Penn State University Libraries

Technical reports, recognizing technical reports, recommendations for finding technical reports, databases with technical reports, other tools for finding technical reports.

  • Direct Links to Organizations with Technical Reports
  • Techical report collections at Penn State
  • How to Write

Engineering Instruction Librarian

Profile Photo

Engineering Librarian

Profile Photo

Technical reports describe the process, progress, or results of technical or scientific research and usually include in-depth experimental details, data, and results. Technical reports are usually produced to report on a specific research need and can serve as a report of accountability to the organization funding the research. They provide access to the information before it is published elsewhere. Technical Reports are usually not peer reviewed.  They need to be evaluated on how the problem, research method, and results are described.  

A technical report citation will include a report number and will probably not have journal name. 

Technical reports can be divided into two general categories:

  • Non-Governmental Reports- these are published by companies and engineering societies, such as Lockheed-Martin, AIAA (American Institute of Aeronautical and Astronautics), IEEE (Institute of Electrical and Electronics Engineers), or SAE (Society of Automotive Engineers).
  • Governmental Reports- the research conducted in these reports has been sponsored by the United States or an international government body as well as state and local governments.

an infographic with the phrase technical reports in the center, with arm connecting it to types of reports, namely background reports, research report

Some technical reports are cataloged as books, which you can search for in the catalog, while others may be located in databases, or free online. The boxes below list databases and online resources you can use to locate a report. 

If you’re not sure where to start, try to learn more about the report by confirming the full title or learning more about the publication information. 

Confirm the title and locate the report number in NTRL. 

Search Google Scholar, the HathiTrust, or WorldCat. This can verify the accuracy of the citation and determine if the technical report was also published in a journal or conference proceeding or under a different report number. 

Having trouble finding a report through Penn State? If we don’t have access to the report, you can submit an interlibrary loan request and we will get it for you from another library. If you have any questions, you can always contact a librarian! 

  • National Technical Reports Library (NTRL) NTRL is the preeminent resource for accessing the latest US government sponsored research, and worldwide scientific, technical, and engineering information. Search by title to determine report number.
  • Engineering Village Engineering Village is the most comprehensive interdisciplinary engineering database in the world with over 5,000 engineering journals and conference materials dating from 1884. Has citations to many ASME, ASCE, SAE, and other professional organizations' technical papers. Search by author, title, or report number.
  • IEEE Xplore Provides access to articles, papers, reports, and standards from the Institute of Electrical and Electronics Engineers (IEEE).
  • ASABE Technical Library Provides access to all of the recent technical documents published by the American Society of Agricultural Engineers.
  • International Nuclear Information System (INIS) Database Provides access to nuclear science and technology technical reports.
  • NASA Technical Reports Server Contains the searchable NACA Technical Reports collection, NASA Technical Reports collection and NIX collection of images, movies, and videos. Includes the full text and bibliographic records of selected unclassified, publicly available NASA-sponsored technical reports. Coverage: NACA reports 1915-1958, NASA reports since 1958.
  • OSTI Technical Reports Full-text of Department of Energy (DOE) funded science, technology, and engineering technical reports. OSTI has replaced SciTech Connect as the primary search tool for Department of Energy (DOE) funded science, technology, and engineering research results. It provides access to all the information previously available in SciTech Connect, DOE Information Bridge, and Energy Citations Database.
  • ERIC (ProQuest) Provides access to technical reports and other education-related materials. ERIC is sponsored by the U.S. Department of Education, Institute of Education Sciences (IES).
  • Transportation Research International Documentation (TRID) TRID is a newly integrated database that combines the records from TRB's Transportation Research Information Services (TRIS) Database and the OECD's Joint Transport Research Centre's International Transport Research Documentation (ITRD) Database. TRID provides access to over 900,000 records of transportation research worldwide.
  • TRAIL Technical Reports Archive & Image Library Provide access to federal technical reports issued prior to 1975.
  • Defense Technical Information Center (DTIC) The largest central resource for Department of Defense and government-funded scientific, technical, engineering, and business related information.
  • Correlation Index of Technical Reports (AD-PB Reports) Publication Date: 1958
  • Criss-cross directory of NASA "N" numbers and DOD "AD" numbers, 1962-1986

Print indexes to technical reports :

  • Government Reports Announcements & Index (1971-1996)
  • Government Reports Announcements (1946-1975)
  • U.S. Government Research & Development Reports (1965-1971)
  • U.S. Government Research Reports (1954-1964)
  • Bibliography of Technical Reports (1949-1954)
  • Bibliography of Scientific and Industrial Reports (1946-1949)
  • Next: Direct Links to Organizations with Technical Reports >>
  • Last Updated: Oct 5, 2023 2:56 PM
  • URL: https://guides.libraries.psu.edu/techreports
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Report – Example, Writing Guide and Types

Research Report – Example, Writing Guide and Types

Table of Contents

Research Report

Research Report

Definition:

Research Report is a written document that presents the results of a research project or study, including the research question, methodology, results, and conclusions, in a clear and objective manner.

The purpose of a research report is to communicate the findings of the research to the intended audience, which could be other researchers, stakeholders, or the general public.

Components of Research Report

Components of Research Report are as follows:

Introduction

The introduction sets the stage for the research report and provides a brief overview of the research question or problem being investigated. It should include a clear statement of the purpose of the study and its significance or relevance to the field of research. It may also provide background information or a literature review to help contextualize the research.

Literature Review

The literature review provides a critical analysis and synthesis of the existing research and scholarship relevant to the research question or problem. It should identify the gaps, inconsistencies, and contradictions in the literature and show how the current study addresses these issues. The literature review also establishes the theoretical framework or conceptual model that guides the research.

Methodology

The methodology section describes the research design, methods, and procedures used to collect and analyze data. It should include information on the sample or participants, data collection instruments, data collection procedures, and data analysis techniques. The methodology should be clear and detailed enough to allow other researchers to replicate the study.

The results section presents the findings of the study in a clear and objective manner. It should provide a detailed description of the data and statistics used to answer the research question or test the hypothesis. Tables, graphs, and figures may be included to help visualize the data and illustrate the key findings.

The discussion section interprets the results of the study and explains their significance or relevance to the research question or problem. It should also compare the current findings with those of previous studies and identify the implications for future research or practice. The discussion should be based on the results presented in the previous section and should avoid speculation or unfounded conclusions.

The conclusion summarizes the key findings of the study and restates the main argument or thesis presented in the introduction. It should also provide a brief overview of the contributions of the study to the field of research and the implications for practice or policy.

The references section lists all the sources cited in the research report, following a specific citation style, such as APA or MLA.

The appendices section includes any additional material, such as data tables, figures, or instruments used in the study, that could not be included in the main text due to space limitations.

Types of Research Report

Types of Research Report are as follows:

Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master’s or Doctoral degree, although it can also be written by researchers or scholars in other fields.

Research Paper

Research paper is a type of research report. A research paper is a document that presents the results of a research study or investigation. Research papers can be written in a variety of fields, including science, social science, humanities, and business. They typically follow a standard format that includes an introduction, literature review, methodology, results, discussion, and conclusion sections.

Technical Report

A technical report is a detailed report that provides information about a specific technical or scientific problem or project. Technical reports are often used in engineering, science, and other technical fields to document research and development work.

Progress Report

A progress report provides an update on the progress of a research project or program over a specific period of time. Progress reports are typically used to communicate the status of a project to stakeholders, funders, or project managers.

Feasibility Report

A feasibility report assesses the feasibility of a proposed project or plan, providing an analysis of the potential risks, benefits, and costs associated with the project. Feasibility reports are often used in business, engineering, and other fields to determine the viability of a project before it is undertaken.

Field Report

A field report documents observations and findings from fieldwork, which is research conducted in the natural environment or setting. Field reports are often used in anthropology, ecology, and other social and natural sciences.

Experimental Report

An experimental report documents the results of a scientific experiment, including the hypothesis, methods, results, and conclusions. Experimental reports are often used in biology, chemistry, and other sciences to communicate the results of laboratory experiments.

Case Study Report

A case study report provides an in-depth analysis of a specific case or situation, often used in psychology, social work, and other fields to document and understand complex cases or phenomena.

Literature Review Report

A literature review report synthesizes and summarizes existing research on a specific topic, providing an overview of the current state of knowledge on the subject. Literature review reports are often used in social sciences, education, and other fields to identify gaps in the literature and guide future research.

Research Report Example

Following is a Research Report Example sample for Students:

Title: The Impact of Social Media on Academic Performance among High School Students

This study aims to investigate the relationship between social media use and academic performance among high school students. The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The findings indicate that there is a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students. The results of this study have important implications for educators, parents, and policymakers, as they highlight the need for strategies that can help students balance their social media use and academic responsibilities.

Introduction:

Social media has become an integral part of the lives of high school students. With the widespread use of social media platforms such as Facebook, Twitter, Instagram, and Snapchat, students can connect with friends, share photos and videos, and engage in discussions on a range of topics. While social media offers many benefits, concerns have been raised about its impact on academic performance. Many studies have found a negative correlation between social media use and academic performance among high school students (Kirschner & Karpinski, 2010; Paul, Baker, & Cochran, 2012).

Given the growing importance of social media in the lives of high school students, it is important to investigate its impact on academic performance. This study aims to address this gap by examining the relationship between social media use and academic performance among high school students.

Methodology:

The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The questionnaire was developed based on previous studies and was designed to measure the frequency and duration of social media use, as well as academic performance.

The participants were selected using a convenience sampling technique, and the survey questionnaire was distributed in the classroom during regular school hours. The data collected were analyzed using descriptive statistics and correlation analysis.

The findings indicate that the majority of high school students use social media platforms on a daily basis, with Facebook being the most popular platform. The results also show a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students.

Discussion:

The results of this study have important implications for educators, parents, and policymakers. The negative correlation between social media use and academic performance suggests that strategies should be put in place to help students balance their social media use and academic responsibilities. For example, educators could incorporate social media into their teaching strategies to engage students and enhance learning. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. Policymakers could develop guidelines and policies to regulate social media use among high school students.

Conclusion:

In conclusion, this study provides evidence of the negative impact of social media on academic performance among high school students. The findings highlight the need for strategies that can help students balance their social media use and academic responsibilities. Further research is needed to explore the specific mechanisms by which social media use affects academic performance and to develop effective strategies for addressing this issue.

Limitations:

One limitation of this study is the use of convenience sampling, which limits the generalizability of the findings to other populations. Future studies should use random sampling techniques to increase the representativeness of the sample. Another limitation is the use of self-reported measures, which may be subject to social desirability bias. Future studies could use objective measures of social media use and academic performance, such as tracking software and school records.

Implications:

The findings of this study have important implications for educators, parents, and policymakers. Educators could incorporate social media into their teaching strategies to engage students and enhance learning. For example, teachers could use social media platforms to share relevant educational resources and facilitate online discussions. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. They could also engage in open communication with their children to understand their social media use and its impact on their academic performance. Policymakers could develop guidelines and policies to regulate social media use among high school students. For example, schools could implement social media policies that restrict access during class time and encourage responsible use.

References:

  • Kirschner, P. A., & Karpinski, A. C. (2010). Facebook® and academic performance. Computers in Human Behavior, 26(6), 1237-1245.
  • Paul, J. A., Baker, H. M., & Cochran, J. D. (2012). Effect of online social networking on student academic performance. Journal of the Research Center for Educational Technology, 8(1), 1-19.
  • Pantic, I. (2014). Online social networking and mental health. Cyberpsychology, Behavior, and Social Networking, 17(10), 652-657.
  • Rosen, L. D., Carrier, L. M., & Cheever, N. A. (2013). Facebook and texting made me do it: Media-induced task-switching while studying. Computers in Human Behavior, 29(3), 948-958.

Note*: Above mention, Example is just a sample for the students’ guide. Do not directly copy and paste as your College or University assignment. Kindly do some research and Write your own.

Applications of Research Report

Research reports have many applications, including:

  • Communicating research findings: The primary application of a research report is to communicate the results of a study to other researchers, stakeholders, or the general public. The report serves as a way to share new knowledge, insights, and discoveries with others in the field.
  • Informing policy and practice : Research reports can inform policy and practice by providing evidence-based recommendations for decision-makers. For example, a research report on the effectiveness of a new drug could inform regulatory agencies in their decision-making process.
  • Supporting further research: Research reports can provide a foundation for further research in a particular area. Other researchers may use the findings and methodology of a report to develop new research questions or to build on existing research.
  • Evaluating programs and interventions : Research reports can be used to evaluate the effectiveness of programs and interventions in achieving their intended outcomes. For example, a research report on a new educational program could provide evidence of its impact on student performance.
  • Demonstrating impact : Research reports can be used to demonstrate the impact of research funding or to evaluate the success of research projects. By presenting the findings and outcomes of a study, research reports can show the value of research to funders and stakeholders.
  • Enhancing professional development : Research reports can be used to enhance professional development by providing a source of information and learning for researchers and practitioners in a particular field. For example, a research report on a new teaching methodology could provide insights and ideas for educators to incorporate into their own practice.

