English Summary

Science and Religion Essay

Today we live in an age dominated by science. Science is admired greatly, because it gives us power over nature. Scientific technology has incredibly powerful effect on society It has given us a new technique in industry and war and a means to control environment. It has brought about fundamental changes in social, political and economic spheres.

It has brought into existence its great prosperity and great destruction. Science has given us a new type of outlook which does not believe in anything till it is proved. Thus science has an unsettling influence on traditional beliefs. It has taught us inquiry and belief and finished dogma and superstition.

Religion is older than science. While science is concerned with matter and the physical world around us, religion deals with the spiritual mysteries of life : It defines the human relationship with God. It is concerned with the matter of the soul and good conduct. Its technique is not scientific.

It believes in intuition and divine inspiration. In ancient times religion was nothing but superstition because the man was constantly afraid of Nature. He was dominated by the powerful forces of Nature and he worshipped her. By and by better and purer types of religion were developed.

In its purest form, religion satisfies the deepest urge of man. As George Bernard Shaw has said, “ Men think that they can do without religion; they do not know that religion is indestructible. ” All through the ages, most of the human beings have been following one religion or the other.

With the passage of time, every religion suffers from corruption and perversion : By then new prophets come forward to purify the muddy stream. In India, the Vedic religion got mixed up with a number of elaborate ceremonies and caste system became very rigid. As a result, Buddhism came forward to purify Indian life.

Later on, Shankar started a powerful movement against Buddhism when it got corrupted and preached weakness. Christianity arose as an antidote to the corruption of Judaism. The Roman Catholic priests in Europe had to be pulled up by Martin Luther and others when they started living a life of luxury and immorality.

Religion in various countries has also been responsible for conflicts and violent quarrels. The Crusades between the Christians and Mohammedans continued for over a century. In India also the conflict between Islam and Hinduism has taken a violent shape many times. These things have made religion unpopular with some people.

The narrow-minded religious priests and preachers do a great disservice to the pure spirit of religion by spreading falsehood in the name religio n: For their own self-interests, they have kept the people in ignorance. They have exploited the blind faith of the people in the teaching of great religious leaders.

For a long time in Europe, the Christian priests opposed the idea that the earth is round and moves around the sun. They considered such new knowledge as hearsay. They dubbed the scientists as a magician and called them the agents of the Devil.

Darwin had to face great hostility because he gave his theory that man has descended from an ape. He was criticized because his scientific theory went against the Biblical account of the creation of this earth and the fall of man.

The continuous pressure of new knowledge has shaken the old forms of religion : But it has failed to destroy the basic human need for religion. religion in its true sense in not a set of dogmas or rituals. It is not true to say that religion has no place in this era of science.

Science has overthrown spiritual view of the universe, man and creation. Science emphasises the importance of reason, observation and experience. Religion is based on obedience, acceptance and authority. But scientists know the limitations of science.

Science is not the key to the whole mystery of life. We find scientists like Einstein, Tyndall and others who were deeply religious. These scientists rightly believed that science and religion are complementary as well as supplementary.

The spreading of scientific ideas has made the modern man sceptical: It is not possible to make an educated man of today believe in myths and superstitions. But it does not mean that the urge for religion is dead. The modern man needs a scientific religion.

He does not want useless ceremonies and vulgar shows in the name of religion. Truly speaking science has increased faith in God by pointing out the wonderful mysteries of nature. The religious experience and experience of the highest scientific research tend to be similar.

The man in the laboratory is now regaining faith in God. Scientists are no longer proud of their great discoveries and inventions though some scientists in the 19th century declared that God was dead.

Science has given limitless material power to modern man : It is going on inventing ever new things for a comfortable and luxurious life. At the same time, it has created baffling problems. It has created a big gulf between the rich and the poor.

It has brought about great dissatisfaction. there is a mad race for material prosperity everywhere. Human beings are getting more and more money-minded and crazy after material prosperity. There is an immoral race in which human beings have become the enemies human beings.

The terrible atom and hydrogen bombs threaten to kill the entire humanity. Only fear of God and respect for moral and religious value can bring about peace and order in human life. So the need is that religion should be more scientific and science should be more religious. As Einstein has said,

“Religion is blind without science and science is lame without religion”. Einstein

Related Posts:

  • Random Disease Generator [Fake & Real]
  • Random Compound Word Generator
  • Random Job Generator [List]
  • Random University Name Generator
  • Random Phrase Generator [English]
  • Random Harry Potter Spell Generator [Name & Incarnation]

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Religion and Science

The relationship between religion and science is the subject of continued debate in philosophy and theology. To what extent are religion and science compatible? Are religious beliefs sometimes conducive to science, or do they inevitably pose obstacles to scientific inquiry? The interdisciplinary field of “science and religion”, also called “theology and science”, aims to answer these and other questions. It studies historical and contemporary interactions between these fields, and provides philosophical analyses of how they interrelate.

This entry provides an overview of the topics and discussions in science and religion. Section 1 outlines the scope of both fields, and how they are related. Section 2 looks at the relationship between science and religion in five religious traditions, Christianity, Islam, Hinduism, Buddhism, and Judaism. Section 3 discusses contemporary topics of scientific inquiry in which science and religion intersect, focusing on divine action, creation, and human origins.

1.1 A brief history

1.2 what is science, and what is religion, 1.3 taxonomies of the interaction between science and religion, 1.4 the scientific study of religion, 2.1 christianity, 2.3 hinduism, 2.4 buddhism, 2.5 judaism, 3.1 divine action and creation, 3.2 human origins, works cited, other important works, other internet resources, related entries, 1. science, religion, and how they interrelate.

Since the 1960s, scholars in theology, philosophy, history, and the sciences have studied the relationship between science and religion. Science and religion is a recognized field of study with dedicated journals (e.g., Zygon: Journal of Religion and Science ), academic chairs (e.g., the Andreas Idreos Professor of Science and Religion at Oxford University), scholarly societies (e.g., the Science and Religion Forum), and recurring conferences (e.g., the European Society for the Study of Science and Theology’s biennial meetings). Most of its authors are theologians (e.g., John Haught, Sarah Coakley), philosophers with an interest in science (e.g., Nancey Murphy), or (former) scientists with long-standing interests in religion, some of whom are also ordained clergy (e.g., the physicist John Polkinghorne, the molecular biophysicist Alister McGrath, and the atmospheric scientist Katharine Hayhoe). Recently, authors in science and religion also have degrees in that interdisciplinary field (e.g., Sarah Lane Ritchie).

The systematic study of science and religion started in the 1960s, with authors such as Ian Barbour (1966) and Thomas F. Torrance (1969) who challenged the prevailing view that science and religion were either at war or indifferent to each other. Barbour’s Issues in Science and Religion (1966) set out several enduring themes of the field, including a comparison of methodology and theory in both fields. Zygon, the first specialist journal on science and religion, was also founded in 1966. While the early study of science and religion focused on methodological issues, authors from the late 1980s to the 2000s developed contextual approaches, including detailed historical examinations of the relationship between science and religion (e.g., Brooke 1991). Peter Harrison (1998) challenged the warfare model by arguing that Protestant theological conceptions of nature and humanity helped to give rise to science in the seventeenth century. Peter Bowler (2001, 2009) drew attention to a broad movement of liberal Christians and evolutionists in the nineteenth and twentieth centuries who aimed to reconcile evolutionary theory with religious belief. In the 1990s, the Vatican Observatory (Castel Gandolfo, Italy) and the Center for Theology and the Natural Sciences (Berkeley, California) co-sponsored a series of conferences on divine action and how it can be understood in the light of various contemporary sciences. This resulted in six edited volumes (see Russell, Murphy, & Stoeger 2008 for a book-length summary of the findings of this project).

The field has presently diversified so much that contemporary discussions on religion and science tend to focus on specific disciplines and questions. Rather than ask if religion and science (broadly speaking) are compatible, productive questions focus on specific topics. For example, Buddhist modernists (see section 2.4 ) have argued that Buddhist theories about the self (the no-self) and Buddhist practices, such as mindfulness meditation, are compatible and are corroborated by neuroscience.

In the contemporary public sphere, a prominent interaction between science and religion concerns evolutionary theory and creationism/Intelligent Design. The legal battles (e.g., the Kitzmiller versus Dover trial in 2005) and lobbying surrounding the teaching of evolution and creationism in American schools suggest there’s a conflict between religion and science. However, even if one were to focus on the reception of evolutionary theory, the relationship between religion and science is complex. For instance, in the United Kingdom, scientists, clergy, and popular writers (the so-called Modernists), sought to reconcile science and religion during the late nineteenth and early twentieth century, whereas the US saw the rise of a fundamentalist opposition to evolutionary thinking, exemplified by the Scopes trial in 1925 (Bowler 2001, 2009).

Another prominent offshoot of the discussion on science and religion is the New Atheist movement, with authors such as Richard Dawkins, Sam Harris, Daniel Dennett, and Christopher Hitchens. They argue that public life, including government, education, and policy should be guided by rational argument and scientific evidence, and that any form of supernaturalism (especially religion, but also, e.g., astrology) has no place in public life. They treat religious claims, such as the existence of God, as testable scientific hypotheses (see, e.g., Dawkins 2006).

In recent decades, the leaders of some Christian churches have issued conciliatory public statements on evolutionary theory. Pope John Paul II (1996) affirmed evolutionary theory in his message to the Pontifical Academy of Sciences, but rejected it for the human soul, which he saw as the result of a separate, special creation. The Church of England publicly endorsed evolutionary theory (e.g., C. M. Brown 2008), including an apology to Charles Darwin for its initial rejection of his theory.

This entry will focus on the relationship between religious and scientific ideas as rather abstract philosophical positions, rather than as practices. However, this relationship has a large practical impact on the lives of religious people and scientists (including those who are both scientists and religious believers). A rich sociological literature indicates the complexity of these interactions, among others, how religious scientists conceive of this relationship (for recent reviews, see Ecklund 2010, 2021; Ecklund & Scheitle 2007; Gross & Simmons 2009).

For the past fifty years, the discussion on science and religion has de facto been on Western science and Christianity: to what extent can the findings of Western sciences be reconciled with Christian beliefs? The field of science and religion has only recently turned to an examination of non-Christian traditions, providing a richer picture of interaction.

In order to understand the scope of science and religion and their interactions, we must at least get a rough sense of what science and religion are. After all, “science” and “religion” are not eternally unchanging terms with unambiguous meanings. Indeed, they are terms that were coined recently, with meanings that vary across contexts. Before the nineteenth century, the term “religion” was rarely used. For a medieval author such as Aquinas, the term religio meant piety or worship, and was not applied to religious systems outside of what he considered orthodoxy (Harrison 2015). The term “religion” obtained its considerably broader current meaning through the works of early anthropologists, such as E.B. Tylor (1871), who systematically used the term for religions across the world. As a result, “religion” became a comparative concept, referring to traits that could be compared and scientifically studied, such as rituals, dietary restrictions, and belief systems (Jonathan Smith 1998).

The term “science” as it is currently used also became common in the nineteenth century. Prior to this, what we call “science” fell under the terminology of “natural philosophy” or, if the experimental part was emphasized, “experimental philosophy”. William Whewell (1834) standardized the term “scientist” to refer to practitioners of diverse natural philosophies. Philosophers of science have attempted to demarcate science from other knowledge-seeking endeavors, in particular religion. For instance, Karl Popper (1959) claimed that scientific hypotheses (unlike religious and philosophical ones) are in principle falsifiable. Many authors (e.g., Taylor 1996) affirm a disparity between science and religion, even if the meanings of both terms are historically contingent. They disagree, however, on how to precisely (and across times and cultures) demarcate the two domains.

One way to distinguish between science and religion is the claim that science concerns the natural world, whereas religion concerns the supernatural world and its relationship to the natural. Scientific explanations do not appeal to supernatural entities such as gods or angels (fallen or not), or to non-natural forces (such as miracles, karma, or qi ). For example, neuroscientists typically explain our thoughts in terms of brain states, not by reference to an immaterial soul or spirit, and legal scholars do not invoke karmic load when discussing why people commit crimes.

Naturalists draw a distinction between methodological naturalism , an epistemological principle that limits scientific inquiry to natural entities and laws, and ontological or philosophical naturalism , a metaphysical principle that rejects the supernatural (Forrest 2000). Since methodological naturalism is concerned with the practice of science (in particular, with the kinds of entities and processes that are invoked), it does not make any statements about whether or not supernatural entities exist. They might exist, but lie outside of the scope of scientific investigation. Some authors (e.g., Rosenberg 2014) hold that taking the results of science seriously entails negative answers to such persistent questions into the existence of free will or moral knowledge. However, these stronger conclusions are controversial.

The view that science can be demarcated from religion in its methodological naturalism is more commonly accepted. For instance, in the Kitzmiller versus Dover trial, the philosopher of science Robert Pennock was called to testify by the plaintiffs on whether Intelligent Design was a form of creationism, and therefore religion. If it were, the Dover school board policy would violate the Establishment Clause of the First Amendment to the United States Constitution. Building on earlier work (e.g., Pennock 1998), Pennock argued that Intelligent Design, in its appeal to supernatural mechanisms, was not methodologically naturalistic, and that methodological naturalism is an essential component of science.

Methodological naturalism is a recent development in the history of science, though we can see precursors of it in medieval authors such as Aquinas who attempted to draw a theological distinction between miracles, such as the working of relics, and unusual natural phenomena, such as magnetism and the tides (see Perry & Ritchie 2018). Natural and experimental philosophers such as Isaac Newton, Johannes Kepler, Robert Hooke, and Robert Boyle regularly appealed to supernatural agents in their natural philosophy (which we now call “science”). Still, overall there was a tendency to favor naturalistic explanations in natural philosophy. The X-club was a lobby group for the professionalization of science founded in 1864 by Thomas Huxley and friends. While the X-club may have been in part motivated by the desire to remove competition by amateur-clergymen scientists in the field of science, and thus to open up the field to full-time professionals, its explicit aim was to promote a science that would be free from religious dogma (Garwood 2008, Barton 2018). This preference for naturalistic causes may have been encouraged by past successes of naturalistic explanations, leading authors such as Paul Draper (2005) to argue that the success of methodological naturalism could be evidence for ontological naturalism.

Several typologies probe the interaction between science and religion. For example, Mikael Stenmark (2004) distinguishes between three views: the independence view (no overlap between science and religion), the contact view (some overlap between the fields), and a union of the domains of science and religion; within these views he recognizes further subdivisions, e.g., contact can be in the form of conflict or harmony. The most influential taxonomy of the relationship between science and religion remains Barbour’s (2000): conflict, independence, dialogue, and integration. Subsequent authors, as well as Barbour himself, have refined and amended this taxonomy. However, others (e.g., Cantor & Kenny 2001) have argued that this taxonomy is not useful to understand past interactions between both fields. Nevertheless, because of its enduring influence, it is still worthwhile to discuss it in detail.

The conflict model holds that science and religion are in perpetual and principal conflict. It relies heavily on two historical narratives: the trial of Galileo (see Dawes 2016) and the reception of Darwinism (see Bowler 2001). Contrary to common conception, the conflict model did not originate in two seminal publications, namely John Draper’s (1874) History of the Conflict between Religion and Science and Andrew Dickson White’s (1896) two-volume opus A History of the Warfare of Science with Theology in Christendom . Rather, as James Ungureanu (2019) argues, the project of these early architects of the conflict thesis needs to be contextualized in a liberal Protestant tradition of attempting to separate religion from theology, and thus salvage religion. Their work was later appropriated by skeptics and atheists who used their arguments about the incompatibility of traditional theological views with science to argue for secularization, something Draper and White did not envisage.

The vast majority of authors in the science and religion field is critical of the conflict model and believes it is based on a shallow and partisan reading of the historical record. While the conflict model is at present a minority position, some have used philosophical argumentation (e.g., Philipse 2012) or have carefully re-examined historical evidence such as the Galileo trial (e.g., Dawes 2016) to argue for this model. Alvin Plantinga (2011) has argued that the conflict is not between science and religion, but between science and naturalism. In his Evolutionary Argument Against Naturalism (first formulated in 1993), Plantinga argues that naturalism is epistemically self-defeating: if both naturalism and evolution are true, then it’s unlikely we would have reliable cognitive faculties.

The independence model holds that science and religion explore separate domains that ask distinct questions. Stephen Jay Gould developed an influential independence model with his NOMA principle (“Non-Overlapping Magisteria”):

The lack of conflict between science and religion arises from a lack of overlap between their respective domains of professional expertise. (2001: 739)

He identified science’s areas of expertise as empirical questions about the constitution of the universe, and religion’s domain of expertise as ethical values and spiritual meaning. NOMA is both descriptive and normative: religious leaders should refrain from making factual claims about, for instance, evolutionary theory, just as scientists should not claim insight on moral matters. Gould held that there might be interactions at the borders of each magisterium, such as our responsibility toward other living things. One obvious problem with the independence model is that if religion were barred from making any statement of fact, it would be difficult to justify its claims of value and ethics. For example, one could not argue that one should love one’s neighbor because it pleases the creator (Worrall 2004). Moreover, religions do seem to make empirical claims, for example, that Jesus appeared after his death or that the early Hebrews passed through the parted waters of the Red Sea.

The dialogue model proposes a mutualistic relationship between religion and science. Unlike independence, it assumes a common ground between both fields, perhaps in their presuppositions, methods, and concepts. For example, the Christian doctrine of creation may have encouraged science by assuming that creation (being the product of a designer) is both intelligible and orderly, so one can expect there are laws that can be discovered. Creation, as a product of God’s free actions, is also contingent, so the laws of nature cannot be learned through a priori thinking which prompts the need for empirical investigation. According to Barbour (2000), both scientific and theological inquiry are theory-dependent, or at least model-dependent. For example, the doctrine of the Trinity colors how Christian theologians interpret the first chapters of Genesis. Next to this, both rely on metaphors and models. Both fields remain separate but they talk to each other, using common methods, concepts, and presuppositions. Wentzel van Huyssteen (1998) has argued for a dialogue position, proposing that science and religion can be in a graceful duet, based on their epistemological overlaps. The Partially Overlapping Magisteria (POMA) model defended by Alister McGrath (e.g., McGrath and Collicutt McGrath 2007) is also worth mentioning. According to McGrath, science and religion each draw on several different methodologies and approaches. These methods and approaches are different ways of knowing that have been shaped through historical factors. It is beneficial for scientists and theologians to be in dialogue with each other.

The integration model is more extensive in its unification of science and theology. Barbour (2000) identifies three forms of integration. First, natural theology, which formulates arguments for the existence and attributes of God. It uses interpretations of results from the natural sciences as premises in its arguments. For instance, the supposition that the universe has a temporal origin features in contemporary cosmological arguments for the existence of God. Likewise, the fact that the cosmological constants and laws of nature are life-permitting (whereas many other combinations of constants and laws would not permit life) is used in contemporary fine-tuning arguments (see the entry to fine-tuning arguments ). Second, theology of nature starts not from science but from a religious framework, and examines how this can enrich or even revise findings of the sciences. For example, McGrath (2016) developed a Christian theology of nature, examining how nature and scientific findings can be interpreted through a Christian lens. Thirdly, Barbour believed that Whitehead’s process philosophy was a promising way to integrate science and religion.

While integration seems attractive (especially to theologians), it is difficult to do justice to both the scientific and religious aspects of a given domain, especially given their complexities. For example, Pierre Teilhard de Chardin (1971), who was both knowledgeable in paleoanthropology and theology, ended up with an unconventional view of evolution as teleological (which put him at odds with the scientific establishment) and with an unorthodox theology (which denied original sin and led to a series of condemnations by the Roman Catholic Church). Theological heterodoxy, by itself, is no reason to doubt a model. However, it shows obstacles for the integration model to become a live option in the broader community of theologians and philosophers who want to remain affiliate to a specific religious community without transgressing its boundaries. Moreover, integration seems skewed towards theism: Barbour described arguments based on scientific results that support (but do not demonstrate) theism, but failed to discuss arguments based on scientific results that support (but do not demonstrate) the denial of theism. Hybrid positions like McGrath’s POMA indicate some difficulty for Barbour’s taxonomy: the scope of conflict, independence, dialogue, and integration is not clearly defined and they are not mutually exclusive. For example, if conflict is defined broadly then it is compatible with integration. Take the case of Frederick Tennant (1902), who sought to explain sin as the result of evolutionary pressures on human ancestors. This view led him to reject the Fall as a historical event, as it was not compatible with evolutionary biology. His view has conflict (as he saw Christian doctrine in conflict with evolutionary biology) but also integration (he sought to integrate the theological concept of sin in an evolutionary picture). It is clear that many positions defined by authors in the religion and science literature do not clearly fall within one of Barbour’s four domains.

Science and religion are closely interconnected in the scientific study of religion, which can be traced back to seventeenth-century natural histories of religion. Natural historians attempted to provide naturalistic explanations for human behavior and culture, including religion and morality. For example, Bernard Le Bovier de Fontenelle’s De l’Origine des Fables (1724) offered a causal account of belief in the supernatural. People often assert supernatural explanations when they lack an understanding of the natural causes underlying extraordinary events: “To the extent that one is more ignorant, or one has less experience, one sees more miracles” (1724 [1824: 295], my translation). Hume’s Natural History of Religion (1757) is perhaps the best-known philosophical example of a natural historical explanation of religious belief. It traces the origins of polytheism—which Hume thought was the earliest form of religious belief—to ignorance about natural causes combined with fear and apprehension about the environment. By deifying aspects of the environment, early humans tried to persuade or bribe the gods, thereby gaining a sense of control.

In the nineteenth and early twentieth centuries, authors from newly emerging scientific disciplines, such as anthropology, sociology, and psychology examined the purported naturalistic roots of religious beliefs. They did so with a broad brush, trying to explain what unifies diverse religious beliefs across cultures. Auguste Comte (1841) proposed that all societies, in their attempts to make sense of the world, go through the same stages of development: the theological (religious) stage is the earliest phase, where religious explanations predominate, followed by the metaphysical stage (a non-intervening God), and culminating in the positive or scientific stage, marked by scientific explanations and empirical observations.

