Next: Unions , Previous: Overlaying Structures , Up: Structures   [ Contents ][ Index ]

15.13 Structure Assignment

Assignment operating on a structure type copies the structure. The left and right operands must have the same type. Here is an example:

Notionally, assignment on a structure type works by copying each of the fields. Thus, if any of the fields has the const qualifier, that structure type does not allow assignment:

See Assignment Expressions .

When a structure type has a field which is an array, as here,

structure assigment such as r1 = r2 copies array fields’ contents just as it copies all the other fields.

This is the only way in C that you can operate on the whole contents of a array with one operation: when the array is contained in a struct . You can’t copy the contents of the data field as an array, because

would convert the array objects (as always) to pointers to the zeroth elements of the arrays (of type struct record * ), and the assignment would be invalid because the left operand is not an lvalue.

Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . A type with a public copy assignment operator is CopyAssignable .

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default .

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

The implicitly-declared or defaulted copy assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be copy-assigned (has deleted, inaccessible, or ambiguous copy assignment operator)
  • T has direct or virtual base class that cannot be copy-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

[ edit ] Trivial copy assignment operator

The implicitly-declared copy assignment operator for class T is trivial if all of the following is true:

  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std:: memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined copy assignment copies the object representation (as by std:: memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std:: move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move).

[ edit ] Example

cppreference.com

Copy assignment operator.

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . For a type to be CopyAssignable , it must have a public copy assignment operator.

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used.
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used (non-swappable type or degraded performance).
  • Forcing a copy assignment operator to be generated by the compiler.
  • Avoiding implicit copy assignment.

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B & or const volatile B & ;
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M & or const volatile M & .

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument.)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

The implicitly-declared (or defaulted on its first declaration) copy assignment operator has an exception specification as described in dynamic exception specification (until C++17) exception specification (since C++17)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

A implicitly-declared copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a user-declared move constructor;
  • T has a user-declared move assignment operator.

Otherwise, it is defined as defaulted.

A defaulted copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a non-static data member of non-class type (or array thereof) that is const ;
  • T has a non-static data member of a reference type;
  • T has a non-static data member or a direct or virtual base class that cannot be copy-assigned (overload resolution for the copy assignment fails, or selects a deleted or inaccessible function);
  • T is a union-like class , and has a variant member whose corresponding assignment operator is non-trivial.

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • it is not user-provided (meaning, it is implicitly-defined or defaulted) , , and if it is defaulted, its signature is the same as implicitly-defined (until C++14) ;
  • T has no virtual member functions;
  • T has no virtual base classes;
  • the copy assignment operator selected for every direct base of T is trivial;
  • the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial;

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used . For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either a prvalue such as a nameless temporary or an xvalue such as the result of std::move ), and selects the copy assignment if the argument is an lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

It is unspecified whether virtual base class subobjects that are accessible through more than one path in the inheritance lattice, are assigned more than once by the implicitly-defined copy assignment operator (same applies to move assignment ).

See assignment operator overloading for additional detail on the expected behavior of a user-defined copy-assignment operator.

[ edit ] Example

[ edit ] defect reports.

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

  • Pages with unreviewed CWG DR marker
  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 9 January 2019, at 07:16.
  • This page has been accessed 570,566 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

cppreference.com

Search

Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . For a type to be CopyAssignable , it must have a public copy assignment operator.

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used (non-swappable type or degraded performance)
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

A implicitly-declared copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

Otherwise, it is defined as defaulted.

A defaulted copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a non-static data member of non-class type (or array thereof) that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member or a direct or virtual base class that cannot be copy-assigned (overload resolution for the copy assignment fails, or selects a deleted or inaccessible function)
  • T is a union-like class , and has a variant member whose corresponding assignment operator is non-trivial.

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • It is not user-provided (meaning, it is implicitly-defined or defaulted), and if it is defaulted, its signature is the same as implicitly-defined
  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used . For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std::move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

It is unspecified whether virtual base class subobjects that are accessible through more than one path in the inheritance lattice, are assigned more than once by the implicitly-defined copy assignment operator (same applies to move assignment ).