How to write Research Report

Here are some steps you can follow to write a research report:

  • Identify the research question: The first step in writing a research report is to identify your research question. This will help you focus your research and organize your findings.
  • Conduct research : Once you have identified your research question, you will need to conduct research to gather relevant data and information. This can involve conducting experiments, reviewing literature, or analyzing data.
  • Organize your findings: Once you have gathered all of your data, you will need to organize your findings in a way that is clear and understandable. This can involve creating tables, graphs, or charts to illustrate your results.
  • Write the report: Once you have organized your findings, you can begin writing the report. Start with an introduction that provides background information and explains the purpose of your research. Next, provide a detailed description of your research methods and findings. Finally, summarize your results and draw conclusions based on your findings.
  • Proofread and edit: After you have written your report, be sure to proofread and edit it carefully. Check for grammar and spelling errors, and make sure that your report is well-organized and easy to read.
  • Include a reference list: Be sure to include a list of references that you used in your research. This will give credit to your sources and allow readers to further explore the topic if they choose.
  • Format your report: Finally, format your report according to the guidelines provided by your instructor or organization. This may include formatting requirements for headings, margins, fonts, and spacing.

Purpose of Research Report

The purpose of a research report is to communicate the results of a research study to a specific audience, such as peers in the same field, stakeholders, or the general public. The report provides a detailed description of the research methods, findings, and conclusions.

Some common purposes of a research report include:

  • Sharing knowledge: A research report allows researchers to share their findings and knowledge with others in their field. This helps to advance the field and improve the understanding of a particular topic.
  • Identifying trends: A research report can identify trends and patterns in data, which can help guide future research and inform decision-making.
  • Addressing problems: A research report can provide insights into problems or issues and suggest solutions or recommendations for addressing them.
  • Evaluating programs or interventions : A research report can evaluate the effectiveness of programs or interventions, which can inform decision-making about whether to continue, modify, or discontinue them.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies.

When to Write Research Report

A research report should be written after completing the research study. This includes collecting data, analyzing the results, and drawing conclusions based on the findings. Once the research is complete, the report should be written in a timely manner while the information is still fresh in the researcher’s mind.

In academic settings, research reports are often required as part of coursework or as part of a thesis or dissertation. In this case, the report should be written according to the guidelines provided by the instructor or institution.

In other settings, such as in industry or government, research reports may be required to inform decision-making or to comply with regulatory requirements. In these cases, the report should be written as soon as possible after the research is completed in order to inform decision-making in a timely manner.

Overall, the timing of when to write a research report depends on the purpose of the research, the expectations of the audience, and any regulatory requirements that need to be met. However, it is important to complete the report in a timely manner while the information is still fresh in the researcher’s mind.

Characteristics of Research Report

There are several characteristics of a research report that distinguish it from other types of writing. These characteristics include:

  • Objective: A research report should be written in an objective and unbiased manner. It should present the facts and findings of the research study without any personal opinions or biases.
  • Systematic: A research report should be written in a systematic manner. It should follow a clear and logical structure, and the information should be presented in a way that is easy to understand and follow.
  • Detailed: A research report should be detailed and comprehensive. It should provide a thorough description of the research methods, results, and conclusions.
  • Accurate : A research report should be accurate and based on sound research methods. The findings and conclusions should be supported by data and evidence.
  • Organized: A research report should be well-organized. It should include headings and subheadings to help the reader navigate the report and understand the main points.
  • Clear and concise: A research report should be written in clear and concise language. The information should be presented in a way that is easy to understand, and unnecessary jargon should be avoided.
  • Citations and references: A research report should include citations and references to support the findings and conclusions. This helps to give credit to other researchers and to provide readers with the opportunity to further explore the topic.

Advantages of Research Report

Research reports have several advantages, including:

  • Communicating research findings: Research reports allow researchers to communicate their findings to a wider audience, including other researchers, stakeholders, and the general public. This helps to disseminate knowledge and advance the understanding of a particular topic.
  • Providing evidence for decision-making : Research reports can provide evidence to inform decision-making, such as in the case of policy-making, program planning, or product development. The findings and conclusions can help guide decisions and improve outcomes.
  • Supporting further research: Research reports can provide a foundation for further research on a particular topic. Other researchers can build on the findings and conclusions of the report, which can lead to further discoveries and advancements in the field.
  • Demonstrating expertise: Research reports can demonstrate the expertise of the researchers and their ability to conduct rigorous and high-quality research. This can be important for securing funding, promotions, and other professional opportunities.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies. Producing a high-quality research report can help ensure compliance with these requirements.

Limitations of Research Report

Despite their advantages, research reports also have some limitations, including:

  • Time-consuming: Conducting research and writing a report can be a time-consuming process, particularly for large-scale studies. This can limit the frequency and speed of producing research reports.
  • Expensive: Conducting research and producing a report can be expensive, particularly for studies that require specialized equipment, personnel, or data. This can limit the scope and feasibility of some research studies.
  • Limited generalizability: Research studies often focus on a specific population or context, which can limit the generalizability of the findings to other populations or contexts.
  • Potential bias : Researchers may have biases or conflicts of interest that can influence the findings and conclusions of the research study. Additionally, participants may also have biases or may not be representative of the larger population, which can limit the validity and reliability of the findings.
  • Accessibility: Research reports may be written in technical or academic language, which can limit their accessibility to a wider audience. Additionally, some research may be behind paywalls or require specialized access, which can limit the ability of others to read and use the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Appendices

Appendices – Writing Guide, Types and Examples

Scope of the Research

Scope of the Research – Writing Guide and...

Research Contribution

Research Contribution – Thesis Guide

Research Problem

Research Problem – Examples, Types and Guide

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

  • Research Guides
  • University Libraries
  • Advanced Research Topics

Technical Reports

  • What is a Technical report?
  • Find Technical Reports
  • Print & Microform Tech Reports in the Library
  • Author Profile

What is a Technical Report?

What is a Technical Report?  

"A technical report is a document written by a researcher detailing the results of a project and submitted to the sponsor of that project." TRs are not peer-reviewed unless they are subsequently published in a peer-review journal.

Characteristics (TRs vary greatly): Technical reports ....

  • may contain data, design criteria, procedures, literature reviews, research history, detailed tables, illustrations/images, explanation of approaches that were unsuccessful.
  • may be published before the corresponding journal literature; may have more or different details than  its subsequent journal article.
  • may contain less  background information since the sponsor already knows it
  • classified and export controlled reports
  • may contain obscure acronyms and codes as part of identifying information

Disciplines:

  • Physical sciences, engineering, agriculture, biomedical sciences, and the social sciences. education etc.

Documents research and development conducted by:

  • government agencies (NASA, Department of Defense (DoD) and Department of Energy (DOE) are top sponsors of research
  • commercial companies
  • non-profit, non-governmental organizations
  • Educational Institutions
  • Issued  in print, microform, digital
  • Older TRs may have been digitized and are available in fulltext on the Intranet
  • Newer TRs should be born digital

Definition used with permission from Georgia Tech. Other sources: Pinelli & Barclay (1994).

  • Nation's Report Card: State Reading 2002, Report for Department of Defense Domestic Dependent Elementary and Secondary Schools. U.S. Department of Education Institute of Education Sciences The National Assessment of Educational Progress Reading 2002 The Nation’s
  • Study for fabrication, evaluation, and testing of monolayer woven type materials for space suit insulation NASA-CR-166139, ACUREX-TR-79-156. May 1979. Reproduced from the microfiche.
  • << Previous: Home
  • Next: Find Technical Reports >>
  • Last Updated: Sep 1, 2023 11:06 AM
  • URL: https://tamu.libguides.com/TR

Libraries | Research Guides

Technical reports, technical reports: a definition, search engines & databases, multi-disciplinary technical report repositories, topical technical report repositories.

"A technical report is a document that describes the process, progress, or results of technical or scientific research or the state of a technical or scientific research problem. It might also include recommendations and conclusions of the research."      https://en.wikipedia.org/wiki/Technical_report

Technical reports are produced by corporations, academic institutions, and government agencies at all levels of government, e.g. state, federal, and international.  Technical reports are not included in formal publication and distribution channels and therefore fall into the category of grey literature .

  • Science.gov Searches over 60 databases and over 2,200 scientific websites hosted by U.S. federal government agencies. Not limited to tech reports.
  • WorldWideScience.org A global science gateway comprised of national and international scientific databases and portals, providing real-time searching and translation of globally-dispersed multilingual scientific literature.
  • Open Grey System for Information on Grey Literature in Europe, is your open access to 700.000 bibliographical references. more... less... OpenGrey covers Science, Technology, Biomedical Science, Economics, Social Science and Humanities.
  • National Technical Reports Library (NTRL) This link opens in a new window The National Technical Reports Library provides indexing and access to a collection of more than two million historical and current government technical reports of U.S. government-sponsored research. Full-text available for 700,000 of the 2.2 million items described. Dates covered include 1900-present.
  • Argonne National Lab: Scientific Publications While sponsored by the US Dept of Energy, research at Argonne National Laboratory is wide ranging (see Research Index )
  • Defense Technical Information Center (DTIC) The Defense Technical Information Center (DTIC®) has served the information needs of the Defense community for more than 65 years. It provides technical research, development, testing & evaluation information; including but not limited to: journal articles, conference proceedings, test results, theses and dissertations, studies & analyses, and technical reports & memos.
  • HathiTrust This repository of books digitized by member libraries includes a large number of technical reports. Search by keywords, specific report title, or identifiers.
  • Lawrence Berkeley National Lab (LBNL) LBNL a multiprogram science lab in the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines.
  • National Institute of Standards and Technology (NIST) NIST is one of the nation's oldest physical science laboratories.
  • RAND Corporation RAND's research and analysis address issues that impact people around the world including security, health, education, sustainability, growth, and development. Much of this research is carried out on behalf of public and private grantors and clients.
  • TRAIL Technical Report Archive & Image Library Identifies, acquires, catalogs, digitizes and provides unrestricted access to U.S. government agency technical reports. TRAIL is a membership organization . more... less... Majority of content is pre-1976, but some reports after that date are included.

Aerospace / Aviation

  • Contrails 20th century aerospace research, hosted at the Illinois Institute of Technology
  • Jet Propulsion Laboratory Technical Reports Server repository for digital copies of technical publications authored by JPL employees. It includes preprints, meeting papers, conference presentations, some articles, and other publications cleared for external distribution from 1992 to the present.
  • NTRS - NASA Technical Reports Server The NASA STI Repository (also known as the NASA Technical Reports Server (NTRS)) provides access to NASA metadata records, full-text online documents, images, and videos. The types of information included are conference papers, journal articles, meeting papers, patents, research reports, images, movies, and technical videos – scientific and technical information (STI) created or funded by NASA. Includes NTIS reports.

Computing Research

  • Computing Research Repository
  • IBM Technical Paper Archive
  • Microsoft Research
  • INIS International Nuclear Information System One of the world's largest collections of published information on the peaceful uses of nuclear science and technology.
  • Oak Ridge National Laboratory Research Library Primary subject areas covered include chemistry, physics, materials science, biological and environmental sciences, computer science, mathematics, engineering, nuclear technology, and homeland security.
  • OSTI.gov The primary search tool for DOE science, technology, and engineering research and development results more... less... over 70 years of research results from DOE and its predecessor agencies. Research results include journal articles/accepted manuscripts and related metadata; technical reports; scientific research datasets and collections; scientific software; patents; conference and workshop papers; books and theses; and multimedia
  • OSTI Open Net Provides access to over 495,000 bibliographic references and 147,000 recently declassified documents, including information declassified in response to Freedom of Information Act requests. In addition to these documents, OpenNet references older document collections from several DOE sources.

Environment

  • National Service Center for Environmental Publications From the Environmental Protection Agency
  • US Army Corp of Engineers (USACE) Digital Library See in particular the option to search technical reports by the Waterways Experiment Station, Engineering Research and Development Center, and districts .
  • National Clearinghouse for Science, Technology and the Law (NCSTL) Forensic research at the intersection of science, technology and law.

