41+ Critical Thinking Examples (Definition + Practices)

practical psychology logo

Critical thinking is an essential skill in our information-overloaded world, where figuring out what is fact and fiction has become increasingly challenging.

But why is critical thinking essential? Put, critical thinking empowers us to make better decisions, challenge and validate our beliefs and assumptions, and understand and interact with the world more effectively and meaningfully.

Critical thinking is like using your brain's "superpowers" to make smart choices. Whether it's picking the right insurance, deciding what to do in a job, or discussing topics in school, thinking deeply helps a lot. In the next parts, we'll share real-life examples of when this superpower comes in handy and give you some fun exercises to practice it.

Critical Thinking Process Outline

a woman thinking

Critical thinking means thinking clearly and fairly without letting personal feelings get in the way. It's like being a detective, trying to solve a mystery by using clues and thinking hard about them.

It isn't always easy to think critically, as it can take a pretty smart person to see some of the questions that aren't being answered in a certain situation. But, we can train our brains to think more like puzzle solvers, which can help develop our critical thinking skills.

Here's what it looks like step by step:

Spotting the Problem: It's like discovering a puzzle to solve. You see that there's something you need to figure out or decide.

Collecting Clues: Now, you need to gather information. Maybe you read about it, watch a video, talk to people, or do some research. It's like getting all the pieces to solve your puzzle.

Breaking It Down: This is where you look at all your clues and try to see how they fit together. You're asking questions like: Why did this happen? What could happen next?

Checking Your Clues: You want to make sure your information is good. This means seeing if what you found out is true and if you can trust where it came from.

Making a Guess: After looking at all your clues, you think about what they mean and come up with an answer. This answer is like your best guess based on what you know.

Explaining Your Thoughts: Now, you tell others how you solved the puzzle. You explain how you thought about it and how you answered. 

Checking Your Work: This is like looking back and seeing if you missed anything. Did you make any mistakes? Did you let any personal feelings get in the way? This step helps make sure your thinking is clear and fair.

And remember, you might sometimes need to go back and redo some steps if you discover something new. If you realize you missed an important clue, you might have to go back and collect more information.

Critical Thinking Methods

Just like doing push-ups or running helps our bodies get stronger, there are special exercises that help our brains think better. These brain workouts push us to think harder, look at things closely, and ask many questions.

It's not always about finding the "right" answer. Instead, it's about the journey of thinking and asking "why" or "how." Doing these exercises often helps us become better thinkers and makes us curious to know more about the world.

Now, let's look at some brain workouts to help us think better:

1. "What If" Scenarios

Imagine crazy things happening, like, "What if there was no internet for a month? What would we do?" These games help us think of new and different ideas.

Pick a hot topic. Argue one side of it and then try arguing the opposite. This makes us see different viewpoints and think deeply about a topic.

3. Analyze Visual Data

Check out charts or pictures with lots of numbers and info but no explanations. What story are they telling? This helps us get better at understanding information just by looking at it.

4. Mind Mapping

Write an idea in the center and then draw lines to related ideas. It's like making a map of your thoughts. This helps us see how everything is connected.

There's lots of mind-mapping software , but it's also nice to do this by hand.

5. Weekly Diary

Every week, write about what happened, the choices you made, and what you learned. Writing helps us think about our actions and how we can do better.

6. Evaluating Information Sources

Collect stories or articles about one topic from newspapers or blogs. Which ones are trustworthy? Which ones might be a little biased? This teaches us to be smart about where we get our info.

There are many resources to help you determine if information sources are factual or not.

7. Socratic Questioning

This way of thinking is called the Socrates Method, named after an old-time thinker from Greece. It's about asking lots of questions to understand a topic. You can do this by yourself or chat with a friend.

Start with a Big Question:

"What does 'success' mean?"

Dive Deeper with More Questions:

"Why do you think of success that way?" "Do TV shows, friends, or family make you think that?" "Does everyone think about success the same way?"

"Can someone be a winner even if they aren't rich or famous?" "Can someone feel like they didn't succeed, even if everyone else thinks they did?"

Look for Real-life Examples:

"Who is someone you think is successful? Why?" "Was there a time you felt like a winner? What happened?"

Think About Other People's Views:

"How might a person from another country think about success?" "Does the idea of success change as we grow up or as our life changes?"

Think About What It Means:

"How does your idea of success shape what you want in life?" "Are there problems with only wanting to be rich or famous?"

Look Back and Think:

"After talking about this, did your idea of success change? How?" "Did you learn something new about what success means?"

socratic dialogue statues

8. Six Thinking Hats 

Edward de Bono came up with a cool way to solve problems by thinking in six different ways, like wearing different colored hats. You can do this independently, but it might be more effective in a group so everyone can have a different hat color. Each color has its way of thinking:

White Hat (Facts): Just the facts! Ask, "What do we know? What do we need to find out?"

Red Hat (Feelings): Talk about feelings. Ask, "How do I feel about this?"

Black Hat (Careful Thinking): Be cautious. Ask, "What could go wrong?"

Yellow Hat (Positive Thinking): Look on the bright side. Ask, "What's good about this?"

Green Hat (Creative Thinking): Think of new ideas. Ask, "What's another way to look at this?"

Blue Hat (Planning): Organize the talk. Ask, "What should we do next?"

When using this method with a group:

  • Explain all the hats.
  • Decide which hat to wear first.
  • Make sure everyone switches hats at the same time.
  • Finish with the Blue Hat to plan the next steps.

9. SWOT Analysis

SWOT Analysis is like a game plan for businesses to know where they stand and where they should go. "SWOT" stands for Strengths, Weaknesses, Opportunities, and Threats.

There are a lot of SWOT templates out there for how to do this visually, but you can also think it through. It doesn't just apply to businesses but can be a good way to decide if a project you're working on is working.

Strengths: What's working well? Ask, "What are we good at?"

Weaknesses: Where can we do better? Ask, "Where can we improve?"

Opportunities: What good things might come our way? Ask, "What chances can we grab?"

Threats: What challenges might we face? Ask, "What might make things tough for us?"

Steps to do a SWOT Analysis:

  • Goal: Decide what you want to find out.
  • Research: Learn about your business and the world around it.
  • Brainstorm: Get a group and think together. Talk about strengths, weaknesses, opportunities, and threats.
  • Pick the Most Important Points: Some things might be more urgent or important than others.
  • Make a Plan: Decide what to do based on your SWOT list.
  • Check Again Later: Things change, so look at your SWOT again after a while to update it.

Now that you have a few tools for thinking critically, let’s get into some specific examples.

Everyday Examples

Life is a series of decisions. From the moment we wake up, we're faced with choices – some trivial, like choosing a breakfast cereal, and some more significant, like buying a home or confronting an ethical dilemma at work. While it might seem that these decisions are disparate, they all benefit from the application of critical thinking.

10. Deciding to buy something

Imagine you want a new phone. Don't just buy it because the ad looks cool. Think about what you need in a phone. Look up different phones and see what people say about them. Choose the one that's the best deal for what you want.

11. Deciding what is true

There's a lot of news everywhere. Don't believe everything right away. Think about why someone might be telling you this. Check if what you're reading or watching is true. Make up your mind after you've looked into it.

12. Deciding when you’re wrong

Sometimes, friends can have disagreements. Don't just get mad right away. Try to see where they're coming from. Talk about what's going on. Find a way to fix the problem that's fair for everyone.

13. Deciding what to eat

There's always a new diet or exercise that's popular. Don't just follow it because it's trendy. Find out if it's good for you. Ask someone who knows, like a doctor. Make choices that make you feel good and stay healthy.

14. Deciding what to do today

Everyone is busy with school, chores, and hobbies. Make a list of things you need to do. Decide which ones are most important. Plan your day so you can get things done and still have fun.

15. Making Tough Choices

Sometimes, it's hard to know what's right. Think about how each choice will affect you and others. Talk to people you trust about it. Choose what feels right in your heart and is fair to others.

16. Planning for the Future

Big decisions, like where to go to school, can be tricky. Think about what you want in the future. Look at the good and bad of each choice. Talk to people who know about it. Pick what feels best for your dreams and goals.

choosing a house

Job Examples

17. solving problems.

Workers brainstorm ways to fix a machine quickly without making things worse when a machine breaks at a factory.

18. Decision Making

A store manager decides which products to order more of based on what's selling best.

19. Setting Goals

A team leader helps their team decide what tasks are most important to finish this month and which can wait.

20. Evaluating Ideas

At a team meeting, everyone shares ideas for a new project. The group discusses each idea's pros and cons before picking one.

21. Handling Conflict

Two workers disagree on how to do a job. Instead of arguing, they talk calmly, listen to each other, and find a solution they both like.

22. Improving Processes

A cashier thinks of a faster way to ring up items so customers don't have to wait as long.

23. Asking Questions

Before starting a big task, an employee asks for clear instructions and checks if they have the necessary tools.

24. Checking Facts

Before presenting a report, someone double-checks all their information to make sure there are no mistakes.

25. Planning for the Future

A business owner thinks about what might happen in the next few years, like new competitors or changes in what customers want, and makes plans based on those thoughts.

26. Understanding Perspectives

A team is designing a new toy. They think about what kids and parents would both like instead of just what they think is fun.

School Examples

27. researching a topic.

For a history project, a student looks up different sources to understand an event from multiple viewpoints.

28. Debating an Issue

In a class discussion, students pick sides on a topic, like school uniforms, and share reasons to support their views.

29. Evaluating Sources

While writing an essay, a student checks if the information from a website is trustworthy or might be biased.

30. Problem Solving in Math

When stuck on a tricky math problem, a student tries different methods to find the answer instead of giving up.

31. Analyzing Literature

In English class, students discuss why a character in a book made certain choices and what those decisions reveal about them.

32. Testing a Hypothesis

For a science experiment, students guess what will happen and then conduct tests to see if they're right or wrong.

33. Giving Peer Feedback

After reading a classmate's essay, a student offers suggestions for improving it.

34. Questioning Assumptions

In a geography lesson, students consider why certain countries are called "developed" and what that label means.

35. Designing a Study

For a psychology project, students plan an experiment to understand how people's memories work and think of ways to ensure accurate results.

36. Interpreting Data

In a science class, students look at charts and graphs from a study, then discuss what the information tells them and if there are any patterns.

Critical Thinking Puzzles

critical thinking tree

Not all scenarios will have a single correct answer that can be figured out by thinking critically. Sometimes we have to think critically about ethical choices or moral behaviors. 

Here are some mind games and scenarios you can solve using critical thinking. You can see the solution(s) at the end of the post.

37. The Farmer, Fox, Chicken, and Grain Problem

A farmer is at a riverbank with a fox, a chicken, and a grain bag. He needs to get all three items across the river. However, his boat can only carry himself and one of the three items at a time. 

Here's the challenge:

  • If the fox is left alone with the chicken, the fox will eat the chicken.
  • If the chicken is left alone with the grain, the chicken will eat the grain.

How can the farmer get all three items across the river without any item being eaten? 

38. The Rope, Jar, and Pebbles Problem

You are in a room with two long ropes hanging from the ceiling. Each rope is just out of arm's reach from the other, so you can't hold onto one rope and reach the other simultaneously. 

Your task is to tie the two rope ends together, but you can't move the position where they hang from the ceiling.

You are given a jar full of pebbles. How do you complete the task?

39. The Two Guards Problem

Imagine there are two doors. One door leads to certain doom, and the other leads to freedom. You don't know which is which.

In front of each door stands a guard. One guard always tells the truth. The other guard always lies. You don't know which guard is which.

You can ask only one question to one of the guards. What question should you ask to find the door that leads to freedom?

40. The Hourglass Problem

You have two hourglasses. One measures 7 minutes when turned over, and the other measures 4 minutes. Using just these hourglasses, how can you time exactly 9 minutes?

41. The Lifeboat Dilemma

Imagine you're on a ship that's sinking. You get on a lifeboat, but it's already too full and might flip over. 

Nearby in the water, five people are struggling: a scientist close to finding a cure for a sickness, an old couple who've been together for a long time, a mom with three kids waiting at home, and a tired teenager who helped save others but is now in danger. 

You can only save one person without making the boat flip. Who would you choose?

42. The Tech Dilemma

You work at a tech company and help make a computer program to help small businesses. You're almost ready to share it with everyone, but you find out there might be a small chance it has a problem that could show users' private info. 

If you decide to fix it, you must wait two more months before sharing it. But your bosses want you to share it now. What would you do?

43. The History Mystery

Dr. Amelia is a history expert. She's studying where a group of people traveled long ago. She reads old letters and documents to learn about it. But she finds some letters that tell a different story than what most people believe. 

If she says this new story is true, it could change what people learn in school and what they think about history. What should she do?

The Role of Bias in Critical Thinking

Have you ever decided you don’t like someone before you even know them? Or maybe someone shared an idea with you that you immediately loved without even knowing all the details. 

This experience is called bias, which occurs when you like or dislike something or someone without a good reason or knowing why. It can also take shape in certain reactions to situations, like a habit or instinct. 

Bias comes from our own experiences, what friends or family tell us, or even things we are born believing. Sometimes, bias can help us stay safe, but other times it stops us from seeing the truth.

Not all bias is bad. Bias can be a mechanism for assessing our potential safety in a new situation. If we are biased to think that anything long, thin, and curled up is a snake, we might assume the rope is something to be afraid of before we know it is just a rope.

