• Permanent Scientific Staff
  • Permanent Technical Staf
  • PhD Students
  • Close collaborators
  • Hybrid Quantum Systems
  • Superconducting Weak Links
  • Electrodynamics of quantum circuits
  • Single microwave photon detection
  • Articles by date
  • Superconducting Qubits
  • Hybrid Structures for Quantum Information
  • Mesoscopic Josephson effect: Andreev Bound States in weak links
  • Mesoscopic Superconductivity
  • Energy relaxation and phase coherence of electrons in diffusive wires
  • Mesoscopic transport
  • Mesosocopic QED
  • Coulomb blockade
  • Electron pumping
  • Arriving by Car
  • Arriving by Public Transportations
  • Arriving By Plane

Comments are closed.

a. cottet ph.d. thesis universite paris vi 2002

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

  •  We're Hiring!
  •  Help Center

Audrey Cottet

  • Add Social Profiles (Facebook, Twitter, etc.)

Audrey Cottet

  • Other Affiliations: add
  • Research Interests: Ptolemaic and Roman Egypt , Musical Iconography , Animals in Roman spectacles , Ancient Soundscapes , Classical Archaeology , and Physique () edit
  • About: I am a CNRS Research Director at the Ecole Normale Superieure of Paris. I have a primary research activity in Theoret... more I am a CNRS Research Director at the Ecole Normale Superieure of Paris. I have a primary research activity in Theoretical Physics and a secondary research activity in Archaeomusicology. I have performed an experimental PhD on superconducting quantum bits (Saclay, France, 1999-2002). This work lead to the first superconducting quantum bit prototype with a lifetime of the order of a microsecond (Science 296, 886 (2002)). After this thesis, I became a theorist of hybrid mesoscopic and nanoscopic structures. I was a post-doc in Basel, Switzerland (2002-2005), and then Paris (2005-2008), working on spin dependent transport in quantum dots as well as superconducting and ferromagnetic proximity effects. My highlights include the development of nanospintronics with carbon nanotubes (Nature Phys. 1, 99 (2005)), and predictions of positive current cross-correlations in quantum dot circuits (Phys. Rev. Lett. 92, 206801 (2004)/ Phys. Rev. B 70, 115315 (2004)), which were confirmed experimentally by the team of Prof. C. Marcus. I am now focusing on the development of Cavity Quantum Electrodynamics with hybrid nanocircuits, in close collaboration with the experimental "Hybrid Quantum Circuits" team headed by Takis Kontos. The first experimental results of this collaboration include a coherent spin/photon coupling at the single spin level (Science 349, 6246 (2015)) and the observation of the frozen charge dynamics in a Kondo impurity (Nature 545, 71 (2017)). Very recently, I have also started working on the quantum detection of the Dark Matter and on the superconductivity effect in Weyl semimetals. My secondary research activity on archeomusicology focuses on concussion idiophones, which are small percussion instruments such as castanets or cymbals. I have recently published two peer-reviewed articles on cymbals playing in the Roman Empire, in the journals "CLARA" hosted by the Historical Museum of Oslo and "Early Music" edited by Oxford Academic. (I am a CNRS Research Director at the Ecole Normale Superieure of Paris. I have a primary research activity in Theoretical Physics and a secondary research activity in Archaeomusicology. <br /><br />I have performed an experimental PhD on superconducting quantum bits (Saclay, France, 1999-2002). This work lead to the first superconducting quantum bit prototype with a lifetime of the order of a microsecond (Science 296, 886 (2002)). After this thesis, I became a theorist of hybrid mesoscopic and nanoscopic structures. I was a post-doc in Basel, Switzerland (2002-2005), and then Paris (2005-2008), working on spin dependent transport in quantum dots as well as superconducting and ferromagnetic proximity effects. My highlights include the development of nanospintronics with carbon nanotubes (Nature Phys. 1, 99 (2005)), and predictions of positive current cross-correlations in quantum dot circuits (Phys. Rev. Lett. 92, 206801 (2004)/ Phys. Rev. B 70, 115315 (2004)), which were confirmed experimentally by the team of Prof. C. Marcus. I am now focusing on the development of Cavity Quantum Electrodynamics with hybrid nanocircuits, in close collaboration with the experimental &quot;Hybrid Quantum Circuits&quot; team headed by Takis Kontos. The first experimental results of this collaboration include a coherent spin/photon coupling at the single spin level (Science 349, 6246 (2015)) and the observation of the frozen charge dynamics in a Kondo impurity (Nature 545, 71 (2017)). Very recently, I have also started working on the quantum detection of the Dark Matter and on the superconductivity effect in Weyl semimetals.<br /><br />My secondary research activity on archeomusicology focuses on concussion idiophones, which are small percussion instruments such as castanets or cymbals. I have recently published two peer-reviewed articles on cymbals playing in the Roman Empire, in the journals &quot;CLARA&quot; hosted by the Historical Museum of Oslo and &quot;Early Music&quot; edited by Oxford Academic.) edit
  • Advisors: edit