In anthropology, this positivist idea influenced cultural evolutionism, a theoretical framework that sought to explain cultural change using universal patterns. The underlying supposition was that all cultures evolve and progress along the same trajectory. Cultures with differing religious views were explained as being in different stages of their development. For example, Tylor (1871) regarded animism as the earliest form of religious belief. James Frazer’s Golden Bough (1890) is somewhat unusual within this literature, as he saw commonalities between magic, religion, and science. Though he proposed a linear progression, he also argued that a proto-scientific mindset gave rise to magical practices, including the discovery of regularities in nature. Cultural evolutionist models dealt poorly with religious diversity and with the complex relationships between science and religion across cultures. Many authors proposed that religion was just a stage in human development, which would eventually be superseded. For example, social theorists such as Karl Marx and Max Weber proposed versions of the secularization thesis, the view that religion would decline in the face of modern technology, science, and culture.

Functionalism was another theoretical framework that sought to explain religion. Functionalists did not consider religion to be a stage in human cultural development that would eventually be overcome. They saw it as a set of social institutions that served important functions in the societies they were part of. For example, the sociologist Émile Durkheim (1912 [1915]) argued that religious beliefs are social glue that helps to keep societies together.

Sigmund Freud and other early psychologists aimed to explain religion as the result of cognitive dispositions. For example, Freud (1927) saw religious belief as an illusion, a childlike yearning for a fatherly figure. He also considered “oceanic feeling” (a feeling of limitlessness and of being connected with the world, a concept he derived from the French author Romain Rolland) as one of the origins of religious belief. He thought this feeling was a remnant of an infant’s experience of the self, prior to being weaned off the breast. William James (1902) was interested in the psychological roots and the phenomenology of religious experiences, which he believed were the ultimate source of all institutional religions.

From the 1920s onward, the scientific study of religion became less concerned with grand unifying narratives, and focused more on particular religious traditions and beliefs. Anthropologists such as Edward Evans-Pritchard (1937) and Bronisław Malinowski (1925) no longer relied exclusively on second-hand reports (usually of poor quality and from distorted sources), but engaged in serious fieldwork. Their ethnographies indicated that cultural evolutionism was a defective theoretical framework and that religious beliefs were more diverse than was previously assumed. They argued that religious beliefs were not the result of ignorance of naturalistic mechanisms. For instance, Evans-Pritchard (1937) noted that the Azande were well aware that houses could collapse because termites ate away at their foundations, but they still appealed to witchcraft to explain why a particular house collapsed at a particular time. More recently, Cristine Legare et al. (2012) found that people in various cultures straightforwardly combine supernatural and natural explanations, for instance, South Africans are aware AIDS is caused by the HIV virus, but some also believe that the viral infection is ultimately caused by a witch.

Psychologists and sociologists of religion also began to doubt that religious beliefs were rooted in irrationality, psychopathology, and other atypical psychological states, as James (1902) and other early psychologists had assumed. In the US, in the late 1930s through the 1960s, psychologists developed a renewed interest for religion, fueled by the observation that religion refused to decline and seemed to undergo a substantial revival, thus casting doubt on the secularization thesis (see Stark 1999 for an overview). Psychologists of religion have made increasingly fine-grained distinctions between types of religiosity, including extrinsic religiosity (being religious as means to an end, for instance, getting the benefits of being a member of a social group) and intrinsic religiosity (people who adhere to religions for the sake of their teachings) (Allport & Ross 1967). Psychologists and sociologists now commonly study religiosity as an independent variable, with an impact on, for instance, health, criminality, sexuality, socio-economic profile, and social networks.

A recent development in the scientific study of religion is the cognitive science of religion (CSR). This is a multidisciplinary field, with authors from, among others, developmental psychology, anthropology, philosophy, and cognitive psychology (see C. White 2021 for a comprehensive overview). It differs from other scientific approaches to religion in its presupposition that religion is not a purely cultural phenomenon. Rather, authors in CSR hold that religion is the result of ordinary, early developed, and universal human cognitive processes (e.g., Barrett 2004, Boyer 2002). Some authors regard religion as the byproduct of cognitive processes that are not evolved for religion. For example, according to Paul Bloom (2007), religion emerges as a byproduct of our intuitive distinction between minds and bodies: we can think of minds as continuing, even after the body dies (e.g., by attributing desires to a dead family member), which makes belief in an afterlife and in disembodied spirits natural and spontaneous. Another family of hypotheses regards religion as a biological or cultural adaptive response that helps humans solve cooperative problems (e.g., Bering 2011; Purzycki & Sosis 2022): through their belief in big, powerful gods that can punish, humans behave more cooperatively, which allowed human group sizes to expand beyond small hunter-gatherer communities. Groups with belief in big gods thus out-competed groups without such beliefs for resources during the Neolithic, which would explain the current success of belief in such gods (Norenzayan 2013). However, the question of which came first—big god beliefs or large-scale societies—is a continued matter of debate.

2. Science and religion in various religions

As noted, most studies on the relationship between science and religion have focused on science and Christianity, with only a small number of publications devoted to other religious traditions (e.g., Brooke & Numbers 2011; Lopez 2008). Since science makes universal claims, it is easy to assume that its encounter with other religious traditions would be similar to its interactions with Christianity. However, given different creedal tenets (e.g., in Hindu traditions God is usually not entirely distinct from creation, unlike in Christianity and Judaism), and because science has had distinct historical trajectories in other cultures, one can expect disanalogies in the relationship between science and religion in different religious traditions. To give a sense of this diversity, this section provides a bird’s eye view of science and religion in five major world religions: Christianity, Islam, Hinduism, Buddhism, and Judaism.

Christianity is an Abrahamic monotheistic religion, currently the religion with the most adherents. It developed in the first century CE out of Judaism. Christians adhere to asserted revelations described in a series of canonical texts, which include the Old Testament, which comprises texts inherited from Judaism, and the New Testament, which contains the Gospels of Matthew, Mark, Luke, and John (narratives on the life and teachings of Jesus), as well as events and teachings of the early Christian churches (e.g., Acts of the Apostles, letters by Paul), and Revelation, a prophetic book on the end times.

Given the prominence of revealed texts in Christianity, a useful starting point to examine the relationship between Christianity and science is the two books metaphor (see Tanzella-Nitti 2005 for an overview): God revealed Godself through the “Book of Nature”, with its orderly laws, and the “Book of Scripture”, with its historical narratives and accounts of miracles. Augustine (354–430) argued that the book of nature was the more accessible of the two, since scripture requires literacy whereas illiterates and literates alike could read the book of nature. Maximus Confessor (c. 580–662), in his Ambigua (see Louth 1996 for a collection of and critical introduction to these texts) compared scripture and natural law to two clothes that envelop the Incarnated Logos: Jesus’ humanity is revealed by nature, whereas his divinity is revealed by the scriptures. During the Middle Ages, authors such as Hugh of St. Victor (ca. 1096–1141) and Bonaventure (1221–1274) began to realize that the book of nature was not at all straightforward to read. Given that original sin marred our reason and perception, what conclusions could humans legitimately draw about ultimate reality? Bonaventure used the metaphor of the books to the extent that “ liber naturae ” was a synonym for creation, the natural world. He argued that sin has clouded human reason so much that the book of nature has become unreadable, and that scripture is needed as an aid as it contains teachings about the world.

Christian authors in the field of science and religion continue to debate how these two books interrelate. Concordism is the attempt to interpret scripture in the light of modern science. It is a hermeneutical approach to Bible interpretation, where one expects that the Bible foretells scientific theories, such as the Big Bang theory or evolutionary theory. However, as Denis Lamoureux (2008: chapter 5) argues, many scientific-sounding statements in the Bible are false: the mustard seed is not the smallest seed, male reproductive seeds do not contain miniature persons, there is no firmament, and the earth is neither flat nor immovable. Thus, any plausible form of integrating the book of nature and scripture will require more nuance and sophistication. Theologians such as John Wesley (1703–1791) have proposed the addition of other sources of knowledge to scripture and science: the Wesleyan quadrilateral (a term not coined by Wesley himself) is the dynamic interaction of scripture, experience (including the empirical findings of the sciences), tradition, and reason (Outler 1985).

Several Christian authors have attempted to integrate science and religion (e.g., Haught 1995, Lamoureux 2008, Murphy 1995), making integration a highly popular view on the relationship between science and religion. These authors tend to interpret findings from the sciences, such as evolutionary theory or chaos theory, in a theological light, using established theological models such as classical theism or the doctrine of creation. John Haught (1995) argues that the theological view of kenosis (self-emptying of God in creation) anticipates scientific findings such as evolutionary theory: a self-emptying God (i.e., who limits Godself), who creates a distinct and autonomous world, makes a world with internal self-coherence, with a self-organizing universe as the result.

The dominant epistemological outlook in Christian science and religion has been critical realism, a position that applies both to theology (theological realism) and to science (scientific realism). Barbour (1966) introduced this view into the science and religion literature; it has been further developed by theologians such as Arthur Peacocke (1984) and Wentzel van Huyssteen (1999). Critical realism aims to offer a middle way between naïve realism (the world is as we perceive it) and instrumentalism (our perceptions and concepts are purely instrumental). It encourages critical reflection on perception and the world, hence “critical”. Critical realism has distinct flavors in the works of different authors, for instance, van Huyssteen (1998, 1999) develops a weak form of critical realism set within a postfoundationalist notion of rationality, where theological views are shaped by social, cultural, and evolved biological factors. Murphy (1995: 329–330) outlines doctrinal and scientific requirements for approaches in science and religion: ideally, an integrated approach should be broadly in line with Christian doctrine, especially core tenets such as the doctrine of creation, while at the same time it should be in line with empirical observations without undercutting scientific practices.

Several historians (e.g., Hooykaas 1972) have argued that Christianity was instrumental to the development of Western science. Peter Harrison (2007) maintains that the doctrine of original sin played a crucial role in this, arguing there was a widespread belief in the early modern period that Adam, prior to the Fall, had superior senses, intellect, and understanding. As a result of the Fall, human senses became duller, our ability to make correct inferences was diminished, and nature itself became less intelligible. Postlapsarian humans (i.e., humans after the Fall) are no longer able to exclusively rely on their a priori reasoning to understand nature. They must supplement their reasoning and senses with observation through specialized instruments, such as microscopes and telescopes. As the experimental philosopher Robert Hooke wrote in the introduction to his Micrographia :

every man, both from a deriv’d corruption, innate and born with him, and from his breeding and converse with men, is very subject to slip into all sorts of errors … These being the dangers in the process of humane Reason, the remedies of them all can only proceed from the real, the mechanical, the experimental Philosophy [experiment-based science]. (1665, cited in Harrison 2007: 5)

Another theological development that may have facilitated the rise of science was the Condemnation of Paris (1277), which forbade teaching and reading natural philosophical views that were considered heretical, such as Aristotle’s physical treatises. As a result, the Condemnation opened up intellectual space to think beyond ancient Greek natural philosophy. For example, medieval philosophers such as John Buridan (fl. 14th c) held the Aristotelian belief that there could be no vacuum in nature, but once the idea of a vacuum became plausible, natural philosophers such as Evangelista Torricelli (1608–1647) and Blaise Pascal (1623–1662) could experiment with air pressure and vacua (see Grant 1996, for discussion).

Some authors claim that Christianity was unique and instrumental in catalyzing the scientific revolution. For example, according to the sociologist of religion Rodney Stark (2004), the scientific revolution was in fact a slow, gradual development from medieval Christian theology. Claims such as Stark’s, however, fail to recognize the legitimate contributions of Islamic and Greek scholars to the development of modern science, and fail to do justice to the importance of practical technological innovations in map-making and star-charting in the emergence of modern science. In spite of these positive readings of the relationship between science and religion in Christianity, there are sources of enduring tension. For example, there is still vocal opposition to the theory of evolution among Christian fundamentalists. In the public sphere, the conflict view between Christianity and science prevails, in stark contrast to the scholarly literature. This is due to an important extent to the outsize influence of a vocal conservative Christian minority in the American public debate, which sidelines more moderate voices (Evans 2016).

Islam is a monotheistic religion that emerged in the seventh century, following a series of purported revelations to the prophet Muḥammad. The term “Islam” also denotes geo-political structures, such as caliphates and empires, which were founded by Muslim rulers from the seventh century onward, including the Umayyad, Abbasid, and Ottoman caliphates. Additionally, it refers to a culture which flourished within this political and religious context, with its own philosophical and scientific traditions (Dhanani 2002). The defining characteristic of Islam is belief in one God (Allāh), who communicates through prophets, including Adam, Abraham, and Muḥammad. Allāh‎’s revelations to Muḥammad are recorded in the Qurʾān, the central religious text for Islam. Next to the Qurʾān, an important source of jurisprudence and theology is the ḥadīth, an oral corpus of attested sayings, actions, and tacit approvals of the prophet Muḥammad. The two major branches of Islam, Sunni and Shia, are based on a dispute over the succession of Muḥammad. As the second largest religion in the world, Islam shows a wide variety of beliefs. Core creedal views include the oneness of God ( tawḥīd ), the view that there is only one undivided God who created and sustains the universe, prophetic revelation (in particular to Muḥammad), and an afterlife. Beyond this, Muslims disagree on a number of doctrinal issues.

The relationship between Islam and science is complex. Today, predominantly Muslim countries, such as the United Arabic Emirates, enjoy high urbanization and technological development, but they still underperform in common metrics of scientific research, such as publications in leading journals and number of citations per scientist, compared to other regions outside of the west such as India and China (see Edis 2007). Some Muslims hold a number of pseudoscientific ideas, some of which it shares with Christianity such as Old Earth creationism, whereas others are specific to Islam such as the recreation of human bodies from the tailbone on the day of resurrection, and the superiority of prayer in treating lower-back pain instead of conventional methods (Guessoum 2011: 4–5).

This contemporary lack of scientific prominence is remarkable given that the Islamic world far exceeded European cultures in the range and quality of its scientific knowledge between approximately the ninth and the fifteenth century, excelling in domains such as mathematics (algebra and geometry, trigonometry in particular), astronomy (seriously considering, but not adopting, heliocentrism), optics, and medicine. These domains of knowledge are commonly referred to as “Arabic science”, to distinguish them from the pursuits of science that arose in the west (Huff 2003). “Arabic science” is an imperfect term, as many of the practitioners were not speakers of Arabic, hence the term “science in the Islamic world” is more accurate. Many scientists in the Islamic world were polymaths, for example, Ibn Sīnā (Avicenna, 980–1037) is commonly regarded as one of the most significant innovators, not only in philosophy, but also in medicine and astronomy. His Canon of Medicine , a medical encyclopedia, was a standard textbook in universities across Europe for many centuries after his death. Al-Fārābī (ca. 872–ca. 950), a political philosopher from Damascus, also investigated music theory, science, and mathematics. Omar Khayyám (1048–1131) achieved lasting fame in disparate domains such as poetry, astronomy, geography, and mineralogy. The Andalusian Ibn Rušd (Averroes, 1126–1198) wrote on medicine, physics, astronomy, psychology, jurisprudence, music, and geography, next to developing a Greek-inspired philosophical theology.

A major impetus for science in the Islamic world was the patronage of the Abbasid caliphate (758–1258), centered in Baghdad. Early Abbasid rulers, such as Harun al-Rashid (ruled 786–809) and his successor Abū Jaʿfar Abdullāh al-Ma’mūn (ruled 813–833), were significant patrons of science. The former founded the Bayt al-Hikma (House of Wisdom), which commissioned translations of major works by Aristotle, Galen, and many Persian and Indian scholars into Arabic. It was cosmopolitan in its outlook, employing astronomers, mathematicians, and physicians from abroad, including Indian mathematicians and Nestorian (Christian) astronomers. Throughout the Islamic world, public libraries attached to mosques provided access to a vast compendium of knowledge, which spread Islam, Greek philosophy, and science. The use of a common language (Arabic), as well as common religious and political institutions and flourishing trade relations encouraged the spread of scientific ideas throughout the Islamic world. Some of this transmission was informal, e.g., correspondence between like-minded people (see Dhanani 2002), some formal, e.g., in hospitals where students learned about medicine in a practical, master-apprentice setting, and in astronomical observatories and academies. The decline and fall of the Abbasid caliphate dealt a blow to science in the Islamic world, but it remains unclear why it ultimately stagnated, and why it did not experience something analogous to the scientific revolution in Western Europe. Note, the decline of science in the Islamic world should not be generalized to other fields, such as philosophy and philosophical theology, which continued to flourish after the Abbasid caliphate fell.

Some liberal Muslim authors, such as Fatima Mernissi (1992), argue that the rise of conservative forms of Islamic philosophical theology stifled more scientifically-minded natural philosophy. In the ninth to the twelfth century, the Mu’tazila (a philosophical theological school) helped the growth of science in the Islamic world thanks to their embrace of Greek natural philosophy. But eventually, the Mu’tazila and their intellectual descendants lost their influence to more conservative brands of theology. Al-Ghazālī’s influential eleventh-century work, The Incoherence of the Philosophers ( Tahāfut al-falāsifa ), was a scathing and sophisticated critique of Greek-inspired Muslim philosophy, arguing that their metaphysical assumptions could not be demonstrated. This book vindicated more orthodox Muslim religious views. As Muslim intellectual life became more orthodox, it became less open to non-Muslim philosophical ideas, which led to the decline of science in the Islamic world, according to this view.

The problem with this narrative is that orthodox worries about non-Islamic knowledge were already present before Al-Ghazālī and continued long after his death (Edis 2007: chapter 2). The study of law ( fiqh ) was more stifling for science in the Islamic world than developments in theology. The eleventh century saw changes in Islamic law that discouraged heterodox thought: lack of orthodoxy could now be regarded as apostasy from Islam ( zandaqa ) which is punishable by death, whereas before, a Muslim could only apostatize by an explicit declaration (Griffel 2009: 105). (Al-Ghazālī himself only regarded the violation of three core doctrines as zandaqa , namely statements that challenged monotheism, the prophecy of Muḥammad, and resurrection after death.) Given that heterodox thoughts could be interpreted as apostasy, this created a stifling climate for science. In the second half of the nineteenth century, as science and technology became firmly entrenched in Western society, Muslim empires were languishing or colonized. Scientific ideas, such as evolutionary theory, became equated with European colonialism, and thus met with distrust. The enduring association between western culture, colonialism, and science led to a more prominent conflict view of the relationship between science and religion in Muslim countries.

In spite of this negative association between science and Western modernity, there is an emerging literature on science and religion by Muslim scholars (mostly scientists). The physicist Nidhal Guessoum (2011) holds that science and religion are not only compatible, but in harmony. He rejects the idea of treating the Qurʾān as a scientific encyclopedia, something other Muslim authors in the debate on science and religion tend to do. Moreover, he adheres to the no-possible-conflict principle, outlined by Ibn Rušd: there can be no conflict between God’s word (properly understood) and God’s work (properly understood). If an apparent conflict arises, the Qurʾān may not have been interpreted correctly.

While the Qurʾān asserts a creation in six days (like the Hebrew Bible), “day” is often interpreted as a very long span of time, rather than a 24-hour period. As a result, Old Earth creationism is more influential in Islam than Young Earth creationism. Adnan Oktar’s Atlas of Creation (published in 2007 under the pseudonym Harun Yahya), a glossy coffee table book that draws heavily on Christian Old Earth creationism, has been distributed worldwide (Hameed 2008). Since the Qurʾān explicitly mentions the special creation of Adam out of clay, most Muslims refuse to accept that humans evolved from hominin ancestors. Nevertheless, Muslim scientists such as Guessoum (2011) and Rana Dajani (2015) have advocated acceptance of evolution.

Hinduism is the world’s third largest religion, though the term “Hinduism” is an awkward catch-all phrase that denotes diverse religious and philosophical traditions that emerged on the Indian subcontinent between 500 BCE and 300 CE. The vast majority of Hindus live in India; most others live in Nepal, Sri Lanka, and Southeast Asia, with a significant diaspora in western countries such as the United States (Hackett 2015 [ Other Internet Resources ]). In contrast to the Abrahamic monotheistic religions, Hinduism does not always draw a sharp distinction between God and creation. (While there are pantheistic and panentheistic views in Christianity, Judaism, and Islam, these are minority positions.) Many Hindus believe in a personal God, and identify this God as immanent in creation. This view has ramifications for the science and religion debate, in that there is no sharp ontological distinction between creator and creature (Subbarayappa 2011). Religious traditions originating on the Indian subcontinent, including Hinduism, Jainism, Buddhism, and Sikhism, are referred to as dharmic religions. Philosophical points of view are referred to as darśana .

One factor that unites the different strands of Hinduism is the importance of foundational texts composed between ca. 1600 and 700 BCE. These include the Vedas, which contain hymns and prescriptions for performing rituals, Brāhmaṇa, accompanying liturgical texts, and Upaniṣad, metaphysical treatises. The Vedas discuss gods who personify and embody natural phenomena such as fire (Agni) and wind (Vāyu). More gods appear in the following centuries (e.g., Gaṇeśa and Sati-Parvati in the 4th century). Note that there are both polytheistic and monotheistic strands in Hinduism, so it is not the case that individual believers worship or recognize all of these gods. Ancient Vedic rituals encouraged knowledge of diverse sciences, including astronomy, linguistics, and mathematics. Astronomical knowledge was required to determine the timing of rituals and the construction of sacrificial altars. Linguistics developed out of a need to formalize grammatical rules for classical Sanskrit, which was used in rituals. Large public offerings also required the construction of elaborate altars, which posed geometrical problems and thus led to advances in geometry. Classic Vedic texts also frequently used very large numbers, for instance, to denote the age of humanity and the Earth, which required a system to represent numbers parsimoniously, giving rise to a 10-base positional system and a symbolic representation for zero as a placeholder, which would later be imported in other mathematical traditions (Joseph 1991 [2000]). In this way, ancient Indian dharma encouraged the emergence of the sciences.

Around the sixth–fifth century BCE, the northern part of the Indian subcontinent experienced an extensive urbanization. In this context, medicine ( āyurveda ) became standardized. This period also gave rise to a wide range of heterodox philosophical schools, including Buddhism, Jainism, and Cārvāka. The latter defended a form of metaphysical naturalism, denying the existence of gods or karma. The relationship between science and religion on the Indian subcontinent is complex, in part because the dharmic religions and philosophical schools are so diverse. For example, Cārvāka proponents had a strong suspicion of inferential beliefs, and rejected Vedic revelation and supernaturalism in general, instead favoring direct observation as a source of knowledge.