Transportation

  • ROSA-P National Transportation Library Full-text digital publications, datasets, and other resources. Legacy print materials that have been digitized are collected if they have historic, technical, or national significance.
  • Last Updated: Jul 13, 2022 11:46 AM
  • URL: https://libguides.northwestern.edu/techreports
  • Directories
  • Search for Technical Reports
  • Government Reports
  • Computer Science Technical Reports
  • UW Departmental Technical Reports
  • Coronavirus Research Information
  • Start Your Research
  • Research Guides
  • University of Washington Libraries
  • Library Guides
  • UW Libraries
  • Technical Reports

Technical Reports: Home

What's in this guide.

This guide will help you understand the purpose of a technical report and its role in engineering research. You will also find suggested starting points for researching  technical reports and what you need to know to find them in the UW Libraries or elsewhere.

What Are Technical Reports

Technical reports are publications published to convey results of research usually funded by government or corporate bodies. When the government performs or sponsors research, they may require that a report of the research be published as a way to maintain public disclosure. Technical reports describe the process of engineering or scientific research and often include in-depth details including raw data. Technical reports are most familiar to engineers, geologists, and physicists, but are usually not peer-reviewed. They are generally published as numbered series bearing the acronym of the issuing agency, the series code, and an accession number. For more information on the history of technical reports, the Science Reference Services of the Library of Congress has a useful overview here .

Recognizing Technical Reports:

Often times, you can identify a technical report from its citation or reference. Recognizing a technical report will help you determine where to look for the report. In particular, a technical report citation will include a report number and will probably not have journal or publisher information. 

Technical reports can be divided into three general categories:

  • Non-Governmental Reports - these are published by engineering societies, such as AIAA (American Institute of Aeronautical and Astronautics), IEEE (Institute of Electrical and Electronics Engineers), or SAE (Society of Automotive Engineers). Academic Departments also publish technical reports- run an Author search in the UW Libraries Search for: University Of Washington Dept Of Civil Engineering .  
  • Governmental Reports - the research conducted in these reports has been wholly or partly sponsored by the United States or an international government body. All agencies of the U.S. Federal and State Government issue reports for example: DOE (Dept. of Energy), NASA (National Aeronautics and Astronautics), DOT (Dept. of Transportation), DOD (Department of Defense).  
  • Computer Science Technical Reports - these are also mostly from Computer Science and Engineering departments at various universities. Many of these are freely available online.  
  • Next: Search for Technical Reports >>
  • Last Updated: Jan 10, 2024 10:39 AM
  • URL: https://guides.lib.uw.edu/research/techreports

Book cover

  • © 2010

How to Write Technical Reports

Understandable Structure, Good Design, Convincing Presentation

  • Lutz Hering 0 ,
  • Heike Hering 1

Inst. Radiologie, Allgemeines Krankenhaus Barmbek, Hamburg, Germany

You can also search for this author in PubMed   Google Scholar

Hemmingen, Germany

A step by step Guide to scientific writing

Indispensable for students, Reference for experienced Scientists

Clear and easy writing

Includes a chapter for oral presentations

Includes supplementary material: sn.pub/extras

26k Accesses

2 Citations

  • Table of contents

About this book

Authors and affiliations, bibliographic information.

  • Publish with us

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (6 chapters)

Front matter, introduction.

  • Lutz Hering†, Heike Hering

Planning the Technical Report

Writing and creating the technical report, useful behavior for working on your project and writing the technical report, presenting the technical report, back matter.

  • oral presentations
  • tables and figures

Lutz Hering

Heike Hering

Book Title : How to Write Technical Reports

Book Subtitle : Understandable Structure, Good Design, Convincing Presentation

Authors : Lutz Hering, Heike Hering

DOI : https://doi.org/10.1007/978-3-540-69929-3

Publisher : Springer Berlin, Heidelberg

eBook Packages : Engineering , Engineering (R0)

Copyright Information : Springer-Verlag Berlin Heidelberg 2010

eBook ISBN : 978-3-540-69929-3 Published: 14 October 2010

Edition Number : 1

Number of Pages : VIII, 304

Additional Information : Original German edition published by Vieweg, 2007

Topics : Engineering, general , Popular Science, general

Policies and ethics

  • Find a journal
  • Track your research

Bit Blog

Technical Report: What is it & How to Write it? (Steps & Structure Included)

' src=

A technical report can either act as a cherry on top of your project or can ruin the entire dough.

Everything depends on how you write and present it.

A technical report is a sole medium through which the audience and readers of your project can understand the entire process of your research or experimentation.

So, you basically have to write a report on how you managed to do that research, steps you followed, events that occurred, etc., taking the reader from the ideation of the process and then to the conclusion or findings.

Sounds exhausting, doesn’t it?

Well hopefully after reading this entire article, it won’t.

A girl writing a technical report

However, note that there is no specific standard determined to write a technical report. It depends on the type of project and the preference of your project supervisor.

With that in mind, let’s dig right in!

What is a Technical Report? (Definition)

A technical report is described as a written scientific document that conveys information about technical research in an objective and fact-based manner. This technical report consists of the three key features of a research i.e process, progress, and results associated with it.

Some common areas in which technical reports are used are agriculture, engineering, physical, and biomedical science. So, such complicated information must be conveyed by a report that is easily readable and efficient.

Now, how do we decide on the readability level?

The answer is simple – by knowing our target audience.

Bit.ai Home Page CTA

A technical report is considered as a product that comes with your research, like a guide for it.

You study the target audience of a product before creating it, right?

Similarly, before writing a technical report, you must keep in mind who your reader is going to be.

Whether it is professors, industry professionals, or even customers looking to buy your project – studying the target audience enables you to start structuring your report. It gives you an idea of the existing knowledge level of the reader and how much information you need to put in the report.

Many people tend to put in fewer efforts in the report than what they did in the actual research..which is only fair.

We mean, you’ve already worked so much, why should you go through the entire process again to create a report?

Well then, let’s move to the second section where we talk about why it is absolutely essential to write a technical report accompanying your project.

Read more:  What is a Progress Report and How to Write One?

Importance of Writing a Technical Report 

1. efficient communication.

Technical reports are used by industries to convey pertinent information to upper management. This information is then used to make crucial decisions that would impact the company in the future.

Technical team communicating with each other

Examples of such technical reports include proposals, regulations, manuals, procedures, requests, progress reports, emails, and memos.

2. Evidence for your work

Most of the technical work is backed by software.

However, graduation projects are not.

So, if you’re a student, your technical report acts as the sole evidence of your work. It shows the steps you took for the research and glorifies your efforts for a better evaluation.

3. Organizes the data 

A technical report is a concise, factual piece of information that is aligned and designed in a standard manner. It is the one place where all the data of a project is written in a compact manner that is easily understandable by a reader.

4. Tool for evaluation of your work 

Professors and supervisors mainly evaluate your research project based on the technical write-up for it. If your report is accurate, clear, and comprehensible, you will surely bag a good grade.

A technical report to research is like Robin to Batman.

Best results occur when both of them work together.

So, how can you write a technical report that leaves the readers in a ‘wow’ mode? Let’s find out!

How to Write a Technical Report? 

When writing a technical report, there are two approaches you can follow, depending on what suits you the best.

  • Top-down approach- In this, you structure the entire report from title to sub-sections and conclusion and then start putting in the matter in the respective chapters. This allows your thought process to have a defined flow and thus helps in time management as well.
  • Evolutionary delivery- This approach is suitable if you’re someone who believes in ‘go with the flow’. Here the author writes and decides as and when the work progresses. This gives you a broad thinking horizon. You can even add and edit certain parts when some new idea or inspiration strikes.

A technical report must have a defined structure that is easy to navigate and clearly portrays the objective of the report. Here is a list of pages, set in the order that you should include in your technical report.

Cover page- It is the face of your project. So, it must contain details like title, name of the author, name of the institution with its logo. It should be a simple yet eye-catching page.

Title page- In addition to all the information on the cover page, the title page also informs the reader about the status of the project. For instance, technical report part 1, final report, etc. The name of the mentor or supervisor is also mentioned on this page.

Abstract- Also referred to as the executive summary, this page gives a concise and clear overview of the project. It is written in such a manner that a person only reading the abstract can gain complete information on the project.

Preface – It is an announcement page wherein you specify that you have given due credits to all the sources and that no part of your research is plagiarised. The findings are of your own experimentation and research.

Dedication- This is an optional page when an author wants to dedicate their study to a loved one. It is a small sentence in the middle of a new page. It is mostly used in theses.

Acknowledgment- Here, you acknowledge the people parties, and institutions who helped you in the process or inspired you for the idea of it.

Table of contents – Each chapter and its subchapter is carefully divided into this section for easy navigation in the project. If you have included symbols, then a similar nomenclature page is also made. Similarly, if you’ve used a lot of graphs and tables, you need to create a separate content page for that. Each of these lists begins on a new page.

A lady creating table of contents in a technical report

Introduction- Finally comes the introduction, marking the beginning of your project. On this page, you must clearly specify the context of the report. It includes specifying the purpose, objectives of the project, the questions you have answered in your report, and sometimes an overview of the report is also provided. Note that your conclusion should answer the objective questions.

Central Chapter(s)- Each chapter should be clearly defined with sub and sub-sub sections if needed. Every section should serve a purpose. While writing the central chapter, keep in mind the following factors:

  • Clearly define the purpose of each chapter in its introduction.
  • Any assumptions you are taking for this study should be mentioned. For instance, if your report is targeting globally or a specific country. There can be many assumptions in a report. Your work can be disregarded if it is not mentioned every time you talk about the topic.
  • Results you portray must be verifiable and not based upon your opinion. (Big no to opinions!)
  • Each conclusion drawn must be connected to some central chapter.

Conclusion- The purpose of the conclusion is to basically conclude any and everything that you talked about in your project. Mention the findings of each chapter, objectives reached, and the extent to which the given objectives were reached. Discuss the implications of the findings and the significant contribution your research made.

Appendices- They are used for complete sets of data, long mathematical formulas, tables, and figures. Items in the appendices should be mentioned in the order they were used in the project.

References- This is a very crucial part of your report. It cites the sources from which the information has been taken from. This may be figures, statistics, graphs, or word-to-word sentences. The absence of this section can pose a legal threat for you. While writing references, give due credit to the sources and show your support to other people who have studied the same genres.

Bibliography- Many people tend to get confused between references and bibliography. Let us clear it out for you. References are the actual material you take into your research, previously published by someone else. Whereas a bibliography is an account of all the data you read, got inspired from, or gained knowledge from, which is not necessarily a direct part of your research.

Style ( Pointers to remember )

Let’s take a look at the writing style you should follow while writing a technical report:

  • Avoid using slang or informal words. For instance, use ‘cannot’ instead of can’t.
  • Use a third-person tone and avoid using words like I, Me.
  • Each sentence should be grammatically complete with an object and subject.
  • Two sentences should not be linked via a comma.
  • Avoid the use of passive voice.
  • Tenses should be carefully employed. Use present for something that is still viable and past for something no longer applicable.
  • Readers should be kept in mind while writing. Avoid giving them instructions. Your work is to make their work of evaluation easier.
  • Abbreviations should be avoided and if used, the full form should be mentioned.
  • Understand the difference between a numbered and bulleted list. Numbering is used when something is explained sequence-wise. Whereas bullets are used to just list out points in which sequence is not important.
  • All the preliminary pages (title, abstract, preface..) should be named in small roman numerals. ( i, ii, iv..)
  • All the other pages should be named in Arabic numerals (1,2,3..) thus, your report begins with 1 – on the introduction page.
  • Separate long texts into small paragraphs to keep the reader engaged. A paragraph should not be more than 10 lines.
  • Do not incorporate too many fonts. Use standard times new roman 12pt for the text. You can use bold for headlines.

Proofreading

If you think your work ends when the report ends, think again. Proofreading the report is a very important step. While proofreading you see your work from a reader’s point of view and you can correct any small mistakes you might have done while typing. Check everything from content to layout, and style of writing.

Presentation

Finally comes the presentation of the report in which you submit it to an evaluator.

  • It should be printed single-sided on an A4 size paper. double side printing looks chaotic and messy.
  • Margins should be equal throughout the report.

Employees analysing sales report

  • You can use single staples on the left side for binding or use binders if the report is long.

AND VOILA! You’re done.

…and don’t worry, if the above process seems like too much for you, Bit.ai is here to help.

Read more:  Technical Manual: What, Types & How to Create One? (Steps Included)

Bit.ai : The Ultimate Tool for Writing Technical Reports

Bit.ai: Tool to create technical reports

What if we tell you that the entire structure of a technical report explained in this article is already done and designed for you!