Publication Date: Nov 14, 2003

Publication date: jan 4, 2005, publication date: 2001, publication name: macroscopic quantum coherence and quantum computing, research interests: physics , superconductivity , transistor , and amplifier (), publication date: 2004, publication name: quantum computing and quantum bits in mesoscopic systems, research interests: physics (), publication date: 2003, publication name: new directions in mesoscopic physics (towards nanoscience), research interests: computer science , quantum computer , and quantum gate (), publication date: 2002, publication name: international workshop on superconducting nano-electronics devices, research interests: physics and coulomb blockade (), publication name: physica scripta, research interests: physics , quantum information , mathematical sciences , physical sciences , quantum decoherence theory , and 4 more constant time delay , excited states , transition period , and superposition principle ( constant time delay , excited states , transition period , and superposition principle ), publisher: american association for the advancement of science (aaas), publication name: science, research interests: physics , microwave , science , medicine , multidisciplinary , and 5 more quantum coherence , electrical circuit theory , quantum , quality factor , and radio frequency ( quantum coherence , electrical circuit theory , quantum , quality factor , and radio frequency ), publisher: american physical society (aps), publication name: physical review letters, research interests: physics , condensed matter physics , medicine , physical sciences , and ddc (), publisher: elsevier bv, publication name: physica e: low-dimensional systems and nanostructures, research interests: materials engineering , physics , quantum mechanics , nanotechnology , quantum coherence , and 6 more electrical circuit theory , quantum , quantum circuits , degree of freedom , electronic circuit , and building block ( electrical circuit theory , quantum , quantum circuits , degree of freedom , electronic circuit , and building block ), publication name: physica c: superconductivity, research interests: materials engineering , physics , condensed matter physics , quantum coherence , quantum computer , and electrical and electronic engineering (), publisher: wiley-blackwell, publication name: fortschritte der physik, research interests: physics , quantum physics , microwave , protein science , electrical circuit theory , and 6 more mathematical sciences , physical sciences , oscillations , precession , excited states , and spin echo ( mathematical sciences , physical sciences , oscillations , precession , excited states , and spin echo ), publisher: university of oslo library, publication date: 2022, publication name: clara, research interests: flute and clara (), publisher: oxford university press (oup), publication date: 2021, publication name: early music, research interests: early music , art , and dance (), publication name: physical review b, research interests: physics , quantum mechanics , mesoscopic physics , physical , and photon (), publisher: springer science and business media llc, publication date: 2019, publication name: npj quantum information, research interests: physics and quantum (), publication date: 2014, research interests: physics , physical sciences , and chemical sciences (), publication date: 2011, research interests: physics , magnetic field , physical sciences , electron transport , chemical sciences , and spin polarization (), publication name: nature materials, research interests: multidisciplinary and nature materials (), doi: 10.1103/physrevb.102.155105.