Natural theology also flourished in the pre-colonial period, especially in the Advaita Vedānta, a darśana that identifies the self, ātman , with ultimate reality, Brahman. Advaita Vedāntin philosopher Adi Śaṅkara (fl. first half eighth century) was an author who regarded Brahman as the only reality, both the material and the efficient cause of the cosmos. Śaṅkara formulated design and cosmological arguments, drawing on analogies between the world and artifacts: in ordinary life, we never see non-intelligent agents produce purposive design, yet the universe is suitable for human life, just like benches and pleasure gardens are designed for us. Given that the universe is so complex that even an intelligent craftsman cannot comprehend it, how could it have been created by non-intelligent natural forces? Śaṅkara concluded that it must have been designed by an intelligent creator (C.M. Brown 2008: 108).

From 1757 to 1947, India was under British colonial rule. This had a profound influence on its culture as Hindus came into contact with Western science and technology. For local intellectuals, the contact with Western science presented a challenge: how to assimilate these ideas with Hinduism? Mahendrahal Sircar (1833–1904) was one of the first authors to examine evolutionary theory and its implications for Hindu religious beliefs. Sircar was an evolutionary theist, who believed that God used evolution to create current life forms. Evolutionary theism was not a new hypothesis in Hinduism, but the many lines of empirical evidence Darwin provided for evolution gave it a fresh impetus. While Sircar accepted organic evolution through common descent, he questioned the mechanism of natural selection as it was not teleological, which went against his evolutionary theism. This was a widespread problem for the acceptance of evolutionary theory, one that Christian evolutionary theists also wrestled with (Bowler 2009). He also argued against the British colonists’ beliefs that Hindus were incapable of scientific thought, and encouraged fellow Hindus to engage in science, which he hoped would help regenerate the Indian nation (C.M. Brown 2012: chapter 6).

The assimilation of Western culture prompted various revivalist movements that sought to reaffirm the cultural value of Hinduism. They put forward the idea of a Vedic science, where all scientific findings are already prefigured in the Vedas and other ancient texts (e.g., Vivekananda 1904). This idea is still popular within contemporary Hinduism, and is quite similar to ideas held by contemporary Muslims, who refer to the Qurʾān as a harbinger of scientific theories.

Responses to evolutionary theory were as diverse as Christian views on this subject, ranging from creationism (denial of evolutionary theory based on a perceived incompatibility with Vedic texts) to acceptance (see C.M. Brown 2012 for a thorough overview). Authors such as Dayananda Saraswati (1930–2015) rejected evolutionary theory. By contrast, Vivekananda (1863–1902), a proponent of the monistic Advaita Vedānta enthusiastically endorsed evolutionary theory and argued that it is already prefigured in ancient Vedic texts. His integrative view claimed that Hinduism and science are in harmony: Hinduism is scientific in spirit, as is evident from its long history of scientific discovery (Vivekananda 1904). Sri Aurobindo Ghose, a yogi and Indian nationalist who was educated in the West, formulated a synthesis of evolutionary thought and Hinduism. He interpreted the classic avatara doctrine, according to which God incarnates into the world repeatedly throughout time, in evolutionary terms. God thus appears first as an animal, later as a dwarf, then as a violent man (Rama), and then as Buddha, and as Kṛṣṇa. He proposed a metaphysical picture where both spiritual evolution (reincarnation and avatars) and physical evolution are ultimately a manifestation of God (Brahman). This view of reality as consisting of matter ( prakṛti ) and consciousness ( puruṣa ) goes back to sāṃkhya , one of the orthodox Hindu darśana, but Aurobindo made explicit reference to the divine, calling the process during which the supreme Consciousness dwells in matter involution (Aurobindo, 1914–18 [2005], see C.M. Brown 2007 for discussion).

During the twentieth century, Indian scientists began to gain prominence, including C.V. Raman (1888–1970), a Nobel Prize winner in physics, and Satyendra Nath Bose (1894–1974), a theoretical physicist who described the behavior of photons statistically, and who gave his name to bosons. However, these authors were silent on the relationship between their scientific work and their religious beliefs. By contrast, the mathematician Srinivasa Ramanujan (1887–1920) was open about his religious beliefs and their influence on his mathematical work. He claimed that the goddess Namagiri helped him to intuit solutions to mathematical problems. Likewise, Jagadish Chandra Bose (1858–1937), a theoretical physicist, biologist, biophysicist, botanist, and archaeologist who worked on radio waves, saw the Hindu idea of unity reflected in the study of nature. He started the Bose institute in Kolkata in 1917, the earliest interdisciplinary scientific institute in India (Subbarayappa 2011).

Buddhism, like the other religious traditions surveyed in this entry, encompasses many views and practices. The principal forms of Buddhism that exist today are Theravāda and Mahāyāna. (Vajrayāna, the tantric tradition of Buddhism, is also sometimes seen as a distinct form.) Theravāda is the dominant form of Buddhism of Sri Lanka and Southeast Asia. It traditionally refers to monastic and textual lineages associated with the study of the Pāli Buddhist Canon. Mahāyāna refers to a movement that likely began roughly four centuries after the Buddha’s death; it became the dominant form of Buddhism in East and Central Asia. It includes Chan or Zen, and also tantric Buddhism, which today is found mostly in Tibet, though East Asian forms also exist.

Buddhism originated in the historical figure of the Buddha (historically, Gautama Buddha or Siddhārtha Gautama, ca. 5 th –4 th century BCE). His teaching centered on ethics as well as metaphysics, incapsulated in the Four Noble Truths (on suffering and its origin in human desires), and the Noble Eightfold Path (right view, right aspiration, right speech, right action, right livelihood, right effort, right mindfulness, right concentration) to end suffering and to break the cycle of rebirths, culminating in reaching Nirvana. Substantive metaphysical teachings include belief in karma, the no-self, and the cycle of rebirth.

As a response to colonialist attitudes, modern Buddhists since the nineteenth century have often presented Buddhism as harmonious with science (Lopez 2008). The argument is roughly that since Buddhism doesn’t require belief in metaphysically substantive entities such as God, the soul, or the self (unlike, for example, Christianity), Buddhism should be easily compatible with the factual claims that scientists make. (Note, however, that historically most Buddhist have believed in various forms of divine abode and divinities.) We could thus expect the dialogue and integration view to prevail in Buddhism. An exemplar for integration is the fourteenth Dalai Lama, who is known for his numerous efforts to lead dialogue between religious people and scientists. He has extensively written on the relationship between Buddhism and various scientific disciplines such as neuroscience and cosmology (e.g., Dalai Lama 2005, see also the Science and Philosophy in the Indian Buddhist Classics series, a four-volume series conceived and compiled by the Dalai Lama, e.g., Jinpa 2017). Donald Lopez Jr (2008) identifies compatibility as an enduring claim in the debate on science and Buddhism, in spite of the fact that what is meant by these concepts has shifted markedly over time. As David McMahan (2009) argues, Buddhism underwent profound shifts in response to modernity in the west as well as globally. In this modern context, Buddhists have often asserted the compatibility of Buddhism with science, favorably contrasting their religion to Christianity in that respect.

The full picture of the relationship between Buddhism and religion is more nuanced than one of wholesale acceptance of scientific claims. I will here focus on East Asia, primarily Japan and China, and the reception of evolutionary theory in the early twentieth century to give a sense of this more complex picture. The earliest translations of evolutionary thought in Japan and China were not drawn from Darwin’s Origin of Species or Descent of Man , but from works by authors who worked in Darwin’s wake, such as Ernst Haeckel and Thomas Huxley. For example, the earliest translated writings on evolutionary theory in China was a compilation by Yan Fu entitled On Natural Evolution ( Tianyan lun ), which incorporated excerpts by Herbert Spencer and Thomas Huxley. This work drew a close distinction between social Darwinism and biological evolution (Ritzinger 2013). Chinese and Japanese Buddhists received these ideas in the context of western colonialism and imperialism. East Asian intellectuals saw how western colonial powers competed with each other for influence on their territory, and discerned parallels between this and the Darwinian struggle for existence. As a result, some intellectuals such as the Japanese political adviser and academic Katō Hiroyuki (1836–1916) drew on Darwinian thought and popularized notions such as “survival of the fittest” to justify the foreign policies of the Meiji government (Burenina 2020). It is in this context that we can situate Buddhist responses to evolutionary theory.

Buddhists do not distinguish between human beings as possessing a soul and other animals as soulless. As we are all part of the cycle of rebirth, we have all been in previous lives various other beings, including birds, insects, and fish. The problem of the specificity of the human soul does not even arise because of the no-self doctrine. Nevertheless, as Justin Ritzinger (2013) points out, Chinese Buddhists in the 1920s and 1930s who were confronted with early evolutionary theory did not accept Darwin’s theory wholesale. In their view, the central element of Darwinism—the struggle for existence—was incompatible with Buddhism, with its emphasis on compassion with other creatures. They rejected social Darwinism (which sought to engineer societies along Darwinian principles) because it was incompatible with Buddhist ethics and metaphysics. Struggling to survive and to propagate was clinging onto worldly things. Taixu (1890–1947), a Chinese Reformer and Buddhist modernist, instead chose to appropriate Pyotr Kropotkin’s evolutionary views, specifically on mutual aid and altruism. The Russian anarchist argued that cooperation was central to evolutionary change, a view that is currently also more mainstream. However, Kropotkin’s view did not go far enough in Taixu’s opinion because mutual aid still requires a self. Only when one recognizes the no-self doctrine could one dedicate oneself entirely to helping others, as bodhisattvas do (Ritzinger 2013).

Similar dynamics can be seen in the reception of evolutionary theory among Japanese Buddhists. Evolutionary theory was introduced in Japan during the early Meji period (1868–1912) when Japan opened itself to foreign trade and ideas. Foreign experts, such as the American zoologist Edward S. Morse (1838–1925) shared their knowledge of the sciences with Japanese scholars. The latter were interested in the social ramifications of Darwinism, particularly because they had access to translated versions of Spencer’s and Huxley’s work before they could read Darwin’s. Japanese Buddhists of the Nichiren tradition accepted many elements of evolutionary theory, but they rejected other elements, notably the struggle for existence, and randomness and chance, as this contradicts the role of karma in one’s circumstances at birth.

Among the advocates of the modern Nishiren Buddhist movement is Honda Nisshō (1867–1931). Honda emphasized the importance of retrogressions (in addition to progress, which was the main element in evolution that western authors such as Haeckel and Spencer considered). He strongly argued against social Darwinism, the application of evolutionary principles in social engineering, on religious grounds. He argued that we can accept humans are descended from apes without having to posit a pessimistic view of human nature that sees us as engaged in a struggle for survival with fellow human beings. Like Chinese Buddhists, Honda thought Kropotkin’s thesis of mutual aid was more compatible with Buddhism, but he was suspicious of Kropotkin’s anarchism (Burenina 2020). His work, like that of other East Asian Buddhists indicates that historically, Buddhists are not passive recipients of western science but creative interpreters. In some cases, their religious reasons for rejecting some metaphysical assumptions in evolutionary theory led them to anticipate recent developments in biology, such as the recognition of cooperation as an evolutionary principle.

Judaism is one of the three major Abrahamic monotheistic traditions, encompassing a range of beliefs and practices that express a covenant between God and the people of Israel. Central to both Jewish practice and beliefs is the study of texts, including the written Torah (the Tanakh, sometimes called “Hebrew Bible”), and the “Oral Law” of Rabbinic Judaism, compiled in such works like the Talmud. There is also a corpus of esoteric, mystical interpretations of biblical texts, the Kabbalah, which has influenced Jewish works on the relationship between science and religion. The Kabbalah also had an influence on Renaissance and early modern Christian authors such as Pico Della Mirandola, whose work helped to shape the scientific revolution (see the entry on Giovanni Pico della Mirandola ). The theologian Maimonides (Rabbi Moshe ben-Maimon, 1138–1204, aka Rambam) had an enduring influence on Jewish thought up until today, also in the science and religion literature.

Most contemporary strains of Judaism are Rabbinic, rather than biblical, and this has profound implications for the relationship between religion and science. While both Jews and Evangelical Christians emphasize the reading of sacred texts, the Rabbinic traditions (unlike, for example, the Evangelical Christian tradition) holds that reading and interpreting texts is far from straightforward. Scripture should not be read in a simple literal fashion. This opens up more space for accepting scientific theories (e.g., Big Bang cosmology) that seem at odds with a simple literal reading of the Torah (e.g., the six-day creation in Genesis) (Mitelman 2011 [ Other Internet Resources ]). Moreover, most non-Orthodox Jews in the US identify as politically liberal, so openness to science may also be an identity marker given that politically liberal people in the US have positive attitudes toward science (Pew Forum, 2021 [ Other Internet Resources ]).

Jewish thinkers have made substantive theoretical contributions to the relationship between science and religion, which differ in interesting respects from those seen in the literature written by Christian authors. To give just a few examples, Hermann Cohen (1842–1918), a prominent neo-Kantian German Jewish philosopher, thought of the relationship between Judaism and science in the light of the advances in scientific disciplines and the increased participation of Jewish scholars in the sciences. He argued that science, ethics, and Judaism should all be conceived of as distinct but complementary sciences. Cohen believed that his Jewish religious community was facing an epistemic crisis. All references to God had become suspect due to an adherence to naturalism, at first epistemological, but fast becoming ontological. Cohen saw the concept of a transcendent God as foundational to both Jewish practice and belief, so he thought adherence to wholesale naturalism threatened both Jewish orthodoxy and orthopraxy. As Teri Merrick (2020) argues, Cohen suspected this was in part due to epistemic oppression and self-censuring (though Cohen did not frame it in these terms). Because Jewish scientists wanted to retain credibility in the Christian majority culture, they underplayed and neglected the rich Jewish intellectual legacy in their practice. In response to this intellectual crisis, Cohen proposed to reframe Jewish thought and philosophy so that it would be recognized as both continuous with the tradition and essentially contributing to ethical and scientific advances. In this way, he reframed this tradition, articulating a broadly Kantian philosophy of science to combat a perceived conflict between Judaism and science (see the entry on Hermann Cohen for an in-depth discussion).

Jewish religious scholars have examined how science might influence religious beliefs, and vice versa. Rather than a unified response we see a spectrum of philosophical views, especially since the nineteenth and early twentieth century. As Shai Cherry (2003) surveys, Jewish scholars in the early twentieth century accepted biological evolution but were hesitant about Darwinian natural selection as the mechanism. The Latvian-born Israeli rabbi Abraham Isaac Kook (1865–1935) thought that religion and science are largely separate domains (a view somewhat similar to Gould’s NOMA), though he believed that there was a possible flow from religion to science. For example, Kook challenged the lack of directionality in Darwinian evolutionary theory. Using readings of the Kabbalah (and Halakhah, Jewish law), he proposed that biological evolution fits in a larger picture of cosmic evolution towards perfection.

By contrast, the American rabbi Morcedai Kaplan (1881–1983) thought information flow between science and religion could go in both directions, a view reminiscent to Barbour’s dialogue position. He repeatedly argued against scientism (the encroachment of science on too many aspects of human life, including ethics and religion), but he believed nevertheless we ought to apply scientific methods to religion. He saw reality as an unfolding process without a pre-ordained goal: it was progressive, but not teleologically determined. Kaplan emphasized the importance of morality (and identified God as the source of this process), and conceptualized humanity as not merely a passive recipient of evolutionary change, but an active participant, prefiguring work in evolutionary biology on the importance of agency in evolution (e.g., Okasha 2018). Thus, Kaplan’s reception of scientific theories, especially evolution, led him to formulate an early Jewish process theology.

Reform Judaism endorses an explicit anti-conflict view on the relationship between science and religion. For example, the Pittsburgh Platform of 1885, the first document of the Reform rabbinate, has a statement that explicitly says that science and Judaism are not in conflict:

We hold that the modern discoveries of scientific researches in the domain of nature and history are not antagonistic to the doctrines of Judaism.

This Platform had an enduring influence on Reform Judaism over the next decades. Secular Jewish scientists such as Albert Einstein, Richard Feynman, Douglas Daniel Kahneman, and Stephen J. Gould have also reflected on the relationship between science and broader issues of existential significance, and have exerted considerable influence on the science and religion debate.

3. Central topics in the debate

Current work in the field of science and religion encompasses a wealth of topics, including free will, ethics, human nature, and consciousness. Contemporary natural theologians discuss fine-tuning, in particular design arguments based on it (e.g., R. Collins 2009), the interpretation of multiverse cosmology, and the significance of the Big Bang (see entries on fine-tuning arguments and natural theology and natural religion ). For instance, authors such as Hud Hudson (2013) have explored the idea that God has actualized the best of all possible multiverses. Here follows an overview of two topics that continue to generate substantial interest and debate: divine action (and the closely related topic of creation) and human origins. The focus will be on Christian work in science and religion, due to its prevalence in the literature.

Before scientists developed their views on cosmology and origins of the world, Western cultures already had a doctrine of creation, based on biblical texts (e.g., the first three chapters of Genesis and the book of Revelation) and the writings of church fathers such as Augustine. This doctrine of creation has the following interrelated features: first, God created the world ex nihilo, i.e., out of nothing. Differently put, God did not need any pre-existing materials to make the world, unlike, e.g., the Demiurge (from Greek philosophy), who created the world from chaotic, pre-existing matter. Second, God is distinct from the world; the world is not equal to or part of God (contra pantheism or panentheism) or a (necessary) emanation of God’s being (contra Neoplatonism). Rather, God created the world freely. This introduces an asymmetry between creator and creature: the world is radically contingent upon God’s creative act and is also sustained by God, whereas God does not need creation (Jaeger 2012b: 3). Third, the doctrine of creation holds that creation is essentially good (this is repeatedly affirmed in Genesis 1). The world does contain evil, but God does not directly cause this evil to exist. Moreover, God does not merely passively sustain creation, but rather plays an active role in it, using special divine actions (e.g., miracles and revelations) to care for creatures. Fourth, God made provisions for the end of the world, and will create a new heaven and earth, in this way eradicating evil.

Views on divine action are related to the doctrine of creation. Theologians commonly draw a distinction between general and special divine action, but within the field of science and religion there is no universally accepted definition of these two concepts. One way to distinguish them (Wildman 2008: 140) is to regard general divine action as the creation and sustenance of reality, and special divine action as the collection of specific providential acts, such as miracles and revelations to prophets. Drawing this distinction allows for creatures to be autonomous and indicates that God does not micromanage every detail of creation. Still, the distinction is not always clear-cut, as some phenomena are difficult to classify as either general or special divine action. For example, the Roman Catholic Eucharist (in which bread and wine become the body and blood of Jesus) or some healing miracles outside of scripture seem mundane enough to be part of general housekeeping (general divine action), but still seem to involve some form of special intervention on God’s part. Alston (1989) makes a related distinction between direct and indirect divine acts. God brings about direct acts without the use of natural causes, whereas indirect acts are achieved through natural causes. Using this distinction, there are four possible kinds of actions that God could do: God could not act in the world at all, God could act only directly, God could act only indirectly, or God could act both directly and indirectly.

In the science and religion literature, there are two central questions on creation and divine action. To what extent are the Christian doctrine of creation and traditional views of divine action compatible with science? How can these concepts be understood within a scientific context, e.g., what does it mean for God to create and act? Note that the doctrine of creation says nothing about the age of the Earth, nor does it specify a mode of creation. This allows for a wide range of possible views within science and religion, of which Young Earth creationism is but one that is consistent with scripture. Indeed, some scientific theories, such as the Big Bang theory, first proposed by the Belgian Roman Catholic priest and astronomer Georges Lemaître (1927), look congenial to the doctrine of creation. The theory is not in contradiction, and could be integrated into creatio ex nihilo as it specifies that the universe originated from an extremely hot and dense state around 13.8 billion years ago (Craig 2003), although some philosophers have argued against the interpretation that the universe has a temporal beginning (e.g., Pitts 2008).

The net result of scientific findings since the seventeenth century has been that God was increasingly pushed into the margins. This encroachment of science on the territory of religion happened in two ways: first, scientific findings—in particular from geology and evolutionary theory—challenged and replaced biblical accounts of creation. Although the doctrine of creation does not contain details of the mode and timing of creation, the Bible was regarded as authoritative, and that authority got eroded by the sciences. Second, the emerging concept of scientific laws in seventeenth- and eighteenth-century physics seemed to leave no room for special divine action. These two challenges will be discussed below, along with proposed solutions in the contemporary science and religion literature.

Christian authors have traditionally used the Bible as a source of historical information. Biblical exegesis of the creation narratives, especially Genesis 1 and 2 (and some other scattered passages, such as in the Book of Job), remains fraught with difficulties. Are these texts to be interpreted in a historical, metaphorical, or poetic fashion, and what are we to make of the fact that the order of creation differs between these accounts (Harris 2013)? The Anglican archbishop James Ussher (1581–1656) used the Bible to date the beginning of creation at 4004 BCE. Although such literalist interpretations of the biblical creation narratives were not uncommon, and are still used by Young Earth creationists today, theologians before Ussher already offered alternative, non-literalist readings of the biblical materials (e.g., Augustine De Genesi ad litteram , 416). From the seventeenth century onward, the Christian doctrine of creation came under pressure from geology, with findings suggesting that the Earth was significantly older than 4004 BCE. From the eighteenth century on, natural philosophers, such as Benoît de Maillet, Lamarck, Chambers, and Darwin, proposed transmutationist (what would now be called evolutionary) theories, which seem incompatible with scriptural interpretations of the special creation of species. Following the publication of Darwin’s Origin of Species (1859), there has been an ongoing discussion on how to reinterpret the doctrine of creation in the light of evolutionary theory (see Bowler 2009 for an overview).

