bombings, Kenneth Marcus, then an official in the U.S. Department of Education, watched with unease as pro-Palestinian protests shook college campuses.

“We were seeing, internationally, a transformation of anti-Israel animus into something that looked like possibly a new form of antisemitism,” Mr. Marcus recalled in an interview, adding that U.S. universities were at the forefront of that resurgence.

Ever since, Mr. Marcus, perhaps more than anyone, has tried to douse what he sees as a dangerous rise of campus antisemitism, often embedded in pro-Palestinian activism.

He has done it as a government insider in the Bush and Trump administrations, helping to clarify protections for Jewish students under the 1964 Civil Rights Act and broadening the definition of what can be considered antisemitic.

He has also been an outside agitator, filing and promoting federal claims of harassment of Jews that he knows will garner media attention and put pressure on college administrators, students and faculty.

The impact of his life’s work has never been more felt than in the last few months, as universities reel from accusations that they have tolerated pro-Palestinian speech and protests that have veered into antisemitism.

Since the Oct. 7 Hamas attacks on Israel, the Department of Education’s Office for Civil Rights has opened dozens of investigations into allegations of antisemitism at colleges and K-12 schools, a dramatic increase from previous years.

The bar for starting an investigation is low, but the government has opened cases into institutions as varied as Stanford, Wellesley, the New School and Montana State University.

Mr. Marcus’s nonprofit, the Brandeis Center, initiated only a handful of these complaints, but his tactics have been widely copied by other groups.

Mr. Marcus is “the single most effective and respected force when it comes to both litigation and the utilization of the civil rights statutes” to combat antisemitism, said Jeffrey Robbins, a visiting professor at Brown University, who once served on the Brandeis Center board.

Few, if any, would take issue with the Office for Civil Rights extending protections to students facing antisemitic harassment. But critics say that Mr. Marcus’s larger ambition is to push a pro-Israel policy agenda and crack down on speech supporting Palestinians.

His complaints have often included ugly details, like swastikas being scrawled on doors, and a university’s indifference to them. Those claims, however, have been mingled with examples of pro-Palestinian speech, which some critics say is not antisemitic, even if it makes Jewish students uncomfortable.

One recent complaint against American University includes an example of a student who said that she overheard suite mates “accusing Israel of committing genocide against the Palestinians.” In November, his center filed a complaint against Wellesley College, stating that panelists at an event “minimized the atrocities committed by Hamas.”

The whole point, free-speech supporters contend, is to stir the pot and put colleges under the microscope of a federal investigation. Many universities have since taken an aggressive stance against some forms of speech and protest, moves often decried by academic freedom groups. Columbia, Brandeis University and George Washington University have suspended their chapters of Students for Justice in Palestine.

“These complaints are having the impact that they were designed to achieve,” said Radhika Sainath, a lawyer with Palestine Legal, a civil rights group. “Not to win on the merit, but to force universities to investigate, condemn and suppress speech supporting Palestinian rights, because they are so fearful of bad press and donor backlash.”

Mr. Marcus said the complaints stand on their own merit, but he nodded to their larger impact.

“We realize that the value achieved by these cases is far greater than the narrow resolution might be,” he said.

The goal, he added, is “about changing the culture on college campuses so that antisemitism is addressed with the same seriousness as other forms of hate or bias.”

Interning for Barney Frank and Reading Ayn Rand

Mr. Marcus, 57, said that he had not intended to devote his career to fighting antisemitism.

Growing up in Sharon, Mass., a small town south of Boston, he ran into children who hurled rocks at him and yelled, “Go back to your Jew town,” he said.

But Sharon also had a sizable Jewish population, and he said that he thought of antisemitism as a “relic of the past.”

His Depression-era parents adored Franklin Delano Roosevelt, and in high school, Mr. Marcus worked as an intern for Representative Barney Frank, the liberal congressman.

Mr. Marcus’s politics began to change at the local library, where he read books by conservative thinkers, such as Thomas Sowell and Ayn Rand. While studying at Williams College and the University of California, Berkeley, School of Law, he became captivated by the conservative legal movement. And as a young corporate litigator, he took on First Amendment cases, which drew him into civil rights work.