While bias might serve us in some situations (like jumping out of the way of an actual snake before we have time to process that we need to be jumping out of the way), it often harms our ability to think critically.

How Bias Gets in the Way of Good Thinking

Selective Perception: We only notice things that match our ideas and ignore the rest. 

It's like only picking red candies from a mixed bowl because you think they taste the best, but they taste the same as every other candy in the bowl. It could also be when we see all the signs that our partner is cheating on us but choose to ignore them because we are happy the way we are (or at least, we think we are).

Agreeing with Yourself: This is called “ confirmation bias ” when we only listen to ideas that match our own and seek, interpret, and remember information in a way that confirms what we already think we know or believe. 

An example is when someone wants to know if it is safe to vaccinate their children but already believes that vaccines are not safe, so they only look for information supporting the idea that vaccines are bad.

Thinking We Know It All: Similar to confirmation bias, this is called “overconfidence bias.” Sometimes we think our ideas are the best and don't listen to others. This can stop us from learning.

Have you ever met someone who you consider a “know it”? Probably, they have a lot of overconfidence bias because while they may know many things accurately, they can’t know everything. Still, if they act like they do, they show overconfidence bias.

There's a weird kind of bias similar to this called the Dunning Kruger Effect, and that is when someone is bad at what they do, but they believe and act like they are the best .

Following the Crowd: This is formally called “groupthink”. It's hard to speak up with a different idea if everyone agrees. But this can lead to mistakes.

An example of this we’ve all likely seen is the cool clique in primary school. There is usually one person that is the head of the group, the “coolest kid in school”, and everyone listens to them and does what they want, even if they don’t think it’s a good idea.

How to Overcome Biases

Here are a few ways to learn to think better, free from our biases (or at least aware of them!).

Know Your Biases: Realize that everyone has biases. If we know about them, we can think better.

Listen to Different People: Talking to different kinds of people can give us new ideas.

Ask Why: Always ask yourself why you believe something. Is it true, or is it just a bias?

Understand Others: Try to think about how others feel. It helps you see things in new ways.

Keep Learning: Always be curious and open to new information.

city in a globe connection

In today's world, everything changes fast, and there's so much information everywhere. This makes critical thinking super important. It helps us distinguish between what's real and what's made up. It also helps us make good choices. But thinking this way can be tough sometimes because of biases. These are like sneaky thoughts that can trick us. The good news is we can learn to see them and think better.

There are cool tools and ways we've talked about, like the "Socratic Questioning" method and the "Six Thinking Hats." These tools help us get better at thinking. These thinking skills can also help us in school, work, and everyday life.

We’ve also looked at specific scenarios where critical thinking would be helpful, such as deciding what diet to follow and checking facts.

Thinking isn't just a skill—it's a special talent we improve over time. Working on it lets us see things more clearly and understand the world better. So, keep practicing and asking questions! It'll make you a smarter thinker and help you see the world differently.

Critical Thinking Puzzles (Solutions)

The farmer, fox, chicken, and grain problem.

  • The farmer first takes the chicken across the river and leaves it on the other side.
  • He returns to the original side and takes the fox across the river.
  • After leaving the fox on the other side, he returns the chicken to the starting side.
  • He leaves the chicken on the starting side and takes the grain bag across the river.
  • He leaves the grain with the fox on the other side and returns to get the chicken.
  • The farmer takes the chicken across, and now all three items -- the fox, the chicken, and the grain -- are safely on the other side of the river.

The Rope, Jar, and Pebbles Problem

  • Take one rope and tie the jar of pebbles to its end.
  • Swing the rope with the jar in a pendulum motion.
  • While the rope is swinging, grab the other rope and wait.
  • As the swinging rope comes back within reach due to its pendulum motion, grab it.
  • With both ropes within reach, untie the jar and tie the rope ends together.

The Two Guards Problem

The question is, "What would the other guard say is the door to doom?" Then choose the opposite door.

The Hourglass Problem

  • Start both hourglasses. 
  • When the 4-minute hourglass runs out, turn it over.
  • When the 7-minute hourglass runs out, the 4-minute hourglass will have been running for 3 minutes. Turn the 7-minute hourglass over. 
  • When the 4-minute hourglass runs out for the second time (a total of 8 minutes have passed), the 7-minute hourglass will run for 1 minute. Turn the 7-minute hourglass again for 1 minute to empty the hourglass (a total of 9 minutes passed).

The Boat and Weights Problem

Take the cat over first and leave it on the other side. Then, return and take the fish across next. When you get there, take the cat back with you. Leave the cat on the starting side and take the cat food across. Lastly, return to get the cat and bring it to the other side.

The Lifeboat Dilemma

There isn’t one correct answer to this problem. Here are some elements to consider:

  • Moral Principles: What values guide your decision? Is it the potential greater good for humanity (the scientist)? What is the value of long-standing love and commitment (the elderly couple)? What is the future of young children who depend on their mothers? Or the selfless bravery of the teenager?
  • Future Implications: Consider the future consequences of each choice. Saving the scientist might benefit millions in the future, but what moral message does it send about the value of individual lives?
  • Emotional vs. Logical Thinking: While it's essential to engage empathy, it's also crucial not to let emotions cloud judgment entirely. For instance, while the teenager's bravery is commendable, does it make him more deserving of a spot on the boat than the others?
  • Acknowledging Uncertainty: The scientist claims to be close to a significant breakthrough, but there's no certainty. How does this uncertainty factor into your decision?
  • Personal Bias: Recognize and challenge any personal biases, such as biases towards age, profession, or familial status.

The Tech Dilemma

Again, there isn’t one correct answer to this problem. Here are some elements to consider:

  • Evaluate the Risk: How severe is the potential vulnerability? Can it be easily exploited, or would it require significant expertise? Even if the circumstances are rare, what would be the consequences if the vulnerability were exploited?
  • Stakeholder Considerations: Different stakeholders will have different priorities. Upper management might prioritize financial projections, the marketing team might be concerned about the product's reputation, and customers might prioritize the security of their data. How do you balance these competing interests?
  • Short-Term vs. Long-Term Implications: While launching on time could meet immediate financial goals, consider the potential long-term damage to the company's reputation if the vulnerability is exploited. Would the short-term gains be worth the potential long-term costs?
  • Ethical Implications : Beyond the financial and reputational aspects, there's an ethical dimension to consider. Is it right to release a product with a known vulnerability, even if the chances of it being exploited are low?
  • Seek External Input: Consulting with cybersecurity experts outside your company might be beneficial. They could provide a more objective risk assessment and potential mitigation strategies.
  • Communication: How will you communicate the decision, whatever it may be, both internally to your team and upper management and externally to your customers and potential users?

The History Mystery

Dr. Amelia should take the following steps:

  • Verify the Letters: Before making any claims, she should check if the letters are actual and not fake. She can do this by seeing when and where they were written and if they match with other things from that time.
  • Get a Second Opinion: It's always good to have someone else look at what you've found. Dr. Amelia could show the letters to other history experts and see their thoughts.
  • Research More: Maybe there are more documents or letters out there that support this new story. Dr. Amelia should keep looking to see if she can find more evidence.
  • Share the Findings: If Dr. Amelia believes the letters are true after all her checks, she should tell others. This can be through books, talks, or articles.
  • Stay Open to Feedback: Some people might agree with Dr. Amelia, and others might not. She should listen to everyone and be ready to learn more or change her mind if new information arises.

Ultimately, Dr. Amelia's job is to find out the truth about history and share it. It's okay if this new truth differs from what people used to believe. History is about learning from the past, no matter the story.

Related posts:

  • Experimenter Bias (Definition + Examples)
  • Hasty Generalization Fallacy (31 Examples + Similar Names)
  • Ad Hoc Fallacy (29 Examples + Other Names)
  • Confirmation Bias (Examples + Definition)
  • Equivocation Fallacy (26 Examples + Description)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

example of critical thinking in psychology

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

example of critical thinking in psychology

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Critical Thinking

Introduction, general overviews.

  • Importance of Thinking Critically
  • Defining Critical Thinking
  • General Skills
  • Specific Skills
  • Metacognitive Monitoring Skills
  • Critical Thinking Dispositions
  • Teaching Specific Skills
  • Encouraging a Disposition toward Thinking Critically
  • Transfer to Other Domains
  • Metacognitive Monitoring
  • General or Comprehensive Assessments
  • Metacognition Assessments
  • Critical Thinking Disposition Assessments
  • Thinking Critically about Critical Thinking

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Artificial Intelligence, Machine Learning, and Psychology
  • Assessment of Thinking in Educational Settings
  • Human Memory
  • Learning Theory
  • Mindfulness
  • Problem Solving and Decision Making
  • Procrastination
  • Student Success in College
  • Teaching of Psychology
  • Thinking Skills in Educational Settings
  • Women and Science, Technology, Engineering, and Math (STEM)

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Data Visualization
  • Remote Work
  • Workforce Training Evaluation
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Critical Thinking by Heather Butler , Diane Halpern LAST REVIEWED: 26 August 2022 LAST MODIFIED: 29 November 2011 DOI: 10.1093/obo/9780199828340-0019

Critical thinking has been described in many ways, but researchers generally agree that critical thinking involves rational, purposeful, and goal-directed thinking (see Defining Critical Thinking ). Diane F. Halpern defined critical thinking as an attempt to increase the probability of a desired outcome (e.g., making a sound decision, successfully solving a problem) by using certain cognitive skills and strategies. Critical thinking is more than just a collection of skills and strategies: it is a disposition toward engaging with problems. Critical thinkers are flexible, open-minded, persistent, and willing to exert mental energy working on tough problems. Unlike poor thinkers, critical thinkers are willing to admit they have made an error in judgment if confronted with contradictory evidence, and they operate on autopilot much less than poor thinkers (see Critical Thinking Dispositions ). There is good evidence that critical thinking skills and dispositions can be taught (see Teaching Critical Thinking ). This guide includes (a) sources that extol the importance of critical thinking, (b) research that identifies specific critical thinking skills and conceptualizations of critical thinking dispositions, (c) a list of the best practices for teaching critical thinking skills and dispositions, and (d) a review of research into ways of assessing critical thinking skills and dispositions (see Assessments ).

The sources highlighted here include textbooks, literature reviews, and meta-analyses related to critical thinking. These contributions come from both psychological ( Halpern 2003 ; Nisbett 1993 ; Sternberg, et al. 2007 ) and philosophical ( Ennis 1962 , Facione 1990 ) perspectives. Many of these general overviews are textbooks ( Facione 2011b ; Halpern 2003 ; Nisbett 1993 ; Sternberg, et al. 2007 ), while the other sources are review articles or commentaries. Most resources were intended for a general audience, but Sternberg, et al. 2007 was written specifically to address critical thinking in psychology. Those interested in a historical reference are referred to Ennis 1962 , which is credited by some as renewing contemporary interest in critical thinking. Those interested in a more recent conceptualization of critical thinking are referred to Facione 2011a , which is a short introduction to the field of critical thinking that would be appropriate for those new to the field, or Facione 1990 , which summarizes a collaborative definition of critical thinking among philosophers using the Delphi method. Facione 2011b would be a valuable resource for philosophers teaching critical thinking or logic courses to general audiences. For psychologists teaching critical thinking courses to a general audience, Halpern 2003 , an empirically based textbook, covers a wide range of topics; a new edition is expected soon. Fisher 2001 is also intended for general audiences and teaches a wide variety of critical thinking skills. Nisbett 1993 tackles the question of whether critical thinking skills can be taught and provides ample empirical evidence to that end. Sternberg, et al. 2007 is a good resource for psychology students interested in learning how to improve their scientific reasoning skills, a specific set of thinking skills needed by psychology and other science students.

Ennis, Robert H. 1962. A concept of critical thinking: A proposed basis of research in the teaching and evaluation of critical thinking. Harvard Educational Review 32:81–111.

A discussion of how critical thinking is conceptualized from a philosopher’s perspective. Critical of psychology’s definition of critical thinking at the time. Emphasizes twelve aspects of critical thinking.

Facione, Peter A. 1990. Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction; Executive Summary of The Delphi Report . Millbrae, CA: California Academic Press.

Describes the critical thinking movement, definitions of critical thinking agreed upon by philosophers using the Delphi method, the assessment of critical thinking, and how critical thinking can be taught.

Facione, Peter A. 2011a. Critical thinking: What it is and why it counts . Millbrae, CA: Insight Assessment.

This accessible paper defines critical thinking, elaborates on specific critical thinking skills, and discusses what it means to have (or not have) a critical thinking disposition. A distinction is made between system 1 (shallow processing) and system 2 (deeper processing) thinking. Good resource for students new to the field.

Facione, Peter A. 2011b. THINK critically . Upper Saddle River, NJ: Prentice Hall.

Written from a philosophical perspective this critical thinking textbook emphasizes the application of critical thinking to the real world and offers positive examples of critical thinking. Chapters cover inductive, deductive, comparative, ideological, and empirical reasoning

Fisher, Alec. 2001. Critical thinking: An introduction . Cambridge, UK: Cambridge Univ. Press.

Textbook intended for college students discusses various types of reasoning, causality, argument analysis, and decision making. Includes exercises for students and teachers.

Halpern, Diane F. 2003. Thought & knowledge: An introduction to critical thinking . 4th ed. Mahwah, NJ: Lawrence Erlbaum.