Ted Peters and Martinez Hewlett (2003) have outlined a divine action spectrum to clarify the distinct positions about creation and divine action in the contemporary science and religion literature that focuses on Christians, agnostics, and atheists. They discern two dimensions in this spectrum: the degree of divine action in the natural world, and the form of causal explanations that relate divine action to natural processes. At one extreme are creationists. Like other theists, they believe God has created the world and its fundamental laws, and that God occasionally performs special divine actions (miracles) that intervene in the fabric of those laws. Creationists deny any role of natural selection in the origin of species. Within creationism, there are Old and Young Earth creationism, with the former accepting geology and rejecting evolutionary biology, and the latter rejecting both. Next to creationism is Intelligent Design, which affirms divine intervention in natural processes. Intelligent Design creationists (e.g., Dembski 1998) believe there is evidence of intelligent design in organisms’ irreducible complexity; on the basis of this they infer design and purposiveness (see Kojonen 2016). Like other creationists, they deny a significant role for natural selection in shaping organic complexity and they affirm an interventionist account of divine action. For political reasons they do not label their intelligent designer as God, as they hope to circumvent the constitutional separation of church and state in the US which prohibits teaching religious doctrines in public schools (Forrest & Gross 2004). Theistic evolutionists hold a non-interventionist approach to divine action: God creates indirectly, through the laws of nature (e.g., through natural selection). For example, the theologian John Haught (2000) regards divine providence as self-giving love, and natural selection and other natural processes as manifestations of this love, as they foster creaturely autonomy and independence. While theistic evolutionists allow for special divine action, particularly the miracle of the Incarnation in Christ (e.g., Deane-Drummond 2009), deists such as Michael Corey (1994) think there is only general divine action: God has laid out the laws of nature and lets it run like clockwork without further interference. Deism is still a long distance from ontological materialism, the view that the material world is all there is. Ontological materialists tend to hold that the universe is intelligible, with laws that scientists can discover, but there is no lawgiver and no creator.

Views on divine action were influenced by developments in physics and their philosophical interpretation. In the seventeenth century, natural philosophers, such as Robert Boyle and John Wilkins, developed a mechanistic view of the world as governed by orderly and lawlike processes. Laws, understood as immutable and stable, created difficulties for the concept of special divine action (Pannenberg 2002). How could God act in a world that was determined by laws?

One way to regard miracles and other forms of special divine action is to see them as actions that somehow suspend or ignore the laws of nature. David Hume (1748: 181), for instance, defined a miracle as “a transgression of a law of nature by a particular volition of the deity, or by the interposal of some invisible agent”, and, more recently, Richard Swinburne (1968: 320) defines a miracle as “a violation of a law of Nature by a god”. This concept of divine action is commonly labeled interventionist. Interventionism regards the world as causally deterministic, so God has to create room for special divine actions. By contrast, non-interventionist forms of divine action require a world that is, at some level, non-deterministic, so that God can act without having to suspend or ignore the laws of nature.

In the seventeenth century, the explanation of the workings of nature in terms of elegant physical laws suggested the ingenuity of a divine designer. The design argument reached its peak during the seventeenth and early eighteenth century (McGrath 2011). For example, Samuel Clarke (1705: part XI, cited in Schliesser 2012: 451) proposed an a posteriori argument from design by appealing to Newtonian science, calling attention to the

exquisite regularity of all the planets’ motions without epicycles, stations, retrogradations, or any other deviation or confusion whatsoever.

A late proponent of this view of nature as a perfect smooth machine is William Paley’s Natural Theology (1802).

Another conclusion that the new laws-based physics suggested was that the universe was able to run smoothly without requiring an intervening God. The increasingly deterministic understanding of the universe, ruled by deterministic causal laws as, for example, outlined by Pierre-Simon Laplace (1749–1827), seemed to leave no room for special divine action, which is a key element of the traditional Christian doctrine of creation. Newton resisted interpretations like these in an addendum to the Principia in 1713: the planets’ motions could be explained by laws of gravity, but the positions of their orbits, and the positions of the stars—far enough apart so as not to influence each other gravitationally—required a divine explanation (Schliesser 2012). Alston (1989) argued, contra authors such as Polkinghorne (1998), that mechanistic, pre-twentieth century physics is compatible with divine action and divine free will. Assuming a completely deterministic world and divine omniscience, God could set up initial conditions and the laws of nature in such a way as to bring God’s plans about. In such a mechanistic world, every event is an indirect divine act.

Advances in twentieth-century physics, including the theories of general and special relativity, chaos theory, and quantum theory, overturned the mechanical clockwork view of creation. In the latter half of the twentieth century, chaos theory and quantum physics have been explored as possible avenues to reinterpret divine action. John Polkinghorne (1998) proposed that chaos theory not only presents epistemological limits to what we can know about the world, but that it also provides the world with an “ontological openness” in which God can operate without violating the laws of nature. One difficulty with this model is that it moves from our knowledge of the world to assumptions about how the world is: does chaos theory mean that outcomes are genuinely undetermined, or that we as limited knowers cannot predict them? Robert Russell (2006) proposed that God acts in quantum events. This would allow God to directly act in nature without having to contravene the laws of nature. His is therefore a non-interventionist model: since, under the Copenhagen interpretation of quantum mechanics, there are no natural efficient causes at the quantum level, God is not reduced to a natural cause. Murphy (1995) outlined a similar bottom-up model where God acts in the space provided by quantum indeterminacy. These attempts to locate God’s actions either in chaos theory or quantum mechanics, which Lydia Jaeger (2012a) has termed “physicalism-plus-God”, have met with sharp criticism (e.g., Saunders 2002; Jaeger 2012a,b). After all, it is not even clear whether quantum theory would allow for free human action, let alone divine action, which we do not know much about (Jaeger 2012a). Next to this, William Carroll (2008), building on Thomistic philosophy, argues that authors such as Polkinghorne and Murphy are making a category mistake: God is not a cause in the way creatures are causes, competing with natural causes, and God does not need indeterminacy in order to act in the world. Rather, as primary cause God supports and grounds secondary causes. While this neo-Thomistic proposal is compatible with determinism (indeed, on this view, the precise details of physics do not matter much), it blurs the distinction between general and special divine action. Moreover, the Incarnation suggests that the idea of God as a cause among natural causes is not an alien idea in theology, and that God incarnate as Jesus at least sometimes acts as a natural cause (Sollereder 2015).

There has been a debate on the question to what extent randomness is a genuine feature of creation, and how divine action and chance interrelate. Chance and stochasticity are important features of evolutionary theory (the non-random retention of random variations). In a famous thought experiment, Gould (1989) imagined that we could rewind the tape of life back to the time of the Burgess Shale (508 million years ago); the chance that a rerun of the tape of life would end up with anything like the present-day life forms is vanishingly small. However, Simon Conway Morris (2003) has insisted species very similar to the ones we know now, including humans, would evolve under a broad range of conditions.

Under a theist interpretation, randomness could either be a merely apparent aspect of creation, or a genuine feature. Plantinga suggests that randomness is a physicalist interpretation of the evidence. God may have guided every mutation along the evolutionary process. In this way, God could

guide the course of evolutionary history by causing the right mutations to arise at the right time and preserving the forms of life that lead to the results he intends. (2011: 121)

By contrast, other authors see stochasticity as a genuine design feature, and not just as a physicalist gloss. Their challenge is to explain how divine providence is compatible with genuine randomness. (Under a deistic view, one could simply say that God started the universe up and did not interfere with how it went, but that option is not open to the theist, and most authors in the field of science and religion are not deists.) The neo-Thomist Elizabeth Johnson (1996) argues that divine providence and true randomness are compatible: God gives creatures true causal powers, thus making creation more excellent than if they lacked such powers. Random occurrences are also secondary causes. Chance is a form of divine creativity that creates novelty, variety, and freedom. One implication of this view is that God may be a risk taker—although, if God has a providential plan for possible outcomes, there is unpredictability but not risk. Johnson uses metaphors of risk taking that, on the whole, leave the creator in a position of control. Creation, then, is akin to jazz improvisation. Why would God take risks? There are several solutions to this question. The free will theodicy says that a creation that exhibits stochasticity can be truly free and autonomous:

Authentic love requires freedom, not manipulation. Such freedom is best supplied by the open contingency of evolution, and not by strings of divine direction attached to every living creature. (Miller 1999 [2007: 289])

The “only way theodicy” goes a step further, arguing that a combination of laws and chance is not only the best way, but the only way for God to achieve God’s creative plans (see, e.g., Southgate 2008 for a defense).

Christianity, Islam, and Judaism have similar creation stories, which ultimately go back to the first book of the Hebrew Bible (Genesis). According to Genesis, humans are the result of a special act of creation. Genesis 1 offers an account of the creation of the world in six days, with the creation of human beings on the sixth day. It specifies that humans were created male and female, and that they were made in God’s image. Genesis 2 provides a different order of creation, where God creates humans earlier in the sequence (before other animals), and only initially creates a man, later fashioning a woman out of the man’s rib. Islam has a creation narrative similar to Genesis 2, with Adam being fashioned out of clay. These handcrafted humans are regarded as the ancestors of all living humans today. Together with Ussher’s chronology, the received view in eighteenth-century Europe was that humans were created only about 6000 years ago, in an act of special creation.

Humans occupy a privileged position in these creation accounts. In Christianity, Judaism, and some strands of Islam, humans are created in the image of God ( imago Dei ). Humans also occupy a special place in creation as a result of the Fall. In Genesis 3, the account of the Fall stipulates that the first human couple lived in the Garden of Eden in a state of innocence and/or righteousness. This means they were able to not sin, whereas we are no longer able to refrain from sinning. By eating from the forbidden fruit of the Tree of Good and Evil they fell from this state, and death, manual labor, as well as pain in childbirth were introduced. Moreover, as a result of this so-called “original sin”, the effects of Adam’s sin are passed on to every human being. The Augustinian interpretation of original sin also emphasizes that our reasoning capacities have been marred by the distorting effects of sin (the so-called noetic effects of sin): as a result of sin, our original perceptual and reasoning capacities have been marred. This interpretation is influential in contemporary analytic philosophy of religion. For example, Plantinga (2000) appeals to the noetic effects of sin to explain religious diversity and unbelief, offering this as an explanation for why not everyone believes in God even though this belief would be properly basic.

There are different ways in which Christians have thought about the Fall and original sin. In Western Christianity, Augustine’s doctrine of original sin is very influential, though there is no generally accepted Christian doctrine on original sin (Couenhoven 2005). For Augustine, humans were in a state of original righteousness before the Fall, and by their action not only marred themselves but the entirety of creation. By contrast, Eastern Orthodox churches are more influenced by Irenaeus, an early Church Father who argued that humans were originally innocent and immature, rather than righteous. John Hick (1966) was an influential proponent of “Irenaean style” theodicy in contemporary Christianity.

Over the past decades, authors in the Christian religion and science literature have explored these two interpretations (Irenaean, Augustinian) and how they can be made compatible with scientific findings (see De Smedt and De Cruz 2020 for a review). Scientific findings and theories relevant to human origins come from a range of disciplines, in particular geology, paleoanthropology (the study of ancestral hominins, using fossils and other evidence), archaeology, and evolutionary biology. These findings challenge traditional religious accounts of humanity, including the special creation of humans, the imago Dei , the historical Adam and Eve, and original sin.

In natural philosophy, the dethroning of humanity from its position as a specially created species predates Darwin and can already be found in early transmutationist publications. For example, Benoît de Maillet’s posthumously published Telliamed (1748, the title is his name in reverse) traces the origins of humans and other terrestrial animals from sea creatures. Jean-Baptiste Lamarck proposed chimpanzees as the ancestors to humans in his Philosophie Zoologique (1809). The Scottish publisher and geologist Robert Chambers’ anonymously published Vestiges of Creation (1844) stirred controversy with its detailed naturalistic account of the origin of species. He proposed that the first organisms arose through spontaneous generation, and that all subsequent organisms evolved from them. Moreover, he argued that humans have a single evolutionary origin:

The probability may now be assumed that the human race sprung from one stock, which was at first in a state of simplicity, if not barbarism (1844: 305)

a view starkly different from the Augustinian interpretation of humanity as being in a prelapsarian state of perfection.

Darwin was initially reluctant to publish on human origins. While he did not discuss human evolution in his Origin of Species , he promised, “Light will be thrown on the origin of man and his history” (1859: 487). Huxley (1863) wrote Man’s Place in Nature , the first book on human evolution from a Darwinian point of view which discussed fossil evidence, such as the then recently uncovered Neanderthal fossils from Gibraltar. Darwin’s (1871) Descent of Man identified Africa as the likely place where humans originated, and used comparative anatomy to demonstrate that chimpanzees and gorillas were closely related to humans. In the twentieth century, paleoanthropologists debated whether humans separated from the other great apes (at the time wrongly classified into the paraphyletic group Pongidae ) about 15 million years ago, or about 5 million years ago. Molecular clocks—first immune responses (e.g., Sarich & Wilson 1967), then direct genetic evidence (e.g., Rieux et al. 2014)—favor the shorter chronology.

The discovery of many hominin fossils, including Ardipithecus ramidus (4.4 million years ago), Australopithecus afarensis (nicknamed “Lucy”), about 3.5 million years old, the Sima de los Huesos hominins (about 400,000 years old, ancestors to the Neanderthals), Homo neanderthalensis , and the intriguing Homo floresiensis (small hominins who lived on the island of Flores, Indonesia, dated to 700,000–50,000 years ago) have created a rich, complex picture of hominin evolution. These finds are supplemented by detailed analyses of ancient DNA extracted from fossil remains, bringing to light a previously unknown species of hominin (the Denisovans) who lived in Siberia up to about 40,000 years ago. Taken together, this evidence indicates that humans did not evolve in a simple linear fashion, but that human evolution resembles an intricate branching tree with many dead ends, in line with the evolution of other species. Genetic and fossil evidence favors a predominantly African origin of our species Homo sapiens (as early as 315,000 years ago) with limited gene-flow from other hominin species such as Neanderthals and Denisovans (see, e.g., Richter et al. 2017).

In the light of these scientific findings, contemporary science and religion authors have reconsidered the questions of human uniqueness, imago Dei , the Incarnation, and the historicity of original sin. Some authors have attempted to reinterpret human uniqueness as a number of species-specific cognitive and behavioral adaptations. For example, van Huyssteen (2006) considers the ability of humans to engage in cultural and symbolic behavior, which became prevalent in the Upper Paleolithic, as a key feature of uniquely human behavior. Other theologians have opted to broaden the notion of imago Dei. Given what we know about the capacities for morality and reason in non-human animals, Celia Deane-Drummond (2012) and Oliver Putz (2009) reject an ontological distinction between humans and non-human animals, and argue for a reconceptualization of the imago Dei to include at least some nonhuman animals. Joshua Moritz (2011) raises the question of whether extinct hominin species, such as Homo neanderthalensis and Homo floresiensis , which co-existed with Homo sapiens for some part of prehistory, partook in the divine image.

There is also discussion of how we can understand the Incarnation (the belief that Jesus, the second person of the Trinity, became a human being) with the evidence we have of human evolution. Some interpret Christ’s divine nature quite liberally. For instance, Peacocke (1979) regarded Jesus as the point where humanity is perfect for the first time. Christ is the progression and culmination of what evolution has been working toward in the teleological, progressivist interpretation of evolution by Teilhard de Chardin (1971). According to Teilhard, evil is still horrible but no longer incomprehensible; it becomes a natural feature of creation—since God chose evolution as his mode of creation, evil arises as an inevitable byproduct. Deane-Drummond (2009), however, points out that this interpretation is problematic: Teilhard worked within a Spencerian progressivist model of evolution, and he was anthropocentric, seeing humanity as the culmination of evolution. Contemporary evolutionary theory has repudiated the Spencerian progressivist view, and adheres to a stricter Darwinian model. Deane-Drummond, who regards human morality as lying on a continuum with the social behavior of other animals, conceptualizes the Fall as a mythical, rather than a historical event. It represents humanity’s sharper awareness of moral concerns and its ability to make wrong choices. She regards Christ as incarnate wisdom, situated in a theodrama that plays against the backdrop of an evolving creation. Like all human beings, Christ is connected to the rest of creation through common descent. By saving us, he saves the whole of creation.

Debates on the Fall and the historical Adam have centered on how these narratives can be understood in the light of contemporary science. On the face of it, limitations of our cognitive capacities can be naturalistically explained as a result of biological constraints, so there seems little explanatory gain to appeal to the narrative of the Fall. Some have attempted to interpret the concepts of sin and Fall in ways that are compatible with paleoanthropology, notably Peter van Inwagen (2004) and Jamie K. Smith (2017), who have argued that God could have providentially guided hominin evolution until there was a tightly-knit community of primates, endowed with reason, language, and free will, and this community was in close union with God. At some point in history, these hominins somehow abused their free will to distance themselves from God. These narratives follow the Augustinian tradition. Others, such as John Schneider (2014, 2020), on the other hand, argue that there is no genetic or paleoanthropological evidence for such a community of superhuman beings.

This survey has given a sense of the richness of the literature of science and religion. Giving an exhaustive overview would go beyond the scope of an encyclopedia entry. Because science and religion are such broad terms, the literature has split up in diverse fields of “science engaged theology”, where a specific claim or subfield in science is studied in relation to a specific claim in theology (Perry & Ritchie 2018). For example, rather than ask if Christianity is compatible with science, one could ask whether Christian eschatology is compatible with scientific claims about cultural evolution, or the cosmic fate of the universe. As the scope of science and religion becomes less parochial and more global in its outlook, the different topics the field can engage with become very diverse.