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move). However, this approach is not always advisable due to potentially significant overhead: see assignment operator overloading for details.

[ edit ] Example

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 30 November 2015, at 07:24.
  • This page has been accessed 110,155 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

Previous: Temporaries May Vanish Before You Expect , Up: Common Misunderstandings with GNU C++   [ Contents ][ Index ]

14.7.4 Implicit Copy-Assignment for Virtual Bases ¶

When a base class is virtual, only one subobject of the base class belongs to each full object. Also, the constructors and destructors are invoked only once, and called from the most-derived class. However, such objects behave unspecified when being assigned. For example:

The C++ standard specifies that ‘ Base::Base ’ is only called once when constructing or copy-constructing a Derived object. It is unspecified whether ‘ Base::operator= ’ is called more than once when the implicit copy-assignment for Derived objects is invoked (as it is inside ‘ func ’ in the example).

G++ implements the “intuitive” algorithm for copy-assignment: assign all direct bases, then assign all members. In that algorithm, the virtual base subobject can be encountered more than once. In the example, copying proceeds in the following order: ‘ name ’ (via strdup ), ‘ val ’, ‘ name ’ again, and ‘ bval ’.

If application code relies on copy-assignment, a user-defined copy-assignment operator removes any uncertainties. With such an operator, the application can define whether and how the virtual base subobject is assigned.

Learn C++

21.12 — Overloading the assignment operator

The copy assignment operator (operator=) is used to copy values from one object to another already existing object .

Related content

As of C++11, C++ also supports “Move assignment”. We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

Copy assignment vs Copy constructor

The purpose of the copy constructor and the copy assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes new objects, whereas the assignment operator replaces the contents of existing objects.

The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it’s really not all that difficult. Summarizing:

  • If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).
  • If a new object does not have to be created before the copying can occur, the assignment operator is used.

Overloading the assignment operator

Overloading the copy assignment operator (operator=) is fairly straightforward, with one specific caveat that we’ll get to. The copy assignment operator must be overloaded as a member function.

This prints:

This should all be pretty straightforward by now. Our overloaded operator= returns *this, so that we can chain multiple assignments together:

Issues due to self-assignment

Here’s where things start to get a little more interesting. C++ allows self-assignment:

This will call f1.operator=(f1), and under the simplistic implementation above, all of the members will be assigned to themselves. In this particular example, the self-assignment causes each member to be assigned to itself, which has no overall impact, other than wasting time. In most cases, a self-assignment doesn’t need to do anything at all!

However, in cases where an assignment operator needs to dynamically assign memory, self-assignment can actually be dangerous:

First, run the program as it is. You’ll see that the program prints “Alex” as it should.

Now run the following program:

You’ll probably get garbage output. What happened?

Consider what happens in the overloaded operator= when the implicit object AND the passed in parameter (str) are both variable alex. In this case, m_data is the same as str.m_data. The first thing that happens is that the function checks to see if the implicit object already has a string. If so, it needs to delete it, so we don’t end up with a memory leak. In this case, m_data is allocated, so the function deletes m_data. But because str is the same as *this, the string that we wanted to copy has been deleted and m_data (and str.m_data) are dangling.

Later on, we allocate new memory to m_data (and str.m_data). So when we subsequently copy the data from str.m_data into m_data, we’re copying garbage, because str.m_data was never initialized.

Detecting and handling self-assignment

Fortunately, we can detect when self-assignment occurs. Here’s an updated implementation of our overloaded operator= for the MyString class:

By checking if the address of our implicit object is the same as the address of the object being passed in as a parameter, we can have our assignment operator just return immediately without doing any other work.

Because this is just a pointer comparison, it should be fast, and does not require operator== to be overloaded.

When not to handle self-assignment

Typically the self-assignment check is skipped for copy constructors. Because the object being copy constructed is newly created, the only case where the newly created object can be equal to the object being copied is when you try to initialize a newly defined object with itself:

In such cases, your compiler should warn you that c is an uninitialized variable.