Yes, you read that right.

With Bit.ai’s 70+ templates , all you have to do is insert your text in a pre-formatted document that has been designed to appeal to the creative nerve of the reader.

Bit features infographic

You can even add collaborators who can proofread or edit your work in real-time. You can also highlight text, @mention collaborators, and make comments!

Wait, there’s more! When you send your document to the evaluators, you can even trace who read it, how much time they spent on it, and more.

Exciting, isn’t it?

Start making your fabulous technical report with Bit.ai today!

Few technical documents templates you might be interested in:

  • Status Report Template
  • API Documentation
  • Product Requirements Document Template
  • Software Design Document Template
  • Software Requirements Document Template
  • UX Research Template
  • Issue Tracker Template
  • Release Notes Template
  • Statement of Work
  • Scope of Work Template

Wrap up(Conclusion)

A well structured and designed report adds credibility to your research work. You can rely on bit.ai for that part.

However, the content is still yours so remember to make it worth it.

After finishing up your report, ask yourself:

Does the abstract summarize the objectives and methods employed in the paper?

Are the objective questions answered in your conclusion?

What are the implications of the findings and how is your work making a change in the way that particular topic is read and conceived?

If you find logical answers to these, then you have done a good job!

Remember, writing isn’t an overnight process. ideas won’t just arrive. Give yourself space and time for inspiration to strike and then write it down. Good writing has no shortcuts, it takes practice.

But at least now that you’ve bit.ai in the back of your pocket, you don’t have to worry about the design and formatting!

Have you written any technical reports before? If yes, what tools did you use? Do let us know by tweeting us @bit_docs.

Further reads:

How To Create An Effective Status Report?

7 Types of Reports Your Business Certainly Needs!

What is Project Status Report Documentation?

Scientific Paper: What is it & How to Write it? (Steps and Format)

  Business Report: What is it & How to Write it? (Steps & Format)

How to Write Project Reports that ‘Wow’ Your Clients? (Template Included)

Bit bottom banner

Business Report: What is it & How to Write it? (Steps & Format)

Internship Cover Letter: How to Write a Perfect one?

Related posts

Project charter: what is it & how to write it perfectly (template included), what is swot analysis: the complete guide, contract proposal: what is it & how to create it, characteristics of well-written standard operating procedures, what is change management and how to cope with it, how to create a ux research plan document.

research report and technical report

About Bit.ai

Bit.ai is the essential next-gen workplace and document collaboration platform. that helps teams share knowledge by connecting any type of digital content. With this intuitive, cloud-based solution, anyone can work visually and collaborate in real-time while creating internal notes, team projects, knowledge bases, client-facing content, and more.

The smartest online Google Docs and Word alternative, Bit.ai is used in over 100 countries by professionals everywhere, from IT teams creating internal documentation and knowledge bases, to sales and marketing teams sharing client materials and client portals.

👉👉Click Here to Check out Bit.ai.

Recent Posts

Maximizing digital agency success: 4 ways to leverage client portals, how to create wikis for employee onboarding & training, what is support documentation: key insights and types, how to create a smart company wiki | a guide by bit.ai, 9 must-have internal communication software in 2024, 21 business productivity tools to enhance work efficiency.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

2.2: Types of Technical Reports

  • Last updated
  • Save as PDF
  • Page ID 51520

  • Tiffani Reardon, Tammy Powell, Jonathan Arnett, Monique Logan, & Cassie Race
  • Kennesaw State University

Learning Objective

Upon completion of this chapter, readers will be able to:

  • Identify common types of technical documents.
  • Summarize the purposes and formats of common types of technical documents.

Types of Technical Documents

For the final report in some technical-writing courses, you can write one of (or even a combination of) several different types of reports. If there is some other type of report that you know about and want to write, get with your instructor to discuss it.

This chapter briefly defines these different report types; some are covered in full detail elsewhere in this book; the rest are described here. But to get everything in one place, all the reports are briefly defined here, with cross-references to where their presentations occur:

Standard operating policies and procedures

These are the operating documents for organizations; they contain rules and regulations on how the organization and its members are expected to perform. Policies and procedures are like instructions, but they go much further. Standard operating procedures (SOPs) are more for procedures in which a process is performed--for example, taking a dental impression.

Recommendation, feasibility, evaluation reports

This group of similar reports does things like compare several options against a set of requirements and recommend one; considers an idea (plan, project) in terms of its "feasibility," for example, some combination of its technical, economical, social practicality or possibility; passes judgement on the worth or value of a thing by comparing it to a set of requirements, or criteria.

Technical background reports

This type is the hardest one to define but the one that most people write. It focuses on a technical topic, provides background on that topic for a specific set of readers who have specific needs for it. This report does not supply instructions, nor does it supply recommendations in any systematic way, nor does it report new and original data.

Technical guides and handbooks

Closely related to technical report but differing somewhat in purpose and audience are technical guides and handbooks.

Primary research reports

This type presents findings and interpretation from laboratory or field research.

Business plans

This type is a proposal to start a new business.

Technical specifications

This type presents descriptive and operational details on a new or updated product.

Technical Background Reports

The technical background report is hard to define—it's not a lot of things, but it's hard to say what it is. It doesn't provide step-by-step directions on how to do something in the way that instructions do. It does not formally provide recommendations in the way that feasibility reports do. It does not report data from original research and draw conclusions in the way that primary research reports do.

So what does the technical background report do? It provides information on a technical topic but in such a way that is adapted for a particular audience that has specific needs for that information. Imagine a topic like this: renal disease and therapy. A technical background report on this topic would not dump out a ten-ton textbook containing everything you could possibly say about it. It would select information about the topic suited to a specific group of readers who had specific needs and uses for the information. Imagine the audience was a group of engineers bidding on a contract to do part of the work for a dialysis clinic. Yes, they need to know about renal disease and its therapy, but only to the extent that it has to do with their areas of expertise. Such a background report might also include some basic discussion of renal disease and its treatment, but no more than what the engineers need to do their work and to interact with representatives of the clinic.

One of the reports is an exploration of global warming, or the greenhouse effect, as it is called in the report. Notice that it discusses causes, then explores the effects, then discusses what can be done about it.

Typical contents and organization of technical background reports. Unlike most of the other reports discussed in this course guide, the technical background report does not have a common set of contents. Because it focuses on a specific technical topic for specific audiences who have specific needs or uses for the information, it grabs at whatever type of contents it needs to get the job done. You use a lot of intuition to plan this type of report. For example, with the report on renal disease and treatment, you'd probably want to discuss what renal disease is, what causes it, how it is treated, and what kinds of technologies are involved in the treatment. If you don't fully trust your intuition, use a checklist like the following:

  • Definitions —Define the potentially unfamiliar terms associated with the topic. Write extended definitions if there are key terms or if they are particularly difficult to explain.
  • Causes —Explain what causes are related to the topic. For example, with the renal disease topic, what causes the disease?
  • Effects —Explain what are the consequences, results, or effects associated with the topic. With the renal disease topic, what happens to people with the disease; what effects do the various treatments have?
  • Types —Discuss the different types or categories associated with the topic. For example, are there different types of renal disease; are there different categories of treatment?
  • Historical background —Discuss relevant history related to the topic. Discuss people, events, and past theories related to the topic.
  • Processes —Discuss mechanical, natural, human-controlled processes related to the topic. Explain step by step how the process occurs. For example, what are the phases of the renal disease cycle; what typically happens to a person with a specific form of the disease?
  • Descriptions —Provide information on the physical details of things related to the topic. Provide information about size, shape, color, weight, and so on. For the engineering-oriented report, this would mean size, power requirements, and other such details about the treatment technologies.
  • Comparisons —Compare the topic, or some aspect of it, to something similar or something familiar. With the renal disease example, you could compare renal disease to some other disease; the treatment to some other treatment; the functions of the kidney to something familiar (an analogy); or even the treatment to something familiar, for example, the filter system for a swimming pool.
  • Applications —Explore how some aspect of your topic can be used or applied. If it's some new technology, what are its applications? Advantages and disadvantages—Discuss the advantages or disadvantages of one or more aspects of your topic. In the renal disease topic, for example, what are the advantages of one treatment over another?
  • Economic considerations —Discuss the costs of one or more aspects associated with your topic. How much does treatment for renal disease cost? How much does the equipment and personnel cost?
  • Social, political, legal, ethical implications —Explore the implications or impact of your topic or some aspect of it in relation to social, political, legal, or ethical concerns. The renal disease example doesn't lend itself much to this area, but imagine the possibilities with a topic like cryogenics—suspended animation of human beings. Often, new technologies have profound impact in these areas.
  • Problems, questions —What problems or questions are there associated with your report topic or some aspect of it?
  • Solutions, answers —What solutions or answers can you offer on those problems or questions raised by your topic or some aspect of it?

We could add many other categories to a checklist like this, but maybe this is enough to get you started planning the contents of your technical background report. And remember that each of these checklist items may represent a full section in the report—not a sentence or two.

As for the organization of these parts of the report, again, your intuitions are in order. Some subtopics logically come before others.

Typical format of technical background reports. Remember that in most technical-writing courses, you are expected to use a format like this exactly and precisely—unless you work out some other arrangements with your instructor.

Technical Guides and Handbooks

There's a distinction to be made between reports, on the one hand, and guides and handbooks, on the other. However, it's difficult to distinguish between the two latter types. A report, as the preceding section explains, is simply a collection of information on a topic—its background. For example, your boss might call you in and bark out this order: "Jones, our architectural firm needs to catch up with this green roof thing. See if you can pull some basic information together for me. How about in two weeks?"

A guide or handbook, on the other hand, has a somewhat different purpose. A guide would "guide" its readers in determining the feasibility of a green roof, planning, and constructing one. A handbook might contain little or no guidance but have lots of reference information about green roofs: associations supporting them, case studies, specifications, vendors, government ordinances, and so on.

But, frankly, the distinction between these two is difficult. And, in terms of format, style, and structure, there is very little difference. The abstract and executive summary have no logical place in a guide or handbook. If you are taking a technical writing course, check with your instructor about whether you still should include an abstract or executive summary.

Primary Research Reports

Primary research report is our name for that kind of report that presents original research data—no matter whether that data was generated in a laboratory or out in the "field." A secondary research report then would be a report (such as the technical background report) that presents information gained largely from printed or online information sources or from other sources such as interviews or direct observation.

You're probably already familiar with this type of report as the "lab report." The contents and organization of this type of report have a basic logic: you present your data and conclusions, but also present information on how you went about the experiment or survey. In other words, you enable the reader to replicate (the fancy scientific word for repeat) your experiment, or at least, visualize quite specifically how you went about it.

One of the examples is an experiment to see whether production of rainbow trout can be increased by varying water temperature. While there is not a one-to-one correspondence between the typical sections in primary research reports and the sections you see in the actual rainbow trout report, you'll find that most of the functions are carried out. Instead of a full paragraph, sometimes all that is needed is a single sentence. And sometimes certain functions are combined into a single sentence.

Contents of primary research reports. To enable readers to replicate your experiment or survey, you provide information like the following (each normally in its own section):

  • Introduction —The introduction to the primary research report needs to do what any good introduction to a report needs to do—get readers ready to read the report. It may provide some background, but not more than a paragraph. Common elements, such as background, can be handled in the introduction. If they require a lot of discussion, however, they may need their own sections.
  • Problem, background —One of the first things to do, either in the introduction, or in a separate section of its own, is to discuss the situation that has led to the research work. For example, you may have noticed something that contradicts a commonly accepted theory; you may have noticed some phenomenon that has not been studied, and so on. Explain this somewhere toward the beginning of a primary research report.
  • Purpose, objectives, scope —Also toward the beginning of this type of report discuss what you intended to do in the research project—what were your objectives? Also, explain the scope of your work—what were you not trying to do?
  • Review of literature —After you've established the basis for the project, summarize the literature relevant to it— for example, books, journal articles, and encyclopedias. If you are doing a study on speech recognition software, what articles have already been written on that subject? What do they have to say about the merits of this kind of software? All you do is summarize this literature briefly and enable readers to go have a look at it by providing the full bibliographic citation at the end of your report. In the context of this type of report, the review of literature shows where the gaps or contradictions are in the existing literature.
  • Materials, equipment, facilities —Remember that one of your goals in writing this type of report is to enable the reader to replicate the experiment or survey you performed. Key to this is the discussion of the equipment and facilities you used in your research. Describe things in detail, providing brand names, model numbers, sizes, and other such specifications.
  • Theory, methods, procedures —To enable readers to replicate your project, you must also explain the procedures or methods you used. This discussion can be step by step: "first, I did this, then I did that...." Theory and method refer more to the intellectual or conceptual framework of your project. These explain why you used the procedures that you used.
  • Results, findings, data —Critical to any primary research report is the data that you collect. You present it in tables, charts, and graphs. These can go in the body of your report, or in appendixes if they are so big that they interrupt the flow of your discussion. Of course, some results or findings may not be presentable as tables, charts, or graphs. In these cases, you just discuss it in paragraphs. In any case, you do not add interpretation to this presentation of data. You merely present the data, without trying to explain it.
  • Discussion, conclusions, recommendations —In primary research reports, you interpret or discuss your findings in a section separate from the one where you present the data. Now's the time to explain your data, to interpret it. This section, or area of the report, is also the place to make recommendations or state ideas for further research.
  • Bibliography —The ideal of the primary research report is build upon or add to the knowledge in a particular area. It's the vehicle by which our knowledge advances for a specific topic. Your primary research report rests on top of all the work done by other researchers on the same topic. For that reason, you must list the sources of information you used or consulted in your project. This list occurs at the end of the report.