  • Al-Ghazālī, 11th century, Tahāfut al-falāsifa , translated by Sabih Ahmad Kamali as The Incoherence of the Philosophers , Lahore: Pakistan Philosophical Congress, 1963.
  • Allport, Gordon W. and J. Michael Ross, 1967, “Personal Religious Orientation and Prejudice.”, Journal of Personality and Social Psychology , 5(4): 432–443. doi:10.1037/h0021212
  • Alston, William P., 1989, “God’s Action in the World”, in Divine Nature and Human Language: Essays in Philosophical Theology , , Ithaca, NY: Cornell University Press, 197–222.
  • Augustine, 416 [2002], De Genesi ad litteram , Translated as “The Literal Meaning of Genesis” in On Genesis , John E. Rotelle (ed.), Edmund Hill (trans.), (The works of Saint Augustine: A Translation for the 21st Century), Brooklyn, NY: New City Press, 2002, pp. 155–506.
  • Aurobindo Ghose, 1914–19 [2005], The Life Divine , Pondicherry: Sri Aurobindo Ashram Press. Collection of essays initially published from 1914–19 and first revised and published as collection in 1939/1940, two volumes.
  • Barbour, Ian G., 1966, Issues in Science and Religion , New York: Vantage.
  • –––, 2000, When Science Meets Religion: Enemies, Strangers, or Partners? , New York: HarperCollins.
  • Barrett, Justin L., 2004, Why Would Anyone Believe in God? , Walnut Creek, CA: AltaMira Press.
  • Barton, Ruth, 2018, The X-Club: Power and Authority in Victorian Science. Chicago: University of Chicago Press.
  • Bering, Jesse M., 2011, The God Instinct. The Psychology of Souls, Destiny and the Meaning of Life , London: Nicholas Brealy.
  • Bloom, Paul, 2007, “Religion Is Natural”, Developmental Science , 10(1): 147–151. doi:10.1111/j.1467-7687.2007.00577.x
  • Bowler, Peter J., 2001, Reconciling Science and Religion: The Debate in Early-Twentieth-Century Britain , Chicago: University of Chicago Press.
  • –––, 2009, Monkey Trials and Gorilla Sermons: Evolution and Christianity from Darwin to Intelligent Design , Cambridge, MA: Harvard University Press.
  • Boyer, Pascal, 2002, Religion Explained: The Evolutionary Origins of Religious Thought , London: Vintage.
  • Brooke, John Hedley, 1991, Science and Religion: Some Historical Perspectives , Cambridge: Cambridge University Press. doi:10.1017/CBO9781107589018
  • Brooke, John Hedley and Ronald L. Numbers (eds.), 2011, Science and Religion Around the World , New York: Oxford University Press.
  • Brown, C. Mackenzie, 2007, “Colonial and Post-Colonial Elaborations of Avataric Evolutionism”, Zygon: Journal of Religion and Science , 42(3): 715–748. doi:10.1111/j.1467-9744.2007.00862.x
  • –––, 2008, “The Design Argument in Classical Hindu Thought”, International Journal of Hindu Studies , 12(2): 103–151. doi:10.1007/s11407-008-9058-8
  • –––, 2012, Hindu Perspectives on Evolution: Darwin, Dharma, and Design , (Routledge Hindu Studies Series), London/New York: Routledge. doi:10.4324/9780203135532
  • Burenina, Yulia, 2020, “Japanese Responses to Evolutionary Theory, with Particular Focus on Nichiren Buddhists”, in Asian Religious Responses to Darwinism: Evolutionary Theories in Middle Eastern, South Asian, and East Asian Cultural Contexts , C. Mackenzie Brown (ed.), (Sophia Studies in Cross-Cultural Philosophy of Traditions and Cultures 33), Cham: Springer International Publishing, 337–367. doi:10.1007/978-3-030-37340-5_14
  • Cantor, Geoffrey and Chris Kenny, 2001, “Barbour’s Fourfold Way: Problems with His Taxonomy of Science‐religion Relationships”, Zygon: Journal of Religion and Science , 36(4): 765–781. doi:10.1111/0591-2385.00395
  • Carroll, William E., 2008, “Divine Agency, Contemporary Physics, and the Autonomy of Nature”, The Heythrop Journal , 49(4): 582–602. doi:10.1111/j.1468-2265.2008.00385.x
  • [Chambers, Robert], 1844, Vestiges of the Natural History of Creation , London: John Churchill.
  • Cherry, Shai, 2003, “Three Twentieth-Century Jewish Responses to Evolutionary Theory”, Aleph: Historical Studies in Science and Judaism , 3(1): 247–290. doi:10.2979/ALE.2003.-.3.247
  • Clarke, Samuel, 1705, A Demonstration of the Being and Attributes of God , London: Will. Botham.
  • Collins, Robin, 2009, “The Teleological Argument: An Exploration of the Fine‐Tuning of the Universe”, in The Blackwell Companion to Natural Theology , William Lane Craig and J. P. Moreland (eds.), Oxford: Wiley Blackwell, 202–281. doi:10.1002/9781444308334.ch4
  • Comte, Auguste, 1841, Cours de Philosophie Positive: La Partie Historique de la Philosophie Sociale en Tout ce Qui Concerne l’État Théologique et l’État Métaphysique (vol. 5), Paris: Bachelier.
  • Conway Morris, Simon, 2003, Life’s Solution: Inevitable Humans in a Lonely Universe , Cambridge: Cambridge University Press. doi:10.1017/CBO9780511535499
  • Corey, Michael A., 1994, Back to Darwin: The Scientific Case for Deistic Evolution , Lanham, MA: University Press of America.
  • Couenhoven, Jesse, 2005, “St. Augustine’s Doctrine of Original Sin”, Augustinian Studies , 36(2): 359–396. doi:10.5840/augstudies200536221
  • Craig, William Lane, 2003, “The Cosmological Argument”, in The Rationality of Theism , Paul Copan and Paul K. Moser (eds.), London: Routledge, pp. 112–131.
  • Dajani, Rana, 2015, “Why I Teach Evolution to Muslim Students”, Nature , 520(7548): 409–409. doi:10.1038/520409a
  • Dalai Lama [Tenzin Gyatso], 2005, The Universe in a Single Atom , New York: Morgan Roads Books.
  • Darwin, Charles, 1859, On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life , London: John Murray.
  • –––, 1871, The Descent of Man, and Selection in Relation to Sex , London: John Murray.
  • Dawes, Gregory W., 2016, Galileo and the Conflict between Religion and Science , (Routledge Studies in the Philosophy of Religion 13), New York: Routledge. doi:10.4324/9781315637723
  • Dawkins, Richard, 2006, The God Delusion , Boston: Houghton Mifflin Co.
  • Deane-Drummond, Celia, 2009, Christ and Evolution: Wonder and Wisdom , Minneapolis, MN: Fortress Press.
  • –––, 2012, “God’s Image and Likeness in Humans and Other Animals: Performative Soul-Making and Graced Nature”, Zygon: Journal of Religion and Science , 47(4): 934–948. doi:10.1111/j.1467-9744.2012.01308.x
  • De Smedt, Johan and Helen De Cruz, 2020, The Challenge of Evolution to Religion , Cambridge: Cambridge University Press. doi:10.1017/9781108685436
  • Dembski, William A., 1998, The Design Inference: Eliminating Chance through Small Probabilities , Cambridge: Cambridge University Press. doi:10.1017/CBO9780511570643
  • Dhanani, Alnoor, 2002, “Islam”, in Science and Religion: A Historical Introduction , Gary B. Fengren (ed.), Baltimore and London: Johns Hopkins University Press, pp. 73–92.
  • Draper, John, 1874, History of the Conflict between Religion and Science , New York: Appleton.
  • Draper, Paul, 2005, “God, Science, and Naturalism”, in The Oxford Handbook of Philosophy of Religion , William Wainwright (ed.), Oxford: Oxford University Press, pp. 272–303.
  • Durkheim, Émile, 1912 [1915], Les formes élémentaires de la vie religieuse , Paris: Alcan. Translated as The Elementary Forms of the Religious Life: A Study in Religious Sociology , Joseph Ward Swain (trans.), London: Allen & Unwin, 1915.
  • Ecklund, Elaine Howard, 2010, Science vs Religion: What Scientists Really Think , Oxford/New York: Oxford University Press. doi:10.1093/acprof:oso/9780195392982.001.0001
  • –––, 2021, “Science and Religion in (Global) Public Life: A Sociological Perspective”, Journal of the American Academy of Religion , 89(2): 672–700. doi:10.1093/jaarel/lfab046
  • Ecklund, Elaine Howard and Christopher P. Scheitle, 2007, “Religion among Academic Scientists: Distinctions, Disciplines, and Demographics”, Social Problems , 54(2): 289–307. doi:10.1525/sp.2007.54.2.289
  • Edis, Taner, 2007, An Illusion of Harmony: Science and Religion in Islam , Amherst, NY: Prometheus Books.
  • Evans, Michael S., 2016, Seeking Good Debate: Religion, Science, and Conflict in American Public Life , Oakland, CA: University of California Press.
  • Evans-Pritchard, Edward Evans, 1937, Witchcraft, Oracles and Magic among the Azande , Oxford: The Clarendon Press. Reprinted 1965.
  • Fontenelle, Bernard le Bovier de, 1724 [1824], “De l’Origine des Fables”, reprinted in Oeuvres de Fontenelle , Paris: J. Pinard, 1824, pp. 294–310.
  • Forrest, Barbara, 2000, “Methodological Naturalism and Philosophical Naturalism: Clarifying the Connection”, Philo , 3(2): 7–29. doi:10.5840/philo20003213
  • Forrest, Barbara and Paul R. Gross, 2004, Creationism’s Trojan Horse: The Wedge of Intelligent Design , New York: Oxford University Press. doi:10.1093/acprof:oso/9780195157420.001.0001
  • Frazer, James, G., 1890, The Golden Bough: A Study in Comparative Religion , London: MacMillan.
  • Freud, Sigmund, 1927, Die Zukunft einer Illusion , Leipzig, Wien & Zürich: Internationaler Psychoanalytischer Verlag.
  • Garwood, Christine, 2008, Flat Earth: The History of an Infamous Idea , London: Pan Macmillan.
  • Gould, Stephen J., 1989, Wonderful Life: The Burgess Shale and the Nature of History , London: Penguin.
  • –––, 2001, “Nonoverlapping Magisteria”, in Intelligent Design Creationism and Its Critics , Robert T. Pennock (ed.), Cambridge, MA: MIT Press, pp. 737–749.
  • Grant, Edward, 1996, The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional and Intellectual Contexts , Cambridge: Cambridge University Press. doi:10.1017/CBO9780511817908
  • Griffel, Frank, 2009, Al-Ghazali’s Philosophical Theology , Oxford/New York: Oxford University Press. doi:10.1093/acprof:oso/9780195331622.001.0001
  • Gross, Neil and Solon Simmons, 2009, “The Religiosity of American College and University Professors”, Sociology of Religion , 70(2): 101–129. doi:10.1093/socrel/srp026
  • Guessoum, Nidhal, 2011, Islam’s Quantum Question: Reconciling Muslim Tradition and Modern Science , London and New York: Tauris.
  • Hameed, Salman, 2008, “Bracing for Islamic Creationism”, Science , 322(5908): 1637–1638. doi:10.1126/science.1163672
  • Harris, Mark, 2013, The Nature of Creation. Examining the Bible and Science , Durham: Acumen.
  • Harrison, Peter, 1998, The Bible, Protestantism, and the Rise of Natural Science , Cambridge: Cambridge University Press. doi:10.1017/CBO9780511585524
  • –––, 2007, The Fall of Man and the Foundations of Science , Cambridge: Cambridge University Press. doi:10.1017/CBO9780511487750
  • –––, 2015, The Territories of Science and Religion , Chicago: University of Chicago Press.
  • Haught, John F., 1995, Science & Religion: From Conflict to Conversation , New York: Paulist Press.
  • –––, 2000, God after Darwin: A Theology of Evolution , Boulder, CO: Westview Press.
  • Hick, John, 1966, Evil and the God of Love . New York: Harper & Row.
  • Hooke, Robert, 1665, Micrographia , London: The Royal Society.
  • Hooykaas, Reijer, 1972, Religion and the Rise of Modern Science , Edinburgh: Scottish Academic Press.
  • Hudson, Hud, 2013, “Best Possible World Theodicy”, in The Blackwell Companion to the Problem of Evil , Justin P. McBrayer and Daniel Howard-Snyder (eds.), Oxford: John Wiley & Sons, 236–250. doi:10.1002/9781118608005.ch16
  • Huff, Toby E., 2003, The Rise of Early Modern Science: Islam, China and the West , second edition, Cambridge: Cambridge University Press. doi:10.1017/CBO9781316257098
  • Hume, David, 1748, Philosophical Essays Concerning Human Understanding , London: A. Millar.
  • –––, 1757 [2007], The Natural History of Religion , London: A. and H. Bradlaugh Bonner. Reprinted in his A Dissertation on the Passions; The Natural History of Religion: A Critical Edition , Tom L. Beauchamp (ed.), (The Clarendon Edition of the Works of David Hume), Oxford: Clarendon Press, 2007, 30–87.
  • Huxley, Thomas H., 1863, Evidences as to Man’s Place in Nature , London: Williams and Norgate.
  • Jaeger, Lydia, 2012a, “Against Physicalism-plus-God: How Creation Accounts for Divine Action in Nature’s World”, Faith and Philosophy , 29(3): 295–312. doi:10.5840/faithphil201229330
  • –––, 2012b, What the Heavens Declare: Science in the Light of Creation , Eugene, OR: Wipf and Stock.
  • James, William, 1902, The Varieties of Religious Experience: A Study in Human Nature , New York: Longmans, Green.
  • Jinpa, Thupten (ed.), 2017, Science and Philosophy in the Indian Buddhist Classics. Volume 1: The Physical World, Somerville: Wisdom Publications.
  • John Paul II, 1996, “Truth Cannot Contradict Truth”, Address of Pope John Paul II to the Pontifical Academy of Sciences (22 October 1996). [ John Paul II 1996 available online ]
  • Johnson, Elizabeth A., 1996, “Does God Play Dice? Divine Providence and Chance”, Theological Studies , 57(1): 3–18. doi:10.1177/004056399605700101
  • Joseph, George Gheverghese, 1991 [2000], The Crest of the Peacock: Non-European Roots of Mathematics , London: I. B. Tauris. Second edition, Princeton: Princeton University Press, 2000.
  • Kojonen, Erkki Vesa Rope, 2016, The Intelligent Design Debate and the Temptation of Scientism , London/New York: Routledge. doi:10.4324/9781315556673
  • Lamarck, Jean-Baptiste, 1809, Philosophie Zoologique, ou Exposition des Considérations Relatives à l’Histoire Naturelle des Animaux , Paris: Museum d'Histoire Naturelle (Jardin des Plantes).
  • Lamoureux, Denis O., 2008, Evolutionary Creation. A Christian Approach to Evolution , Cambridge, UK: Lutterworth Press.
  • Legare, Cristine H., E. Margaret Evans, Karl S. Rosengren, and Paul L. Harris, 2012, “The Coexistence of Natural and Supernatural Explanations Across Cultures and Development: Coexistence of Natural and Supernatural Explanations”, Child Development , 83(3): 779–793. doi:10.1111/j.1467-8624.2012.01743.x
  • Lemaître, Georges, 1927, “Un Univers Homogène de Masse Constante et de Rayon Croissant, Rendant Compte de la Vitesse Radiale des Nébuleuses Extra-Galactiques”, Annales de la Société Scientifique de Bruxelles A , 47: 49–59.
  • Lopez, Donald S. Jr., 2008, Buddhism and Science, A Guide for the Perplexed, Chicago: University of Chicago Press.
  • Louth, Andrew, 1996, Maximus the Confessor , London and New York: Routledge.
  • [Maillet, Benoît de], 1748, Telliamed, ou Entretiens d’un Philosophe Indien avec un Missionaire François, sur la Diminution de la Mer, la Formation de la Terre, l’Origine de l’Homme, etc. , Amsterdam: Chez L'honoré & fils.
  • Malinowski, Bronislaw, 1925 [1992], “Magic, Science, and Religion”, in Science, Religion and Reality , James Needham (ed.), New York: Macmillan, 19–84. Reprinted in his Magic, Science, and Religion and Other Essays , Garden City, NY: Doubleday, 1948. New printing, Prospect Heights, IL: Waveland Press, 1992.
  • McGrath, Alister E., 2011, Darwinism and the Divine: Evolutionary Thought and Natural Theology , Oxford: Wiley-Blackwell. doi:10.1002/9781444392524
  • –––, 2016, Re-Imagining Nature: The Promise of a Christian Natural Theology , Hoboken, NJ: Wiley Blackwell. doi:10.1002/9781119256540
  • McGrath, Alister E. and Joanna Collicutt McGrath, 2007, The Dawkins Delusion? Atheist Fundamentalism and the Denial of the Divine , London: SPCK.
  • McMahan, David L., 2009, The Making of Buddhist Modernism , Oxford/New York: Oxford University Press. doi:10.1093/acprof:oso/9780195183276.001.0001
  • Mernissi, Fatima, 1992, La Peur-Modernité: Conflit Islam Démocratie , Paris: Editions Albin Michel. Translated as Islam and Democracy: Fear of the Modern World , Mary Jo Lakeland (trans.), Reading, MA: Addison-Wesley, 1992.
  • Merrick, Teri, 2020, Helmholtz, Cohen, and Frege on Progress and Fidelity: Sinning Against Science and Religion , (Philosophical Studies in Contemporary Culture 27), Cham: Springer International Publishing. doi:10.1007/978-3-030-57299-0
  • Miller, Kenneth R., 1999 [2007], Finding Darwin’s God: A Scientist’s Search for Common Ground between God and Evolution , New York: Cliff Street Books. Reprinting, New York: Harper, 2007.
  • Moritz, Joshua M., 2011, “Evolution, the End of Human Uniqueness, and the Election of the Imago Dei ”, Theology and Science , 9(3): 307–339. doi:10.1080/14746700.2011.587665
  • Murphy, Nancey, 1995, “Divine Action in the Natural Order: Buridan’s Ass and Schrödinger’s Cat”, in Chaos and Complexity: Scientific Perspectives on Divine Action (Volume 2) , Robert J. Russell, Nancey Murphy, and Arthur Peacocke (eds.), Berkeley, CA: Vatican Observatory Publications; Center for Theology and the Natural Sciences, pp. 325–358.
  • Norenzayan, Ara, 2013, Big Gods: How Religion Transformed Cooperation and Conflict , Princeton, NJ: Princeton University Press.
  • Okasha, Samir, 2018, Agents and Goals in Evolution , Oxford: Oxford University Press. doi:10.1093/oso/9780198815082.001.0001
  • Outler, Albert C., 1985, “The Wesleyan Quadrilateral—in John Wesley”, Wesleyan Theological Journal , 20(1): 7–18.
  • Paley, William, 1802 [2006], Natural Theology or Evidences of the Existence and Attributes of the Deity , London: R. Faulder. Reprinted as Natural Theology , Matthew D. Eddy and David Knight (eds.), (Oxford World’s Classics), Oxford: Oxford University Press, 2006.
  • Pannenberg, Wolfhart, 2002, “The Concept of Miracle”, Zygon: Journal of Religion and Science , 37(3): 759–762. doi:10.1111/1467-9744.00452
  • Peacocke, Arthur R., 1979, Creation and the World of Science: The Re-Shaping of Belief , Oxford/New York: Oxford University Press.
  • –––, 1984, Intimations of Reality: Critical Realism in Science and Religion , Greencastle, IN: DePauw University.
  • Pennock, Robert T., 1998, “The Prospects for a Theistic Science”, Perspectives on Science and Christian Faith , 50: 205–209.
  • Perry, John and Sarah Lane Ritchie, 2018, “Magnets, Magic, and Other Anomalies: In Defense of Methodological Naturalism”, Zygon: Journal of Religion and Science , 53(4): 1064–1093. doi:10.1111/zygo.12473
  • Peters, Ted and Martinez Hewlett, 2003, Evolution from Creation to New Creation: Conflict, Conversation, and Convergence , Nashville, TN: Abingdon Press.
  • Philipse, Herman, 2012, God in the Age of Science? A Critique of Religious Reason , Oxford/New York: Oxford University Press. doi:10.1093/acprof:oso/9780199697533.001.0001
  • Pitts, J. Brian, 2008, “Why the Big Bang Singularity Does Not Help the Kalām Cosmological Argument for Theism”, The British Journal for the Philosophy of Science , 59(4): 675–708. doi:10.1093/bjps/axn032
  • Plantinga, Alvin, 1993, Warrant and Proper Function , New York: Oxford University Press. doi:10.1093/0195078640.001.0001
  • –––, 2000, Warranted Christian Belief , New York: Oxford University Press. doi:10.1093/0195131932.001.0001
  • –––, 2011, Where the Conflict Really Lies: Science, Religion, and Naturalism , Oxford/New York: Oxford University Press. doi:10.1093/acprof:oso/9780199812097.001.0001
  • Polkinghorne, John, 1998, Science and Theology: An Introduction , Minneapolis, MN: Fortress Press.
  • Popper, Karl, 1959, The Logic of Scientific Discovery , New York: Hutchinson.
  • Purzycki, Benjamin G. and Richard Sosis, 2022, Religion Evolving. Cultural, Cognitive, and Ecological Dynamics , Sheffield: Equinox.
  • Putz, Oliver, 2009, “Moral Apes, Human Uniqueness, and the Image of God”, Zygon: Journal of Religion and Science , 44(3): 613–624. doi:10.1111/j.1467-9744.2009.01019.x
  • Richter, Daniel, Rainer Grün, Renaud Joannes-Boyau, Teresa E. Steele, Fethi Amani, Mathieu Rué, Paul Fernandes, Jean-Paul Raynal, Denis Geraads, Abdelouahed Ben-Ncer, Jean-Jacques Hublin, and Shannon P. McPherron, 2017, “The Age of the Hominin Fossils from Jebel Irhoud, Morocco, and the Origins of the Middle Stone Age”, Nature , 546(7657): 293–296. doi:10.1038/nature22335
  • Rieux, Adrien, Anders Eriksson, Mingkun Li, Benjamin Sobkowiak, Lucy A. Weinert, Vera Warmuth, Andres Ruiz-Linares, Andrea Manica, and François Balloux, 2014, “Improved Calibration of the Human Mitochondrial Clock Using Ancient Genomes”, Molecular Biology and Evolution , 31(10): 2780–2792. doi:10.1093/molbev/msu222
  • Ritzinger, Justin R., 2013, “Dependent Co-evolution: Kropotkin’s Theory of Mutual Aid and its Appropriation by Chinese Buddhists”, Chung-Hwa Buddhist Journal , 26: 89–112. Reprinted 2020 in Asian Religious Responses to Darwinism , C. Mackenzie Brown (ed.), (Sophia Studies in Cross-Cultural Philosophy of Traditions and Cultures 33), Cham: Springer International Publishing, 319–336. doi:10.1007/978-3-030-37340-5_13
  • Rosenberg, Alex, 2014, “Disenchanted Naturalism” in Contemporary Philosophical Naturalism and its Implications , Bana Bashour and Hans D. Muller (eds.), London and New York: Routledge, pp. 17–36.
  • Russell, Robert, 2006, “Quantum Physics and the Theology of Non-Interventionist Objective Divine Action”, in The Oxford Handbook of Religion and Science , Philip Clayton and Zachary Simpson (eds.), Oxford: Oxford University Press, pp. 579–595.
  • Russell, Robert, Nancey Murphy, and William Stoeger, S.J. (eds.), 2008, Scientific Perspectives on Divine Action. Twenty Years of Challenge and Progress , Berkeley, CA: Vatican Observatory Publications; Center for Theology and the Natural Sciences.
  • Sarich, Vincent M. and Allan C. Wilson, 1967, “Immunological Time Scale for Hominid Evolution”, Science , 158(3805): 1200–1203. doi:10.1126/science.158.3805.1200
  • Saunders, Nicholas, 2002, Divine Action and Modern Science , Cambridge: Cambridge University Press. doi:10.1017/CBO9780511610035
  • Schliesser, Eric, 2012, “Newton and Spinoza: On Motion and Matter (and God, of Course): Newton and Spinoza”, The Southern Journal of Philosophy , 50(3): 436–458. doi:10.1111/j.2041-6962.2012.00132.x
  • Schneider, John R., 2012, “The Fall of ‘Augustinian Adam’: Original Fragility and Supralapsarian Purpose”, Zygon: Journal of Religion and Science , 47(4): 949–969. doi:10.1111/j.1467-9744.2012.01307.x
  • –––, 2020, Animal Suffering and the Darwinian Problem of Evil , Cambridge: Cambridge University Press. doi:10.1017/9781108767439
  • Smith, James K., 2017, “What Stands on the Fall? A Philosophical Exploration”, in Evolution and the Fall , William Cavanaugh and James K. Smith (eds.), Grand Rapids, MI: Eerdmans, pp. 48–64.
  • Smith, Jonathan Z., 1998, “Religion, religions, religious”, in Critical Terms for Religious Studies , M. C. Taylor (ed.), Chicago: University of Chicago Press, pp. 269–284.
  • Sollereder, Bethany, 2015, “A Modest Objection: Neo-Thomism and God as a Cause Among Causes”, Theology and Science , 13(3): 345–353. doi:10.1080/14746700.2015.1053762
  • Southgate, Christopher, 2008, The Groaning of Creation. God, Evolution and the Problem of Evil , Louisville, KY: Westminster John Knox Press.
  • Stark, Rodney, 1999, “Atheism, Faith, and the Social Scientific Study of Religion”, Journal of Contemporary Religion , 14(1): 41–62. doi:10.1080/13537909908580851
  • –––, 2004, For the Glory of God: How Monotheism Led to Reformations, Science, Witch-Hunts, and the End of Slavery , Princeton, NJ: Princeton University Press.
  • Stenmark, Mikael, 2004, How to Relate Science and Religion: A Multidimensional Model , Grand Rapids, MI: Eerdmans.
  • Subbarayappa, B.V., 2011, “Indic Religions” in Science and Religion around the World , John Hedley Brooke and Ron Numbers (eds.), New York: Oxford University Press, pp. 195–209.
  • Swinburne, Richard G., 1968, “Miracles”, The Philosophical Quarterly , 18(73): 320–328. doi:10.2307/2217793
  • Tanzella-Nitti, Giuseppe, 2005, “The Two Books Prior to the Scientific Revolution”, Perspectives on Science and Christian Faith , 57(3): 225–248.
  • Taylor, C.A., 1996, Defining Science: A Rhetoric of Demarcation , Madison, WI: University of Wisconsin Press.
  • Tennant, Frederick R., 1902, The Origin and Propagation of Sin , Cambridge: Cambridge University.
  • Teilhard de Chardin, Pierre, 1971, “Christology and Evolution”, written 1933, collected in Comment je crois , Paris: Editions du Seuil, 1969. Translated in Christianity and Evolution , Rene Hague (trans.), San Diego: Harcourt, pp. 76–95.
  • Torrance, Thomas F., 1969, Theological Science , London: Oxford University Press.
  • Tylor, Edward Burnett, 1871, Primitive Culture: Researches into the Development of Mythology, Philosophy, Religion, Language, Art, and Custom , London: John Murray.
  • Ungureanu, James, 2019, Science, Religion, and the Protestant Tradition: Retracing the Origins of Conflict, Pittsburgh, PA: University of Pittsburgh Press.
  • van Huyssteen, J. Wentzel, 1998, Duet or Duel? Theology and Science in a Postmodern World , London: SCM Press.
  • –––, 1999, The Shaping of Rationality: Towards Interdisciplinary in Theology and Science , Grand Rapids, MI: Eerdmans.
  • –––, 2006, Alone in the World? Human Uniqueness in Science and Theology , Göttingen: Vandenhoeck & Ruprecht.
  • van Inwagen, Peter, 2004, “The Argument from Evil”, in Christian Faith and the Problem of Evil , Peter van Inwagen (ed.), Grand Rapids, MI: Eerdmans, pp. 55–73.
  • Vivekananda, Swami, 1904, “The Vedanta for the World”, in Aspects of the Vedanta , Madras: Natesan & Co, pp. 124–160.
  • Whewell, William, 1834, “On the Connexion of the Physical Sciences. By Mrs. Somerville”, Quarterly Review , 51: 54–68.
  • White, Andrew Dickson, 1896, A History of the Warfare of Science with Theology in Christendom , New York: Appleton.
  • White, Claire, 2021, An Introduction to the Cognitive Science of Religion. Connecting Evolution, Brain, Cognition and Culture, Abingdon & New York: Routledge.
  • Wildman, Wesley, 2008, “The Divine Action Project, 1988–2003”, in Scientific Perspectives on Divine Action: Twenty Years of Challenge and Progress , Robert Russell, Nancey Murphy, and William Stoeger (eds.), Berkeley, CA: Vatican Observatory Publications; Center for Theology and the Natural Sciences, pp. 133–176.
  • Worrall, John, 2004, “Science Discredits Religion”, in Contemporary Debates in Philosophy of Religion , Michael L. Peterson and Raymond J. VanArragon (eds.), Malden, MA: Blackwell, pp. 59–72.
  • Clayton, Philip and Zachary Simpson (eds.), 2006, The Oxford Handbook of Religion and Science , Oxford/New York: Oxford University Press. doi:10.1093/oxfordhb/9780199543656.001.0001
  • Dixon, Thomas, G. N. Cantor, and Stephen Pumfrey (eds.), 2010, Science and Religion: New Historical Perspectives , Cambridge/New York: Cambridge University Press.
  • Fehige, Yiftach (ed.), 2016, Science and Religion: East and West , London: Routledge. doi:10.4324/9781315659831
  • Harrison, Peter (ed.), 2010, The Cambridge Companion to Science and Religion , Cambridge: Cambridge University Press. doi:10.1017/CCOL9780521885386
  • McGrath, Alister, 2020, Science and Religion: A New Introduction , third edition, Hoboken, NJ: Wiley-Blackwell.
  • Stump, J. B. and Alan G. Padgett (eds.), 2012, The Blackwell Companion to Science and Christianity , Chichester, UK: John Wiley & Sons. doi:10.1002/9781118241455
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Brown, Malcolm, 2008, “Good Religion Needs Good science”, Church of England web site. [ Brown 2008 available online (archived) ].
  • Hackett, Conrad, 2015, “By 2050, India to Have World’s Largest Populations of Hindus and Muslims”, 21 April 2015, Pew Research Center. [ Hackett 2015 available online ].
  • Mitelman, Geoffrey A., 2011, “Why Judaism Embraces Science”, HuffPost , 20 June 2011; reposted on Dialogue on Science, Ethics, and Religion web site. Mitelman 2011 available online
  • Pew Forum, 2021, “Most U.S. Jews Identify as Democrats, but Most Orthodox Are Republicans”, Pew Research Center’s Religion & Public Life Project, 4 May 2021. [ Pew Forum 2021 available online ]
  • Plantinga, Alvin, “Religion and Science”, Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.), URL = < https://plato.stanford.edu/archives/win2016/entries/religion-science/ >. [This was the previous entry on religion and science in the Stanford Encyclopedia of Philosophy — see the version history .]
  • Wikipedia article on the relationship between religion and science .
  • National Center for Science Education: Science and Religion .
  • Evolution Resources by Kenneth R. Miller .