By 2004, he was the interim leader of the Department of Education’s Office for Civil Rights, where he helped reframe how the department considered antisemitism cases.

Back then, the office declined to take those cases. That is because it was charged with enforcing Title VI of the 1964 Civil Rights Act, which prohibits discrimination based on race, color or national origin — but not religion.

But in an official letter , Mr. Marcus wrote that the agency’s Title VI enforcement would include ancestry — meaning students who are harassed because of their ethnic and religious characteristics, including “Arab Muslims, Jewish Americans and Sikhs.” In 2010, the Obama administration endorsed and clarified that interpretation of Title VI.

The complaints involving shared ancestry began with a trickle. The first, filed a month after Mr. Marcus’s 2004 letter, was by the Zionist Organization of America against the University of California, Irvine. The complaint included accusations of antisemitism related to the Middle East conflict, such as a sign by a student group that said, “Israelis Love to Kill Innocent Children.”

In those early years, Mr. Marcus and the Z.O.A. were the main ones pushing the Title VI antisemitism cases, said Susan Tuchman, an official at Z.O.A.

She recalled that an official of one major Jewish advocacy group, which she declined to name, yelled at her over the phone, saying that her complaint was counterproductive and targeted speech protected by the First Amendment.

Mr. Marcus “understood when few others did,” she said, “that campus antisemitism was a serious problem and that Jewish students didn’t have the legal protections that they needed.”

His independent advocacy began in earnest in 2011, when Mr. Marcus started the Brandeis Center, based in Washington (and unaffiliated with Brandeis University in Massachusetts).

There were larger, more established Jewish groups, like the Anti-Defamation League, but Mr. Marcus said he wanted his nonprofit to focus on campus legal work.

Media attention was an important part of his strategy. He explained his rationale in a 2013 column in The Jerusalem Post , after President Obama’s Office for Civil Rights had dismissed an early wave of such complaints, including the Irvine case, saying they involved protected speech.

“These cases — even when rejected — expose administrators to bad publicity,” Mr. Marcus wrote, adding, “If a university shows a failure to treat initial complaints seriously, it hurts them with donors, faculty, political leaders and prospective students.”

Mr. Marcus said the complaints create “a very strong disincentive for outrageous behavior.”

“Needless to say,” he wrote, “getting caught up in a civil-rights complaint is not a good way to build a résumé or impress a future employer.”

In 2018, his tactics led some liberal groups to oppose his appointment as the civil rights chief of the Department of Education.

The Leadership Conference on Civil and Human Rights, a coalition of liberal groups, wrote in a letter to senators that Mr. Marcus had sought to use the complaint process “to chill a particular political point of view, rather than address unlawful discrimination.”

The letter also accused Mr. Marcus of undermining policies, like race-conscious admissions, that shielded other groups. The Senate narrowly confirmed him on a party-line vote.

Antisemitism, Redefined

After he took office in 2018, Mr. Marcus did not try to make peace with his critics.

He promptly reopened a Title VI case, brought by the Zionist Organization of America against Rutgers University in New Brunswick, N.J. The Z.O.A. had appealed the dismissal of its case for insufficient evidence.

He used the Rutgers case to embrace, for the first time, a definition of antisemitism put forth by the International Holocaust Remembrance Alliance, which includes holding Israel to a “double standard” or claiming its existence is a “racist endeavor.”

To Mr. Marcus, the definition helped pressure colleges to stop tolerating behavior against Jews that would be unacceptable if directed at racial minority groups or L.G.B.T.Q. students.

But to pro-Palestinian supporters, Mr. Marcus was using the definition to try to crack down on their speech. They said that the Education Department already had the power to investigate and punish harassment, and this new definition just confused administrators about what was allowable.

“No one says we need the I.H.R.A. definition so we can go after Nazis talking about killing Jews or classic antisemitic tropes about Jews and media and banks,” said Lara Friedman, the president of the Foundation for Middle East Peace. The definition, rather, “is about getting at this other supposed antisemitism.”

The next year, the Trump administration issued a sweeping executive order on combating antisemitism and instructed all agencies to consider the I.H.R.A. definition in examining Title VI complaints.