Enter the email address you signed up with and we'll email you a reset link.

  • Academia.edu Publishing
  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Citations per year

Duplicate citations, merged citations, add co-authors co-authors, cited by view all.

Takis Kontos

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Implementation of a quantum bit in a superconducting circuit

Profile image of Audrey Cottet

Related Papers

Audrey Cottet

Il existe des projets d&#39;ordinateurs quantiques pour resoudre certains problemes difficiles, comme la factorisation des grands nombres, beaucoup plus rapidement qu&#39;avec un ordinateur classique. L&#39;unite de base de l&#39;ordinateur quantique est un systeme quantique a deux niveaux nomme bit quantique, qui doit satisfaire des criteres tres stricts. Parmi les nombreux systemes proposes pour realiser un bit quantique, les circuits electroniques sont des candidats interessants en raison de leur grande integrabilite. L&#39;objet ce cette these est de realiser un bit quantique a partir d&#39;un circuit supraconducteur a base de jonctions Josephson nomme ``boite a paires de Cooper&#39;&#39;. L&#39;etat de cette boite peut etre determine soit par une mesure de courant, soit par une mesure de charge. Dans cette these sont etudiees trois differentes strategies pour realiser le bit quantique, qui different par le mode de lecture de l&#39;etat de la boite. Pour chaque strategie, le tem...

a. cottet ph.d. thesis universite paris vi 2002

arXiv (Cornell University)

qifan huang

Physica E: Low-dimensional Systems and Nanostructures

Physica C: Superconductivity

Daniel Estève

Joydip Ghosh

Quantum Information Processing

Michel Devoret

Peter Krogstrup

Physics Letters, Section A: General, Atomic and Solid State Physics

Roberto De Luca

Austin Fowler , D. Sank , P. Roushan

RELATED PAPERS

Nursel Dilsiz

Archives of General Psychiatry

Matti Huttunen

Shyamalie de Silva

Drvna industrija

Silvana Prekrat

Revista de Salud Pública

Carlos Tadeu Siepierski

Renata Costa

Anais do V Simpósio Brasileiro de Qualidade de Software (SBQS 2006)

Manoel Mendonça

Cultural Anthropology

Kenneth McGill

Lely Herlina

The Journal of Physiology

fabio pilato

Reinaldo Ruiz

Louis Eeckhoudt

Changsub Shim

Michel Euriat

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Gabriel Dauphin

BMC Psychiatry

Pius Kigamwa

Crop Science

Nikolai Christov

Borka Richter

Sleep Medicine

Angelo Gemignani

Marine Biology

Dimitris Margaritoulis

Extensionismo, innovación y transferencia tecnológica

Manuel Osvaldo Arbino

Journal of Cardiovascular Diseases & Diagnosis

surendra Agarwal

Tadeusz Szymczak

Arthritis & Rheumatism

youmei huang

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Captcha Page

We apologize for the inconvenience...

To ensure we keep this website safe, please can you confirm you are a human by ticking the box below.

If you are unable to complete the above request please contact us using the below link, providing a screenshot of your experience.

https://ioppublishing.org/contacts/

Implementing Qubits with Superconducting Integrated Circuits

Cite this chapter.

a. cottet ph.d. thesis universite paris vi 2002

  • Michel H. Devoret 2 &
  • John M. Martinis 3 , 4  

2371 Accesses

6 Citations

3 Altmetric

Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs of superconducting qubits based on multi-junction circuits have solved the problem of isolation from unwanted extrinsic electromagnetic perturbations. We discuss in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000).

Google Scholar  

M. Tinkham, Introduction to Superconductivity (Krieger, Malabar, 1985).

J. M. Martinis, M. H. Devoret, J. Clarke, Phys. Rev. Lett. 55 , 1543 (1985); M. H. Devoret, J. M. Martinis, J. Clarke, Phys. Rev. Lett. 55 , 1908 (1985); J. M. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. 35 , 4682 (1987).