Comte, Auguste | cosmological argument | Hume, David: on religion | teleology: teleological arguments for God’s existence | theology, natural and natural religion

Acknowledgments

Many thanks to Bryce Huebner, Evan Thompson, Meir-Simchah Panzer, Teri Merrick, Geoff Mitelman, Joshua Yuter, Katherine Dormandy, Isaac Choi, Egil Asprem, Johan De Smedt, Taede Smedes, H.E. Baber, Fabio Gironi, Erkki Kojonen, Andreas Reif, Raphael Neelamkavil, Hans Van Eyghen, and Nicholas Joll, for their feedback on an earlier version of this manuscript.

Copyright © 2022 by Helen De Cruz < helen . decruz @ slu . edu >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2023 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

A complex God: why science and religion can  co-exist

science and religion essay in english

Associate Professor of Physics, The University of Melbourne

Disclosure statement

Associate Professor Martin Sevior receives ARC funding to conduct experiments in fundamental particle physics at the KEK National accelerator Laboratory in Japan and the Large Hadron Collider at CERN, Switzerland. He is also an Elder and the congregation chair of St. Columbas Uniting Church in Balwyn, Victoria. This essay grew out of a series of lectures on the topic of "Intelligent and Intelligible Design" delivered at St. Columbas in 2008 with Professor Emeritus Reverend Harry Wardlaw, also of St. Columbas. Martin gratefully acknowledges many fruitful conversations with Harry.

University of Melbourne provides funding as a founding partner of The Conversation AU.

View all partners

science and religion essay in english

Science and religion are often cast as opponents in a battle for human hearts and minds.

But far from the silo of strict creationism and the fundamentalist view that evolution simply didn’t happen lies the truth: science and religion are complementary.

God cast us in his own image. We have free will and intelligence. Without science we could only ever operate at the whim of God.

Discussion of the idea that our universe is fundamentally intelligible is even more profound. Through science and the use of mathematical rules, we can and do understand how nature works.

The fact our universe is intelligible has profound implications for humankind and perhaps for the existence of God.

Does science work?

It’s very clear that science “works”. We can explain and predict how nature will behave over an extraordinary range of scales.

There are various limits to scientific understanding but, within these limits, science makes a complete and compelling picture.

We know that the universe was created 13.7 billion years ago. The “Big Bang” model of universal creation makes a number of very specific and numerical predictions which are observed and measured with high accuracy.

The Standard Model of Particle Physics employs something known as “Spontaneous Symmetry Breaking” to explain the strength of the laws of nature.

Within the Standard Model the strength of these laws are not predicted. At present our current best theory is that they arose “by chance”.

But these strengths have to be exquisitely fine-tuned in order for life to exist. How so?

The strength of the gravitational attraction must be tuned to ensure that the expansion of the universe is not too fast and not too slow.

It must be strong enough to enable stars and planets to form but not too strong, otherwise stars would burn through their nuclear fuel too quickly.

The imbalance between matter and anti-matter in the early Universe must be fine tuned to 12 orders of magnitude to create enough mass to form stars and galaxies.

The strength of the strong, weak and electromagnetic interactions must be finely-tuned to create stable protons and neutrons.

They must also be fine-tuned to enable complex nuclei to be synthesized in supernovae.

Finally the mass of the electron and the strength of the electromagnetic interaction must be tuned to provide the chemical reaction rates that enables life to evolve over the timescale of the Universe.

The fine tuning of gravitational attraction and electromagnetic interactions which allow the laws of nature to enable life to form are too clever to be simply a coincidence.

Is intelligent life special?

It has taken 4.5 billion years for humans to evolve on earth. This is more than 25% of the age of the universe itself.

We are the only intelligent life that has existed on the planet and we have only been here for 0.005% of the time the planet has been here.

This is a mere blink in the age of the galaxy. If some other intelligent life had emerged elsewhere in the galaxy before us, why haven’t we seen it here?

To me this is a strong argument that we are the first intelligent life in the galaxy.

science and religion essay in english

Designed for life

One interpretation of the collection of unlikely coincidences that lead to our existence is that a designer made the universe this way in order for it to create us; in other words, this designer created a dynamic evolving whole whose output is our creation.

Many take exception to this idea and argue instead that our universe is but one of an uncountable multitude that has happened to create us.

Other ideas are that there are as-yet unobserved principles of nature that will explain why the strengths of the forces are as they are.

To me, neither argument is in principle against an intelligent design.

The designer is simply clever enough to have devised either an evolving multitude of universes or to have devised a way to make our present universe create us.

Intelligible Design

We do know a lot about the design of the universe, so clearly the design is in good measure intelligible.

But why is it that we can understand nature so well?

One answer is that evolution favours organisms that can exploit their environment. Most organisms have a set of “wired” instructions passed from earlier generations.

Over the evolutionary history of Earth, organisms that can learn how to manipulate their surroundings have prospered.

Humans are not unique in this trait but we’re definitely the best at learning. So in other words nature has built us to understand the rules of nature.

Mathematics and science

All of this rests on the predictability which results from nature obeying rules. As we’ve learned about these rules we’ve discovered that they can be expressed in purely mathematical form.

Mathematics has a validity that is independent of its ability to describe nature and the universe.

One could imagine mathematics with its complex relationships being true outside of our universe and having the ability to exist outside it.

The outcome of humankind’s investigations into nature is science. And the fundamental tenet of science is that there is an objective reality which can be understood by anybody who is willing to learn.

A universe without laws?

The only way I can imagine a universe without rules is for every action to be the result of an off-screen director who controls all.

Such a thing is almost beyond comprehension as everything would need to be the result of premeditation.

Events would appear to occur by pure random chance. Furthermore the level of detail required for godly oversight is absolutely beyond human comprehension.

Each of the hundreds of billions of cells in our bodies operates within a complex set of biochemical reactions, all of which have to work individually and as well as collectively for just one human body to function.

So for a start our offscreen director would have to ensure that all these processes happen correctly for every one of the trillions of living organisms on earth.

We are all the stuff of the universe, absolutely embedded within, and subject to, the rules which govern nature. Because we’re self-aware, one can argue that the universe is self-aware.

Without an intelligible design it would be impossible for humans to have free will as all actions would be as a consequence of the will of the director. Free will is a fundamental element of Christian doctrine.

The Christian statement “God made man in His own image” implies both free will and intelligence for humans. Intelligible design is thus a necessary condition for the existence of a Christian God.

Given we are intelligent, we can imagine sharing this aspect with a God who made us in “His own image”.

Free will is only possible in a universe with rules and hence predictability.

Intelligence has application beyond our physical universe – which is indicative, but not proof of, God to me.

On the other hand, the existence of a God providing free will to humans requires the existence of science.

Otherwise we could only ever operate at the whim of God.

Science and religion go hand in hand.

We all know the subjective reality of experience. I personally feel the power of the redemption which is at the core of Christianity.

Each of us has access to that through our own free will to exercise choice.

This article is dedicated to the memory of Reverend Jim Martin.

Are science and religion compatible? Leave your views below.

  • Science and religion
  • Intelligent design

science and religion essay in english

Faculty of Law - Academic Appointment Opportunities

science and religion essay in english

Operations Manager

science and religion essay in english

Senior Education Technologist

science and religion essay in english

Audience Development Coordinator (fixed-term maternity cover)

science and religion essay in english

Lecturer (Hindi-Urdu)

Evolution Resources at the National Academies

  • Evolution and Society

Science and Religion

  • Definitions
  • Legal Issues

Introduction

Scientific and technological advances have had profound effects on human life. In the 19th century, most families could expect to lose one or more children to disease. Today, in the United States and other developed countries, the death of a child from disease is uncommon. Every day we rely on technologies made possible through the application of scientific knowledge and processes. The computers and cell phones which we use, the cars and airplanes in which we travel, the medicines that we take, and many of the foods that we eat were developed in part through insights obtained from scientific research. Science has boosted living standards, has enabled humans to travel into Earth’s orbit and to the moon, and has given us new ways of thinking about ourselves and the universe.

Evolutionary biology has been and continues to be a cornerstone of modern science. This booklet documents some of the major contributions that an understanding of evolution has made to human well-being, including its contributions to preventing and treating human disease, developing new agricultural products, and creating industrial innovations. More broadly, evolution is a core concept in biology that is based both in the study of past life forms and in the study of the relatedness and diversity of present-day organisms. The rapid advances now being made in the life sciences and in medicine rest on principles derived from an understanding of evolution. That understanding has arisen both through the study of an ever-expanding fossil record and, equally importantly, through the application of modern biological and molecular sciences and technologies to the study of evolution. Of course, as with any active area of science, many fascinating questions remain, and this booklet highlights some of the active research that is currently under way that addresses questions about evolution.

However, polls show that many people continue to have questions about our knowledge of biological evolution. They may have been told that scientific understanding of evolution is incomplete, incorrect, or in doubt. They may be skeptical that the natural process of biological evolution could have produced such an incredible array of living things, from microscopic bacteria to whales and redwood trees, from simple sponges on coral reefs to humans capable of contemplating life’s history on this planet. They may wonder if it is possible to accept evolution and still adhere to religious beliefs.

This Web site speaks to those questions. It is written to serve as a resource for people who find themselves embroiled in debates about evolution. It provides information about the role that evolution plays in modern biology and the reasons why only scientifically based explanations should be included in public school science courses. Interested readers may include school board members, science teachers and other education leaders, policymakers, legal scholars, and others in the community who are committed to providing students with quality science education. This site is also directed to the broader audience of high-quality school and college students as well as adults who wish to become more familiar with the many strands of evidence supporting evolution and to understand why evolution is both a fact and a process that accounts for the diversity of life on Earth.

Is Evolution a Theory or a Fact?

It is both. But that answer requires looking more deeply at the meanings of the words "theory" and "fact."

In everyday usage, "theory" often refers to a hunch or a speculation. When people say, "I have a theory about why that happened," they are often drawing a conclusion based on fragmentary or inconclusive evidence. The formal scientific definition of theory is quite different from the everyday meaning of the word. It refers to a comprehensive explanation of some aspect of nature that is supported by a vast body of evidence.

Many scientific theories are so well-established that no new evidence is likely to alter them substantially. For example, no new evidence will demonstrate that the Earth does not orbit around the sun (heliocentric theory), or that living things are not made of cells (cell theory), that matter is not composed of atoms, or that the surface of the Earth is not divided into solid plates that have moved over geological timescales (the theory of plate tectonics). Like these other foundational scientific theories, the theory of evolution is supported by so many observations and confirming experiments that scientists are confident that the basic components of the theory will not be overturned by new evidence. However, like all scientific theories, the theory of evolution is subject to continuing refinement as new areas of science emerge or as new technologies enable observations and experiments that were not possible previously.

One of the most useful properties of scientific theories is that they can be used to make predictions about natural events or phenomena that have not yet been observed. For example, the theory of gravitation predicted the behavior of objects on the moon and other planets long before the activities of spacecraft and astronauts confirmed them. The evolutionary biologists who discovered Tiktaalik predicted that they would find fossils intermediate between fish and limbed terrestrial animals in sediments that were about 375 million years old. Their discovery confirmed the prediction made on the basis of evolutionary theory. In turn, confirmation of a prediction increases confidence in that theory.

In science, a "fact" typically refers to an observation, measurement, or other form of evidence that can be expected to occur the same way under similar circumstances. However, scientists also use the term "fact" to refer to a scientific explanation that has been tested and confirmed so many times that there is no longer a compelling reason to keep testing it or looking for additional examples. In that respect, the past and continuing occurrence of evolution is a scientific fact. Because the evidence supporting it is so strong, scientists no longer question whether biological evolution has occurred and is continuing to occur. Instead, they investigate the mechanisms of evolution, how rapidly evolution can take place, and related questions.

Compatibility

Science is not the only way of knowing and understanding. But science is a way of knowing that differs from other ways in its dependence on empirical evidence and testable explanations. Because biological evolution accounts for events that are also central concerns of religion — including the origins of biological diversity and especially the origins of humans — evolution has been a contentious idea within society since it was first articulated by Charles Darwin and Alfred Russel Wallace in 1858.

Acceptance of the evidence for evolution can be compatible with religious faith. Today, many religious denominations accept that biological evolution has produced the diversity of living things over billions of years of Earth’s history. Many have issued statements observing that evolution and the tenets of their faiths are compatible. Scientists and theologians have written eloquently about their awe and wonder at the history of the universe and of life on this planet, explaining that they see no conflict between their faith in God and the evidence for evolution. Religious denominations that do not accept the occurrence of evolution tend to be those that believe in strictly literal interpretations of religious texts.

Science and religion are based on different aspects of human experience. In science, explanations must be based on evidence drawn from examining the natural world. Scientifically based observations or experiments that conflict with an explanation eventually must lead to modification or even abandonment of that explanation. Religious faith, in contrast, does not depend only on empirical evidence, is not necessarily modified in the face of conflicting evidence, and typically involves supernatural forces or entities. Because they are not a part of nature, supernatural entities cannot be investigated by science. In this sense, science and religion are separate and address aspects of human understanding in different ways. Attempts to pit science and religion against each other create controversy where none needs to exist.

Religious Leader Statements

Excerpts of Statements by Religious Leaders Who See No Conflict Between Their Faith and Science  

Many religious denominations and individual religious leaders have issued statements acknowledging the occurrence of evolution and pointing out that evolution and faith do not conflict.

"[T]here is no contradiction between an evolutionary theory of human origins and the doctrine of God as Creator."   — General Assembly of the Presbyterian Church

"[S]tudents' ignorance about evolution will seriously undermine their understanding of the world and the natural laws governing it, and their introduction to other explanations described as 'scientific' will give them false ideas about scientific methods and criteria."   — Central Conference of American Rabbis

"In his encyclical  Humani Generis  (1950), my predecessor Pius XII has already affirmed that there is no conflict between evolution and the doctrine of the faith regarding man and his vocation, provided that we do not lose sight of certain fixed points…. Today, more than a half-century after the appearance of that encyclical, some new findings lead us toward the recognition of evolution as more than an hypothesis. In fact it is remarkable that this theory has had progressively greater influence on the spirit of researchers, following a series of discoveries in different scholarly disciplines. The convergence in the results of these independent studies — which was neither planned nor sought — constitutes in itself a significant argument in favor of the theory.”   — Pope John Paul II, Message to the Pontifical Academy of Sciences, October 22, 1996.

"We the undersigned, Christian clergy from many different traditions, believe that the timeless truths of the Bible and the discoveries of modern science may comfortably coexist. We believe that the theory of evolution is a foundational scientific truth, one that has stood up to rigorous scrutiny and upon which much of human knowledge and achievement rests. To reject this truth or to treat it as 'one theory among others' is to deliberately embrace scientific ignorance and transmit such ignorance to our children. We believe that among God's good gifts are human minds capable of critical thought and that the failure to fully employ this gift is a rejection of the will of our Creator…. We urge school board members to preserve the integrity of the science curriculum by affirming the teaching of the theory of evolution as a core component of human knowledge. We ask that science remain science and that religion remain religion, two very different, but complementary, forms of truth."   — "The Clergy Letter Project"  signed by more than 10,000 Christian clergy members.

Scientist Statements

Excerpts of Statements by Scientists Who See No Conflict Between Their Faith and Science

Scientists, like people in other professions, hold a wide range of positions about religion and the role of supernatural forces or entities in the universe. Some adhere to a position known as scientism, which holds that the methods of science alone are sufficient for discovering everything there is to know about the universe. Others ascribe to an idea known as deism, which posits that God created all things and set the universe in motion but no longer actively directs physical phenomena. Others are theists, who believe that God actively intervenes in the world. Many scientists who believe in God, either as a prime mover or as an active force in the universe, have written eloquently about their beliefs.

"Creationists inevitably look for God in what science has not yet explained or in what they claim science cannot explain. Most scientists who are religious look for God in what science does understand and has explained." — Kenneth Miller, professor of biology at Brown University and author of Finding Darwin’s God: A Scientist’s Search for Common Ground Between God and Religion. Quote is excerpted from an interview available  here .

"In my view, there is no conflict in being a rigorous scientist and a person who believes in a God who takes a personal interest in each one of us. Science’s domain is to explore nature. God’s domain is in the spiritual world, a realm not possible to explore with the tools and language of science. It must be examined with the heart, the mind, and the soul." — Francis Collins, director of the Human Genome Project and of the National Human Genome Research Institute at the National Institutes of Health. Excerpted from his book, The Language of God: A Scientist Presents Evidence for Belief (p. 6).

"Our scientific understanding of the universe … provides for those who believe in God a marvelous opportunity to reflect upon their beliefs." — Father George Coyne, Catholic priest and former director of the Vatican Observatory. Quote is from a talk,  "Science Does Not Need God, or Does It? A Catholic Scientist Looks at Evolution,"  at Palm Beach Atlantic University, January 31, 2006.

Creationist Perspectives

Creationist views reject scientific findings and methods.

Advocates of the ideas collectively known as "creationism" and, recently, "intelligent design creationism" hold a wide variety of views. Most broadly, a "creationist" is someone who rejects natural scientific explanations of the known universe in favor of special creation by a supernatural entity. Creationism in its various forms is not the same thing as belief in God because, as was discussed earlier, many believers as well as many mainstream religious groups accept the findings of science, including evolution. Nor is creationism necessarily tied to Christians who interpret the Bible literally. Some non-Christian religious believers also want to replace scientific explanations with their own religion's supernatural accounts of physical phenomena.

In the United States, various views of creationism typically have been promoted by small groups of politically active religious fundamentalists who believe that only a supernatural entity could account for the physical changes in the universe and for the biological diversity of life on Earth. But even these creationists hold very different views. Some, known as "young Earth" creationists, believe the biblical account that the universe and the Earth were created just a few thousand years ago. Proponents of this form of creationism also believe that all living things, including humans, were created in a very short period of time in essentially the forms in which they exist today. Other creationists, known as "old Earth" creationists, accept that the Earth may be very old but reject other scientific findings regarding the evolution of living things.

No scientific evidence supports these viewpoints. On the contrary, as discussed earlier, several independent lines of evidence indicate that the Earth is about 4.5 billion years old and that the universe is about 14 billion years old. Rejecting the evidence for these age estimates would mean rejecting not just biological evolution but also fundamental discoveries of modern physics, chemistry, astrophysics, and geology.

Some creationists believe that Earth's present form and the distribution of fossils can be explained by a worldwide flood. But this claim also is at odds with observations and evidence understood scientifically. The belief that Earth's sediments, with their fossils, were deposited in a short period does not accord either with the known processes of sedimentation or with the estimated volume of water needed to deposit sediments on the top of some of Earth's highest mountains.