Second, the self-assignment check may be omitted in classes that can naturally handle self-assignment. Consider this Fraction class assignment operator that has a self-assignment guard:

If the self-assignment guard did not exist, this function would still operate correctly during a self-assignment (because all of the operations done by the function can handle self-assignment properly).

Because self-assignment is a rare event, some prominent C++ gurus recommend omitting the self-assignment guard even in classes that would benefit from it. We do not recommend this, as we believe it’s a better practice to code defensively and then selectively optimize later.

The copy and swap idiom

A better way to handle self-assignment issues is via what’s called the copy and swap idiom. There’s a great writeup of how this idiom works on Stack Overflow .

The implicit copy assignment operator

Unlike other operators, the compiler will provide an implicit public copy assignment operator for your class if you do not provide a user-defined one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

Just like other constructors and operators, you can prevent assignments from being made by making your copy assignment operator private or using the delete keyword:

Note that if your class has const members, the compiler will instead define the implicit operator= as deleted. This is because const members can’t be assigned, so the compiler will assume your class should not be assignable.

If you want a class with const members to be assignable (for all members that aren’t const), you will need to explicitly overload operator= and manually assign each non-const member.

guest

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Copy constructors and copy assignment operators (C++)

  • 8 contributors

Starting in C++11, two kinds of assignment are supported in the language: copy assignment and move assignment . In this article "assignment" means copy assignment unless explicitly stated otherwise. For information about move assignment, see Move Constructors and Move Assignment Operators (C++) .

Both the assignment operation and the initialization operation cause objects to be copied.

Assignment : When one object's value is assigned to another object, the first object is copied to the second object. So, this code copies the value of b into a :

Initialization : Initialization occurs when you declare a new object, when you pass function arguments by value, or when you return by value from a function.

You can define the semantics of "copy" for objects of class type. For example, consider this code:

The preceding code could mean "copy the contents of FILE1.DAT to FILE2.DAT" or it could mean "ignore FILE2.DAT and make b a second handle to FILE1.DAT." You must attach appropriate copying semantics to each class, as follows:

Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x); .

Use the copy constructor.

If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you. Similarly, if you don't declare a copy assignment operator, the compiler generates a member-wise copy assignment operator for you. Declaring a copy constructor doesn't suppress the compiler-generated copy assignment operator, and vice-versa. If you implement either one, we recommend that you implement the other one, too. When you implement both, the meaning of the code is clear.

The copy constructor takes an argument of type ClassName& , where ClassName is the name of the class. For example:

Make the type of the copy constructor's argument const ClassName& whenever possible. This prevents the copy constructor from accidentally changing the copied object. It also lets you copy from const objects.

Compiler generated copy constructors

Compiler-generated copy constructors, like user-defined copy constructors, have a single argument of type "reference to class-name ." An exception is when all base classes and member classes have copy constructors declared as taking a single argument of type const class-name & . In such a case, the compiler-generated copy constructor's argument is also const .

When the argument type to the copy constructor isn't const , initialization by copying a const object generates an error. The reverse isn't true: If the argument is const , you can initialize by copying an object that's not const .

Compiler-generated assignment operators follow the same pattern for const . They take a single argument of type ClassName& unless the assignment operators in all base and member classes take arguments of type const ClassName& . In this case, the generated assignment operator for the class takes a const argument.

When virtual base classes are initialized by copy constructors, whether compiler-generated or user-defined, they're initialized only once: at the point when they are constructed.

The implications are similar to the copy constructor. When the argument type isn't const , assignment from a const object generates an error. The reverse isn't true: If a const value is assigned to a value that's not const , the assignment succeeds.

For more information about overloaded assignment operators, see Assignment .

Was this page helpful?

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

  • Graphics and multimedia
  • Language Features
  • Unix/Linux programming
  • Source Code
  • Standard Library
  • Tips and Tricks
  • Tools and Libraries
  • Windows API
  • Copy constructors, assignment operators,

Copy constructors, assignment operators, and exception safe assignment

*

Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . For a type to be CopyAssignable , it must have a public copy assignment operator.

Explanation

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used.
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used (non-swappable type or degraded performance).
  • Forcing a copy assignment operator to be generated by the compiler.
  • Avoiding implicit copy assignment.