Article   ADS   Google Scholar  

J. M. Martinis and M. Nahum, Phys Rev. B 48 , 18316 (1993).

B. D. Josephson, in Superconductivity , R. D. Parks (ed.) (Marcel Dekker, New York, 1969).

K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, New York, 1986).

I. Giaever, Phys. Rev. Lett. 5 ,147, 464 (1960).

A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149 , 347 (1983); A. J. Leggett, J. Phys. CM 14 , R415 (2002).

Article   Google Scholar  

D. P. DiVincenzo, arXiv:quant-ph/0002077.

R. P. Feynman, Lectures on Physics , Vol. 2, Chap. 23, (Addison-Wesley, Reading, 1964).

MATH   Google Scholar  

D. C. Mattis and J. Bardeen, Phys. Rev. 111 , 412 (1958).

Article   MATH   ADS   Google Scholar  

P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73 , 565 (2001).

Article   ADS   MathSciNet   Google Scholar  

J. M. Martinis and K. Osborne, in Quantum Information and Entanglement , eds. J. M. Raimond, D. Esteve, and J. Dalibard, Les Houches Summer School Series, arXiv:cond-mat/0402430.

J. Clarke, Proc. IEEE 77 , 1208 (1989).

D. J. Van Harlingen, B. L. T. Plourde, T. L. Robertson, P. A. Reichardt, and John Clarke, preprint.

R. W. Simmonds, K. M. Lang, D. A. Hite, D. P. Pappas, and J. M. Martinis, accepted for publication in Phys. Rev. Lett.

M. Büttiker, Phys. Rev. B 36 , 3548 (1987).

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M. H. Devoret, Physica Scripta T 76 , 165 (1998).

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398 , 786 (1999).

Yu. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73 , 357 (2001).

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Science 296 , 286 (2002).

A. Barone and G. Paternò, Physics and Applications of the Josephson Effect (Wiley, New York, 1992).

S. Han, R. Rouse, and J. E. Lukens, Phys. Rev. Lett. 84 , 1300 (2000); J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406 , 43 (2000).

J. E. Mooij, T. P. Orlando, L. Levitov, Lin Tian, C. H. van der Wal, and S. Lloyd, Science 285 , 1036 (1999); C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhem, R. N. Schouten, C. Harmans, T. P. Orlando, S. Loyd, and J. E. Mooij, Science 290 , 773 (2000).

J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89 , 117901 (2002).

M. Steffen, J. Martinis, and I. L. Chuang, PRB 68 , 224518 (2003).

M. H. Devoret and R. J. Schoelkopf, Nature 406 , 1039 (2002).

A. N. Korotkov and D. V. Averin, Phys. Rev. B 64 , 165310 (2001).

A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve, and M. H. Devoret, Physica C 367 , 197 (2002).

I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret, cond-mat/0312623, submitted to Phys. Rev. Lett.

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Fortschritte der Physik 51 , 462 (2003).

I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299 , 1869 (2003).

J. Mannik and J. E. Lukens, Phys. Rev. Lett. 92 , 057004 (2004).

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf, cond-mat/0408367, accepted by Nature.

A. Lupascu, C. J. M. Verwijs, R. N. Schouten, C. J. P. M. Harmans, J. E. Mooij, cond-mat/0311510, submitted to Phys. Rev. Lett.

Variable electrostatic transformer: controllable coupling of two charge qubits, D.V. Aver-in, C. Bruder, Phys. Rev. Lett. 91 , 057003 (2003).

A. Blais, A. Maassen van den Brink, A. M. Zagoskin, Phys. Rev. Lett. 90 , 127901 (2003)

A. Pashkin Yu, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai, Nature 421 (2003).

J. B. Majer, Superconducting Quantum Circuits , PhD Thesis, TU Delft, (2002); J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. P. J. Harmans, and J. E. Mooij, arXiv:cond-mat/0308192.

A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood, Science 300 , 1548 (2003).