As for the organization of a primary research report, the typical contents just listed are arranged in an actual primary research report in just about the same order they were just discussed. Loosely, it is a chronological order. First, you discuss set-up issues such as the problem and objectives, then you discuss the procedures, then the data resulting from those procedures, then your conclusions based upon that data.

Typical format of primary research reports. In most technical-writing courses, you should use a format like the one shown in the chapter on report format. (The format you see in the example starting on page is for journal articles). In a primary research report for a technical-writing course, however, you should probably use the format in which you have a transmittal letter, title page, table of contents, list of figures, and abstracts.

Technical Specifications

Specifications are descriptions of products or product requirements. They can provide details for the design, manufacture, testing, installation, and use of a product. You typically see specifications in the documentation that comes in the package with certain kinds of products, for example, CD players or computers. These describe the key technical characteristics of the item. But specifications are also written as a way of "specifying" the construction and operational characteristics of a thing. They are then used by people who actually construct the thing or go out and attempt to purchase it. When you write specifications, accuracy, precision of detail, and clarity are critical. Poorly written specifications can cause a range of problems and lead to lawsuits.

  • Outline and two-column style used to present information in specifications. Graphics, tables, and lists are heavily used, but some details can only be provided through sentences and paragraphs. For these reasons then, specifications have a particular style, format, and organization:
  • Make every effort to find out what the specific requirements are for format, style, contents, and organization. If they are not documented, collect a big pile specifications written by or for your company, and study them for characteristics like those described in the following.
  • Use two-column lists or tables to lists specific details. If the purpose is to indicate details such as dimensions, materials, weight, tolerances, and frequencies, regular paragraph-style writing may be unnecessary.
  • For sentence-style presentation, use an outline style similar to the one shown in the illustration above. Make sure that each specification receives its own number–letter designation. In sentence-style specifications, make sure each specific requirement has its own separate sentence.
  • Use the decimal numbering system for each individual specification. This facilitates cross-referencing.

Graphics and tables used to present information in specifications.

  • Use either the open (performance) style or the closed restrictive style, depending on the requirements of the job. In the open or performance style, you can specify what the product or component should do, that is, its performance capabilities. In the closed style, you specify exactly what it should be or consist of.
  • Cross-reference existing specifications whenever possible. Various goverment agencies as well as trade and professional associations publish specifications standards. You can refer to these standards rather than include the actual specifications details
  • Use specific, concrete language that identifies as precisely as possible what the product or component should be or do. Avoid words that are ambiguous—words that can be interpreted in more than one way. Use technical jargon the way it is used in the trade or profession.
  • Test your specifications by putting yourself in the role of a bumbling contractor—or even an unscrupulous one. What are the ways a careless or incompetent individual could misread your specifications? Could someone willfully misread your specifications in order to cut cost, time, and thus quality? Obviously, no set of specifications can ultimately be "foolproof" or "shark-proof," but you must try to make them as clear and unambiguous as possible
  • For specifications to be used in design, manufacturing, construction, or procurement, use "shall" to indicate requirements. In specifications writing, "shall" is understood as indicating a requirement. (See the outline-style specifications in the first illustration on specifications for examples of this style of writing.) Provide numerical specifications in both words and symbols: for example, "the distance between the two components shall be three centimeters (3 cm)."
  • Writing style in specifications can be very terse: incomplete sentences are acceptable as well as the omission of functions words such as articles and conjunctions that are understood.
  • Exercise great caution with pronouns and relational or qualifying phrases. Make sure there is no doubt about what words such as "it," "they," "which," and "that" refer to. Watch out for sentences containing a list of two or more items followed by some descriptive phrase—does the descriptive phrase refer to all the list items or just one? In cases like these, you may have to take a wordier approach for the sake of clarity.
  • Use words and phrasing that have become standard in similar specifications over the years. Past usage has proven them reliable. Avoid words and phrases that are known not to hold up in lawsuits.
  • Make sure your specifications are complete—put yourself in the place of those who need your specifications; make sure you cover everything they will need.

Contents and Organization of Specifications. Organization is critical in specifications—readers need to be able to find one or a collection of specific details. To facilitate the process of locating individual specifications, use headings, lists, tables, and identifying numbers as discussed previously. But a certain organization of the actual contents is also standard:

  • General description—Describe the product, component, or program first in general terms—administrative details about its cost, start and completion dates, overall description of the project, scope of the specifications (what you are not covering), anything that is of a general nature and does not fit in the part-by-part descriptions in the following.
  • Part-by-part description—In the main body, present specifications part by part, element by element, trade by trade —whatever is the logical, natural, or conventional way of doing it.
  • General-to-specific order—Wherever applicable, arrange specifications from general to specific.

Graphics in specifications. In specifications, use graphics wherever they enable you to convey information more effectively. For example, in the specifications for a cleanroom for production of integrated circuits, drawings, diagrams, and schematics convey some of the information much more succinctly and effectively than sentences and paragraphs.

Literature Reviews

A literature review summarizes what is known about a specific research topic, narrates the milestones of the research history, indicates where current knowledge conflicts, and discusses areas where there are still unknowns.

A literature review can be a standalone document or a component of a primary research report (as discussed previously). Research journals often contain articles whose sole purpose is to provide a literature review. As a component of a research report, a literature review can be as long as a whole chapter in book, only a paragraph in a research article, or as short as a few sentences in an introduction. In all cases, the function of the literature review is the same: to summarize the history and current state of research on a topic.

As you know from the preceding section, a primary research report (such as those in engineering research journals) focuses on a question: for example, the effect of weightlessness on growing vegetables. The literature-review section of that report would summarize what is known about this topic, indicate where current knowledge conflicts, and discuss areas where there are still unknowns.

A well-constructed literature review tells a story. It narrates the key events in the research on a particular question or in a particular area:

  • Who were the first modern researchers on this topic? What were their findings, conclusions, and theories? What questions or contradictions could they not resolve?
  • What did researchers following them discover? Did their work confirm, contradict, or overturn the work of their predecessors? Were they able to resolve questions their predecessors could not?

You narrate this series of research events in a literature review. You can consider this research as similar to the thesis– antithesis–synthesis process. You start out with a thesis, then along comes an antithesis to contradict it, and eventually some resolution of this contradiction called a synthesis is achieved, which is actually a step forward in the knowledge about that topic. But now the synthesis becomes a thesis, and the process starts all over again.

Hilton Obenzinger of Stanford University in "How to Research, Write, and Survive a Literature Review?" calls this type of literature review a "road map." He identifies several other types, most importantly those that review the methodology of the research as well as or instead the the research findings. Obenzinger emphasizes that the literature review is not just a passive summary of research on a topic but an evaluation of the strengths and weaknesses of that research—an effort to see where that research is "incomplete, methodologically flawed, one-sided, or biased." In any case, as the following examples show, a literature review is a discussion of a body of research literature not an annotated bibliography. Notice in the following examples that literature reviews use standard bracketed IEEE textual citation style and end with a bibliography (called "References").

Consider the following excerpt, which shows the beginning of the review of literature, found in "Face Recognition: A Literature Review:"

Face recognition, in additional to having numerous practical applications such as bankcard identification, access control, mug shots searching, security monitoring, and surveillance system, is a fundamental human behavior that is essential for effective communications and interactions among people. A formal method of classifying faces was first proposed in [1]. The author proposed collecting facial profiles as curves, finding their norm, and then classifying other profiles by their deviations from the norm. This classification is multi-modal, i.e., resulting in a vector of independent measures that could be compared with other vectors in a database.

As you can see, the first paragraph establishes the topic and its importance; the second paragraph goes back to the beginning of modern research that provided a foundation for computer-based face recognition. This literature review moves on to the current status of research in this field:

Progress has advanced to the point that face recognition systems are being demonstrated in real-world settings [2]. The rapid development of face recognition is due to a combination of factors: active development of algorithms, the availability of a large databases of facial images, and a method for evaluating the performance of face recognition algorithms.

Notice how this next excerpt describes an important advance in the research on this topic, but then points out its deficiencies:

The literature review of face-recognition research examines many different methods used in computer-based face recognition. For each, it summarizes the method, the results, and the strengths and weaknesses of that method. This example is not so much the thesis-antithesis-synthesis pattern mentioned above but rather a collection of efforts all striving toward a common goal, increased accuracy of computer-based face recognition. Here's how the summary of that process ends in this literature review:

In [83], a combined classifier system consisting of an ensemble of neural networks is based on varying the parameters related to the design and training of classifiers. The boosted algorithm is used to make perturbation of the training set employing MLP as base classifier. The final result is combined by using simple majority vote rule. This system achieved 99.5% on Yale face database and 100% on ORL face database. To the best of our knowledge, these results are the best in the literatures.

A. S. Tolba, A.H. El-Baz, and A.A. El-Harby, "Face Recognition: A Literature Review." International Journal of Signal Processing, vol. 2, no. 2, 2005

Case Western Reserve University

  • Kelvin Smith Library
  • Materials Science & Engineering
  • Research Guides

Technical Reports

  • Books & eBooks
  • Materials Properties
  • Proceedings
  • Theses & Dissertations
  • Government Documents
  • Citation Management Tools
  • Citation Styles
  • LaTeX and BibTeX This link opens in a new window
  • DMSE Publications
  • Alumni resources at KSL
  • Open access articles
  • Open access STEM books
  • Open access theses and dissertations
  • Library Presentations

Get Online Help

  • KSL Ask A Librarian Information on how to get help by email, phone, & chat.

Reminder: Online Access

  • Library resources require going through CWRU Single Sign-On.
  • The best method is to follow links from the library website.
  • When logged in and a browser window is not closed, access should continue from resource to resource.
  • Remember to close your browser when done.
  • CWRU Libraries Discovery & Authentication by Brian Gray Last Updated Jan 28, 2022 101 views this year

Technical reports are a major source of scientific and technical information. A technical report describes different organizations' final  results of technical or scientific research for internal use or to the funding organizations. 

Based on the sponsoring organization, technical reports fall into two categories: government sponsored or privately funded research reports.  Finding technical reports can be difficult due to the lack of systematic control over their publication and dissemination. 

References to technical reports may include agency, society, or company delineator, specific number, title, author, and date. For example:

Where to Start?

Library of Congress

  • Library of Congress Digital Collections
  • Prints & Photographs Online Catalog
  • American Memory
  • Chronicling America

U.S. government Public Technical Reports

  • Technical Report Archive and Image Library (TRAIL) A collaborative project to digitize, archive, and provide persistent and unrestricted access to federal technical reports issued prior to 1975.
  • Army Corps of Engineers Research and Development Center (CRREL) The results of CRREL's research projects are published in a technical report series covering topics of interest to Civil and Environmental Engineers. Reports from 1995 to present are available, as well as some older ones.
  • Defense Technical Information Center (DTIC) DTIC helps the Department of Defense (DoD) community access pertinent scientific and technical information to meet mission needs more effectively.
  • Environmental Protection Agency (EPA) Fulltext of more than 7,000 archival and current EPA documents.
  • NASA Technical Reports Server (NTRS) 1920–present. Indexes technical reports, conference papers, journal articles, and other publications sponsored by the National Aeronautics and Space Administration (NASA) and its predecessor, the National Advisory Committee for Aeronautics (NACA). NACA Reports, Technical Notes, and Technical Memoranda are available in fulltext from 1917–1958. Some NASA reports are fulltext.