This textbook, written by a cognitive psychologist, is grounded in theory and research from the learning sciences and offers practical examples. Chapters include an introduction to the topic and the correlates of critical thinking, memory, thought and language, reasoning, analyzing arguments, thinking as hypothesis testing, likelihood and uncertainty, decision making, development of problem-solving skills, and creative thinking.

Nisbett, Richard E. 1993. Rules for reasoning . Hillsdale, NJ: Lawrence Erlbaum.

This text is rich with empirical evidence that critical thinking skills can be taught to undergraduate and graduate students. Each chapter discusses research on an aspect of reasoning (e.g., statistical reasoning, heuristics, inductive reasoning) with special emphasis on teaching the application of these skills to everyday problems.

Sternberg, Robert J., Henry L. Roediger III, and Diane F. Halpern, eds. 2007. Critical thinking in psychology . New York: Cambridge Univ. Press.

This edited book explores several aspects of critical thinking that are needed to fully understand key topics in psychology such as experiment research, statistical inference, case studies, logical fallacies, and ethical judgments. Experts discuss the critical thinking strategies they engage in. Interesting discussion of historical breakthroughs due to critical thinking.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Psychology »
  • Meet the Editorial Board »
  • Abnormal Psychology
  • Academic Assessment
  • Acculturation and Health
  • Action Regulation Theory
  • Action Research
  • Addictive Behavior
  • Adolescence
  • Adoption, Social, Psychological, and Evolutionary Perspect...
  • Advanced Theory of Mind
  • Affective Forecasting
  • Affirmative Action
  • Ageism at Work
  • Allport, Gordon
  • Alzheimer’s Disease
  • Ambulatory Assessment in Behavioral Science
  • Analysis of Covariance (ANCOVA)
  • Animal Behavior
  • Animal Learning
  • Anxiety Disorders
  • Art and Aesthetics, Psychology of
  • Assessment and Clinical Applications of Individual Differe...
  • Attachment in Social and Emotional Development across the ...
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Adults
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Childre...
  • Attitudinal Ambivalence
  • Attraction in Close Relationships
  • Attribution Theory
  • Authoritarian Personality
  • Bayesian Statistical Methods in Psychology
  • Behavior Therapy, Rational Emotive
  • Behavioral Economics
  • Behavioral Genetics
  • Belief Perseverance
  • Bereavement and Grief
  • Biological Psychology
  • Birth Order
  • Body Image in Men and Women
  • Bystander Effect
  • Categorical Data Analysis in Psychology
  • Childhood and Adolescence, Peer Victimization and Bullying...
  • Clark, Mamie Phipps
  • Clinical Neuropsychology
  • Clinical Psychology
  • Cognitive Consistency Theories
  • Cognitive Dissonance Theory
  • Cognitive Neuroscience
  • Communication, Nonverbal Cues and
  • Comparative Psychology
  • Competence to Stand Trial: Restoration Services
  • Competency to Stand Trial
  • Computational Psychology
  • Conflict Management in the Workplace
  • Conformity, Compliance, and Obedience
  • Consciousness
  • Coping Processes
  • Correspondence Analysis in Psychology
  • Counseling Psychology
  • Creativity at Work
  • Critical Thinking
  • Cross-Cultural Psychology
  • Cultural Psychology
  • Daily Life, Research Methods for Studying
  • Data Science Methods for Psychology
  • Data Sharing in Psychology
  • Death and Dying
  • Deceiving and Detecting Deceit
  • Defensive Processes
  • Depressive Disorders
  • Development, Prenatal
  • Developmental Psychology (Cognitive)
  • Developmental Psychology (Social)
  • Diagnostic and Statistical Manual of Mental Disorders (DSM...
  • Discrimination
  • Dissociative Disorders
  • Drugs and Behavior
  • Eating Disorders
  • Ecological Psychology
  • Educational Settings, Assessment of Thinking in
  • Effect Size
  • Embodiment and Embodied Cognition
  • Emerging Adulthood
  • Emotional Intelligence
  • Empathy and Altruism
  • Employee Stress and Well-Being
  • Environmental Neuroscience and Environmental Psychology
  • Ethics in Psychological Practice
  • Event Perception
  • Evolutionary Psychology
  • Expansive Posture
  • Experimental Existential Psychology
  • Exploratory Data Analysis
  • Eyewitness Testimony
  • Eysenck, Hans
  • Factor Analysis
  • Festinger, Leon
  • Five-Factor Model of Personality
  • Flynn Effect, The
  • Forensic Psychology
  • Forgiveness
  • Friendships, Children's
  • Fundamental Attribution Error/Correspondence Bias
  • Gambler's Fallacy
  • Game Theory and Psychology
  • Geropsychology, Clinical
  • Global Mental Health
  • Habit Formation and Behavior Change
  • Health Psychology
  • Health Psychology Research and Practice, Measurement in
  • Heider, Fritz
  • Heuristics and Biases
  • History of Psychology
  • Human Factors
  • Humanistic Psychology
  • Implicit Association Test (IAT)
  • Industrial and Organizational Psychology
  • Inferential Statistics in Psychology
  • Insanity Defense, The
  • Intelligence
  • Intelligence, Crystallized and Fluid
  • Intercultural Psychology
  • Intergroup Conflict
  • International Classification of Diseases and Related Healt...
  • International Psychology
  • Interviewing in Forensic Settings
  • Intimate Partner Violence, Psychological Perspectives on
  • Introversion–Extraversion
  • Item Response Theory
  • Law, Psychology and
  • Lazarus, Richard
  • Learned Helplessness
  • Learning versus Performance
  • LGBTQ+ Romantic Relationships
  • Lie Detection in a Forensic Context
  • Life-Span Development
  • Locus of Control
  • Loneliness and Health
  • Mathematical Psychology
  • Meaning in Life
  • Mechanisms and Processes of Peer Contagion
  • Media Violence, Psychological Perspectives on
  • Mediation Analysis
  • Memories, Autobiographical
  • Memories, Flashbulb
  • Memories, Repressed and Recovered
  • Memory, False
  • Memory, Human
  • Memory, Implicit versus Explicit
  • Memory in Educational Settings
  • Memory, Semantic
  • Meta-Analysis
  • Metacognition
  • Metaphor, Psychological Perspectives on
  • Microaggressions
  • Military Psychology
  • Mindfulness and Education
  • Minnesota Multiphasic Personality Inventory (MMPI)
  • Money, Psychology of
  • Moral Conviction
  • Moral Development
  • Moral Psychology
  • Moral Reasoning
  • Nature versus Nurture Debate in Psychology
  • Neuroscience of Associative Learning
  • Nonergodicity in Psychology and Neuroscience
  • Nonparametric Statistical Analysis in Psychology
  • Observational (Non-Randomized) Studies
  • Obsessive-Complusive Disorder (OCD)
  • Occupational Health Psychology
  • Olfaction, Human
  • Operant Conditioning
  • Optimism and Pessimism
  • Organizational Justice
  • Parenting Stress
  • Parenting Styles
  • Parents' Beliefs about Children
  • Path Models
  • Peace Psychology
  • Perception, Person
  • Performance Appraisal
  • Personality and Health
  • Personality Disorders
  • Personality Psychology
  • Phenomenological Psychology
  • Placebo Effects in Psychology
  • Play Behavior
  • Positive Psychological Capital (PsyCap)
  • Positive Psychology
  • Posttraumatic Stress Disorder (PTSD)
  • Prejudice and Stereotyping
  • Pretrial Publicity
  • Prisoner's Dilemma
  • Prosocial Behavior
  • Prosocial Spending and Well-Being
  • Protocol Analysis
  • Psycholinguistics
  • Psychological Literacy
  • Psychological Perspectives on Food and Eating
  • Psychology, Political
  • Psychoneuroimmunology
  • Psychophysics, Visual
  • Psychotherapy
  • Psychotic Disorders
  • Publication Bias in Psychology
  • Reasoning, Counterfactual
  • Rehabilitation Psychology
  • Relationships
  • Reliability–Contemporary Psychometric Conceptions
  • Religion, Psychology and
  • Replication Initiatives in Psychology
  • Research Methods
  • Risk Taking
  • Role of the Expert Witness in Forensic Psychology, The
  • Sample Size Planning for Statistical Power and Accurate Es...
  • Schizophrenic Disorders
  • School Psychology
  • School Psychology, Counseling Services in
  • Self, Gender and
  • Self, Psychology of the
  • Self-Construal
  • Self-Control
  • Self-Deception
  • Self-Determination Theory
  • Self-Efficacy
  • Self-Esteem
  • Self-Monitoring
  • Self-Regulation in Educational Settings
  • Self-Report Tests, Measures, and Inventories in Clinical P...
  • Sensation Seeking
  • Sex and Gender
  • Sexual Minority Parenting
  • Sexual Orientation
  • Signal Detection Theory and its Applications
  • Simpson's Paradox in Psychology
  • Single People
  • Single-Case Experimental Designs
  • Skinner, B.F.
  • Sleep and Dreaming
  • Small Groups
  • Social Class and Social Status
  • Social Cognition
  • Social Neuroscience
  • Social Support
  • Social Touch and Massage Therapy Research
  • Somatoform Disorders
  • Spatial Attention
  • Sports Psychology
  • Stanford Prison Experiment (SPE): Icon and Controversy
  • Stereotype Threat
  • Stereotypes
  • Stress and Coping, Psychology of
  • Subjective Wellbeing Homeostasis
  • Taste, Psychological Perspectives on
  • Terror Management Theory
  • Testing and Assessment
  • The Concept of Validity in Psychological Assessment
  • The Neuroscience of Emotion Regulation
  • The Reasoned Action Approach and the Theories of Reasoned ...
  • The Weapon Focus Effect in Eyewitness Memory
  • Theory of Mind
  • Therapies, Person-Centered
  • Therapy, Cognitive-Behavioral
  • Time Perception
  • Trait Perspective
  • Trauma Psychology
  • Twin Studies
  • Type A Behavior Pattern (Coronary Prone Personality)
  • Unconscious Processes
  • Video Games and Violent Content
  • Virtues and Character Strengths
  • Women and Science, Technology, Engineering, and Math (STEM...
  • Women, Psychology of
  • Work Well-Being
  • Wundt, Wilhelm
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|109.248.223.228]
  • 109.248.223.228

APS

  • Teaching Tips

A Brief Guide for Teaching and Assessing Critical Thinking in Psychology

In my first year of college teaching, a student approached me one day after class and politely asked, “What did you mean by the word ‘evidence’?” I tried to hide my shock at what I took to be a very naive question. Upon further reflection, however, I realized that this was actually a good question, for which the usual approaches to teaching psychology provided too few answers. During the next several years, I developed lessons and techniques to help psychology students learn how to evaluate the strengths and weaknesses of scientific and nonscientific kinds of evidence and to help them draw sound conclusions. It seemed to me that learning about the quality of evidence and drawing appropriate conclusions from scientific research were central to teaching critical thinking (CT) in psychology.

In this article, I have attempted to provide guidelines to psychol­ogy instructors on how to teach CT, describing techniques I devel­oped over 20 years of teaching. More importantly, the techniques and approach described below are ones that are supported by scientific research. Classroom examples illustrate the use of the guidelines and how assessment can be integrated into CT skill instruction.

Overview of the Guidelines

Confusion about the definition of CT has been a major obstacle to teaching and assessing it (Halonen, 1995; Williams, 1999). To deal with this problem, we have defined CT as reflective think­ing involved in the evaluation of evidence relevant to a claim so that a sound or good conclusion can be drawn from the evidence (Bensley, 1998). One virtue of this definition is it can be applied to many thinking tasks in psychology. The claims and conclusions psychological scientists make include hypotheses, theoretical state­ments, interpretation of research findings, or diagnoses of mental disorders. Evidence can be the results of an experiment, case study, naturalistic observation study, or psychological test. Less formally, evidence can be anecdotes, introspective reports, commonsense beliefs, or statements of authority. Evaluating evidence and drawing appropriate conclusions along with other skills, such as distin­guishing arguments from nonarguments and finding assumptions, are collectively called argument analysis skills. Many CT experts take argument analysis skills to be fundamental CT skills (e.g., Ennis, 1987; Halpern, 1998). Psychology students need argument analysis skills to evaluate psychological claims in their work and in everyday discourse.

Some instructors expect their students will improve CT skills like argument analysis skills by simply immersing them in challenging course work. Others expect improvement because they use a textbook with special CT questions or modules, give lectures that critically review the literature, or have students complete written assignments. While these and other traditional techniques may help, a growing body of research suggests they are not sufficient to efficiently produce measurable changes in CT skills. Our research on acquisition of argument analysis skills in psychology (Bensley, Crowe, Bernhardt, Buchner, & Allman, in press) and on critical reading skills (Bensley & Haynes, 1995; Spero & Bensley, 2009) suggests that more explicit, direct instruction of CT skills is necessary. These results concur with results of an earlier review of CT programs by Chance (1986) and a recent meta-analysis by Abrami et al., (2008).