C. Rigetti and M. Devoret, unpublished.

Y. Nakamura, A. Pashkin Yu, and J. S. Tsai, Phys. Rev. Lett. 88 , 047901 (2002).

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Forts, der Physik 51 , 462 (2003); E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion and D. Esteve, submitted.

J. Preskill, J. Proc. R. Soc. London Ser. A 454 , 385 (1998).

Article   MATH   ADS   MathSciNet   Google Scholar  

B. Yurke and J. S. Denker, Phys. Rev. A 29 , 1419 (1984).

M. H. Devoret in “ Quantum Fluctuations ”, S. Reynaud, E. Giacobino, J. Zinn-Justin (eds.) (Elsevier, Amsterdam, 1996), p. 351.

A. Cottet, Implementation of a quantum bit in a superconducting circuit , PhD Thesis, Université Paris 6, 2002.

A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University Press, Oxford, 1985).

R. J. Schoelkopf, A. A. Clerk, S. M. Girvin, K. W. Lehnert, and M. H. Devoret, ar-Xiv:cond-mat/0210247.

K. W. Lehnert, K. Bladh, L. F. Spietz, D. Gunnarsson, D. I. Schuster, P. Delsing, and R. J. Schoelkopf, Phys. Rev. Lett. 90 , 027002 (2002).

J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang, and C. Urbina, Phys. Rev. B 67 , 462 (2003).

Download references

Author information

Authors and affiliations.

Applied Physics Department, Yale University, New Haven, CT, 06520, USA

Michel H. Devoret

National Institute of Standards and Technology, Boulder, CO, 80305, USA

John M. Martinis

Physics Department, University of California, Santa Barbara, CA, 93106, USA

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Army Research Office, Research Triangle Park, North Carolina

Henry O. Everitt ( Senior Research Scientist ) ( Senior Research Scientist )

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Devoret, M.H., Martinis, J.M. (2005). Implementing Qubits with Superconducting Integrated Circuits. In: Everitt, H.O. (eds) Experimental Aspects of Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/0-387-27732-3_12

Download citation

DOI : https://doi.org/10.1007/0-387-27732-3_12

Publisher Name : Springer, Boston, MA

Print ISBN : 978-0-387-23045-0

Online ISBN : 978-0-387-27732-5

eBook Packages : Physics and Astronomy Physics and Astronomy (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip

Affiliation.

  • 1 Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS UMR 8551, Laboratoire associé aux universités Pierre et Marie Curie et Denis Diderot, 24, rue Lhomond, 75231 Paris Cedex 05, France.
  • PMID: 22243102
  • DOI: 10.1103/PhysRevLett.107.256804

We demonstrate a hybrid architecture consisting of a quantum dot circuit coupled to a single mode of the electromagnetic field. We use single wall carbon nanotube based circuits inserted in superconducting microwave cavities. By probing the nanotube dot using a dispersive readout in the Coulomb blockade and the Kondo regime, we determine an electron-photon coupling strength which should enable circuit QED experiments with more complex quantum dot circuits.

© 2011 American Physical Society

Decoherence in a superconducting quantum bit circuit

  • DAPNIA, Saclay
  • DAPNIA, Saclay and
  • Royal Holloway, U. of London
  • Phys.Rev.B 72 (2005) 13 , 134519
  • Published: Oct 24, 2005
  • 10.1103/PhysRevB.72.134519

Citations per year

  • density, spectral
  • computer, quantum
  • decoherence
  • superconductivity

Coherent control of macroscopic quantum states in a single-Cooper-pair box

  • Y. Nakamura ,
  • Yu. A. Pashkin ,
  • Nature 398 (1999) 786-788
  • 10.1038/19718

Manipulating the Quantum State of an Electrical Circuit

  • A. Aassime ,
  • A. Cottet ,
  • Science 296 (2002) 5569 , 1069372
  • 10.1126/science.1069372
  • http://www-drecam.cea.fr/drecam/spec/Pres/Quantro/