Creationists sometimes cite what they claim to be an incomplete fossil record as evidence that living things were created in their modern forms. But this argument ignores the rich and extremely detailed record of evolutionary history that paleontologists and other biologists have constructed over the past two centuries and are continuing to construct. Paleontological research has filled in many of the parts of the fossil record that were incomplete in Charles Darwin's time. The claim that the fossil record is "full of gaps" that undermine evolution is simply false. Indeed, paleontologists now know enough about the ages of sediments to predict where they will be able to find particularly significant transitional fossils, as happened with Tiktaalik and the ancestors of modern humans. Researchers also are using new techniques, such as computed axial tomography (CT), to learn even more about the internal structures and composition of delicate bones of fossils. Exciting new discoveries of fossils continue to be reported in both the scientific literature and popular media.

Another compelling feature of the fossil record is its consistency. Nowhere on Earth are fossils from dinosaurs, which went extinct 65 million years ago, found together with fossils from humans, who evolved in just the last few million years. Nowhere are the fossils of mammals found in sediments that are more than about 220 million years old. Whenever creationists point to sediments where these relationships appear to be altered or even reversed, scientists have clearly demonstrated that this reversal has resulted from the folding of geological strata over or under others. Sediments containing the fossils of only unicellular organisms appear earlier in the fossil record than do sediments containing the remains of both unicellular and multicellular organisms. The sequence of fossils across Earth's sediments points unambiguously toward the occurrence of evolution.

Creationists sometimes argue that the idea of evolution must remain hypothetical because "no one has ever seen evolution occur." This kind of statement also reveals that some creationists misunderstand an important characteristic of scientific reasoning. Scientific conclusions are not limited to direct observation but often depend on inferences that are made by applying reason to observations. Even with the launch of Earth-orbiting spacecraft, scientists could not directly see the Earth going around the Sun. But they inferred from a wealth of independent measurements that the Sun is at the center of the solar system. Until the recent development of extremely powerful microscopes, scientists could not observe atoms, but the behavior of physical objects left no doubt about the atomic nature of matter. Scientists hypothesized the existence of viruses for many years before microscopes became powerful enough to see them.

Thus, for many areas of science, scientists have not directly observed the objects (such as genes and atoms) or the phenomena (such as the Earth going around the Sun) that are now well-established facts. Instead, they have confirmed them indirectly by observational and experimental evidence. Evolution is no different. Indeed, for the reasons described in this booklet, evolutionary science provides one of the best examples of a deep understanding based on scientific reasoning.

This contention that nobody has seen evolution occurring further ignores the overwhelming evidence that evolution has taken place and is continuing to occur. The annual changes in influenza viruses and the emergence of bacteria resistant to antibiotics are both products of evolutionary forces. Another example of ongoing evolution is the appearance of mosquitoes resistant to various insecticides, which has contributed to a resurgence of malaria in Africa and elsewhere. The transitional fossils that have been found in abundance since Darwin's time reveal how species continually give rise to successor species that, over time, produce radically changed body forms and functions. It also is possible to directly observe many of the specific processes by which evolution occurs. Scientists regularly do experiments using microbes and other model systems that directly test evolutionary hypotheses.

Creationists reject such scientific facts in part because they do not accept evidence drawn from natural processes that they consider to be at odds with the Bible. But science cannot test supernatural possibilities. To young Earth creationists, no amount of empirical evidence that the Earth is billions of years old is likely to refute their claim that the world is actually young but that God simply made it appear to be old. Because such appeals to the supernatural are not testable using the rules and processes of scientific inquiry, they cannot be a part of science.

Intelligent Design

"Intelligent design" creationism is not supported by scientific evidence.

Some members of a newer school of creationists have temporarily set aside the question of whether the solar system, the galaxy, and the universe are billions or just thousands of years old. But these creationists unite in contending that the physical universe and living things show evidence of "intelligent design." They argue that certain biological structures are so complex that they could not have evolved through processes of undirected mutation and natural selection, a condition they call "irreducible complexity." Echoing theological arguments that predate the theory of evolution, they contend that biological organisms must be designed in the same way that a mousetrap or a clock is designed - that in order for the device to work properly, all of its components must be available simultaneously. If one component is missing or changed, the device will fail to operate properly. Because even such "simple" biological structures as the flagellum of a bacterium are so complex, proponents of intelligent design creationism argue that the probability of all of their components being produced and simultaneously available through random processes of mutation are infinitesimally small. The appearance of more complex biological structures (such as the vertebrate eye) or functions (such as the immune system) is impossible through natural processes, according to this view, and so must be attributed to a transcendent intelligent designer.

However, the claims of intelligent design creationists are disproven by the findings of modern biology. Biologists have examined each of the molecular systems claimed to be the products of design and have shown how they could have arisen through natural processes. For example, in the case of the bacterial flagellum, there is no single, uniform structure that is found in all flagellar bacteria. There are many types of flagella, some simpler than others, and many species of bacteria do not have flagella to aid in their movement. Thus, other components of bacterial cell membranes are likely the precursors of the proteins found in various flagella. In addition, some bacteria inject toxins into other cells through proteins that are secreted from the bacterium and that are very similar in their molecular structure to the proteins in parts of flagella. This similarity indicates a common evolutionary origin, where small changes in the structure and organization of secretory proteins could serve as the basis for flagellar proteins. Thus, flagellar proteins are not irreducibly complex.

Evolutionary biologists also have demonstrated how complex biochemical mechanisms, such as the clotting of blood or the mammalian immune system, could have evolved from simpler precursor systems. With the clotting of blood, some of the components of the mammalian system were present in earlier organisms, as demonstrated by the organisms living today (such as fish, reptiles, and birds) that are descended from these mammalian precursors. Mammalian clotting systems have built on these earlier components.

Existing systems also can acquire new functions. For example, a particular system might have one task in a cell and then become adapted through evolutionary processes for different use. The Hox genes (described in the box on page 30) are a prime example of evolution finding new uses for existing systems. Molecular biologists have discovered that a particularly important mechanism through which biological systems acquire additional functions is gene duplication. Segments of DNA are frequently duplicated when cells divide, so that a cell has multiple copies of one or more genes. If these multiple copies are passed on to offspring, one copy of a gene can serve the original function in a cell while the other copy is able to accumulate changes that ultimately result in a new function. The biochemical mechanisms responsible for many cellular processes show clear evidence for historical duplications of DNA regions.

In addition to its scientific failings, this and other standard creationist arguments are fallacious in that they are based on a false dichotomy. Even if their negative arguments against evolution were correct, that would not establish the creationists' claims. There may be alternative explanations. For example, it would be incorrect to conclude that because there is no evidence that it is raining outside, it must be sunny. Other explanations also might be possible. Science requires testable evidence for a hypothesis, not just challenges against one's opponent. Intelligent design is not a scientific concept because it cannot be empirically tested.

Creationists sometimes claim that scientists have a vested interest in the concept of biological evolution and are unwilling to consider other possibilities. But this claim, too, misrepresents science. Scientists continually test their ideas against observations and submit their work to their colleagues for critical peer review of ideas, evidence, and conclusions before a scientific paper is published in any respected scientific journal. Unexplained observations are eagerly pursued because they can be signs of important new science or problems with an existing hypothesis or theory. History is replete with scientists challenging accepted theory by offering new evidence and more comprehensive explanations to account for natural phenomena. Also, science has a competitive element as well as a cooperative one. If one scientist clings to particular ideas despite evidence to the contrary, another scientist will attempt to replicate relevant experiments and will not hesitate to publish conflicting evidence. If there were serious problems in evolutionary science, many scientists would be eager to win fame by being the first to provide a better testable alternative. That there are no viable alternatives to evolution in the scientific literature is not because of vested interests or censorship but because evolution has been and continues to be solidly supported by evidence.

The potential utility of science also demands openness to new ideas. If petroleum geologists could find more oil and gas by interpreting the record of sedimentary rocks (where deposits of oil and natural gas are found) as having resulted from a single flood, they would certainly favor the idea of such a flood, but they do not. Instead, petroleum geologists agree with other geologists that sedimentary rocks are the products of billions of years of Earth's history. Indeed, petroleum geologists have been pioneers in the recognition of fossil deposits that were formed over millions of years in such environments as meandering rivers, deltas, sandy barrier beaches, and coral reefs.

The arguments of creationists reverse the scientific process. They begin with an explanation that they are unwilling to alter - that supernatural forces have shaped biological or Earth systems - rejecting the basic requirements of science that hypotheses must be restricted to testable natural explanations. Their beliefs cannot be tested, modified, or rejected by scientific means and thus cannot be a part of the processes of science.

Evolution and Creationism in Schools

The pressure to downplay evolution or emphasize nonscientific alternatives in public schools compromises science education.

Despite the lack of scientific evidence for creationist positions, some advocates continue to demand that various forms of creationism be taught together with or in place of evolution in science classes. Many teachers are under considerable pressure from policy makers, school administrators, parents, and students to downplay or eliminate the teaching of evolution. As a result, many U.S. students lack access to information and ideas that are both integral to modern science and essential for making informed, evidence-based decisions about their own lives and our collective future.

Regardless of the careers that they ultimately select, to succeed in today's scientifically and technologically sophisticated world, all students need a sound education in science. Many of today's fast-growing and high-paying jobs require a familiarity with the core concepts, applications, and implications of science. To make informed decisions about public policies, people need to know how scientific evidence supports those policies and whether that evidence was gathered using well-established scientific practice and principles. Learning about evolution is an excellent way to help students understand the nature, processes, and limits of science in addition to concepts about this fundamentally important contribution to scientific knowledge.

Given the importance of science in all aspects of modern life, the science curriculum should not be undermined with nonscientific material. Teaching creationist ideas in science classes confuses what constitutes science and what does not. It compromises the objectives of public education and the goal of a high-quality science education.

Religion and Science: Similarities and Differences Research Paper

Science and religion, similarities, differences, works cited.

Religion has been part of humankind for generations. In fact, some theorists believe that it began with the origin of man. Reasonably so, western realistic science has been around since the 16 th century. Science has been linked to secularism as religious resurgence take shape in most parts of the world. It is quite necessary to note that links between science and religion have been somewhat confusing.

For instance, while some theorists believe that God created the universe, others think that everything is science. Moreover, others have varied theories, which complicate this debate further. For instance, religion is divided into several groups with varying concepts and understanding of God. This further complicates efforts of concord between science and religion. In addition, science is faced with several unanswered questions.

In essence, the science/religion debate is complex, tumultuous and many-faceted in its approach. Moreover, religion has a huge obstacle that separates theists from atheists. This paper will establish links between theist religions and science. It will also endeavor to compare and contrast these links (Hallman 15).

Scientists have postulated that nature is always objective. This gives them the urge to keep research and empirical studies for truths and beliefs on successful science. Moreover, theorists have established that science does not necessarily follow moral judgments. This is mainly because it depends on empirical studies and therefore, it must be tested for success.

Other theorists like Walther Nernst have postulated that science requires a boundless universe and in the process demeans big bang theory. Still others have postulated that credible knowledge can only be ascertained by interpreting nature. In essence, scientists propose that there are links between science, its objectives and conditions for success.

In addition, science is believed to have emerged with Copernican revolution. This enabled scientist to understand that earth is just one of the numerous planets in universe. This has enabled people to make assumptions based on experiences or observations. However, if recent observations are anything to go by, then more is yet to be discovered in cosmos (Hallman 15).

Science can be describes as a methodical enterprise that creates and organize facts in form of empirical prediction and explanations concerning space. It dwells on empirical observations and tries to come up with explanations as well as laws governing such observations. Science is sometimes linked to philosophy as they try to establish facts about the universe. Modernism has changed the meaning of science as it describes ways of acquiring knowledge.

In this regard, science tries to define nature and its law. It works to establish times and exact modifications that have occurred over the years. Moreover, it tries to explain origin of the universe. Of great concern in this field have been physical and natural science. This has led to division of the broad field of science and philosophy into various disciplines.

The disciplines include physics, biology chemistry and geology. Still there are other disciplines such as political and information or library science which link more to philosophy than applied science. In essence, science has emerged as a wide field of study with numerous disciplines (Hallman 15).

Science has been instrumental in revitalization of modern world. In fact, empirical research and observations have been integral in defining science. New technologies have come up with technologies that link the globe.

These are areas of strong links to human beliefs. No wonder most atheists have considered science to be a component of their belief system. Over the years, science has been divided into two broad categories. These are social science and natural science. Even though science existed in the ancient times, its success has never been as it is today.

This is mainly because of the attributions it has brought to modern world. Its empirical methods have been utilized since the middle ages. However, modern science, which can be traced back to 16 th century, revolutionized the world. This has led to scientific revolution in virtually every aspect of science (Whitehead 244).

Clearly, science has undergone significant changes over the years. However, its fundamentals apply to modern technology. For instance, experimental science has been used to establish building blocks for laws of nature. Every scientific method is usually linked to one or more basic assumptions.

These include the fact that rational observers share an objective reality. They also assume that the said objective reality follows laws of nature, which are established through experimentation and observation. These concepts have brought about terms like realism, anti-realism, empiricism, inductivism, bayesianism and idealism, among others. Science encompasses basic and applied research.

The latter is done when employing a given scientific idea on a problem while the former involves research undertaken out of curiosity. Other means of research are through experimentation and hypothesizing. This enables scientists to develop models aimed at testing specific hypothesis.

Science also encompasses certainty principle, which is usually empirical. This opens it up to falsification. In general, science tries to explain occurrences and happenings just as religion does. However, it does it through empirical methodologies as opposed to religion (Whitehead 244).

Religion can be described as a collection of worldviews, belief and cultural systems, which establish links between humanity and spirituality. This is sometimes extended to morality. Virtually all religion systems have narratives that establish their lifestyles and beliefs. Moreover, they have traditions and symbols established to be followed by all believers.

In order to give relevant meaning to universe or life, they usually have historical accounts, which are considered sacred and worthwhile to believers. Religion is usually a public aspect and differs from private belief by individuals. In essence, a belief becomes religion when many people share it even if established without scientific backing. Virtually all religions have organized structures and behavior that define role of each member within the congregation.

They also have definition of membership and its components. They usually have regular meetings for prayers, sharing of scriptures like in Christianity and Islam, among others. It is also important to note that practice of religion entails commemoration, sermons, parties, sacrifices, feasts, music and public service, among others (Einstein 1).

There are different forms of religion throughout the world. However, most of them, if not all, revere to some special being as their creator. These include Christianity, Islam, Judaism, Buddhism and Sikhism, among others. Primarily, Christianity forms the largest of all religious factions worldwide. Islam follows them, among others.

Most of these religions believe in life after death. They also believe in an all-powerful God, who is omnipresent, omnipotent among other excellent descriptions. Each group believes that their God created the world and all that is in it. Therefore, they revere to Him for spiritual guidance and forgiveness. They also believe that God is all-knowing and therefore understands science beyond reproach. In fact, Christians and Muslims believe that God created the universe and all that is in it.

Moreover, they believe that God has a purpose for their lives and future. Historical accounts have been made of the origin of forms of religions with prominent leaders directing their path. For instance Islam refer to Mohamed as leader of Islam, Christianity on the other hand refer to Jesus as their savior. In effect, religions clash in both ideas and conflict as has been witnessed over the years between Christianity and Islam (Einstein 1).

Religion is believed to have begun with the origin of humankind. However, its development has taken diverse forms in various cultures. In fact, even a single form of religion has been found to have some differences depending on the region in which it is practiced. For instance, Christianity has taken different forms in different areas.

Diversity has led to break up between denominations as they seek what they believe. This trend has not spared Islam, which has witnessed its own differences between the Sunni and other factions. While some religions believe that their laws are binding to everyone, others have taken a different approach. Others have emphasized practice and experience while others emphasize belief.

It is also important to note that religion has been associated with most public institutions such as schools, political hierarchies and hospitals, among others. In essence, regions have taken various forms in its development. This has led to alienation of some groups as other continue to press for their beliefs (Einstein 1).

Most religions believe that they descended from Abraham. These include Judaism, Christianity, Islam, Baha’i, Samaritanism, Rastafari movement and Druze, among others. Those that believe in incarnations include Indian religions like Hinduism, Jainism, Buddhism and Sikhism, among others.

Religion have been divided to two main categories namely Universal and ethnic religions. While the former seeks universal acceptance, the latter is mainly associated with ethnic groups and rarely seek new converts. Some theorists have also suggested that all religions be considered as ethnic since they are drawn from a given culture. Recent events have seen efforts of cooperation within religious groups.

This is mainly pursued in western cultures as was seen in 1893 at Chicago. Several initiatives have been hatched between different religions factions, for instance, Christian-Jewish reconciliation. In essence, Religion has a history of conflict and dominance. Most of them seek universal acceptance and work towards uniform values for everyone in the globe (Whitehead 244).

Science and religion has been the subject of major debates worldwide. This is mainly because of the numerous conflicting ideas they have had. Since science tries to establish explanations for existence, form and texture, among others properties, it emphasizes on empirical and experimental idealism.

On the other hand, religion believes in teachings of their God without questioning or demanding empirical research on ideas. Scientists have found it difficult to explain some religious beliefs like creation. This has invigorated debate on facts and principles behind creation as is believed by religion. Another aspect of debate between religion and science is on miracles.

This has been contentious especially because scientists do not see any relation between miracles and nature. For instance, Christians believe that Jesus fed thousand s of people with just a handful of fish and bread. In science, this is considered fiction and it can never tally since it defies principles of nature. For this reason, the two fields have always differed (Plantinga 1).

Several theorists such as Anon and Atkins have differed in their reference of science and religion. For instance, Anon believes that true religion and science are in harmony because they both try to describe reality. On the other hand, Atkins feels that they are completely incompatible. The main debate that differentiates scientists from conservative Christians is about principles, which are said to control science. In essence, the battleground between religion and science is on philosophy of science.

For instance, most Christians in United States believe that earth is 6000 years old while, scientists believe that the information is far fetched. In their defense, they mention the bible and scientific records respectively. Generally, main topics of variance are on humanity, the earth, universe and other species. Differences occur mainly because each side bases fundamental on assumptions, which differ in each case (Plantinga 1).

Scientists build their knowledge from scientific methods. This helps them gain an increasing understanding of nature. Usually, they derive their theories in the following steps: Observation of new, unusual, or unexpected things, gathering of evidence concerning that phenomenon. The next step involves creating hypothesis (one or more) using methods such as trial and error, analytical methods or intuition, designing test that would provide foreseeable results in case the hypothesis is true and conducting that test.

In case the hypothesis is null, they usually go back to gather more information on that phenomenon. However, if it is true, then they publish it in peer-reviewed journals where other scientists can tests their results. On the other hand, religions do not go through steps, in fact, their quest for truth is usually complex.

This is mainly because a congregation only believes its religion’s teachings. Each religion takes their belief system to be the standard, leading to more confusion and complexities. For instance, origin of universe has created confusion. This is because Jainism believes that it was not created, on the other hand, other religions like Islam and Christianity as well as Judaism, among others, believes that it was created (Plantinga 1).

One similarity that comes from both religion and science is the fact that pioneers of modern science were Christians. In essence, as much as they established scientific laws of nature, they showed reverence for God and believed that the gifts were from Him. In that sense, it could be said that God was the Chief scientist in their lives.

These pioneers included Isaac Newton, Copernicus, Kepler, Galileo and Boyle, among others. Moreover, theorists like Foster and Ratzsch empirical science was quite similar to theist belief. This is mainly because theist religions embraced concept of creation, which states that God created the universe and human beings.

Moreover, the doctrine says that God created man in his own image, which makes God a person with likes and dislikes as humans. In this sense, God has created man in his image so that they may understand the world. In scientific terms, humans grow in intellect to know the world. Therefore from this perspective, it is clear that the two concord (Plantinga 1).

Another similarity that is seen between religion and science is contingent. Since God is omnipresent, omnipotent, loving and good, He therefore must exist in every part of the world at any time. However, he is not obliged to create the world; in fact, He does this on a free will.

Moreover, he is not obliged to create in particular manner. Therefore, we find that He creates contingent things, out of a free will. This is similar to empirical character in modern science, in which knowledge comes from memory, perception and empirical science methods. In this regard, theist belief is seen to support science in that people learn from experiments and observations. This is common in theist belief, where those who grow in faith learn from observations and experiences of others (Plantinga 1).

Alternative agreement comes in the concepts and factors that hold universe together. For instance, force of gravity, which holds the earth in its place and stars.

In case they were to change by some margin, the world would most definitely collapse. This is seen to agree with theist belief that God created the universe with specific intentions of how things are controlled in intellectual life. This dispels possibility of the world being by chance since these fundamentals are held at some specific values to permit life on earth.

If things happened by chance as atheists propose then the world would crumble at any moment, in this sense, both science and religion concord. Moreover, it is highly unlikely that the world would just permit life on earth and not on other planets. The probability of this happening is very low as compared to that of a regulator that fine-tunes earth to permit life (Whitehead 244).

Science has numerous discords with religion. This starts with the mode of assumptions or belief. For instance, scientists believe that things occur out of natural processes. They derive this from scientific method, which is utilized in all cases. On the other hand, religions base their beliefs on scriptures. For instance, Christians believe that the sun stood still during the time of Joshua. Under scientific methods, this is a violation of scientific methods, and according to science, it would have led to collapse of the world.

In essence, science only works on assumptions from scientific methods. Other situations that contribute to this debate are events such as Jesus walking on water, which according to science, is impossible. Moreover, his ascendance to heaven is heavily disputed since scientist belief that one needs a force that would overcome the force of gravity to ascend. These, among others have caused heavy debates on the two principles (Hallman 15).

Another subject of debate that discords scientific belief is creation. According to Darwinian Theory of evolution, among others, the world was not created. The theory conflicts religious belief, which postulates that God created the world and everything in it. Moreover, religion believes that the earth is 6000 years old, another point of discord from evolution theory, which postulates that the world is millions of years old.

In addition, evolution theory postulates that human beings descended from apes through evolution, this is quite different from theist belief that human were created by God in His own likeness. Evolution theory goes further to postulate origins of plants and animals which conflicts religious belief that God created all things, including both plants and animals (Robinson 1).