Based on these and other findings, the following guidelines describe an approach to explicit instruction in which instructors can directly infuse CT skills and assessment into their courses. With infusion, instructors can use relevant content to teach CT rules and concepts along with the subject matter. Directly infus­ing CT skills into course work involves targeting specific CT skills, making CT rules, criteria, and methods explicit, providing guided practice in the form of exercises focused on assessing skills, and giving feedback on practice and assessments. These components are similar to ones found in effective, direct instruc­tion approaches (Walberg, 2006). They also resemble approaches to teaching CT proposed by Angelo (1995), Beyer (1997), and Halpern (1998). Importantly, this approach has been successful in teaching CT skills in psychology (e.g., Bensley, et al., in press; Bensley & Haynes, 1995; Nieto & Saiz, 2008; Penningroth, Despain, & Gray, 2007). Directly infusing CT skill instruction can also enrich content instruction without sacrificing learning of subject matter (Solon, 2003). The following seven guidelines, illustrated by CT lessons and assessments, explicate this process.

Seven Guidelines for Teaching and Assessing Critical Thinking

1. Motivate your students to think critically

Critical thinking takes effort. Without proper motivation, students are less inclined to engage in it. Therefore, it is good to arouse interest right away and foster commitment to improving CT throughout a course. One motivational strategy is to explain why CT is important to effective, professional behavior. Often, telling a compelling story that illustrates the consequences of failing to think critically can mo­tivate students. For example, the tragic death of 10-year-old Candace Newmaker at the hands of her therapists practicing attachment therapy illustrates the perils of using a therapy that has not been supported by good empirical evidence (Lilienfeld, 2007).

Instructors can also pique interest by taking a class poll posing an interesting question on which students are likely to have an opinion. For example, asking students how many think that the full moon can lead to increases in abnormal behavior can be used to introduce the difference between empirical fact and opinion or common sense belief. After asking students how psychologists answer such questions, instructors might go over the meta-analysis of Rotton and Kelly (1985). Their review found that almost all of the 37 studies they reviewed showed no association between the phase of the moon and abnormal behavior with only a few, usually poorly, controlled studies supporting it. Effect size over all stud­ies was very small (.01). Instructors can use this to illustrate how psychologists draw a conclusion based on the quality and quantity of research studies as opposed to what many people commonly believe. For other interesting thinking errors and misconceptions related to psychology, see Bensley (1998; 2002; 2008), Halpern (2003), Ruscio (2006), Stanovich (2007), and Sternberg (2007).

Attitudes and dispositions can also affect motivation to think critically. If students lack certain CT dispositions such as open-mindedness, fair-mindedness, and skepticism, they will be less likely to think critically even if they have CT skills (Halpern, 1998). Instructors might point out that even great scientists noted for their powers of reasoning sometimes fail to think critically when they are not disposed to use their skills. For example, Alfred Russel Wallace who used his considerable CT skills to help develop the concept of natural selection also believed in spiritualistic contact with the dead. Despite considerable evidence that mediums claiming to contact the dead were really faking such contact, Wallace continued to believe in it (Bensley, 2006). Likewise, the great American psychologist William James, whose reasoning skills helped him develop the seeds of important contemporary theories, believed in spiritualism despite evidence to the contrary.

2. Clearly state the CT goals and objectives for your class

Once students are motivated, the instructor should focus them on what skills they will work on during the course. The APA task force on learning goals and objectives for psychology listed CT as one of 10 major goals for students (Halonen et al., 2002). Under critical thinking they have further specified outcomes such as evaluating the quality of information, identifying and evaluating the source and credibility of information, recognizing and defending against think­ing errors and fallacies. Instructors should publish goals like these in their CT course objectives in their syllabi and more specifically as assignment objectives in their assignments. Given the pragmatic penchant of students for studying what is needed to succeed in a course, this should help motivate and focus them.

To make instruction efficient, course objectives and lesson ob­jectives should explicitly target CT skills to be improved. Objectives should specify the behavior that will change in a way that can be measured. A course objective might read, “After taking this course, you will be able to analyze arguments found in psychological and everyday discussions.” When the goal of a lesson is to practice and improve specific microskills that make up argument analysis, an assignment objective might read “After successfully completing this assignment, you will be able to identify different kinds of evidence in a psychological discussion.” Or another might read “After suc­cessfully completing this assignment, you will be able to distinguish arguments from nonarguments.” Students might demonstrate they have reached these objectives by showing the behavior of correctly labeling the kinds of evidence presented in a passage or by indicating whether an argument or merely a claim has been made. By stating objectives in the form of assessable behaviors, the instructor can test these as assessment hypotheses.

Sometimes when the goal is to teach students how to decide which CT skills are appropriate in a situation, the instructor may not want to identify specific skills. Instead, a lesson objective might read, “After successfully completing this assignment, you will be able to decide which skills and knowledge are appropriate for criti­cally analyzing a discussion in psychology.”

3. Find opportunities to infuse CT that fit content and skill requirements of your course

To improve their CT skills, students must be given opportunities to practice them. Different courses present different opportunities for infusion and practice. Stand-alone CT courses usually provide the most opportunities to infuse CT. For example, the Frostburg State University Psychology Department has a senior seminar called “Thinking like a Psychologist” in which students complete lessons giving them practice in argument analysis, critical reading, critically evaluating information on the Internet, distinguishing science from pseudoscience, applying their knowledge and CT skills in simula­tions of psychological practice, and other activities.

In more typical subject-oriented courses, instructors must find specific content and types of tasks conducive to explicit CT skill instruction. For example, research methods courses present several opportunities to teach argument analysis skills. Instructors can have students critically evaluate the quality of evidence provided by studies using different research methods and designs they find in PsycINFO and Internet sources. This, in turn, could help students write better critical evaluations of research for research reports.

A cognitive psychology teacher might assign a critical evalu­ation of the evidence on an interesting question discussed in text­book literature reviews. For example, students might evaluate the evidence relevant to the question of whether people have flashbulb memories such as accurately remembering the 9-11 attack. This provides the opportunity to teach them that many of the studies, although informative, are quasi-experimental and cannot show causation. Or, students might analyze the arguments in a TV pro­gram such as the fascinating Nova program Kidnapped by Aliens on people who recall having been abducted by aliens.

4. Use guided practice, explicitly modeling and scaffolding CT.

Guided practice involves modeling and supporting the practice of target skills, and providing feedback on progress towards skill attainment. Research has shown that guided practice helps student more efficiently acquire thinking skills than unguided and discovery approaches (Meyer, 2004).

Instructors can model the use of CT rules, criteria, and proce­dures for evaluating evidence and drawing conclusions in many ways. They could provide worked examples of problems, writing samples displaying good CT, or real-world examples of good and bad thinking found in the media. They might also think out loud as they evaluate arguments in class to model the process of thinking.

To help students learn to use complex rules in thinking, instruc­tors should initially scaffold student thinking. Scaffolding involves providing product guidelines, rules, and other frameworks to support the process of thinking. Table 1 shows guidelines like those found in Bensley (1998) describing nonscientific kinds of evidence that can support student efforts to evaluate evidence in everyday psychologi­cal discussions. Likewise, Table 2 provides guidelines like those found in Bensley (1998) and Wade and Tavris (2005) describing various kinds of scientific research methods and designs that differ in the quality of evidence they provide for psychological arguments.

In the cognitive lesson on flashbulb memory described earlier, students use the framework in Table 2 to evaluate the kinds of evidence in the literature review. Table 1 can help them evaluate the kinds of evidence found in the Nova video Kidnapped by Aliens . Specifically, they could use it to contrast scientific authority with less credible authority. The video includes statements by scientific authorities like Elizabeth Loftus based on her extensive research contrasted with the nonscientific authority of Bud Hopkins, an artist turned hypnotherapist and author of popular books on alien abduction. Loftus argues that the memories of alien abduction in the children interviewed by Hopkins were reconstructed around the suggestive interview questions he posed. Therefore, his conclu­sion that the children and other people in the video were recalling actual abduction experiences was based on anecdotes, unreliable self-reports, and other weak evidence.

Modeling, scaffolding, and guided practice are especially useful in helping students first acquire CT skills. After sufficient practice, however, instructors should fade these and have students do more challenging assignments without these supports to promote transfer.

5. Align assessment with practice of specific CT skills

Test questions and other assessments of performance should be similar to practice questions and problems in the skills targeted but differ in content. For example, we have developed a series of practice and quiz questions about the kinds of evidence found in Table 1 used in everyday situations but which differ in subject matter from practice to quiz. Likewise, other questions employ research evidence examples corresponding to Table 2. Questions ask students to identify kinds of evidence, evaluate the quality of the evidence, distinguish arguments from nonarguments, and find assumptions in the examples with practice examples differing in content from assessment items.

6. Provide feedback and encourage students to reflect on it

Instructors should focus feedback on the degree of attainment of CT skill objectives in the lesson or assessment. The purpose of feedback is to help students learn how to correct faulty thinking so that in the future they monitor their thinking and avoid such problems. This should increase their metacognition or awareness and control of their thinking, an important goal of CT instruction (Halpern, 1998).

Students must use their feedback for it to improve their CT skills. In the CT exercises and critical reading assignments, students receive feedback in the form of corrected responses and written feedback on open-ended questions. They should be advised that paying attention to feedback on earlier work and assessments should improve their performance on later assessments.

7. Reflect on feedback and assessment results to improve CT instruction

Instructors should use the feedback they provide to students and the results of ongoing assessments to ‘close the loop,’ that is, use these outcomes to address deficiencies in performance and improve instruction. In actual practice, teaching and assessment strategies rarely work optimally the first time. Instructors must be willing to tinker with these to make needed improvements. Reflec­tion on reliable and valid assessment results provides a scientific means to systematically improve instruction and assessment.

Instructors may find the direct infusion approach as summarized in the seven guidelines to be efficient, especially in helping students acquire basic CT skills, as research has shown. They may especially appreciate how it allows them to take a scientific approach to the improvement of instruction. Although the direct infusion approach seems to efficiently promote acquisition of CT skills, more research is needed to find out if students transfer their skills outside of the class­room or whether this approach needs adjustment to promote transfer.

Table 1. Strengths and Weaknesses of Nonscientific Sources and Kinds of Evidence

Table 2. Strengths and Weaknesses of Scientific Research Methods/Designs Used as Sources of Evidence

Abrami, P. C., Bernard, R. M., Borokhovhovski, E., Wade, A., Surkes, M. A., Tamim, R., et al., (2008). Instructional interventions affecting critical thinking skills and dispositions: A stage 1 meta-analysis. Review of Educational Research, 4 , 1102–1134.

Angelo, T. A. (1995). Classroom assessment for critical thinking. Teaching of Psychology , 22(1), 6–7.

Bensley, D.A. (1998). Critical thinking in psychology: A unified skills approach. Pacific Grove, CA: Brooks/Cole.

Bensley, D.A. (2002). Science and pseudoscience: A critical thinking primer. In M. Shermer (Ed.), The Skeptic encyclopedia of pseudoscience. (pp. 195–203). Santa Barbara, CA: ABC–CLIO.

Bensley, D.A. (2006). Why great thinkers sometimes fail to think critically. Skeptical Inquirer, 30, 47–52.

Bensley, D.A. (2008). Can you learn to think more like a psychologist? The Psychologist, 21, 128–129.

Bensley, D.A., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (in press). Teaching and assessing critical thinking skills for argument analysis in psychology. Teaching of Psychology .

Bensley, D.A. & Haynes, C. (1995). The acquisition of general purpose strategic knowledge for argumentation. Teaching of Psychology, 22 , 41–45.

Beyer, B.K. (1997). Improving student thinking: A comprehensive approach . Boston: Allyn & Bacon.

Chance, P. (1986) Thinking in the classroom: A review of programs . New York: Instructors College Press.

Ennis, R.H. (1987). A taxonomy of critical thinking dispositions and abilities. In J. B. Baron & R. F. Sternberg (Eds.). Teaching thinking skills: Theory and practice (pp. 9–26). New York: Freeman.

Halonen, J.S. (1995). Demystifying critical thinking. Teaching of Psychology, 22 , 75–81.

Halonen, J.S., Appleby, D.C., Brewer, C.L., Buskist, W., Gillem, A. R., Halpern, D. F., et al. (APA Task Force on Undergraduate Major Competencies). (2002) Undergraduate psychology major learning goals and outcomes: A report. Washington, DC: American Psychological Association. Retrieved August 27, 2008, from http://www.apa.org/ed/pcue/reports.html .

Halpern, D.F. (1998). Teaching critical thinking for transfer across domains: Dispositions, skills, structure training, and metacognitive monitoring. American Psychologist , 53 , 449–455.

Halpern, D.F. (2003). Thought and knowledge: An introduction to critical thinking . (3rd ed.). Mahwah, NJ: Erlbaum.

Lilienfeld, S.O. (2007). Psychological treatments that cause harm. Perspectives on Psychological Science , 2 , 53–70.

Meyer, R.E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist , 59 , 14–19.

Nieto, A.M., & Saiz, C. (2008). Evaluation of Halpern’s “structural component” for improving critical thinking. The Spanish Journal of Psychology , 11 ( 1 ), 266–274.

Penningroth, S.L., Despain, L.H., & Gray, M.J. (2007). A course designed to improve psychological critical thinking. Teaching of Psychology , 34 , 153–157.

Rotton, J., & Kelly, I. (1985). Much ado about the full moon: A meta-analysis of lunar-lunacy research. Psychological Bulletin , 97 , 286–306.