Rabi Oscillations in a Large Josephson-Junction Qubit

  • NIST, Boulder
  • Phys.Rev.Lett. 89 (2002) 11 , 117901
  • 10.1103/PhysRevLett.89.117901

Coherent Quantum Dynamics of a Superconducting Flux Qubit

  • Delft Tech. U.
  • Delft Tech. U. and
  • NEC, Sagamihara
  • Science 299 (2003) 5614 , 1869-1871
  • 10.1126/science.1081045
  • J. Claudon ,
  • F. Balestro ,
  • F.W.J. Hekking ,
  • Phys.Rev.Lett. 93 (2004) 187003

Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics

  • Yale U. and
  • Nature 431 (2004) 162-167
  • 10.1038/nature02851
  • M.A. Nielsen ,
  • I.L. Chuang
  • Physica C 367 (2002) 197
  • 10.1016/S0921-4534(01)01014-0
  • V. Bouchiat
  • V. Bouchiat ,
  • D. Esteve ,
  • M.H. Devoret
  • Phys.Scripta 76 (1998) 165
  • C.D. Chen ,
  • Phys.Rev.Lett. 79 (1997) 2328
  • E. Collin ,
  • G. Ithier ,
  • Phys.Rev.Lett. 93 (2004) 157005
  • M.H. Devoret ,
  • C. Urbina ,
  • J.M. Martinis ,
  • A.N. Cleland
  • Phys.Rev.Lett. 94 (2005) 057004

RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement

  • I. Siddiqi ,
  • F. Pierre ,
  • C.M. Wilson ,
  • M. Metcalfe
  • Phys.Rev.Lett. 93 (2004) 20 , 207002
  • 10.1103/PhysRevLett.93.207002
  • P. Bertet ,
  • I. Chiorescu ,
  • C.J.P.M. Harmans ,
  • Phys.Rev.B 70 (2004) 100501
  • D.J. Van Harlingen ,
  • T.L. Robertson ,
  • B.L.T. Plourde ,
  • P.A. Reichardt ,
  • Phys.Rev.B 70 (2004) 064517
  • J. Aumentado ,
  • K.M. Lang ,
  • Phys.Rev.B 67 (2003) 094510
  • R.W. Simmonds ,
  • D.A. Hite ,
  • D.P. Pappas
  • Phys.Rev.Lett. 93 (2004) 077003
  • G. Zimmerli ,
  • T.M. Eiles ,
  • R.L. Kautz ,
  • John M. Martinis
  • Appl.Phys.Lett. 61 (1992) 237
  • 10.1063/1.108195
  • E.H. Visscher ,
  • S.M. Verbrugh ,
  • J. Lindeman ,
  • P. Hadley ,
  • Appl.Phys.Lett. 66 (1995) 3

Dr. Audrey Cottet

                          

Academic research director at CNRS

Research topics in Physics :

          Quantum Detection of Dark Matter

          Quantum Electrodynamics with hybrid nanocircuits

          Superconducting and ferromagnetic proximity effects

Archaeomusicology (secondary research activity)

          History of concussion idiophones

Professional addresses : laboratory LPENS at the Ecole Normale Supérieure of Paris

                                       laboratory LPEM at the ESPCI Paris

Contact : audrey[dot]cottet[at]ens[dot]fr

                                                                 Short CV   -   Publications in Physics   -   Archaeomusicology

                       

                                               

                            

LKB - Quantum fluctuation and relativity

Most of them available on thesis servers, in french or in english (as indicated by the titles below).

COMMENTS

  1. Implementation of a quantum bit in a superconducting circuit

    PDF | On Sep 30, 2002, Audrey Cottet published Implementation of a quantum bit in a superconducting circuit | Find, read and cite all the research you need on ResearchGate

  2. Audrey Cottet: homepage

    2002 [7] "Superconducting ... PhD Thesis Implementation of a quantum bit in a superconducting circuit, Université Paris VI, 2002. HDR Thesis ...