CWRU Libraries Discovery

  • << Previous: Theses & Dissertations
  • Next: Government Documents >>
  • Last Updated: Feb 6, 2024 10:31 AM
  • URL: https://researchguides.case.edu/materials

Help | Advanced Search

Computer Science > Computer Vision and Pattern Recognition

Title: mm1: methods, analysis & insights from multimodal llm pre-training.

Abstract: In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices. Through careful and comprehensive ablations of the image encoder, the vision language connector, and various pre-training data choices, we identified several crucial design lessons. For example, we demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data is crucial for achieving state-of-the-art (SOTA) few-shot results across multiple benchmarks, compared to other published pre-training results. Further, we show that the image encoder together with image resolution and the image token count has substantial impact, while the vision-language connector design is of comparatively negligible importance. By scaling up the presented recipe, we build MM1, a family of multimodal models up to 30B parameters, including both dense models and mixture-of-experts (MoE) variants, that are SOTA in pre-training metrics and achieve competitive performance after supervised fine-tuning on a range of established multimodal benchmarks. Thanks to large-scale pre-training, MM1 enjoys appealing properties such as enhanced in-context learning, and multi-image reasoning, enabling few-shot chain-of-thought prompting.

Submission history

Access paper:.

  • Download PDF
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Banner

Biomedical Engineering: Technical Reports

  • Biomedical Resources
  • Patents and Trademarks
  • Technical Reports
  • Workshops & Training
  • Help with Systematic Reviews

About Technical Reports

Technical reports online.

  • NTIS - now the National Technical Reports Library (NTRL) This link opens in a new window Describes government technical reports from the U.S. and other countries. Good for locating reports that one should be able to obtain for free from NASA, DOD, DOE, EPA and other agencies. NTRL has the full text of more than 800,000 technical reports.

Free computer science citation database with some full text available. Lists the most frequently cited authors and documents in computer science, as well as impact ratings. Also provides algorithms, metadata, services, techniques, and software.

Technical Report Collections at Other Universities

  • University of Maryland - a U.S. Government Document Depository Library for scientific and technical reports from several agencies
  • Indiana University Computer Science Department
  • Massachusetts Institute of Technology (MIT)
  • Stanford University
  • U.C. Berkeley
  • University of Washington Computer Science & Engineering Department

Carnegie Mellon Technical Reports

CMU has more than 70,000 tech reports from around the world, dating back to the 1960s. These reports are in offsite storage, but can be requested for your use. Tech reports are included in the library catalog, use advanced search to search by title then limit to "Material Type" then "TECH-RPT".

Computer Science

Human-Computer Interaction Institute (HCII)

Information Technology Center (ITC)

Institute for Complex Engineered Systems (ICES)

Institute for Software Research (ISR)

Language Technologies Institute (LTI)

Machine Learning Department  

Parallel Data Laboratory (PDL)

Robotics Institute

Software Engineering Institute (SEI)

Philosophy Department

U.S. Government Public Technical Reports

A concise list of government agencies with free access to their technical reports:  

Defense Technical Information Center (DTIC)

DTIC helps the Department of Defense (DoD) community access pertinent scientific and technical information to meet mission needs more effectively.

Information Bridge (U.S. Department of Energy)

Provides free public access to over 230,000 full-text documents and bibliographic citations of Department of Energy (DOE) research report literature.  Documents are primarily from 1991-present and were produced by DOE, the DOE contractor community, and/or DOE grantees.

Technical Report Archive and Image Library (TRAIL)

A collaborative project to digitize, archive, and provide persistent and unrestricted access to federal technical reports issued prior to 1975.

Army Corps of Engineers Research and Development Center (CRREL)

The results of CRREL's research projects are published in a technical report series covering topics of interest to Civil and Environmental Engineers.  Reports from 1995 to present are available, as well as some older ones.

NASA Technical Reports Server (NTRS)

1920–present.  Indexes technical reports, conference papers, journal articles, and other publications sponsored by the National Aeronautics and Space Administration (NASA) and its predecessor, the National Advisory Committee for Aeronautics (NACA).  NACA Reports, Technical Notes, and Technical Memoranda are available in fulltext from 1917–1958.  Some NASA reports are fulltext.

Environmental Protection Agency (EPA)

Fulltext of more than 7,000 archival and current EPA documents.

Specialized Technical Reports

  • Jet Propulsion Laboratory (Caltech)
  • Lawrence Berkeley National Laboratory (LBNL)
  • Lawrence Livermore National Laboratory (LLNL)
  • Los Alamos Technical Reports
  • IBM Research -Technical Paper Search
  • Hewlett Packard Labs Technical Reports
  • Microsoft Research Technical Reports
  • << Previous: Patents and Trademarks
  • Next: Workshops & Training >>
  • Last Updated: Jan 9, 2024 1:24 PM
  • URL: https://guides.library.cmu.edu/BME

Innocenti – Global Office of Research and Foresight

  • High contrast
  • Our mandate
  • Our history
  • Annual report
  • PRESS CENTRE

Search UNICEF

School children at a Temporary Learning Centre, Nepal

For every child, answers

Research and foresight that drive change for children

Latest work

A young woman at a protest

Youth, Protests and the Polycrisis

Exploring how youth protests can help to build public support for change

A child washes their hands

Early Childhood Education Systems in Pacific Islands

Status report

Tanzania flag

Cash Plus Model for Safe Transitions to Healthy Adulthood

Examining the impacts of “Ujana Salama” (‘Safe Youth’ in Swahili), a cash plus programme targeting adolescents in the United Republic of Tanzania

A woman holds a small child

The Impact of Valor Criança

Social cash transfer pilot programme in Angola

A woman, who is holding a baby, holds up a card

The Impact of the Cash Transfer Intervention

In the commune of Nsélé in Kinshasa, Democratic Republic of the Congo

A person holding up a card

Mitigating the socioeconomic impacts of COVID-19

With a cash transfer in peri-urban Kinshasa, Democratic Republic of the Congo

Girl in Madagascar in front of their classroom ravaged by a cyclone

Prospects for Children: A Global Outlook 2024

Cooperation in a Fragmented World: Discover the eight trends that will define the year ahead for children and young people.

Children standing at a classroom blackboard

Data Must Speak: Chad

Reports and project briefs

Areas of work

Youth icon

Adolescent participation and civic engagement

Child protection icon

Child protection

Flood icon

Climate crisis and the environment

Communications icon

Digital technology

Education icon

Education and human capital

Health icon

Health and well-being

Social inclusion icon

Inclusion and equity

Social policy icon

Poverty and social protection

Advocacy icon

Social and behaviour change

The State of the World’s Children

UNICEF’s flagship report – the most comprehensive analysis of global trends affecting children

Changing Childhood Project

What is childhood like today?

Prospects for Children: Global Outlook

An annual analysis of trends shaping the world and their impact on children

Report Card

Understanding child well-being everywhere

Our approach

UNICEF Innocenti works for and with children and young people to seek solutions to their most pressing challenges. As we focus on the rights and lives of children and young people, we always ask: Who else can we include? Will this work cause unintended harm? Are there events that could surprise us? Does this work drive change?

Events and insights

Youth Foresight Fellows with UNICEF Innocenti Director Bo Viktor Nylund

The Antidote to Ageism

Understanding the importance of intergenerational collaboration

A teacher and students in a classroom

Celebrating women in education

A closer look at female teachers and school leaders

Children playing a game outdoors, Afghanistan

As they move

Child and youth experiences of migration, displacement and return in Afghanistan

Portrait of a family

Parenting programmes can reduce violence against children

UNICEF, Prevention Collaborative and Equimundo launch three new evidence briefs

A group of adolescent girls wearing brightly coloured saris in India playing in a field of yellow flowers

Launch of UNICEF's Youth Foresight Playbook

28 November 2023, Dubai Future Forum

Children riding a swing in the playground of a kindergarten

Expert consultation on age-related public expenditure

12-13 April 2023

A girl writes on a chalk board

The Third Annual KIX Symposium

12-13 October 2022

School children running and smiling

UNICEF at the International SBCC Summit 2022

5-9 December 2022

Girl smiling holding a UNICEF book

Become an Innocenti Insider

Receive the latest research and event invites in your inbox once a month

Mobile Menu Overlay

The White House 1600 Pennsylvania Ave NW Washington, DC 20500

FACT SHEET: President   Biden Issues Executive Order and Announces New Actions to Advance Women’s Health Research and   Innovation

In his State of the Union address, President Biden laid out his vision for transforming women’s health research and improving women’s lives all across America. The President called on Congress to make a bold, transformative investment of $12 billion in new funding for women’s health research. This investment would be used to create a Fund for Women’s Health Research at the National Institutes of Health (NIH) to advance a cutting-edge, interdisciplinary research agenda and to establish a new nationwide network of research centers of excellence and innovation in women’s health—which would serve as a national gold standard for women’s health research across the lifespan.

It is long past time to ensure women get the answers they need when it comes to their health—from cardiovascular disease to autoimmune diseases to menopause-related conditions. To pioneer the next generation of discoveries, the President and the First Lady launched the first-ever White House Initiative on Women’s Health Research , which aims to fundamentally change how we approach and fund women’s health research in the United States.

Today, President Biden is signing a new Executive Order that will direct the most comprehensive set of executive actions ever taken to expand and improve research on women’s health. These directives will ensure women’s health is integrated and prioritized across the federal research portfolio and budget, and will galvanize new research on a wide range of topics, including women’s midlife health.

The President and First Lady are also announcing more than twenty new actions and commitments by federal agencies, including through the U.S. Department of Health and Human Services (HHS), the Department of Defense (DoD), the Department of Veterans Affairs (VA), and the National Science Foundation (NSF). This includes the launch of a new NIH-wide effort that will direct key investments of $200 million in Fiscal Year 2025 to fund new, interdisciplinary women’s health research—a first step towards the transformative central Fund on Women’s Health that the President has called on Congress to invest in. These actions also build on the First Lady’s announcement last month of the Advanced Research Projects Agency for Health (ARPA-H) Sprint for Women’s Health , which committed $100 million towards transformative research and development in women’s health.

Today, the President is issuing an Executive Order that will:

  • Integrate Women’s Health Across the Federal Research Portfolio . The Executive Order directs the Initiative’s constituent agencies to develop and strengthen research and data standards on women’s health across all relevant research and funding opportunities, with the goal of helping ensure that the Administration is better leveraging every dollar of federal funding for health research to improve women’s health. These actions will build on the NIH’s current policy to ensure that research it funds considers women’s health in the development of study design and in data collection and analysis. Agencies will take action to ensure women’s health is being considered at every step in the research process—from the applications that prospective grantees submit to the way that they report on grant implementation.
  • Prioritize Investments in Women’s Health Research . The Executive Order directs the Initiative’s constituent agencies to prioritize funding for women’s health research and encourage innovation in women’s health, including through ARPA-H and multi-agency initiatives such as the Small Business Innovation Research Program and the Small Business Technology Transfer Program. These entities are dedicated to high-impact research and innovation, including through the support of early-stage small businesses and entrepreneurs engaged in research and innovation. The Executive Order further directs HHS and NSF to study ways to leverage artificial intelligence to advance women’s health research. These additional investments—across a wide range of agencies—will support innovation and open new doors to breakthroughs in women’s health.
  • Galvanize New Research on Women’s Midlife Health .  To narrow research gaps on diseases and conditions associated with women’s midlife health or that are more likely to occur after menopause, such as rheumatoid arthritis, heart attack, and osteoporosis, the President is directing HHS to: expand data collection efforts related to women’s midlife health; launch a comprehensive research agenda that will guide future investments in menopause-related research; identify ways to improve management of menopause-related issues and the clinical care that women receive; and develop new resources to help women better understand their options for menopause-related symptoms prevention and treatment. The Executive Order also directs the DoD and VA to study and take steps to improve the treatment of, and research related to, menopause for Service women and women veterans.
  • Assess Unmet Needs to Support Women’s Health Research . The Executive Order directs the Office of Management and Budget and the Gender Policy Council to lead a robust effort to assess gaps in federal funding for women’s health research and identify changes—whether statutory, regulatory, or budgetary—that are needed to maximally support the broad scope of women’s health research across the federal government. Agencies will also be required to report annually on their investments in women’s health research, as well as progress towards their efforts to improve women’s health.