Ruscio, J. (2006). Critical thinking in psychology: Separating sense from nonsense. Belmont, CA: Wadsworth.

Solon, T. (2007). Generic critical thinking infusion and course content learning in introductory psychology. Journal of Instructional Psychology , 34(2), 972–987.

Stanovich, K.E. (2007). How to think straight about psychology . (8th ed.). Boston: Pearson.

Sternberg, R.J. (2007). Critical thinking in psychology: It really is critical. In R. J. Sternberg, H. L. Roediger, & D. F. Halpern (Eds.), Critical thinking in psychology. (pp. 289–296) . Cambridge, UK: Cambridge University Press.

Wade, C., & Tavris, C. (2005) Invitation to psychology. (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

Walberg, H.J. (2006). Improving educational productivity: A review of extant research. In R. F. Subotnik & H. J. Walberg (Eds.), The scientific basis of educational productivity (pp. 103–159). Greenwich, CT: Information Age.

Williams, R.L. (1999). Operational definitions and assessment of higher-order cognitive constructs. Educational Psychology Review , 11 , 411–427.

' src=

Excellent article.

' src=

Interesting and helpful!

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

About the Author

D. Alan Bensley is Professor of Psychology at Frostburg State University. He received his Master’s and PhD degrees in cognitive psychology from Rutgers University. His main teaching and research interests concern the improvement of critical thinking and other cognitive skills. He coordinates assessment for his department and is developing a battery of instruments to assess critical thinking in psychology. He can be reached by email at [email protected] Association for Psychological Science December 2010 — Vol. 23, No. 10

example of critical thinking in psychology

Student Notebook: Five Tips for Working with Teaching Assistants in Online Classes

Sarah C. Turner suggests it’s best to follow the golden rule: Treat your TA’s time as you would your own.

Teaching Current Directions in Psychological Science

Aimed at integrating cutting-edge psychological science into the classroom, Teaching Current Directions in Psychological Science offers advice and how-to guidance about teaching a particular area of research or topic in psychological science that has been

European Psychology Learning and Teaching Conference

The School of Education of the Paris Lodron University of Salzburg is hosting the next European Psychology Learning and Teaching (EUROPLAT) Conference on September 18–20, 2017 in Salzburg, Austria. The main theme of the conference

Privacy Overview

Critical thinking

Critical thinking requires skill at analyzing the reliability and validity of information, as well as the attitude or disposition to do so. The skill and attitude may be displayed with regard to a particular subject matter or topic, but in principle it can occur in any realm of knowledge (Halpern, 2003; Williams, Oliver, & Stockade, 2004). A critical thinker does not necessarily have a negative attitude in the everyday sense of constantly criticizing someone or something. Instead, he or she can be thought of as astute : the critical thinker asks key questions, evaluates the evidence for ideas, reasons for problems both logically and objectively, and expresses ideas and conclusions clearly and precisely. Last (but not least), the critical thinker can apply these habits of mind in more than one realm of life or knowledge.

With such a broad definition, it is not surprising that educators have suggested a variety of specific cognitive skills as contributing to critical thinking. In one study, for example, the researcher found how critical thinking can be reflected in regard to a published article was stimulated by annotation —writing questions and comments in the margins of the article (Liu, 2006). In this study, students were initially instructed in ways of annotating reading materials. Later, when the students completed additional readings for assignments, it was found that some students in fact used their annotation skills much more than others—some simply underlined passages, for example, with a highlighting pen. When essays written about the readings were later analyzed, the ones written by the annotators were found to be more well reasoned—more critically astute—than the essays written by the other students.

In another study, on the other hand, a researcher found that critical thinking can also involve oral discussion of personal issues or dilemmas (Hawkins, 2006). In this study, students were asked to verbally describe a recent, personal incident that disturbed them. Classmates then discussed the incident together in order to identify the precise reasons why the incident was disturbing, as well as the assumptions that the student made in describing the incident. The original student—the one who had first told the story—then used the results of the group discussion to frame a topic for a research essay. In one story of a troubling incident, a student told of a time when a store clerk has snubbed or rejected the student during a recent shopping errand. Through discussion, classmates decided that an assumption underlying the student’s disturbance was her suspicion that she had been a victim of racial profiling based on her skin color. The student then used this idea as the basis for a research essay on the topic of “racial profiling in retail stores.” The oral discussion thus stimulated critical thinking in the student and the classmates, but it also relied on their prior critical thinking skills at the same time.

Notice that in both of these research studies, as in others like them, what made the thinking “critical” was students’ use of metacognition —strategies for thinking about thinking and for monitoring the success and quality of one’s own thinking. This concept was discussed in the chapter, “The learning process,” as a feature of constructivist views about learning. There we pointed out that when students acquire experience in building their own knowledge, they also become skilled both at knowing how they learn, and at knowing whether they have learned something well. These are two defining qualities of metacognition, but they are part of critical thinking as well. In fostering critical thinking, a teacher is really fostering a student’s ability to construct or control his or her own thinking and to avoid being controlled by ideas unreflectively.

How best to teach critical thinking remains a matter of debate. One issue is whether to infuse critical skills into existing courses or to teach them through separate, free-standing units or courses. The first approach has the potential advantage of integrating critical thinking into students’ entire educations. But it risks diluting students’ understanding and use of critical thinking simply because critical thinking takes on a different form in each learning context. Its details and appearance vary among courses and teachers. The free-standing approach has the opposite qualities: it stands a better chance of being understood clearly and coherently, but at the cost of obscuring how it is related to other courses, tasks, and activities. This dilemma is the issue—again—of transfer , discussed in the chapter, “The learning process.” Unfortunately, research to compare the different strategies for teaching critical thinking does not settle the matter. The research suggests simply that either infusion or free-standing approaches can work as long as it is implemented thoroughly and teachers are committed to the value of critical thinking (Halpern, 2003).

A related issue about teaching critical thinking is about deciding who needs to learn critical thinking skills the most. Should it be all students, or only some of them? Teaching all students seems the more democratic alternative and thus appropriate for educators. Surveys have found, however, that teachers sometimes favor teaching of critical thinking only to high-advantage students—the ones who already achieve well, who come from relatively high-income families, or (for high school students) who take courses intended for university entrance (Warburton & Torff, 2005). Presumably the rationale for this bias is that high-advantage students can benefit and/or understand and use critical thinking better than other students. Yet, there is little research evidence to support this idea, even if it were not ethically questionable. The study by Hawkins (2006) described above, for example, is that critical thinking was fostered even with students considered low-advantage.

Hawkins, J. (2006). Accessing multicultural issues through critical thinking, critical inquiry, and the student research process. Urban Education, 41 (2), 169–141.

Liu, K. (2006). Annotation as an index to critical writing. Urban Education, 41 (2), 192–207.

Warburton, E. & Torff, E. (2005). The effect of perceived learner advantages on teachers’ beliefs about critical-thinking activities. Journal of Teacher Education, 56 (1), 24–33.

Williams, R., Oliver, R., & Stockade, S. (2004). Psychological versus generic critical thinking as predictors and outcome measures in a large undergraduate human development course. Journal of General Education, 53 (1), 37–58.

Footer Logo Lumen Candela

Privacy Policy

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Psychology Spot

All About Psychology

What is critical thinking? It’s not what you think, but how you think

what is critical thinking

Critical thinking is an essential skill to become a person who thinks autonomously and does not allow himself to be infected in a thoughtless way by the ideas in vogue or by those that some manipulative groups or people want to impose. Despite this, it is also a rare ability in a society designed to tell us what to think, not to teach us to think.

More than 2,400 years ago, Socrates defended the importance of critical thinking through a series of logical and rational tools. At that time the world did not embrace his idea and did not even understand the need to apply it on a wide scale in society. The same happens today. Critical thinking has become something of an oxymoron. It is “valued” but not developed.

In 1997, a group of experts conducted a study for the California Commission on Teacher Accreditation to determine the extent to which colleges and universities were developing critical thinking through the curriculum. The research analyzed institutes and universities of the California educational system, as well as private colleges such as Stanford University.

The researchers found that the majority of teachers (89%) stated that “critical thinking” was of vital importance in their classes, but only 19% were able to offer even a moderately acceptable definition of critical thinking. In addition, most claimed that they were cultivating critical thinking in students, but when asked to give examples of critical thinking in their classes, very few were able to provide real evidence that they were actually fostering this ability in their students.

The good news is that, although the school does not enhance this cognitive ability as much as it should, we can all develop a more critical thinking to assume a more reflective, conscious and independent posture before the world.

Definition of critical thinking: It’s not what you think but how you think

Critical thinking is the ability to properly organize, verify and evaluate the information we generate or receive using explicit and consistent criteria. It is the tendency to show a reflective skepticism that allows us to decide autonomously what to believe or not.

Therefore, it implies being able to interpret the data, facts and expressions, as well as analyze the ideas, intentions, concepts and arguments to reach a personal conclusion. However, the concept of critical thinking does not only turn outward, it also has a metacognitive component. It implies being able to think one’s own thought; that is, being aware of cognitive biases or errors in our thought process to correct them.

The essential skills of critical thinking

Critical thinking demands the development of a series of basic skills that become the pillars of autonomous reasoning. These are skills that allow us to think more freely, outside of established canons.

•Open mentality . Open mindedness does not mean accepting anything just because it is a new and different idea, rejecting old ones, but just being willing to analyze new ideas. It means not closing in on what’s different and new, rejecting it just because it doesn’t fit our mental paradigm.

• Intellectual humility . Intellectual humility is the ability to recognize our mistakes, stereotypes and prejudices, realizing that we are not immune to cognitive biases and emotions. It implies being aware that we do not have the absolute truth, always keeping ourselves open to different ideas that can contribute something or make us grow.

• Healthy doubts . Critical thinking feeds on healthy doubts. It is not about becoming cynical people who do not believe in anyone or anything, even doubting our shadow and rejecting the good intentions and goodness of the others, but to nurture a reflective skepticism according to which, we do not have to believe certain statements straight up just because they come from so-called authority figures.

• Intellectual perseverance . To go beyond what is seen and taken for granted, we need to be persistent. Critical thinking often involves swimming against the current, so we need to be highly motivated to seek personal truth, even when much of the world is going against it. This intellectual perseverance is what will allow us to continue searching and analyzing information until we find an answer that satisfies us.

Examples of critical thinking in everyday life

Critical thinking doesn’t just apply to science or philosophy. Critical thinking plays an essential role even in everyday life in making many of the decisions that will determine our destiny. Is giving shape to our convictions and helps us choose the causes with which we commit ourselves and those that do not make any sense to us.

It allows us to elucidate what each statement really contains. Critical thinking allows us to question the statements we hear or make, from the simplest such as “The sun is shining today” to the more complex such as “All men/women are equal” or “Communists /capitalists are bad.” In this way, critical thinking prevents us from falling into the trap of slogans devoid of meaning or cultural, generational or other stereotypes.

Critical thinking is also essential to grow as people because it allows us to look inward. It’s what allows us to ask ourselves: Did I do my best? Did I behave in a logical way? If it happened again, would I act differently? Have I acted according to my values ​​or have I been carried away by the group? Have I been a victim of my stereotypes and prejudices? Did I rush into making that decision?

This type of thinking, in short, allows us to develop a critical view from a more open and reflective attitude, to ensure that we make our own decisions, as little influenced as possible by the opinions, judgments and pressures of the others.

Duro, E. et. Al. (2013) In Search of Critical Thinking in Psychology: an exploration of student and lecturer understandings in higher education.  Psychology Learning and Teaching ; 12(3): 275-281.

Elder, L. et. Al. (1997) California  Teacher Preparation for Instruction in Critical Thinking: Research Findings and Policy Recommendations . ERIC Clearinghouse: Washington, D.C.

Jennifer Delgado

Psychologist Jennifer Delgado

I am a psychologist and I spent several years writing articles for scientific journals specialized in Health and Psychology. I want to help you create great experiences. Learn more about me .

example of critical thinking in psychology

What is aversion? The emotion that can save you or sink you

02/04/2024 By Jennifer Delgado

example of critical thinking in psychology

The E-learning revolution in the mental health field

01/04/2024 By Jennifer Delgado

example of critical thinking in psychology

10 quotes about arguments to come out of them strengthened

28/03/2024 By Jennifer Delgado

Keep Learning

example of critical thinking in psychology

  • The Open University
  • Guest user / Sign out
  • Study with The Open University

My OpenLearn Profile

Personalise your OpenLearn profile, save your favourite content and get recognition for your learning

About this free course

Become an ou student, download this course, share this free course.

Critically exploring psychology

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

2.1 What is critical thinking?

Critical thinking is a form of making a judgement; it is not about being negative. It is something that most people do, daily, often with little awareness of the process they are going through. In simple terms, an example of everyday critical thinking is, I’m going hiking today, should I wear trainers or sandals? Critical thinking involves making an assessment of something, and then providing a critique of that position and putting forward new positions. For example, flip flops may be comfortable for the first part of the hike, in hot weather. However, the top of the mountain is rocky so a more substantial trainer might be needed to get to the summit and protect your toes.