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B & or const volatile B & ;
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M & or const volatile M & .

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument.)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

The implicitly-declared (or defaulted on its first declaration) copy assignment operator has an exception specification as described in dynamic exception specification (until C++17) exception specification (since C++17)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

Deleted implicitly-declared copy assignment operator

A implicitly-declared copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a user-declared move constructor;
  • T has a user-declared move assignment operator.

Otherwise, it is defined as defaulted.

A defaulted copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a non-static data member of non-class type (or array thereof) that is const ;
  • T has a non-static data member of a reference type;
  • T has a non-static data member or a direct or virtual base class that cannot be copy-assigned (overload resolution for the copy assignment fails, or selects a deleted or inaccessible function);
  • T is a union-like class , and has a variant member whose corresponding assignment operator is non-trivial.

Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • it is not user-provided (meaning, it is implicitly-defined or defaulted) , , and if it is defaulted, its signature is the same as implicitly-defined (until C++14) ;
  • T has no virtual member functions;
  • T has no virtual base classes;
  • the copy assignment operator selected for every direct base of T is trivial;
  • the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial;

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used . For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either a prvalue such as a nameless temporary or an xvalue such as the result of std::move ), and selects the copy assignment if the argument is an lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

It is unspecified whether virtual base class subobjects that are accessible through more than one path in the inheritance lattice, are assigned more than once by the implicitly-defined copy assignment operator (same applies to move assignment ).

See assignment operator overloading for additional detail on the expected behavior of a user-defined copy-assignment operator.

Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

  • C++ Data Types
  • C++ Input/Output
  • C++ Pointers
  • C++ Interview Questions
  • C++ Programs
  • C++ Cheatsheet
  • C++ Projects
  • C++ Exception Handling
  • C++ Memory Management

Copy Constructor vs Assignment Operator in C++

  • How to Create Custom Assignment Operator in C++?
  • Assignment Operators In C++
  • Why copy constructor argument should be const in C++?
  • Advanced C++ | Virtual Copy Constructor
  • Move Assignment Operator in C++ 11
  • Self assignment check in assignment operator
  • Is assignment operator inherited?
  • Copy Constructor in C++
  • How to Implement Move Assignment Operator in C++?
  • Default Assignment Operator and References in C++
  • Can a constructor be private in C++ ?
  • When is a Copy Constructor Called in C++?
  • C++ Assignment Operator Overloading
  • std::move in Utility in C++ | Move Semantics, Move Constructors and Move Assignment Operators
  • C++ Interview questions based on constructors/ Destructors.
  • Assignment Operators in C
  • Copy Constructor in Python
  • Copy Constructor in Java
  • Constructors in Objective-C

Copy constructor and Assignment operator are similar as they are both used to initialize one object using another object. But, there are some basic differences between them:

Consider the following C++ program. 

Explanation: Here, t2 = t1;  calls the assignment operator , same as t2.operator=(t1); and   Test t3 = t1;  calls the copy constructor , same as Test t3(t1);

Must Read: When is a Copy Constructor Called in C++?

Please Login to comment...

Similar reads, improve your coding skills with practice.

 alt=

What kind of Experience do you want to share?

IMAGES

  1. [100% Working Code]

    c struct copy assignment operator

  2. Assignment Operators in C

    c struct copy assignment operator

  3. Assignment Operators in C » PREP INSTA

    c struct copy assignment operator

  4. C programming +=

    c struct copy assignment operator

  5. Difference between copy constructor and assignment operator in c++

    c struct copy assignment operator

  6. C++ Tutorial: Operator Overloading Part 5

    c struct copy assignment operator

VIDEO

  1. Assignment Operator in C Programming

  2. Augmented assignment operators in C

  3. Assignment Operator in C Programming

  4. Let us C Solutions

  5. Struct in C programming language

  6. C++

COMMENTS

  1. Copy assignment operator

    the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  2. c++

    Assignment operator - Called when one struct/class is assigned to another. This is the automatically generated method that's being called in the above case. Share. ... @Rob: The definition of the default copy assignment operator starting at 12.8:10 makes no mention of a throw clause. This makes sense to me, since a default copy assignment ...