The complaints seem to be affecting campus culture — for better or worse depending on whom you ask. The Department of Education’s Office for Civil Rights said it has opened up 89 shared ancestry investigations into colleges and K-12 schools since Oct. 7, making up more than 40 percent of such cases opened since 2004.

Education Department officials in the Biden administration have said there is no tension between the First Amendment and Title VI. They said universities can prevent hostile learning environments without curbing free expression by, for example, properly investigating complaints, creating support services for students or condemning hateful speech.

But academic freedom supporters counter that administrators will go out of their way to avoid complaints altogether, especially now that the department has accepted the I.H.R.A. definition. The executive order remains in effect, and the Biden administration is considering a regulation on the matter.

Last month, Debbie Becher, a sociology professor at Barnard College, wrote in the student newspaper that the school’s president asked her to “pause” the showing of “Israelism,” a documentary critical of Israel.

In their meeting, the president, Laura Rosenbury, cited worries about Title VI and pointed out that the film was cited in a lawsuit accusing Harvard of antisemitism. Ms. Rosenbury did not respond to interview requests.

“My arguments that this was overt censorship, a violation of academic freedom, and dangerous for Barnard’s culture fell on deaf ears,” wrote Dr. Becher, who went forward with the event.

Mr. Marcus continues to press his case. The Brandeis Center, which started as a one-man operation, now has 13 litigators.

He said he is happy there but would not rule out another stint in a future Trump administration.

“I’ve spent my career focused on this battle,” he said, “and it seems sometimes as if it’s all been leading up to this very moment.”

Vimal Patel writes about higher education with a focus on speech and campus culture. More about Vimal Patel

IMAGES

  1. Hypothesis Testing- Meaning, Types & Steps

    meaning test of hypothesis

  2. Hypothesis Testing Solved Examples(Questions and Solutions)

    meaning test of hypothesis

  3. PPT

    meaning test of hypothesis

  4. PPT

    meaning test of hypothesis

  5. Hypothesis Testing Definition

    meaning test of hypothesis

  6. Hypothesis Testing and Its Types. Learning Series I:

    meaning test of hypothesis

VIDEO

  1. Hypothesis Testing

  2. Intro to Hypothesis Testing in Statistics

  3. What is Hypothesis Testing in Statistics ?

  4. Simple hypothesis testing

  5. Hypothesis Testing and The Null Hypothesis, Clearly Explained!!!

  6. Hypothesis Testing

COMMENTS

  1. Hypothesis Testing

    Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories. ... Stating results in a statistics assignment In our comparison of mean height between men and women we found an average difference ...

  2. Hypothesis to Be Tested: Definition and 4 Steps for Testing with Example

    Hypothesis testing is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used ...

  3. Introduction to Hypothesis Testing

    A statistical hypothesis is an assumption about a population parameter.. For example, we may assume that the mean height of a male in the U.S. is 70 inches. The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter.. A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical ...

  4. What is Hypothesis Testing in Statistics? Types and Examples

    Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence.

  5. Statistical hypothesis test

    The above image shows a table with some of the most common test statistics and their corresponding tests or models.. A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently support a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic.Then a decision is made, either by comparing the ...

  6. Hypothesis Testing

    Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant. It involves the setting up of a null hypothesis and an alternate hypothesis. There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.

  7. 7.1: Basics of Hypothesis Testing

    Test Statistic: z = x¯¯¯ −μo σ/ n−−√ z = x ¯ − μ o σ / n since it is calculated as part of the testing of the hypothesis. Definition 7.1.4 7.1. 4. p - value: probability that the test statistic will take on more extreme values than the observed test statistic, given that the null hypothesis is true.

  8. 3.1: The Fundamentals of Hypothesis Testing

    Components of a Formal Hypothesis Test. The null hypothesis is a statement about the value of a population parameter, such as the population mean (µ) or the population proportion (p).It contains the condition of equality and is denoted as H 0 (H-naught).. H 0: µ = 157 or H0 : p = 0.37. The alternative hypothesis is the claim to be tested, the opposite of the null hypothesis.