A pair of flip flops and a pair of trainers

There are different stages to critical thinking, but they follow broadly similar steps. Firstly, you need to understand the issue at hand and the problem that is being faced or needs to be solved, and why? Secondly, it is necessary to carry out some form of analysis or collect some evidence about possible ways to understand the issue. For example, when do I need to solve the problem by? What resources do I have available to solve it? What happens if I use method A or method B to solve it? Is there a method C that would solve it more effectively? Thirdly, on the basis of the analysis, an evaluation is carried out, and finally a judgement is made about which way to progress. The advantages of working through these steps is that it widens thinking about a situation or issue, and opens up opportunities to different possible outcomes and solutions.

Flow chart showing and explaining the four stages of critical thinking: understand, anayse, evaluate and judge

The four stages of critical thinking

  • Understand: what is the problem that needs to be solved, and why?
  • Analyse: when do I need to solve the problem by? What resources do I have to solve it? What happens if I use method A or method B to solve it? Is there a method C that would solve it more effectively?
  • Evaluate: based on your analysis you should make an evaluation.
  • Judge: based on your analysis and evaluation, how will you proceed?

Elder and Paul (2012) describe a ‘well cultivated critical thinker’ as someone who:

  • raises vital questions and problems, formulating them clearly and precisely
  • gathers and assesses relevant information, using abstract ideas to interpret it effectively
  • comes to well-reasoned conclusions and solutions, testing them against relevant criteria and standards
  • thinks open-mindedly within alternative systems of thought, recognising and assessing, as need be, their assumptions, implications, and practical consequences; and
  • communicates effectively with others in figuring out solutions to complex problems.

Why is critical thinking important to psychology and research methods?

Critical thinking enables the researcher to go through the process of recognising their assumptions, challenging them and looking at possible other ways to do something.

In applying critical thinking to research, you will understand that there are different types of research questions; and that these different types of questions require different types of research designs (and consequently different methods) to answer them. If the question and the design do not correspond, then the conclusions that are made about the research are likely to be questionable at best, and probably wrong.

Now you have a better understanding of what critical thinking is, you will move onto look at a framework for developing research questions.

Previous

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

example of critical thinking in psychology

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

example of critical thinking in psychology

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

helpful professor logo

25 Critical Thinking Examples

critical thinking examples and definition, explained below

Critical thinking is the ability to analyze information and make reasoned decisions. It involves suspended judgment, open-mindedness, and clarity of thought.

It involves considering different viewpoints and weighing evidence carefully. It is essential for solving complex problems and making good decisions.

People who think critically are able to see the world in a more nuanced way and understand the interconnectedness of things. They are also better able to adapt to change and handle uncertainty.

In today’s fast-paced world, the ability to think critically is more important than ever and necessary for students and employees alike.

Critical Thinking Examples

1. identifying strengths and weaknesses.

Critical thinkers don’t just take things at face value. They stand back and contemplate the potential strengths and weaknesses of something and then make a decision after contemplation.

This helps you to avoid excessive bias and identify possible problems ahead of time.

For example, a boxer about to get in the ring will likely need to evaluate the strengths and weaknesses of his opponent. He might learn that his opponent’s left hook is very strong, but his opponent also gets tired after the third round. With this knowledge, he can go into the bout with strong defenses in the first three rounds before going on the offense.

Here, the boxer’s critical thinking skills will help him win his match.

2. Creating a Hypothesis based on Limited Data

When scientists set out to test a new theory, they first need to develop a hypothesis. This is an educated guess about how things work, based on what is already known.

Once a hypothesis has been developed, experiments can be designed to test it.

However, sometimes scientists may find themselves working with limited data. In such cases, they may need to make some assumptions in order to form a hypothesis.

For example, if they are studying a phenomenon that occurs infrequently, they may need to extrapolate from the data they do have in order to form a hypothesis.

Here, the scientist is engaged in critical thinking: they use the limited data to come up with a tentative judgment.

3. Moderating a Debate

A debate moderator needs to have strong critical thinking skills. They need to use objective evaluations, analysis, and critique to keep the discussion on track and ensure that all sides are heard fairly.

This means being able to identify when a point has been made sufficiently, or when someone is beginning to veer off topic and being able to direct the conversation accordingly.

Similarly, they need to be able to assess each argument objectively and consider its merits, rather than getting caught up in the emotion of the debate. If someone is using an unfair point or one that is not factual, the moderator needs to be switched on and identify this.

By remaining calm and impartial, the moderator can help to ensure that a debate is productive and respectful.

4. Judging and Adjudicating

A judge or adjudicator needs to weigh the evidence and make a determination based on the facts.

This requires the adjudicator to be able to try to see both sides of an argument. They need the ability to see past personal biases and to critically evaluate the credibility of all sides.

In addition, judges and adjudicators must be able to think quickly and make sound decisions in the face of complex issues.

For example, if you were to be adjudicating the above debate, you need to hear both sides of the argument and then decide who won. It’s your job to evaluate, see strengths and weaknesses in arguments, and come to a conclusion.

5. Grading an Essay

Teachers need critical thinking skills when grading essays so that they can effectively assess the quality of the writing. By critically analyzing the essay, teachers can identify any errors or weaknesses in the argument.

Furthermore, they can also determine whether the essay meets the required standards for the assignment. Even a very well-written essay may deserve a lower grade if the essay doesn’t directly answer the essay question.

A teacher needs to be able to read an essay and understand not only what the student is trying to say, but also how well they are making their argument. Are they using evidence effectively? Are they drawing valid conclusions? A teacher needs to be able to evaluate an essay holistically in order to give a fair grade.

In order to properly evaluate an essay, teachers need to be able to think critically about the writing. Only then can they provide an accurate assessment of the work.

6. Active Reading

Active reading is a skill that requires the reader to be engaged with the text in order to fully understand it. This means not only being able to read the words on the page, but also being able to interpret the meaning behind them.

In order to do this, active readers need to have good critical thinking skills.

They need to be able to ask questions about the text and look for evidence to support their answers. Additionally, active readers need to be able to make connections between the text and their own experiences.

Active reading leads to better comprehension and retention of information.

7. Deciding Whether or Not to Believe Something

When trying to determine whether or not to believe something, you’re engaging in critical thinking.

For example, you might need to consider the source of the information. If the information comes from a reliable source, such as a reputable news organization or a trusted friend, then it is more likely to be accurate.

However, if the source is less reliable, such as an anonymous website or a person with a known bias, then the information should be viewed with more skepticism.

In addition, it is important to consider the evidence that is being presented. If the evidence is well-supported and logically presented, then it is more likely to be true. However, if the evidence is weak or relies on fallacious reasoning, then the claim is less likely to be true.

8. Determining the Best Solution to a Situation

Determining the best solution to a problem generally requires you to critique the different options. There are often many different factors to consider, and it can be difficult to know where to start.

However, there are some general guidelines that can help to make the process a little easier.

For example, if you have a few possible solutions to the problem, it is important to weigh the pros and cons of each one. Consider both the short-term and long-term effects of each option before making a decision.

Furthermore, it is important to be aware of your own biases. Be sure to consider all of the options objectively, without letting your personal preferences get in the way.

9. Giving Formative Feedback

Formative feedback is feedback that you give to someone part-way through a learning experience. To do this, you need to think critically.

For example, one thing you need to do is see where the student’s strengths and weaknesses like. Perhaps the student is doing extremely well at a task, so your feedback might be that they should try to extend themselves by adding more complexity to the task.

Or, perhaps the student is struggling, so you suggest to them that they approach the learning experience from a different angle.

10. Giving Summative Feedback

Summative feedback occurs at the end of a learning scenario. For example, the written feedback at the end of an essay or on a report card is summative.

When providing summative feedback, it is important to take a step back and consider the situation from multiple perspectives. What are areas for improvement and where exactly might the student have missed some key points? How could the student have done better?

Asking yourself these questions is all part of the process of giving feedback, and they can all be considered examples of critical thinking. You’re literally critiquing the student’s work and identifying opportunities for improvement.

11. Evaluating Evidence

When evaluating evidence, critical thinkers take a step back and look at the bigger picture. They consider all of the available information and weigh it up. They look at logical flaws, the reliability of the evidence, and its validity.

This process allows them to arrive at a conclusion that is based on sound reasoning, rather than emotion or personal bias.

For example, when a social scientist looks at the evidence from his study, he needs to evaluate whether the data was corrupted and ensure the methodology was sound in order to determine if the evidence is valuable or not.

12. Media Literacy

Media literacy seems to be in short supply these days. Too many people take information off the internet or television and just assume it is true.

A person with media literacy, however, will not just trust what they see and read. Instead, they look at the data and weigh up the evidence. They will see if there was a sound study to back up claims. They will see if there is bias in the media source and whether it’s just following an ideological line.

Furthermore, they will make sure they seek out trustworthy media sources. These are not just media sources you like or that confirm your own point of view. They need to be sources that do their own research, find solid data, and don’t pursue one blind agenda.

13. Asking your Own Questions

Asking your own questions is an important part of critical thinking. When you ask questions, you are forcing yourself to think more deeply about the information you are considering.

Asking questions also allows you to gather more information from others who may have different perspectives.

This helps you to better understand the issue and to come up with your own conclusions.

So, often at schools, we give students a list of questions to ask about something in order to dig deeper into it. For example, in a book review lesson, the teacher might give a list of questions to ask about the book’s characters and plot.

14. Conducting Rigorous Research

Research is a process of inquiry that encompasses the gathering of data, interpretation of findings, and communication of results. The researcher needs to engage in critical thinking throughout the process, but most importantly, when designing their methodology.

Research can be done through a variety of methods, such as experiments, surveys, interviews, and observations. Each method has strengths and weaknesses.

Once the data has been collected, it must be analyzed and interpreted. This is often done through statistical methods or qualitative analysis.

Research is an essential tool for discovering new knowledge and for solving problems, but researchers need to think critically about how valid and reliable their data truly is.

15. Examining your own Beliefs and Prejudices

It’s important to examine your own beliefs and prejudices in order to ensure that they are fair and accurate. People who don’t examine their own beliefs have not truly critically examined their lives.

One way to do this is to take the time to consider why you believe what you do. What experiences have you had that have led you to this belief? Are there other ways to interpret these experiences? It’s also important to be aware of the potential for confirmation bias , which is when we seek out information that confirms our existing beliefs, while ignoring information that contradicts them.

This can lead us to hold onto inaccurate or unfair beliefs even when presented with evidence to the contrary.

To avoid this, it’s important to seek out diverse perspectives, and to be open-minded when considering new information. By taking these steps, you can help ensure that your beliefs are fair and accurate.

16. Looking at a Situation from Multiple Perspectives

One of the most important critical thinking skills that you can learn in life is how to look at a situation from multiple perspectives.

Being able to see things from different angles can help you to understand complex issues, spot potential problems, and find creative solutions. It can also help you to build better relationships, as you will be able to see where others are coming from and find common ground.

There are a few simple techniques that you can use to develop this skill.

First, try to imagine how someone else would feel in the same situation.

Second, put yourself in their shoes and try to see things from their point of view.

Finally, ask yourself what other factors may be influencing their perspective. By taking the time to view things from multiple angles, you will be better prepared to deal with whatever life throws your way.

17. Considering Implications before Taking Action

When faced with a difficult decision, it is important to consider the implications of each possible action before settling on a course of action.

This is because the consequences of our actions can be far-reaching and often unforeseen.

For example, a seemingly small decision like whether to attend a party or not might have much larger implications. If we decide to go to the party, we might miss an important deadline at work.

However, if we stay home, we might miss out on an opportunity to meet new people and make valuable connections.

In either case, our choice can have a significant impact on our lives.

Fortunately, critical thinking can help people to make well-informed decisions that could have a positive impact on their lives.

For example, you might have to weight up the pros and cons of attending the party and identify potential downsides, like whether you might be in a car with an impaired driver, and whether the party is really worth losing your job.

Having weighed up the potential outcomes, you can make a more rational and informed decision.

18. Reflective Practice

Reflecting on your actions is an important part of critical thinking. When you take the time to reflect, you are able to step back and examine your choices and their consequences more objectively.

This allows you to learn from your mistakes and make better decisions in the future.

In order to reflect effectively, it is important to be honest with yourself and open to learning new things. You must also be willing to question your own beliefs and assumptions. By taking these steps, you can develop the critical thinking skills that are essential for making sound decisions next time.

This will also, fortunately, help you to constantly improve upon yourself.

19. Problem-Solving

Problem-solving requires the ability to think critically in order to accurately assess a situation and determine the best course of action.

This means being able to identify the root cause of a problem , as well as any potential obstacles that may stand in the way of a solution. It also involves breaking down a problem into smaller, more manageable pieces in order to more easily find a workable solution.

In addition, critical thinking skills also require the ability to think creatively in order to come up with original solutions to these problems.

Go Deeper: Problem-Solving Examples

20. Brainstorming New Solutions

When brainstorming new solutions , critical thinking skills are essential in order to generate fresh ideas and identify potential issues.

For example, the ability to identify the problems with the last solution you tried is important in order to come up with better solutions this time. Similarly, analytical thinking is necessary in order to evaluate the feasibility of each idea. Furthermore, it is also necessary to consider different perspectives and adapt to changing circumstances.

By utilizing all of these critical thinking skills, it will be possible to develop innovative solutions that are both practical and effective.

21. Reserving Judgment

A key part of critical thinking is reserving judgment. This means that we should not rush to conclusions, but instead take the time to consider all the evidence before making up our minds.

By reserving judgment, we can avoid making premature decisions that we might later regret. We can also avoid falling victim to confirmation bias, which is the tendency to only pay attention to information that supports our existing beliefs.