  3. PDF Département de Physique de l'Ecole Normale supérieure

    Département de Physique de l'Ecole Normale supérieure

  4. PhD Theses

    Audrey Cottet: Implementation of a quantum bit in a superconducting circuit: 2002: Ronald Cron: Les contacts atomiques : un banc d'essai pour la physique mésoscopique: 2001: Frédéric Pierre: Electron-electron interaction in mesoscopic wires (in French), also in Ann. Phys. Fr., Vol. 26, N°4 2001, pp. 1-192: 2000: Vincent Bouchiat

  5. Implementation of a combined charge-phase quantum bit in a

    DOI: 10.1016/S0921-4534(01)01014- Corpus ID: 73570111; Implementation of a combined charge-phase quantum bit in a superconducting circuit @article{Cottet2002ImplementationOA, title={Implementation of a combined charge-phase quantum bit in a superconducting circuit}, author={Audrey Cottet and Denis Vion and A. Aassime and P. Joyez and Daniel Est{\`e}ve and Michel H. Devoret}, journal={Physica ...

  6. Implementing Qubits with Superconducting Integrated Circuits

    A. Cottet, Implementation of a quantum bit in a superconducting circuit, PhD Thesis, Universit ´e Paris 6, 2002. A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University Press, Oxford, 1985).

  7. Audrey Cottet

    Audrey Cottet, École Normale Supérieure, Physique Department, Faculty Member. ... (2002)). After this thesis, I became a theorist of hybrid mesoscopic and nanoscopic structures. I was a post-doc in Basel, Switzerland (2002-2005), and then Paris (2005-2008), working on spin dependent transport in quantum dots as well as superconducting and ...

  8. ‪Audrey Cottet‬

    ‪LPENS, Ecole Normale Superieure and LPEM, ESPCI Paris‬ - ‪‪Cited by 6,325‬‬ - ‪Condensed Matter Physics‬ - ‪Archaeomusicology‬ ... A Cottet, D Vion, A Aassime, P Joyez, D Esteve, MH Devoret. Physica C: Superconductivity 367 (1-4), 197-203, 2002. 119: ... PhD Thesis, Université Paris 6, 2002. 113: 2002: Synthetic spin ...

  9. Implementation of a combined charge-phase quantum bit in a

    In this paper, we discuss a qubit circuit which is controlled both by a charge and by a phase. In this combined charge-phase qubit, qubit control is performed by acting on the gate charge like in the Cooper-pair box, but the measured quantity is a supercurrent, like in the flux box. The main interest of this Q - δ design is to provide (i) a ...

  10. Audrey Cottet (0000-0003-2044-7718)

    She first performed an experimental PhD on superconducting quantum bits (Saclay, France, 1999-2002). ... (2002)). After her thesis, Audrey became a theorist of hybrid mesoscopic and nanoscopic structures. She was a post-doc in Basel, Switzerland (2002-2005), and then Paris (2005-2008), working on spin dependent transport in quantum dots as well ...

  11. Implementation of a quantum bit in a superconducting circuit

    In the Cooper-pair box, the qubit states a phase. In this combined charge-phase qubit, qubit control is performed by acting on the gate charge like in the Cooper-pair box, but the mea- * Corresponding author. Tel.: +33-016-908-5529; fax: +33- sured quantity is a supercurrent, like in the flux 016-908-7442. box.

  12. PDF Hybrid Quantum Circuits

    experimental thesis on Josephson superconducting circuits in the Quantronics group of Saclay (1999-2002). Then, I did a technical retraining during six years of post-doctoral studies (Basel (2002-2005), Orsay (2005-2007), Jussieu (2007{2008)) in order to become a condensed matter theorist. During these years, I studied the theory of quantum dot

  13. Decoherence of a Quantum Bit Circuit

    Decoherence is there a key issue since electrical circuits are more prone to decoherence than microscopic objects such as atoms. We introduce the different families of solid state qubits, which are either based on single particle states in semiconductor nanostructures, or on global quantum states of superconducting Josephson circuits.