  9. Statistical Hypothesis Testing Overview

    Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables. This post provides an overview of statistical hypothesis testing.

  10. 9.1: Introduction to Hypothesis Testing

    In hypothesis testing, the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a conjectured alternative hypothesis.The null hypothesis is usually denoted \(H_0\) while the alternative hypothesis is usually denoted \(H_1\). An hypothesis test is a statistical decision; the conclusion will either be to reject the null hypothesis in favor ...

  11. Statistics

    Hypothesis testing. Hypothesis testing is a form of statistical inference that uses data from a sample to draw conclusions about a population parameter or a population probability distribution.First, a tentative assumption is made about the parameter or distribution. This assumption is called the null hypothesis and is denoted by H 0.An alternative hypothesis (denoted H a), which is the ...

  12. Hypothesis Testing: Definition, Uses, Limitations + Examples

    Mean Population IQ: 100. Step 1: Using the value of the mean population IQ, we establish the null hypothesis as 100. Step 2: State that the alternative hypothesis is greater than 100. Step 3: State the alpha level as 0.05 or 5%. Step 4: Find the rejection region area (given by your alpha level above) from the z-table.

  13. T-test and Hypothesis Testing (Explained Simply)

    T-test definition, formula explanation, and assumptions. The T-test is the test, which allows us to analyze one or two sample means, depending on the type of t-test. Yes, the t-test has several types: One-sample t-test — compare the mean of one group against the specified mean generated from a population. For example, a manufacturer of mobile ...

  14. Choosing the Right Statistical Test

    Hypothesis testing is a formal procedure for investigating our ideas about the world. It allows you to statistically test your predictions. ... Test statistics | Definition, Interpretation, and Examples The test statistic is a number, calculated from a statistical test, used to find if your data could have occurred under the null hypothesis. 250.

  15. Hypothesis Testing

    Hypothesis testing in statistics refers to analyzing an assumption about a population parameter. It is used to make an educated guess about an assumption using statistics. With the use of sample data, hypothesis testing makes an assumption about how true the assumption is for the entire population from where the sample is being taken.

  16. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  17. One-Tailed and Two-Tailed Hypothesis Tests Explained

    One-tailed hypothesis tests are also known as directional and one-sided tests because you can test for effects in only one direction. When you perform a one-tailed test, the entire significance level percentage goes into the extreme end of one tail of the distribution. In the examples below, I use an alpha of 5%.

  18. Hypothesis Test for a Mean

    The first set of hypotheses (Set 1) is an example of a two-tailed test, since an extreme value on either side of the sampling distribution would cause a researcher to reject the null hypothesis. The other two sets of hypotheses (Sets 2 and 3) are one-tailed tests, since an extreme value on only one side of the sampling distribution would cause a researcher to reject the null hypothesis.

  19. Hypothesis Testing for the Mean

    8.4.3 Hypothesis Testing for the Mean. Here, we would like to discuss some common hypothesis testing problems. We assume that we have a random sample X1, X2 ,..., Xn from a distribution and our goal is to make inference about the mean of the distribution μ. We consider three hypothesis testing problems.

  20. Understanding Hypothesis Testing

    Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data.

  21. What Is Hypothesis? Definition, Meaning, Test, Formulation

    Hypothesis is a proposition which can be put to a test to determine validity and is useful for further research. Hypothesis is a statement which can be proved or disproved. It is a statement capable of being tested. In a sense, hypothesis is a question which definitely has an answer.

  22. An Introduction to t Tests

    Revised on June 22, 2023. A t test is a statistical test that is used to compare the means of two groups. It is often used in hypothesis testing to determine whether a process or treatment actually has an effect on the population of interest, or whether two groups are different from one another. t test example.

  23. X is testing NSFW adult communities, according to screenshots

    X is living up to its name. The platform, formerly Twitter, is working on an addition to its Communities feature that would let X users create groups for X-rated material, according to app ...

  24. The Man Who Helped Redefine Campus Antisemitism

    Mr. Marcus is "the single most effective and respected force when it comes to both litigation and the utilization of the civil rights statutes" to combat antisemitism, said Jeffrey Robbins, a ...