Instead, by keeping an open mind and considering all the evidence, we can make better decisions and reach more accurate conclusions.

22. Identifying Deceit

Critical thinking is an important skill to have in any situation, but it is especially important when trying to identify deceit.

There are a few key things to look for when using critical thinking to identify deceit.

First, pay attention to the person’s body language. Second, listen closely to what the person is saying and look for any inconsistencies. Finally, try to get a sense of the person’s motive – why would they want to deceive you?

Each of these questions helps you to not just take things at their face value. Instead, you’re critiquing the situation and coming to a conclusion using all of your intellect and senses, rather than just believing what you’re told.

23. Being Open-Minded to New Evidence that Contradicts your Beliefs

People with critical thinking skills are more open-minded because they are willing to consider different points of view and evidence.

They also realize that their own beliefs may be wrong and are willing to change their minds if new information is presented.

Similarly, people who are not critical thinkers tend to be close-minded because they fail to critique themselves and challenge their own mindset. This can lead to conflicts, as closed-minded people are not willing to budge on their beliefs even when presented with contradictory evidence.

Critical thinkers, on the other hand, are able to have more productive conversations as they are willing to listen to others and consider different viewpoints. Ultimately, being open-minded and willing to change one’s mind is a sign of intelligence and maturity.

24. Accounting for Bias

We all have biases, based on our individual experiences, perspectives, and beliefs. These can lead us to see the world in a certain way and to interpret information in a way that supports our existing views.

However, if we want to truly understand an issue, it is important to try to put aside our personal biases and look at the evidence objectively.

This is where critical thinking skills come in.

By using critical thinking, we can examine the evidence dispassionately and assess different arguments without letting our own prejudices get in the way. Start by looking at weaknesses and logical flaws in your own thinking.

Play the devil’s advocate.

In this way, you can start to get a more accurate picture of an issue and make more informed decisions.

25. Basing your Beliefs on Logic and Reasoning

In order to lead a successful and fulfilling life, it is important to base your beliefs on logic and reasoning.

This does not mean that you should never believe in something without evidence, but it does mean that you should be thoughtful and intentional about the things that you choose to believe.

One way to ensure that your beliefs are based on logic and reasoning is to seek out reliable sources of information. Another method is to use thought games to follow all your thoughts to their logical conclusions.

By basing your beliefs on logic and reasoning, you will be more likely to make sound decisions, and less likely to be swayed by emotions or misinformation.

Critical thinking is an important skill for anyone who wants to be successful in the modern world. It allows us to evaluate information and make reasoned decisions, rather than simply accepting things at face value. 

Thus, employers often want to employ people with strong critical thinking skills. These employees will be able to solve problems by themselves and identify ways to improve the workplace. They will be able to push back against bad decisions and use their own minds to make good decisions.

Furthermore, critical thinking skills are important for students. This is because they need to be able to evaluate information and think through problems with a critical mindset in order to learn and improve.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Critical Thinking Questions

Discuss why thoughts, feelings, or behaviors that are merely atypical or unusual would not necessarily signify the presence of a psychological disorder. Provide an example.

Describe the DSM-5. What is it, what kind of information does it contain, and why is it important to the study and treatment of psychological disorders?

The International Classification of Diseases (ICD) and the DSM differ in various ways. What are some of the differences in these two classification systems?

Why is the perspective one uses in explaining a psychological disorder important?

Describe how cognitive theories of the etiology of anxiety disorders differ from learning theories.

Discuss the common elements of each of the three disorders covered in this section: obsessive-compulsive disorder, body dysmorphic disorder, and hoarding disorder.

List some of the risk factors associated with the development of PTSD following a traumatic event.

Describe several of the factors associated with suicide.

Why is research following individuals who show prodromal symptoms of schizophrenia so important?

The prevalence of most psychological disorders has increased since the 1980s. However, as discussed in this section, scientific publications regarding dissociative amnesia peaked in the mid-1990s but then declined steeply through 2003. In addition, no fictional or nonfictional description of individuals showing dissociative amnesia following a trauma exists prior to 1800. How would you explain this phenomenon?

Imagine that a child has a genetic vulnerability to antisocial personality disorder. How might this child’s environment shape the likelihood of developing this personality disorder?

Compare the factors that are important in the development of ADHD with those that are important in the development of autism spectrum disorder.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology/pages/1-introduction
  • Authors: Rose M. Spielman, Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett, Marion Perlmutter
  • Publisher/website: OpenStax
  • Book title: Psychology
  • Publication date: Dec 8, 2014
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology/pages/15-critical-thinking-questions

© Feb 9, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Sorry, your request has been denied.

5 Rules for Better Thinking

Critical ignoring, the janusian process, and more..

By Psychology Today Contributors published January 2, 2024 - last reviewed on January 9, 2024

Andre Da Loba / Used with permission.

1. To Make Better Choices, Consider New Menus

By Karolina Lempert, Ph.D.

Which do you prefer, McDonald’s or Chick-fil-A?

Before answering, you probably evaluated each of these fast-food chains according to your own tastes and cravings, compared them, and then chose the one with a higher value for you. This is exactly the kind of question you might be asked if you were a participant in a study on value-based decision-making . There has been a lot of progress in the science of how we evaluate and choose between well-defined alternatives, and much of the research on the topic would lead us to believe that we go about our days deciding between choices like options on a menu.

And yet, most of our decisions are not like that at all; they are open-ended. When deciding how to respond to an insult, we are not presented a piece of paper with two well-crafted retorts on it from which we can choose A or B. More often, such as when deciding how to spend a weekend evening, we first must mentally generate a range of options, a process that is crucially important for making choices.

For example, a 2021 study showed that people are much more likely to think of McDonald’s than Chick-fil-A when asked to name a fast-food chain and therefore more likely to reply, “McDonald’s,” when asked the open-ended question, “What’s your favorite fast-food chain?” However, in the same study, more people chose Chick-fil-A over McDonald’s when presented with an exhaustive list of chains and asked to choose their favorite from the set. Since we don’t carry around such lists in real life, we may end up eating at McDonald’s more often simply because it comes to mind more easily.

This suggests that what comes to mind has a huge impact on our choices—and that we may end up with something less satisfying simply because we didn’t think of something better in the moment.

Where Common and Good Meet

Researchers studying what kinds of options do tend to pop into our minds have found that they’re a combination of what is common and what is good. In a 2020 study, participants were asked to enter the first number that came to mind in response to different general prompts, such as “number of hours of TV for a person to watch in a day” or “percent of students who cheat on high school exams.” A separate group got the same prompts but was asked what the ideal number was, and another group was asked what they thought the average number was. Across the board, the researchers found, the numbers that came to mind for those asked the more open questions were a blend of those ideal and average numbers.

It makes sense for things that are most common to come to mind more easily, but this finding that things that are valuable, or ideal, also come to mind easily is novel. It suggests that we might prioritize remembering good things so that we can seek them out again later. It also implies that things we already like are apt to get chosen again, which might help explain why many humans are not great at considering new things.

Of course, in most situations choosing things that are generally good is fine; sometimes, we don’t want or need to put in the effort to generate a bunch of options before we make a decision. But if we consistently rely only on what comes to mind immediately and don’t take a moment to consider alternatives, we can miss out on some great opportunities.

The next time you go online to order dinner, scan a bit to make sure you are considering all of the options. To buy a gift, stroll around the mall first instead of just ordering from the same website you repeatedly use. Our memories are efficient, but they are also limited; if we create or seek out fresh menus before we make decisions, we might end up happier.

Karolina Lempert, Ph.D. , is an assistant professor of psychology at Adelphi University.

Andre Da Loba / Used with permission.

2. For Better Plans, Think Backward

By Eva Krockow, Ph.D.

Have you ever played the 21 game? Starting at 0, two players take turns adding 1, 2, or 3 to the total. The game ends when the sum of the added numbers reaches or surpasses 21, and the player forced to make the final move loses.

Sounds tricky, but what if I told you that it’s possible to win in a single move? Imagine the first player begins by adding 3 to the starting value of 0. Now it’s your turn, and if you choose strategically, you could set yourself up for a sequence of optimal choices, ultimately forcing the other player to hit 21. The solution lies in the decision-making approach called backward induction, which starts by considering the end of a problem and then works backward in time to arrive at an optimal approach for the beginning.

Imagine again that you are trying to decide on a move following your opponent’s initial choice of 3. Rather than considering only the immediate situation, backward induction would involve considering the game’s end first. Both players want to avoid reaching 21. This can be achieved by being the player who reaches 20, because then the next player’s choice must take them to 21.

How can you be sure to be that winning player? Take another step backward and you’ll see that the only certain way is to reach 16 in your penultimate move, because no matter the other person’s subsequent choice, the highest value they could reach is 19, thus allowing you to move to 20 on the following turn.

And how can you be sure to be the player who calls 16? Be the one to call 12. Working all the way back to the start of the game, backward induction leaves you with a clear solution: To win, reach a multiple of 4 with each move, guaranteeing that you’ll ultimately be able to call 20. Following your opponent’s initial choice of 3, then, your optimal response would be to add 1.

Backward induction is not simple. It relies on analytical thinking and perspective-taking , or the ability to imagine your situation at a later point in time. Psychologists have researched the skill using carefully designed puzzles and games to measure people’s analytical thinking. Their studies show that trained individuals and analytical thinking experts, such as competitive chess players, make frequent use of backward induction, but that most lay people either do not realize the strategy exists or aren’t motivated enough, or able, to perform more than one or two steps of backward reasoning. Hence, a case can be made that backward induction should be promoted or taught more widely.

Backward Induction in Real Life

Backward induction can be applied to many decision-making scenarios in which the outcome relies on a series of interdependent choices. A good example of this was portrayed on the sitcom Friends when Rachel’s 30th birthday prompted her to reflect on her future and specifically how she could achieve her goal of becoming a mother of three.

Reasoning backward, Rachel determines that she’d have to have her first child by age 35, meaning she’d have to get pregnant by 34. As she considers marriage a prerequisite to having children and wants to be married at least one year prior to getting pregnant, she’d have to marry at 33. Assuming 1.5 years to get to know the guy before her engagement and 1.5 years to plan a wedding, she concludes that that very moment, at age 30, is the time to meet her future husband. Hours later, she breaks up with her boyfriend Tag, six years her junior and not ready for such a commitment.

Rachel’s example illustrates how using a future goal as a reference point allows you to work backward and arrive at the most rational strategy for the present. Backward induction can thus be a helpful method of approaching any long-term goal that might appear unattainable in the moment.

Of course, the whimsical nature of life can render the best plans obsolete. As fans of Friends know, Rachel’s wish for a child became reality much sooner than she intended, albeit in an unexpected way. Still, it wouldn’t have happened if she hadn’t concluded that she needed to break up with Tag.

Eva Krockow, Ph.D. , is an assistant professor of psychology at the University of Leicester.

Andre Da Loba / Used with permission.

3. To Manage Overload, Think More Flexibly

By Ellie Xu and Darby Saxbe, Ph.D.

Imagine you’re organizing a dinner party. You’ve spent all day cooking, and you’re excited for your five closest friends to come over so you can catch up on each other’s lives. The table is set, the candles are burning, and the champagne is about to be popped. Then, you get a text: Two guests can’t make it.

How do you respond to your negative feelings? The answer could affect your mental health.

Do you try to see the situation more positively by focusing on feeling grateful for the friends who can still attend? If so, you’re engaging in cognitive reappraisal, or reframing something in a more positive way. Or do you instead ignore, or suppress, those feelings of disappointment or sadness? This is referred to as emotional suppression. Or do you think about all the possible reasons why two of your best friends weren’t able to come to your party, over and over again? This would be rumination.

Cognitive reappraisal, emotional suppression, and rumination are just a few examples of emotion regulation strategies, the techniques people use to manage their emotions. Research shows that certain emotion -regulation strategies may benefit your mental health and well-being more than others. For example, cognitive reappraisal seems to lead to greater well-being and better mental health outcomes, while the opposite is true of emotional suppression and rumination.

When you’re confronted with a situation that is out of your control, like a last-minute dinner party cancellation, cognitive reappraisal is typically most helpful. However, cognitive reappraisal may not be as helpful when you can control the situation. Let’s say you failed a midterm physics exam. You’re feeling sad, and you decide to use cognitive reappraisal to help reframe the situation. You might think, Oh, the midterm exam is only 40 percent of my grade, and my physics grade doesn’t determine the rest of my life. This might all be true, but making yourself feel better about failing the test could lead you to feel less motivated to study hard for the final exam.

Changing your use of emotion regulation strategies in this way, to best fit the needs of the specific situation you face, is known as emotion regulation flexibility.

With this in mind, a research team has developed the idea of a “thinking threshold,” which represents the point past which we’re no longer able to think clearly because we’re experiencing intense negative emotions that impair our thinking, such as feeling overwhelmed, panicky, hopeless, drained, or generally out-of-control sad.

When you’re feeling low, and your thoughts are pushed past your thinking threshold—perhaps because two of your best friends can’t make it to your dinner party—it might be helpful to call on body-focused emotion regulation strategies such as mindfulness meditation and breathing relaxation techniques. Alternatively, behavioral activation strategies could offer relief—engaging in hobbies or activities, like exercise, that make you feel good—until you can think more clearly about managing your negative emotions.