  3. Structure Assignment (GNU C Language Manual)

    structure assigment such as r1 = r2 copies array fields' contents just as it copies all the other fields. This is the only way in C that you can operate on the whole contents of a array with one operation: when the array is contained in a struct. You can't copy the contents of the data field as an array, because.

  4. Copy assignment operator

    The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  5. Copy assignment operator

    Implicitly-declared copy assignment operator. If no user-defined copy assignment operators are provided for a class type (struct, class, or union), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T:: operator = (const T &) if all of the following is ...

  6. Copy assignment operator

    Implicitly-declared copy assignment operator. If no user-defined copy assignment operators are provided for a class type (struct, class, or union), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T:: operator = (const T &) if all of the following is ...

  7. struct

    C17 6.5.16: An assignment operator stores a value in the object designated by the left operand. An assignment expression has the value of the left operand after the assignment, but is not an lvalue. The type of an assignment expression is the type the left operand would have after lvalue conversion. (Lvalue conversion in this case isn't ...

  8. Copy Assignment (Using the GNU Compiler Collection (GCC))

    The C++ standard specifies that 'Base::Base' is only called once when constructing or copy-constructing a Derived object.It is unspecified whether 'Base::operator=' is called more than once when the implicit copy-assignment for Derived objects is invoked (as it is inside 'func' in the example). G++ implements the "intuitive" algorithm for copy-assignment: assign all direct ...

  9. 21.12

    21.12 — Overloading the assignment operator. Alex November 27, 2023. The copy assignment operator (operator=) is used to copy values from one object to another already existing object. As of C++11, C++ also supports "Move assignment". We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

  10. Copy constructors and copy assignment operators (C++)

    Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x);. Use the copy constructor. If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you.

  11. Copy assignment operator

    Implicitly-declared copy assignment operator. If no user-defined copy assignment operators are provided for a class type (struct, class, or union), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T:: operator = (const T &) if all of the following is ...

  12. Copy constructors, assignment operators,

    A copy constructor is a special constructor for a class/struct that is used to make a copy of an existing instance. According to the C++ ... in either T's copy constructor or assignment operator throwing, you are politely required to provide a swap() overload for your type that does not throw. [Since swap() cannot return failure, and you are ...

  13. Overloading operators in typedef structs (c++)

    This assigns c to b, and the resulting value b is then assigned to a. This is not equivalent to the following code, contrary to what you may think: a = c; b = c; Therefore, your assignment operator should be implemented as such: pos& operator =(const pos& a) {. x = a.x; y = a.y;

  14. c++

    The copy constructor is for creating a new object. It copies an existing object to a newly constructed object.The copy constructor is used to initialize a new instance from an old instance. It is not necessarily called when passing variables by value into functions or as return values out of functions. The assignment operator is to deal with an ...

  15. Everything You Need To Know About The Copy Assignment Operator In C++

    The Copy Assignment Operator in a class is a non-template non-static member function that is declared with the operator=. When you create a class or a type that is copy assignable (that you can copy with the = operator symbol), it must have a public copy assignment operator. Here is a simple syntax for the typical declaration of a copy ...

  16. Copy assignment operator

    A class can have multiple copy assignment operators, e.g. both T & T:: operator = (const T &) and T & T:: operator = (T). If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default. (since C++11)

  17. Copy Constructor vs Assignment Operator in C++

    C++ compiler implicitly provides a copy constructor, if no copy constructor is defined in the class. A bitwise copy gets created, if the Assignment operator is not overloaded. Consider the following C++ program. Explanation: Here, t2 = t1; calls the assignment operator, same as t2.operator= (t1); and Test t3 = t1; calls the copy constructor ...

  18. How to implement copy operator for such C++ structure?

    the vector knows how to copy chars as well as itself, and the implementations are optimized and tested. here's how to explicitly implement copy ctor/assign using a vector: ResultStructure(const ResultStructure& other) : d_chars(other.d_chars) {. ResultStructure& operator=(const ResultStructure& other) {.