  14. Audrey COTTET

    Audrey is primarily a physicist, working as a permanent CNRS researcher at the LPENS (Ecole Normale Supérieure, Paris). Her research themes include Cavity Quantum Electrodynamics with hybrid ...

  15. Quantum information processing with superconducting circuits: a review

    [15] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Manipulating the quantum state of an electrical circuit Science 296 886-9. Crossref; Google Scholar [16] Martinis J M, Nam S, Aumentado J and Urbina C 2002 Rabi oscillations in a large Josephson-junction qubit Phys. Rev. Lett. 89 117901. Crossref ...

  16. Implementing Qubits with Superconducting Integrated Circuits

    A. Cottet, Implementation of a quantum bit in a superconducting circuit, PhD Thesis, Université Paris 6, 2002. Google Scholar A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University Press, Oxford, 1985). Google Scholar

  17. PDF These˚ De Doctorat De L'Universite· Paris Vi

    Ph.D. THESIS OF THE UNIVERSITY OF PARIS VI Department : ELECTRONICS, COMMUNICATIONS AND COMPUTER SCIENCE Presented by : Hassan ABOUSHADY Thesis submitted to obtain the degree of DOCTOR OF THE UNIVERSITY OF PARIS VI DESIGN FOR REUSE OF CURRENT-MODE CONTINUOUS-TIME ANALOG-TO-DIGITAL CONVERTERS January 7, 2002 Committee in charge :

  18. Audrey Cottet: homepage

    10/2005 - 09/2008: Post-doctoral researcher in Paris, France (LPS/Orsay, LPTHE/University Paris VI) 11/2002 - 09/2005: Post-doc in the Condensed Matter Theory Group, Univ. of Basel, Switzerland . 10/1999 - 10/2002: PhD in the Quantronics group (CEA-Saclay, France) Main achievements in Physics

  19. Coupling a quantum dot, fermionic leads, and a microwave ...

    M R Delbecq 1 , V Schmitt, F D Parmentier, N Roch, J J Viennot, G Fève, B Huard, C Mora, A Cottet, T Kontos. Affiliation 1 Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS UMR 8551, Laboratoire associé aux universités Pierre et Marie Curie et Denis Diderot, 24, rue Lhomond, 75231 Paris Cedex 05, France. PMID: 22243102 DOI: ...

  20. Charge-insensitive qubit design derived from the Cooper pair box

    Different approaches have been devised to cure this problem for superconducting qubits, a prime example being the operation of such devices at optimal working points, so-called "sweet spots." This latter approach led to significant improvement of T 2 T_2 T 2 times in Cooper pair box qubits [D. Vion et al., Science 296, 886 (2002)]. Here, we ...

  21. Decoherence in a superconducting quantum bit circuit

    Decoherence in quantum bit circuits is presently a major limitation to their use for quantum computing purposes. We present experiments, inspired from NMR, that characterize decoherence in a particular superconducting quantum bit circuit, the quantronium.

  22. Audrey Cottet: homepage

    Quantum Electrodynamics with hybrid nanocircuits. Superconducting and ferromagnetic proximity effects. Archaeomusicology (secondary research activity) History of concussion idiophones. Professional addresses: laboratory LPENS at the Ecole Normale Supérieure of Paris. laboratory LPEM at the ESPCI Paris. Contact: audrey [dot]cottet [at]ens [dot]fr.

  23. PhD thesis

    PhD thesis. Most of them available on thesis servers, in french or in english (as indicated by the titles below). Crépin, Pierre-Philippe (2019), "Quantum reflection of a cold antihydrogen wavepacket". Thesis at Université Pierre et Marie Curie - Paris VI, TEL server. Maury, Axel (2016), "Effet Casimir-Polder sur des atomes piégés".