Determining your personal thinking threshold can be tricky and may require trial and error, but when you can recognize that you’ve reached it and have regulation strategies at the ready, your thoughts can support you instead of paralyzing you.

Ellie Xu is a doctoral student in the clinical psychology program at the University of Southern California. Darby Saxbe, Ph.D. , is a professor of psychology at USC.

Andre Da Loba / Used with permission.

4. To Boost Creativity, Think of Opposites

By Albert Rothenberg, M.D.

Creativity consists of the production of entities that are both new and valuable. The newness is unprecedented, and the value may involve usefulness, precision, or advancement. Creativity is at the core of the most important and far-reaching achievements in art, literature, science, music, business, and other fields. One vital creative strategy is known as the Janusian process, after the multi-faced Roman god Janus, who always looks in diametrically opposed directions. It consists of actively conceiving two or more opposite or contradictory ideas, concepts, or images simultaneously, a conception leading to the production of new identities.

Although seemingly illogical and self-contradictory, creators construct these conceptualizations in rational states of mind in order to produce creative effects. Einstein, for example, described his “happiest thought” in the development of the General Theory of Relativity as his conceiving that a man falling from the roof of a house was both in rest (relatively) and in motion at the same time. Playwright Eugene O’Neill very early conceived the main character of his play The Iceman Cometh , Hickey, as motivated by wishes for his wife to be both faithful and unfaithful at the same time.

Simultaneity of opposites or antitheses is a core feature of the Janusian process. Creators conceive as simultaneously true and not true firmly held propositions about the laws of nature, the functioning of individuals and groups, or the aesthetic properties of visual and sound patterns. Or, both opposite and antithetical propositions are entertained as concurrently operative: A particle spinning is going too fast and too slow at the same time; a chemical is both boiling and freezing; kindness and sadism operate simultaneously. Previously held beliefs or laws are still considered valid, but opposite or antithetical beliefs and laws are formulated as equally operative or valid as well.

These formulations are way stations to creative outcomes. They interact and join with other cognitive and affective developments to produce new and valuable products. The Janusian process initially disrupts pre-existing conceptions. Thinkers like Einstein are sometimes both surprised and gratified when formulating such thoughts, sometimes feeling as if they came out of the blue. The idea that the contradiction or opposite of well-grounded fact, theory, or actuality may be simultaneously valid can seem astounding or inconceivable. In this way, previously held systems of ideas are split apart and broken or even essentially destroyed. This disruption provides for a creative result: the development of something both new and valuable.

Pulitzer Prize–winning poet James Merrill was once home thinking about a past travel incident —a horse had appeared at a lonely desert site—when it occurred to him that horses are animals that “renounce their own kind in order to live our lives.” This idea that horses live human lives, that they are antithetically both beast and not beast and simultaneously human and not human, generated his acclaimed poem, “In Monument Valley,” with its focus on a happy and intense relationship between a young person and a horse, together with their sad, resigned separation.

How It Works

The Janusian process proceeds through four primary phases: 1. the motivation to create; 2. a deviation or separation from usual, accepted notions or procedures; 3. simultaneous opposition or antithesis; and 4. construction of the new theory, discovery, artwork, or practice.

To apply the process, do not simply think in contrasts or “play” with opposites. Make endless lists of opposites, rather than searching for only the pertinent and important ones, or just turn things around or go in some reverse and opposite direction.

Do conceive two or more opposites as true, or theoretically, mechanically, or aesthetically operative at the same time—as, for example, dealing with an adversary in the geopolitical realm with loving hatred or, in the business world, both helping and contending with a competitor at the same time.

Albert Rothenberg, M.D. , is a professor emeritus of psychiatry at Harvard Medical School.

5. To Maintain Focus, Practice Critical Ignoring

By David Ludden, Ph.D.

To think critically, you need to be able to seek out sources of information, read carefully, consider the credibility of those sources, and reason out conclusions on your own. In the days before the internet, critical thinking was the most important cognitive skill that informed citizens could have.

While critical thinking is still important in the digital age, Max Planck Institute of Human Development psychologist Anastasia Kozyreva and her colleagues argue that “critical ignoring” is an even more important skill today. With an overabundance of information, they claim, we need to be able to sort the wheat from the chaff, deciding what’s worth our attention and what isn’t.

For most of our history, we lived in small groups in which emotionally charged information typically signaled threats or opportunities. In that environment, letting our emotions guide our attention was generally a successful strategy. But today, if we clicked on every sensational item on the screen, we’d not only waste a lot of valuable time but also potentially pick up a lot of false information.

To protect ourselves, we need new ways of interacting with information. For Kozyreva and colleagues, that means critical ignoring, a complementary skill to critical thinking in which we intentionally control our environment to reduce exposure to low-quality information.

Critical ignoring, as the research team describes it, involves three strategies:

Self-nudge. To avoid low-quality information and retain more quality time for ourselves, we should aim to remove distracting stimuli from our environment. In this way, critical ignorers are like successful dieters who know it’s easier to avoid unhealthy foods if they just keep them out of their homes. Similarly, if you set up your digital environment with attention-grabbing items kept out of sight, or set time limits for your browsing, you’ll have a better chance of success than if you rely on willpower .

Read laterally. To improve judgment about the credibility of information, open a new tab next to an item to find out more about the source. Many sites have a particular agenda that makes them more interested in influencing than in informing. Their headlines may deceive or even be contrary to the actual facts. A check of the original source should expose them.

Don’t feed the trolls. We all know that there are malicious actors on the internet whose goal is to spread false information and hurtful rumors. It can be tempting to respond to them to try to set the record straight. But trolls don’t care about that. They just care about provoking your emotions, so instead of rewarding them with your attention, ignore or block them.

Critical ignoring is a key component of cognitive functions such as problem-solving and decision-making. When we have too much information, we become overwhelmed, and it’s more likely that irrelevant information will lead us astray. Effective problem-solving and decision-making rely on heuristics , or rules of thumb, that winnow the available information down to manageable chunks so that we can come up with good-enough solutions.

We have more information at our fingertips than ever before. But most of that information is of little value. Worse, a considerable amount of it will just lead our thinking astray. More than a century ago, William James remarked on this point in his Principles of Psychology , writing: “The art of being wise is the art of knowing what to overlook.” This observation is even more pertinent in the information age, when the most vital aspect of critical thinking may be learning what to ignore.

David Ludden, Ph.D. , is a professor of psychology and the chair of the department of psychology at Georgia Gwinnett College.

Submit your response to this story to [email protected] .

Pick up a copy of Psychology Today on newsstands now or subscribe to read the rest of this issue.

Facebook /LinkedIn image: Krakenimages.com/Shutterstock

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. How to promote Critical Thinking Skills

    example of critical thinking in psychology

  2. 25 Critical Thinking Examples (2024)

    example of critical thinking in psychology

  3. Critical Thinking Definition, Skills, and Examples

    example of critical thinking in psychology

  4. 6 Examples of Critical Thinking Skills

    example of critical thinking in psychology

  5. What Is... Critical Thinking

    example of critical thinking in psychology

  6. Critical Thinking Skills

    example of critical thinking in psychology

VIDEO

  1. The Intelligence Trap by David Robson

  2. Types of Thinking in Psychology in Urdu & Hindi

  3. THE FASTEST WAY TO GAIN KNOWLEDGE and REMOVE BIAS!

  4. COINCIDENCE THEORISTS: ALLERGIC TO LOGIC?

  5. #iqtest#how learning critical thinking #psychology #questions

  6. The Art of Persuasion: 3 Techniques to Win People Over #shorts #psychology #persuasion

COMMENTS

  1. 41+ Critical Thinking Examples (Definition

    There are many resources to help you determine if information sources are factual or not. 7. Socratic Questioning. This way of thinking is called the Socrates Method, named after an old-time thinker from Greece. It's about asking lots of questions to understand a topic.

  2. On Critical Thinking

    Theoretical critical thinking involves helping the student develop an appreciation for scientific explanations of behavior. This means learning not just the content of psychology but how and why psychology is organized into concepts, principles, laws, and theories. Developing theoretical skills begins in the introductory course where the ...

  3. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  4. Critical Thinking: Definition, Examples, & Skills

    The exact definition of critical thinking is still debated among scholars. It has been defined in many different ways including the following: . "purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or ...

  5. 3 Core Critical Thinking Skills Every Thinker Should Have

    Improving critical thinking using web-based argument mapping exercises with automated feedback. Australasian Journal of Educational Technology, 25, 2, 268-291. Dwyer, C.P. (2011).

  6. Critical Thinking

    Diane F. Halpern defined critical thinking as an attempt to increase the probability of a desired outcome (e.g., making a sound decision, successfully solving a problem) by using certain cognitive skills and strategies. Critical thinking is more than just a collection of skills and strategies: it is a disposition toward engaging with problems.

  7. How to Learn Critical Thinking

    Learn Specific Strategies. Be aware of your thinking. Explain to students the need to think about how they think. This is the art of introspection, focused on being aware of such things as one's ...

  8. A Brief Guide for Teaching and Assessing Critical Thinking in Psychology

    For example, the Frostburg State University Psychology Department has a senior seminar called "Thinking like a Psychologist" in which students complete lessons giving them practice in argument analysis, critical reading, critically evaluating information on the Internet, distinguishing science from pseudoscience, applying their knowledge ...

  9. PDF Critical Thinking in Psychology

    This book is an introductory text on critical thinking for upper-level undergraduates and graduate students. It shows students how to think critically about key topics such as experimental research, statistical inference, case studies, logical fallacies, and ethical judgments. Robert J. Sternberg is Dean of Arts and Sciences at Tufts University.

  10. Critical thinking

    The study by Hawkins (2006) described above, for example, is that critical thinking was fostered even with students considered low-advantage. References. Hawkins, J. (2006). Accessing multicultural issues through critical thinking, critical inquiry, and the student research process. Urban Education, 41(2), 169-141. Liu, K. (2006).

  11. What is critical thinking? It's not what you think, but how you think

    Duro, E. et. Al. (2013) In Search of Critical Thinking in Psychology: an exploration of student and lecturer understandings in higher education. Psychology Learning and Teaching; 12(3): 275-281. Elder, L. et. Al. (1997) California Teacher Preparation for Instruction in Critical Thinking: Research Findings and Policy Recommendations. ERIC ...

  12. Why is critical thinking important for Psychology students?

    Critical thinking is objective and requires you to analyse and evaluate information to form a sound judgement. It is a cornerstone of evidence-based arguments and forming an evidence-based argument is essential in Psychology. That is why we, your tutors, as well as your future employers, want you to develop this skill effectively.

  13. Standards of Critical Thinking

    Clarity is an important standard of critical thought. Clarity of communication is one aspect of this. We must be clear in how we communicate our thoughts, beliefs, and reasons for those beliefs ...

  14. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, ... Psychology offerings, for example, have included courses such as Critical Thinking about the Paranormal, ...

  15. Critically exploring psychology: 2.1 What is critical thinking

    For example, flip flops may be comfortable for the first part of the hike, in hot weather. However, the top of the mountain is rocky so a more substantial trainer might be needed to get to the summit and protect your toes. ... Why is critical thinking important to psychology and research methods? Critical thinking enables the researcher to go ...

  16. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Recognize examples of deductive and inductive reasoning (7.2) Recognize judgments that have probably been influenced by the availability heuristic (7.2) ... there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus ...

  17. 25 Critical Thinking Examples (2024)

    25 Critical Thinking Examples. Critical thinking is the ability to analyze information and make reasoned decisions. It involves suspended judgment, open-mindedness, and clarity of thought. It involves considering different viewpoints and weighing evidence carefully. It is essential for solving complex problems and making good decisions.

  18. Ch. 15 Critical Thinking Questions

    Psychology Critical Thinking Questions. Psychology Critical Thinking Questions. Close. Contents Contents. Highlights. Print. Table of contents. Preface; 1 Introduction to Psychology. Introduction; 1.1 What Is Psychology? ... Provide an example. 24. Describe the DSM-5. What is it, what kind of information does it contain, and why is it important ...

  19. 12 Important Dispositions for Critical Thinking

    Critical thinking motivational scale: A contribution to the study of relationship between critical thinking and motivation. Journal of Research in Educational Psychology, 9(2), 823-848.

  20. Critical Thinking Steps, Stages & Examples

    Discover examples of the stages of critical thinking in real life and examine the importance of the critical thinking steps. Updated: 11/21/2023 Table of Contents

  21. What Are Critical Thinking Skills + Examples

    The key critical thinking skills are analysis, interpretation, inference, explanation, self-regulation, open-mindedness, and problem-solving. To apply the basic principles of critical thinking, follow these steps: identify the problem, gather data, analyze and evaluate, identify assumptions, establish significance, make a decision, and ...

  22. Critical Thinking Definition -What is Critical Thinking?

    Critical thinking psychology definition Critical thinking means making reasoned judgments that are logical and well-thought out. It is a way of thinking in which you don't simply accept all arguments and conclusions you are exposed to but rather have an attitude involving questioning such arguments and conclusions. ... For example, "The sun is ...

  23. 5 Rules for Better Thinking

    The Janusian process proceeds through four primary phases: 1. the motivation to create; 2. a deviation or separation from usual, accepted notions or procedures; 3. simultaneous opposition or ...