Today, agencies are also announcing new actions they are taking to promote women’s health research , as part of their ongoing efforts through the White House Initiative on Women’s Health Research. Agencies are announcing actions to:

Prioritize and Increase Investments in Women’s Health Research

  • Launch an NIH-Cross Cutting Effort to Transform Women’s Health Throughout the Lifespan. NIH is launching an NIH-wide effort to close gaps in women’s health research across the lifespan. This effort—which will initially be supported by $200 million from NIH beginning in FY 2025—will allow NIH to catalyze interdisciplinary research, particularly on issues that cut across the traditional mandates of the institutes and centers at NIH. It will also allow NIH to launch ambitious, multi-faceted research projects such as research on the impact of perimenopause and menopause on heart health, brain health and bone health. In addition, the President’s FY25 Budget Request would double current funding for the NIH Office of Research on Women’s Health to support new and existing initiatives that emphasize women’s health research.

This coordinated, NIH-wide effort will be co-chaired by the NIH Office of the Director, the Office of Research on Women’s Health, and the institute directors from the National Institute on Aging; the National Heart, Lung, and Blood Institute; the National Institute on Drug Abuse; the Eunice Kennedy Shriver National Institute of Child Health and Human Development; the National Institute on Arthritis, Musculoskeletal and Skin Diseases.

  • Invest in Research on a Wide Range of Women’s Health Issues. The bipartisan Congressionally Directed Medical Research Program (CDMRP), led out of DoD, funds research on women’s health encompassing a range of diseases and conditions that affect women uniquely, disproportionately, or differently from men. While the programs and topic areas directed by Congress differ each year, CDMRP has consistently funded research to advance women’s health since its creation in 1993. In Fiscal Year 2022, DoD implemented nearly $490 million in CDMRP investments towards women’s health research projects ranging from breast and ovarian cancer to lupus to orthotics and prosthetics in women.  In Fiscal Year 2023, DoD anticipates implementing approximately $500 million in CDMRP funding for women’s health research, including in endometriosis, rheumatoid arthritis, and chronic fatigue.
  • Call for New Proposals on Emerging Women’s Health Issues . Today, NSF is calling for new research and education proposals to advance discoveries and innovations related to women’s health. To promote multidisciplinary solutions to women’s health disparities, NSF invites applications that would improve women’s health through a wide range of disciplines—from computational research to engineering biomechanics. This is the first time that NSF has broadly called for novel and transformative research that is focused entirely on women’s health topics, and proposals will be considered on an ongoing basis.
  • Increase Research on How Environmental Factors Affect Women’s Health. The Environmental Protection Agency (EPA) is updating its grant solicitations and contracts to ensure that applicants prioritize, as appropriate, the consideration of women’s exposures and health outcomes. These changes will help ensure that women’s health is better accounted for across EPA’s research portfolio and increase our knowledge of women’s environmental health—from endocrine disruption to toxic exposure.
  • Create a Dedicated, One-Stop Shop for NIH Funding Opportunities on Women’s Health. Researchers are often unaware of existing opportunities to apply for federal funding. To help close this gap, NIH is issuing a new Notice of Special Interest that identifies current, open funding opportunities related to women’s health research across a wide range of health conditions and all Institutes, Centers, and Offices. The NIH Office of Research on Women’s Health will build on this new Notice by creating a dedicated one-stop shop on open funding opportunities related to women’s health research. This will make it easier for researchers and institutions to find and apply for funding—instead of having to search across each of NIH’s 27 institutes for funding opportunities.

Foster Innovation and Discovery in Women’s Health

  • Accelerate Transformative Research and Development in Women’s Health. ARPA-H’s Sprint for Women’s Health launched in February 2024 commits $100 million to transformative research and development in women’s health. ARPA-H is soliciting ideas for novel groundbreaking research and development to address women’s health, as well as opportunities to accelerate and scale tools, products, and platforms with the potential for commercialization to improve women’s health outcomes.
  • Support Private Sector Innovation Through Additional Federal Investments in Women’s Health Research. The NIH’s competitive Small Business Innovation Research Program and the Small Business Technology Transfer Program is committing to further increasing—by 50 percent—its investments in supporting innovators and early-stage small businesses engaged in research and development on women’s health. These programs will solicit new proposals on promising women’s health innovation and make evidence-based investments that bridge the gap between performance of basic science and commercialization of resulting innovations. This commitment for additional funds builds on the investments the Administration has already made to increase innovation in women’s health through small businesses, including by increasing investments by sevenfold between Fiscal Year 2021 and Fiscal Year 2023.
  • Advance Initiatives to Protect and Promote the Health of Women. The Food and Drug Administration (FDA) seeks to advance efforts to help address gaps in research and availability of products for diseases and conditions that primarily impact women, or for which scientific considerations may be different for women, and is committed to research and regulatory initiatives that facilitate the development of safe and effective medical products for women. FDA also plans to issue guidance for industry that relates to the inclusion of women in clinical trials and conduct outreach to stakeholders to discuss opportunities to advance women’s health across the lifespan. And FDA’s Office of Women’s Health will update FDA’s framework for women’s health research and seek to fund research with an emphasis on bridging gaps in knowledge on important women’s health topics, including sex differences and conditions that uniquely or disproportionately impact women.
  • Use Biomarkers to Improve the Health of Women Through Early Detection and Treatment of Conditions, such as Endometriosis. NIH will launch a new initiative dedicated to research on biomarker discovery and validation to help improve our ability to prevent, diagnose, and treat conditions that affect women uniquely, including endometriosis. This NIH initiative will accelerate our ability to identify new pathways for diagnosis and treatment by encouraging multi-sector collaboration and synergistic research that will speed the transfer of knowledge from bench to bedside.
  • Leverage Engineering Research to Improve Women’s Health . The NSF Engineering Research Visioning Alliance (ERVA) is convening national experts to identify high-impact research opportunities in engineering that can improve women’s health. ERVA’s Transforming Women’s Health Outcomes Through Engineering visioning event will be held in June 2024, and will bring together experts from across engineering—including those in microfluidics, computational modeling, artificial intelligence/imaging, and diagnostic technologies and devices—to evaluate the landscape for new applications in women’s health. Following this event, ERVA will issue a report and roadmap on critical areas where engineering research can impact women’s health across the lifespan.
  • Drive Engineering Innovations in Women’s Health Discovery . NSF awardees at Texas A&M University will hold a conference in summer 2024 to collectively identify challenges and opportunities in improving women’s health through engineering. Biomedical engineers and scientists will explore and identify how various types of engineering tools, including biomechanics and immuno-engineering, can be applied to women’s health and spark promising new research directions.

Expand and Leverage Data Collection and Analysis Related to Women’s Health

  • Help Standardize Data to Support Research on Women’s Health. NIH is launching an effort to identify and develop new common data elements related to women’s health that will help researchers share and combine datasets, promote interoperability, and improve the accuracy of datasets when it comes to women’s health. NIH will initiate this process by convening data and scientific experts across the federal government to solicit feedback on the need to develop new NIH-endorsed common data elements—which are widely used in both research and clinical settings. By advancing new tools to capture more data about women’s health, NIH will give researchers and clinicians the tools they need to enable more meaningful data collection, analysis, and reporting and comprehensively improve our knowledge of women’s health.
  • Reflect Women’s Health Needs in National Coverage Determinations. The Centers for Medicare & Medicaid Services (CMS) will strengthen its review process, including through Coverage with Evidence Development guidance, to ensure that new medical services and technologies work well in women, as applicable, before being covered nationally through the Medicare program. This will help ensure that Medicare funds are used for treatments with a sufficient evidence base to show that they actually work in women, who make up more than half of the Medicare population.
  • Leverage Data and Quality Measures to Advance Women’s Health Research. The Centers for Disease Control and Prevention (CDC) and the Health Resources and Services Administration (HRSA) are building on existing datasets to improve the collection, analysis, and reporting of information on women’s health. The CDC is expanding the collection of key quality measures across a woman’s lifespan, including to understand the link between pregnancy and post-partum hypertension and heart disease, and plans to release the Million Hearts Hypertension in Pregnancy Change Package. This resource will feature a menu of evidence-informed strategies by which clinicians can change care processes. Each strategy includes tested tools and resources to support related clinical quality improvement. HRSA is modernizing its Uniform Data System in ways that will improve the ability to assess how women are being served through HRSA-funded health centers. By improving the ability to analyze data on key clinical quality measures, CDC and HRSA can help close gaps in women’s health care access and identify new opportunities for high-impact research.  

Strengthen Coordination, Infrastructure, and Training to Support Women’s Health Research

  • Launch New Joint Collaborative to Improve Women’s Health Research for Service Members and Veterans. DoD and VA are launching a new Women’s Health Research collaborative to explore opportunities that further promote joint efforts to advance women’s health research and improve evidence-based care for Service members and veterans. The collaborative will increase coordination with the goal of helping improve care across the lifespan for women in the military and women veterans. The Departments will further advance research on key women’s health issues and develop a roadmap to close pressing research gaps, including those specifically affecting Service women and women veterans.
  • Coordinate Research to Advance the Health of Women in the Military. DoD will invest $10 million, contingent on available funds, in the Military Women’s Health Research Partnership. This Partnership is led by the Uniformed Services University and advances and coordinates women’s health research across the Department. The Partnership is supporting research in a wide range of health issues affecting women in the military, including cancers, mental and behavioral health, and the unique health care needs of Active Duty Service Women. In addition, the Uniformed Services University established a dedicated Director of Military Women’s Health Research Program, a role that is responsible for identifying research gaps, fostering collaboration, and coordinating and aligning a unified approach to address the evolving needs of Active Duty Service Women.
  • Support EPA-Wide Research and Dissemination of Data on Women’s Health. EPA is establishing a Women’s Health Community of Practice to coordinate research and data dissemination. EPA also plans to direct the Board of Scientific Counselors to identify ways to advance EPA’s research with specific consideration of the intersection of environmental factors and women’s health, including maternal health.
  • Expand Fellowship Training in Women’s Health Research. CDC, in collaboration with the CDC Foundation and American Board of Obstetrics and Gynecology, is expanding training in women’s health research and public health surveillance to OBGYNs, nurses and advanced practice nurses. Through fellowships and public health experiences with CDC, these clinicians will gain public health research skills to improve the health of women and children exposed to or affected by infectious diseases, mental health and substance use disorders. CDC will invite early career clinicians to train in public health and policy to become future leaders in women’s health research.

Improve Women’s Health Across the Lifespan

  • Create a Comprehensive Research Agenda on Menopause. To help women get the answers they need about menopause, NIH will launch its first-ever Pathways to Prevention series on menopause and the treatment of menopausal symptoms. Pathways to Prevention is an independent, evidence-based process to synthesize the current state of the evidence, identify gaps in existing research, and develop a roadmap that can be used to help guide the field forward. The report, once completed, will help guide innovation and investments in menopause-related research and care across the federal government and research community.
  • Improve Primary Care and Preventive Services for Women . The Agency for Healthcare Research and Quality (AHRQ) will issue a Notice of Intent to publish a funding opportunity announcement for research to advance the science of primary care, which will include a focus on women’s health. Through this funding opportunity, AHRQ will build evidence about key elements of primary care that influence patient outcomes and advance health equity—focusing on women of color—such as care coordination, continuity of care, comprehensiveness of care, person-centered care, and trust. The results from the funding opportunity will shed light on vital targets for improvements in the delivery of primary healthcare across a woman’s lifespan, including women’s health preventive services, prevention and management of multiple chronic diseases, perinatal care, transition from pediatric to adult care, sexual and reproductive health, and care of older adults.
  • Promote the Health of American Indian and Alaska Native Women. The Indian Health Service is launching a series of engagements, including focus groups, to better understand tribal beliefs related to menopause in American Indian and Alaska Native Women. This series will inform new opportunities to expand culturally informed patient care and research as well as the development of new resources and educational materials.
  • Connect Research to Real-World Outcomes to Improve Women’s Mental and Behavioral Health. The Substance Abuse and Mental Health Services Administration (SAMHSA) is supporting a range of health care providers to address the unique needs of women with or at risk for mental health and substance use disorders. Building on its current efforts to provide technical assistance through various initiatives , SAMHSA intends, contingent on available funds, to launch a new comprehensive Women’s Behavioral Health Technical Assistance Center. This center will identify and improve the implementation of best practices in women’s behavioral health across the life span; identify and fill critical gaps in knowledge of and resources for women’s behavioral health; and provide learning opportunities, training, and technical assistance for healthcare providers.
  • Support Research on Maternal Health Outcomes. USDA will fund research to help recognize early warning signs of maternal morbidity and mortality in recipients of Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), and anticipates awarding up to $5 million in Fiscal Year 2023 to support maternal health research through WIC. In addition, research being conducted through the Agricultural Research Service’s Human Nutrition Research Centers is focusing on women’s health across the lifespan, including the nutritional needs of pregnant and breastfeeding women and older adults.

Stay Connected

We'll be in touch with the latest information on how President Biden and his administration are working for the American people, as well as ways you can get involved and help our country build back better.

Opt in to send and receive text messages from President Biden.

  • Search for: Toggle Search

‘You Transformed the World,’ NVIDIA CEO Tells Researchers Behind Landmark AI Paper

Of GTC ’s 900+ sessions, the most wildly popular was a conversation hosted by NVIDIA founder and CEO Jensen Huang with seven of the authors of the legendary research paper that introduced the aptly named transformer — a neural network architecture that went on to change the deep learning landscape and enable today’s era of generative AI.

“Everything that we’re enjoying today can be traced back to that moment,” Huang said to a packed room with hundreds of attendees, who heard him speak with the authors of “ Attention Is All You Need .”

Sharing the stage for the first time, the research luminaries reflected on the factors that led to their original paper, which has been cited more than 100,000 times since it was first published and presented at the NeurIPS AI conference. They also discussed their latest projects and offered insights into future directions for the field of generative AI.

While they started as Google researchers, the collaborators are now spread across the industry, most as founders of their own AI companies.

“We have a whole industry that is grateful for the work that you guys did,” Huang said.

research report and technical report

Origins of the Transformer Model

The research team initially sought to overcome the limitations of recurrent neural networks , or RNNs, which were then the state of the art for processing language data.

Noam Shazeer, cofounder and CEO of Character.AI, compared RNNs to the steam engine and transformers to the improved efficiency of internal combustion.

“We could have done the industrial revolution on the steam engine, but it would just have been a pain,” he said. “Things went way, way better with internal combustion.”

“Now we’re just waiting for the fusion,” quipped Illia Polosukhin, cofounder of blockchain company NEAR Protocol.

The paper’s title came from a realization that attention mechanisms — an element of neural networks that enable them to determine the relationship between different parts of input data — were the most critical component of their model’s performance.

“We had very recently started throwing bits of the model away, just to see how much worse it would get. And to our surprise it started getting better,” said Llion Jones, cofounder and chief technology officer at Sakana AI.

Having a name as general as “transformers” spoke to the team’s ambitions to build AI models that could process and transform every data type — including text, images, audio, tensors and biological data.

“That North Star, it was there on day zero, and so it’s been really exciting and gratifying to watch that come to fruition,” said Aidan Gomez, cofounder and CEO of Cohere. “We’re actually seeing it happen now.”

research report and technical report

Envisioning the Road Ahead 

Adaptive computation, where a model adjusts how much computing power is used based on the complexity of a given problem, is a key factor the researchers see improving in future AI models.

“It’s really about spending the right amount of effort and ultimately energy on a given problem,” said Jakob Uszkoreit, cofounder and CEO of biological software company Inceptive. “You don’t want to spend too much on a problem that’s easy or too little on a problem that’s hard.”

A math problem like two plus two, for example, shouldn’t be run through a trillion-parameter transformer model — it should run on a basic calculator, the group agreed.

They’re also looking forward to the next generation of AI models.

“I think the world needs something better than the transformer,” said Gomez. “I think all of us here hope it gets succeeded by something that will carry us to a new plateau of performance.”

“You don’t want to miss these next 10 years,” Huang said. “Unbelievable new capabilities will be invented.”

The conversation concluded with Huang presenting each researcher with a framed cover plate of the NVIDIA DGX-1 AI supercomputer, signed with the message, “You transformed the world.”

research report and technical report

There’s still time to catch the session replay by registering for a virtual GTC pass — it’s free.

To discover the latest in generative AI, watch Huang’s GTC keynote address:

NVIDIA websites use cookies to deliver and improve the website experience. See our cookie policy for further details on how we use cookies and how to change your cookie settings.

Share on Mastodon

IMAGES

  1. Types of Research Report

    research report and technical report

  2. 50 Professional Technical Report Examples (+Format Samples) ᐅ

    research report and technical report

  3. Technical Report

    research report and technical report

  4. TECHNICAL REPORT WRITING GUIDELINES

    research report and technical report

  5. 50 Professional Technical Report Examples (+Format Samples) ᐅ

    research report and technical report

  6. 26 Best Technical Report Examples, Format, and Templates

    research report and technical report

VIDEO

  1. Research report

  2. Technical Report Writing and Presentations

  3. Research Report

  4. What is Technical report Writing ? Complete Guidelines

  5. Action Research Report; First Page

  6. Types of Research Reports

COMMENTS

  1. Finding Technical Reports

    Technical reports describe the process, progress, or results of technical or scientific research and usually include in-depth experimental details, data, and results. Technical reports are usually produced to report on a specific research need and can serve as a report of accountability to the organization funding the research. They provide ...

  2. Research Report

    Technical Report. A technical report is a detailed report that provides information about a specific technical or scientific problem or project. Technical reports are often used in engineering, science, and other technical fields to document research and development work. ... Accessibility: Research reports may be written in technical or ...

  3. PDF A guide to technical report writing

    6. Conclusion. The report is checked, its appearance is pleasing, it is easy to handle, 'interesting' and 'readable', to quote the criteria suggested at the beginning of this Guide. If the technical content is as good as the organisation, writing, illustration and finishing, then the report should delight the reader.

  4. PDF A Guide to Writing Formal Technical Reports

    A Guide to Writing Formal Technical Reports: Content, Style, Format. Adapted by Robin L. Potter (2021) from the original document by University of Victoria (n.d.). Engineering Work Term Report Guide: A Guide to Content, Style and Format Requirements for University of Victoria Engineering Students Writing Co-op Work Term Reports.

  5. Research Guides: Technical Reports: What is a Technical report?

    What is a Technical Report? "A technical report is a document written by a researcher detailing the results of a project and submitted to the sponsor of that project." ... literature reviews, research history, detailed tables, illustrations/images, explanation of approaches that were unsuccessful. may be published before the corresponding ...

  6. Technical report

    A technical report (also scientific report) is a document that describes the process, progress, or results of technical or scientific research or the state of a technical or scientific research problem. [1] [2] It might also include recommendations and conclusions of the research. Unlike other scientific literature, such as scientific journals ...

  7. Technical Reports

    The National Technical Reports Library provides indexing and access to a collection of more than two million historical and current government technical reports of U.S. government-sponsored research. Full-text available for 700,000 of the 2.2 million items described. Dates covered include 1900-present.

  8. PDF A guide to technical report writing

    Reports are often written for multiple readers, for example, technical and financial managers. Writing two separate reports would be time-consuming and risk offending people who are not party to all of the information. One solution to this problem is strategic use of appendices (see page 5). A guide to technical report writing - Objectives 04 2.

  9. Home

    Technical reports describe the process of engineering or scientific research and often include in-depth details including raw data. Technical reports are most familiar to engineers, geologists, and physicists, but are usually not peer-reviewed. They are generally published as numbered series bearing the acronym of the issuing agency, the series ...

  10. PDF How to Write Technical Reports

    ISO 5966 "Documentation - Presentation of scientific and technical reports" defines, that a scientific or Technical Report describes a research process or research and development results or the current state-of-the-art in a certain field of science or technology. Therefore all documents in the following list are Technical Reports, if ...

  11. Technical Reports

    A technical report is a document that describes the process, progress, or results of technical or scientific research or the state of a technical or scientific research problem. They are prepared for internal or wider distribution by many organizations. Technical reports often present cutting edge research before being published in journals or conferences.

  12. Technical Report: What is it & How to Write it? (Steps & Structure

    A technical report is a sole medium through which the audience and readers of your project can understand the entire process of your research or experimentation. So, you basically have to write a report on how you managed to do that research, steps you followed, events that occurred, etc., taking the reader from the ideation of the process and ...

  13. 2.2: Types of Technical Reports

    Typical format of primary research reports. In most technical-writing courses, you should use a format like the one shown in the chapter on report format. (The format you see in the example starting on page is for journal articles). In a primary research report for a technical-writing course, however, you should probably use the format in which ...

  14. Technical Reports & Standards Collection Guide

    Dating from 1987-1997, Multidisciplinary Center for Earthquake Engineering Research (MCEER) reports consist of technical literature on earthquakes, earthquake engineering, natural hazard and disaster mitigation, and related topics. The reports are designed to convey specific research data and project results. The Technical Reports Collections ...

  15. (PDF) HOW TO WRITE A TECHNICAL REPORT?

    in progress. 9/28/2016 How to write a T echnical Report ? 12. Cover Page. The purpose of the cover page is to identify and. protect the report. It must contain the title, the initials and surnames ...

  16. What Is A Technical Report?

    What Is A Technical Report? - Technical reports (or scientific reports) are important sources of scientific and technical information derived from research projects sponsored by DOE; they describe the processes, progress, or results of research and development or other scientific and technological work, including recommendations or conclusions of the research and such information as the ...

  17. Technical Reports

    Technical reports are a major source of scientific and technical information. A technical report describes different organizations' final results of technical or scientific research for internal use or to the funding organizations.. Based on the sponsoring organization, technical reports fall into two categories: government sponsored or privately funded research reports.

  18. 50 Professional Technical Report Examples (+Format Samples)

    A technical report example is a written document made by a researcher which contains the details about a project's results. After creating the technical report, the researcher submits it to the project's sponsor. Such a report may contain procedures, design criteria, research history, images or illustrations, and other data relevant to the ...

  19. Renewable Energy Certificates (RECs) Overview (Technical Report

    Research Org.: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) Sponsoring Org.: USDOE OSTI Identifier: 2320395 Report Number(s): ORNL/SPR-2022/2449 DOE Contract Number: AC05-00OR22725 Resource Type: Technical Report Country of Publication: United States Language: English

  20. PDF Biennial Report to Congress on International Science & Technology

    research projects at $150,000 each over 12 to 18 months as part of a call for research proposals that partnered researchers from MSIs with researchers from institutions. NSF has engaged in foreign

  21. MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training

    In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices. Through careful and comprehensive ablations of the image encoder, the vision language connector, and various pre-training data choices, we identified several crucial design lessons. For example, we demonstrate that ...

  22. Introducing Stable Video 3D: Quality Novel View ...

    See the technical report here for more details on the Stable Video 3D models and experimental comparisons. ... For non-commercial use, you can download the model weights on Hugging Face and view our research paper here. To stay updated on our progress, follow us on Twitter, Instagram, LinkedIn, and join our Discord Community. 3D. Anel Islamovic ...

  23. Biomedical Engineering: Technical Reports

    A technical report is a document that describes the process, progress, or results of technical or scientific research or the state of a technical or scientific research problem. They are prepared for internal or wider distribution by many organizations. Technical reports often present cutting edge research before being published in journals or ...

  24. Innocenti Global Office of Research and Foresight

    Research and foresight that drive change for children Our projects and reports. Latest work Report. Early Childhood Education Systems in Pacific Islands ... UNICEF's flagship report - the most comprehensive analysis of global trends affecting children Visit the site Page. Changing Childhood Project

  25. FACT SHEET: President Biden Issues Executive Order and Announces New

    The report, once completed, will help guide innovation and investments in menopause-related research and care across the federal government and research community.

  26. Talk About Transformation

    Of GTC's 900+ sessions, the most wildly popular was a conversation hosted by NVIDIA founder and CEO Jensen Huang with seven of the authors of the legendary research paper that introduced the aptly named transformer — a neural network architecture that went on to change the deep learning landscape and enable today's era of generative AI. ...

  27. Report finds state's mental health programs need consistent funding

    Read the full final report and recommendations: California State Evaluation and Learning Support for SB-82 Triage Grants. (pdf) UC Davis coauthors of this report are Bethney Bonilla-Herrera and Katrine Padilla of the Center for Healthcare Policy and Research and Jamie Mouzoon of the Behavioral Health Center of Excellence. Other coauthors are ...

  28. NVIDIA Blackwell Platform Arrives to Power a New Era of Computing

    Powering a new era of computing, NVIDIA today announced that the NVIDIA Blackwell platform has arrived — enabling organizations everywhere to build and run real-time generative AI on trillion-parameter large language models at up to 25x less cost and energy consumption than its predecessor.

  29. Stable Diffusion 3: Research Paper

    Key Takeaways: Today, we're publishing our research paper that dives into the underlying technology powering Stable Diffusion 3.. Stable Diffusion 3 outperforms state-of-the-art text-to-image generation systems such as DALL·E 3, Midjourney v6, and Ideogram v1 in typography and prompt adherence, based on human preference evaluations.

  30. An avocado a day may improve overall diet quality, researchers report

    A team led by researchers in Penn State's Department of Nutritional Sciences has found that eating one avocado per day may improve overall diet quality and adherence to dietary guidelines. They published their findings in the journal Current Development in Nutrition.