Other areas of discord include abortion, which religious belief shuns, while science allows. Homosexuality is another area of conflict between science and religion. While religion considers it an abomination, science argues that it is another from of sexuality. In essence, science does not care about morality or values. On the other hand, religion derives its fundamentals from good morals and values. Belief in life after death has also been debatable even among religious factions.

These beliefs continue to widen the path between science and religion. It is not clear whether science will end up coming to religious belief since it is difficult to establish what exactly caused evolution or the big bang theory and why it is not a continuing process in which more earths and people are made (Lovgren 1).

Science and religion have had several similarities and differences over the years. However, it has never been as striking as that of modern science and religion. Scientist in the ancient times professed some form of faith; however, this rarely happens in modern context. Delicate issues such as creation, homosexuality, abortion, morality, miracles, laws of nature, existence of an all knowing, powerful God and cosmology, among others, have been the subjects of discord between science and religion.

On the other hand, some scientists have acknowledged existence of God and His unique abilities that prove creation as a possibility. For instance, pioneers of scientific laws were Christians. Nonetheless, it remains to be seen if the two beliefs will concur. However, if current issues are anything to go by, it is becoming increasingly difficult for the theories to concord (Einstein 1).

Einstein, Albert. “ Religion and Science ”. sacred-texts.com . Sacred Texts, 2011. Web.

Hallman, Max. Traversing Philosophical boundaries . 4 th ed. Stamford: Cengage Learning, 2010. Print.

Lovgren, Stefan. “Evolution and Religion Can Coexist, Scientists Say”. news.nationalgeographic.com . National geographic News. Web.

Plantinga, Alvin. “ Religion and Science “. The Stanford Encyclopedia of Philosophy . Web.

Robinson, Bruce. “Science vs. religion: Conflicts between conservative Christianity and scientific findings”. religioustolerance. Religious Tolerance. Web.

Whitehead, Alfred. Science and the Modern World: Science and Religion . Cambridge: Cambridge University Press, 2011. Print.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, January 20). Religion and Science: Similarities and Differences. https://ivypanda.com/essays/science-and-religion/

"Religion and Science: Similarities and Differences." IvyPanda , 20 Jan. 2024, ivypanda.com/essays/science-and-religion/.

IvyPanda . (2024) 'Religion and Science: Similarities and Differences'. 20 January.

IvyPanda . 2024. "Religion and Science: Similarities and Differences." January 20, 2024. https://ivypanda.com/essays/science-and-religion/.

1. IvyPanda . "Religion and Science: Similarities and Differences." January 20, 2024. https://ivypanda.com/essays/science-and-religion/.

Bibliography

IvyPanda . "Religion and Science: Similarities and Differences." January 20, 2024. https://ivypanda.com/essays/science-and-religion/.

  • Moral Position of Religious Education in Schools
  • Theism in a Postmodern World Review
  • Mackie’s Argument on Evil and Omnipotence
  • The Importance of Studying Creation and Evolution Theories for a Christian
  • Debate Over God's Existence
  • The Major World Religions: Islam and Christianity
  • The Nature and Essence of Islam
  • Judaism, Islam and Christianity: Differences and Similarities
  • Christianity, Islam, and Judaism Perspectives on God
  • Difference Between Islam and Christianity Essay
  • Misconceptions About Buddhism
  • Three Major Religious Orientations
  • Outline of Augustine's 'Confessions'
  • Methods of Evangelism
  • Creationism vs. Evolution

Read our research on: Gun Policy | International Conflict | Election 2024

Regions & Countries

science and religion essay in english

On the Intersection of Science and Religion

Over the centuries, the relationship between science and religion has ranged from conflict and hostility to harmony and collaboration, while various thinkers have argued that the two concepts are inherently at odds and entirely separate .

But much recent research and discussion on these issues has taken place in a Western context, primarily through a Christian lens. To better understand the ways in which science relates to religion around the world, Pew Research Center engaged a small group of Muslims, Hindus and Buddhists to talk about their perspectives. These one-on-one, in-depth interviews took place in Malaysia and Singapore – two Southeast Asian nations that have made sizable investments in scientific research and development in recent years and that are home to religiously diverse populations.

The discussions reinforced the conclusion that there is no single, universally held view of the relationship between science and religion, but they also identified some common patterns and themes within each of the three religious groups. For example, many Muslims expressed the view that Islam and science are basically compatible, while, at the same time, acknowledging some areas of friction – such as the theory of evolution conflicting with religious beliefs about the origins and development of human life on Earth. Evolution also has been a point of discord between religion and science in the West .

Hindu interviewees generally took a different tack, describing science and religion as overlapping spheres. As was the case with Muslim interviewees, many Hindus maintained that their religion contains elements of science, and that Hinduism long ago identified concepts that were later illuminated by science – mentioning, for example, the antimicrobial properties of copper or the health benefits of turmeric. In contrast with Muslims, many Hindus said the theory of evolution is encompassed in their religious teachings.

Buddhist interviewees generally described religion and science as two separate and unrelated spheres. Several of the Buddhists talked about their religion as offering guidance on how to live a moral life, while describing science as observable phenomena. Often, they could not name any areas of scientific research that concerned them for religious reasons. Nor did Buddhist interviewees see the theory of evolution as a point of conflict with their religion. Some said they didn’t think their religion addressed the origins of life on Earth.

science and religion essay in english

Some members of all three religious groups, however, did express religious concerns when asked to consider specific kinds of biotechnology research, such as gene editing to change a baby’s genetic characteristics and efforts to clone animals. For example, Muslim interviewees said cloning would tamper with the power of God, and God should be the only one to create living things. When Hindus and Buddhists discussed gene editing and cloning, some, though not all, voiced concern that these scientific developments might interfere with karma or reincarnation.

But religion was not always the foremost topic that came to mind when people thought about science. In response to questions about government investment in scientific research, interviewees generally spoke of the role of scientific achievements in national prestige and economic development; religious differences faded into the background.

These are some of the key findings from a qualitative analysis of 72 individual interviews with Muslims, Hindus and Buddhists conducted in Malaysia and Singapore between June 17 and Aug. 8, 2019.

The study included 24 people in each of three religious groups (Muslims, Hindus and Buddhists), with an equal number in each country. All interviewees said their religion was “very” or “somewhat” important to their lives, but they otherwise varied in terms of age, gender, profession and education level.

A majority of Malaysians are Muslim, and the country has experienced natural migration patterns over the years. As a result, Buddhist interviewees in Malaysia were typically of Chinese descent, Hindus were of Indian descent and Muslim interviewees were Malay. Singapore is known for its religious diversity; a 2014 Pew Research Center analysis found the city-state to have the highest level of religious diversity in the world.

Insights from these qualitative interviews are inherently limited in that they are based on small convenience samples of individuals and are not representative of religious groups either in their country or globally. Instead, in-depth interviews provide insight into how individuals describe their beliefs, in their own words, and the connections they see (or don’t see) with science. To help guard against putting too much weight on any single individual’s comments, all interviews were coded into themes, following a systematic procedure. Where possible throughout the rest of this report, these findings are shown in comparison with quantitative surveys conducted with representative samples of adults in global publics to help address questions about the extent to which certain viewpoints are widely held among members of each religious group. This also shows how Muslims, Hindus and Buddhists as well as Christians around the world compare with each other.

The goal of this project was to better understand how people think about science in connection with their religious beliefs. Past research on this topic has often focused on the views of Christians living in the U.S. or other economically advanced nations. This study sought to fill that gap by talking, one-on-one, with Muslims, Hindus and Buddhists living in two growing economies in Southeast Asia: Malaysia and Singapore. Pew Research Center conducted qualitative interviews with 72 people, including 24 in each of the three religious groups (12 in each country).

To be eligible for the study, interviewees had to identify their religious affiliation as Muslim, Hindu or Buddhist, and describe religion as either “very” or “somewhat” important in their lives. They varied in other demographic characteristics, including age, gender, ethnicity, profession, employment status and educational attainment.

Interviews were conducted by Ipsos Qualitative with a local, professional interviewer, using a guide developed by Pew Research Center. Interviews lasted about one hour and were conducted in English in Singapore, and in English or Malay in Malaysia. The Singaporean interviews were conducted June 17 to July 26, 2019, and the Malaysian interviews were done July 31 to Aug. 8, 2019.

Center researchers listened to audio recordings of the interviews and systematically coded transcripts for thematic responses, using qualitative data analysis software. Themes were revised and integrated throughout the coding process, until researchers agreed upon a consistent set of categories. The qualitative interviews are based on small, convenience samples of individuals and are not representative of religious groups in either country. Whenever possible, these findings are shown in comparison with quantitative data from global surveys using representative samples of adults who identify as Muslim, Hindu, Buddhist or Christian. You can find the interview guide here .

science and religion essay in english

Interviewees paint three distinct portraits of the science-religion relationship

One of the most striking takeaways from interviews conducted with Muslims, Hindus and Buddhists stems from the different ways that people in each group described their perspectives on the relationship between science and religion. The Muslims interviewed tended to speak of an overlap between their religion and science, and some raised areas of tension between the two. Hindu interviewees, by and large, described science and religion as overlapping but compatible spheres. By contrast, Buddhist interviewees described science and religion as parallel concepts, with no particular touchpoints between the two.

A similar pattern emerged when interviewees were asked about possible topics that should be off limits to scientific research for religious reasons. Many Muslim interviewees readily named research areas that concerned them, such as studies using non-halal substances or some applications of assisted reproductive technology (for example, in vitro fertilization using genetic material from someone other than a married couple). By contrast, the Hindus and Buddhists in the study did not regularly name any research topics that they felt should be off limits to scientists.

Muslim interviewees say science and religion are related, but they vary in how they see the nature of that relationship

On the relationship between science and islam.

“I don’t see any conflicts [between science and religion]. From what I know in the Quran, they say that there is science in Islam. They talk about the sun, the moon, the stars. They talk about how the water can go up to the sky and become the clouds. When it’s heavy, it goes down to the Earth where it’s taken by the plants when it evaporates up again. It’s part of science.” – Muslim man, age 35, Singapore

“I know that sometimes science and religion don’t tally. … As a person of religion, we tend to believe what our book says. Yeah, I believe what the Quran says, [rather] than scientific proof.” – Muslim woman, age 40, Singapore

Muslims frequently described science and their religion as related, rather than separate, concepts. They often said that their holy text, the Quran, contains many elements of science. The Muslims interviewed also said that Islam and science are often trying to describe similar things. “The research in science are related to the Quran. There are similarities between religion and what is explained by science,” said one Muslim woman (age 25, Malaysia).

The Muslims interviewed offered a wide variety of opinions about the nature of the relationship between science and religion, and whether the two are harmonious or conflicting. Some described science and Islam as compatible overall. For example, one Muslim man said that both science and his religion explain the same things, just from different perspectives: “I think there is not any conflict between them. … In my opinion, I still believe that it happens because of God, just that the science will help to explain the details about why it is happening” (age 24, Malaysia). Others qualified their statement by saying that science is compatible with religion, but the actions of individual scientists can be problematic. “Actually, science and religion don’t conflict with each other – it’s humans’ opinions that conflict,” said one interviewee (Muslim man, age 36, Malaysia).

Still others described the relationship as conflictual. “I feel like, sometimes, or most of the time, they are against each other. … Science is about experimenting, researching, finding new things, or exploring different possibilities. But then, religion is very fixed, to me,” said one Muslim woman (age 20, Singapore). Another interviewee said scientists typically do not consider the views of religious people when conducting their research. “Scientists, whatever they do, they don’t ask for opinions from people well-versed in religious matters,” said another Muslim woman (age 39, Malaysia).

Is there a conflict between religion and science?

When asked, many of the Muslims interviewed identified specific areas of scientific research that bothered them on religious grounds. Some of the areas mentioned by multiple interviewees included research that uses non-halal substances (such as marijuana, alcohol or pigs), some pregnancy technologies that they considered unnatural (for example, “test tube babies” or procedures that use genetic material not taken from a husband and wife) or cloning.

science and religion essay in english

Similarly, a Pew Research Center survey conducted in 2011 and 2012 that examined the views of Muslims found that, in most regions, half or more said there was no conflict between religion and science, including 54% in Malaysia (Muslims in Singapore were not surveyed). Three-in-ten Malaysian Muslims said there is a conflict between science and religion; the share of Muslims around the world who took this position ranged from a high of 57% in Albania to a low of 14% in the Palestinian territories.

science and religion essay in english

Hindu interviewees generally see science and religion as compatibly overlapping spheres

The predominant view among Hindus interviewed in Malaysia and Singapore is that science and Hinduism are related and compatible. Many of the Hindu interviewees offered – without prompting– the assertion that their religion contains many ancient insights that have been upheld by modern science. For instance, multiple interviewees described the use of turmeric in cleansing solutions, or the use of copper in drinking mugs. They said Hindus have known for thousands of years that these materials provide health benefits, but that scientists have only confirmed relatively recently that it’s because turmeric and copper have antimicrobial properties. “When you question certain rituals or rites in Hinduism, there’s also a relatively scientific explanation to it,” said a Hindu woman (age 29, Singapore).

On the relationship between science and Hinduism

“I believe that whatever science says, the purpose has already been told in my religion. For example, it is said that drinking water from a copper container is very good. This has been proven by the ancestors many years ago. But now only these scientific people come out and say that it is good to use it.” – Hindu woman, age 29, Malaysia

“No, feel free to go ahead and [research] everything. Why would you need to restrict yourself from information or knowledge? Because Hinduism is based on knowledge. It’s called ‘Nyaya.’ That’s ‘knowledge,’ literally translated.” – Hindu man, age 38, Singapore

While many of the Hindu interviewees said science and religion overlap, others described the two as separate realms. “Religion doesn’t really govern science, and it shouldn’t. Science should just be science. … Today, the researchers, even if they are religious, the research is your duty. The duty and religion are different,” said one Hindu man (age 42, Singapore).

Asked to think about areas of scientific research that might raise concerns or that should not be pursued for religious reasons, Hindu interviewees generally came up blank, saying they couldn’t think of any such areas. A few mentioned areas of research that concerned them, but no topic area came up consistently.

Few Hindus say science has conflicted with the teachings of their religion

Buddhist interviewees see science and religion as operating in parallel domains

Buddhist interviewees described science and religion in distinctly different ways than either Muslims or Hindus. For the most part, Buddhists said that science and religion are two unrelated domains. Some have long held that Buddhism and its practice are aligned with the empirically driven observations in the scientific method ; connections between Buddhism and science have been bolstered by neuroscience research into the effects of Buddhist meditation at the core of the mindfulness movement.

On the relationship between science and Buddhism

“Science is something more modern, but Buddhism is something like a mindset. And science is more practical, but Buddhism is theoretical. It is not conflicting.” – Buddhist man, age 40, Malaysia

“I would say that the two [science and religion] are running parallel. It’s difficult to merge the two.” – Buddhist man, age 64, Singapore

One Buddhist woman (age 39, Malaysia) said science is something that relates to “facts and figures,” while religion helps her live a good and moral life. Another Singaporean Buddhist woman (age 26) explained that, “Science to me is statistics, numbers, texts – something you can see, you can touch, you can hear. Religion is more of something you cannot see, you cannot touch, you cannot hear. I feel like they are different faculties.”

To many of the Buddhist interviewees, science and religion cannot be in conflict, because they are different or parallel realms. Therefore, the Malaysian and Singaporean Buddhists largely described the relationship between science and religion as one of compatibility.

Indeed, even when prompted to think about potential areas of scientific research that raised concerns for religious reasons, relatively few of the Buddhists mentioned any. Among those who did cite a concern, a common response involved animal testing. Buddhist interviewees talked about the importance of not killing living things in the practice of their religion, so some felt that research that causes harm or death to animals is worrisome.

Most Buddhists see no disagreement between science and the teachings of their religion

The tenor of these comments is consistent with survey findings from the 2018 Wellcome Global Monitor. Majorities of Buddhists in all 10 countries with large enough samples for analysis said that science has “never disagreed” with the teachings of their religion. 3 This includes 59% of Buddhists in Singapore. (In Malaysia, 55% of Buddhists said the same. However, these results should be interpreted with extra caution because there were just 129 Malaysian Buddhists in the survey sample.) Far smaller shares of Buddhists in these countries see a conflict between science and their religion’s teachings.

Surveys among Christians find wide variation in perceptions of conflict between religion and science though more see at least some conflict than do not

For comparison, representative surveys of Christians around the world also find widely ranging views about whether religion and science have ever disagreed or are generally in conflict. The 2018 Wellcome Global Monitor survey finds wide variation in Christians’ views on this issue. 4 The U.S. stands out, along with several southern European nations, for its relatively high share of Christians reporting that science has disagreed with the teachings of their religion (61%). By contrast, 22% in Singapore, 18% in Sweden and 12% in the Czech Republic say the same.

science and religion essay in english

Pew Research Center surveys asked a similar question in Central and Eastern Europe as well as in Latin America . Christians in these regions tilt toward saying that “there is generally a conflict between science and religion.” A median of 49% of Christians in Central and Eastern Europe say there is generally a conflict, and a median of 39% say there is not. The median view on this question in Latin American was similar (50% to 40%).

science and religion essay in english

In a U.S.-based Pew Research Center survey , a majority of Christians (55%) said that science and religion are “often in conflict” when thinking in general terms about religion. When thinking about their own religious beliefs, however, fewer Christians (35%) said their personal religious beliefs sometimes conflict with science; a majority of U.S. Christians (63%) said the two do not conflict.

Such findings broadly align with Elaine Howard Ecklund and Christopher P. Scheitle’s analysis in “Religion vs. Science: What Religious People Really Think,” which finds that many U.S. Christians see little conflict between science and their faith.

This survey also provides a window into the kinds of things that Christians see as a conflict between science and religion. In an open-ended question included on the Center’s survey, respondents who said science conflicted with their personal religious beliefs were asked to identify up to three areas of conflict. Christians most commonly mentioned the creation of the universe, including evolution and the “Big Bang” (cited by 38% of U.S. Christians who saw a conflict between science and their religious beliefs). Respondents also mentioned broad tensions including the idea that man (rather than God) is “in charge,” beliefs in miracles, or a belief in the events of the Bible (26%). Others cited conflict over the beginning of life, abortion, and scientific technologies involving human embryos (12%) or other medical practices (7%).

science and religion essay in english

Evolution is a more frequent point of conflict for those in Abrahamic faiths such as Islam and Christianity

Evolution raised areas of disagreement for many Muslim interviewees, who often said the theory of evolution is incompatible with the Islamic tenet that humans were created by Allah. Evolution is also a common, though by no means universal, friction point for Christians. By contrast, neither Buddhist interviewees, followers of a religion with no creator figure, nor Hindu interviewees, followers of a polytheistic faith, described discord with evolution either in their personal beliefs or in their views of how evolution comports with their religion.

Some Muslims interviewees see origination of humans from the prophet Nabi Adam as at odds with evolution

When asked about the theory of evolution, Muslim interviewees generally talked about conflict between the theory of evolution and their religious beliefs about the origins of human life – specifically, the belief that God created humans in their present form, and that all humans are descended from Adam and Eve. “This is one of the conflicts between religion and Western theory. Based on Western theory, they said we came from monkeys. For me, if we evolved from monkeys, where could we get the stories of [the prophet] Nabi? Was Nabi Muhammad like a monkey in the past? For me, he was human. Allah had created perfect humans, not from monkey to human,” said one Muslim man (age 21, Malaysia).

Islamic views on evolution

“Nonsense. I believe that Nabi Adam is the first human in the world. Before Nabi Adam was created, other living things such as dinosaurs and so on were also created. The theory of human evolution from apes to human is very different from the teaching in Islam.” – Muslim man, age 24, Malaysia

“That theory to me is absurd. People might be saying that during time of Mesopotamia, the people there hunch and bow, with appearance looking like an ape. Maybe that is why one says we come from apes. But, for me, I believe that we come from Adam and Adam came from heaven.” – Muslim woman, age 36, Malaysia

“Our ancestors are not monkeys. Maybe there’s similarity in the DNA, but in Islam the first human is Adam. He’s not a monkey.” – Muslim man, age 35, Singapore

Others emphasized that evolution is only a theory and has not been proven true. “It’s just a theory, because there is no specific evidence or justification. … Just because the DNA [of humans and primates] has a difference of a few percent, that doesn’t mean we are similar,” said a 29-year-old Singaporean Muslim man. Still others said that Charles Darwin developed this theory in order to get famous and did not put adequate thought or research into his theory.

Muslim perspectives on evolution vary

However, a handful of Muslims said they personally believed that humans were descended from primates via the evolutionary process, even though they believed that this deviated from Islamic teaching. “Monkeys can crawl. After that, stand, stand, stand, then become human, right? Yes, I think so. I think, yeah, that one I believe. … [But] religion says all humans in the world come from God. A bit of conflict,” said a 44-year-old Muslim woman from Singapore. Another Muslim woman (age 39, Singapore) said she was open to the concept of evolution, even though her religion tells a different story. “According to religion, we don’t originate from monkeys. But being that we may be related, the possibility is there,” she said.

A Pew Research Center survey of Muslims worldwide conducted in 2011 and 2012 found a 22-public median of 53% said they believed humans and other living things evolved over time. However, levels of acceptance of evolution varied by region and country, with Muslims in South and Southeast Asian countries reporting lower levels of belief in evolution by this measure than Muslims in other regions. In Malaysia, for instance, 37% of Muslim adults said they believed humans and other living things evolved over time.

In the U.S. context, a 2011 Pew Research Center survey found that views of evolution among American Muslims were roughly split: 45% said they believed humans and other living things have evolved over time, while 44% said they have existed in their present form since the beginning of time.

Hindu and Buddhist interviewees emphasize the absence of conflict with the theory of evolution

Evolution posed no conflict to the Hindus interviewed. In keeping with thematic comments that Hinduism contains elements of science, many interviewees said the concept of evolution was encompassed in their religious teachings. “In Hinduism we have something like this as well, that tells us we originated from different species, which is why we also believe in reincarnation, and how certain deities take different forms. This is why certain animals are seen as sacred animals, because it’s one of the forms that this particular deity had taken,” said a 29-year-old Hindu woman in Singapore. When asked about the origins of human life, many Hindu interviewees just quickly replied that humans came from primates.

science and religion essay in english

The Buddhists interviewed also tended to say there was no conflict between their religion and evolution, and that they personally believed in the theory. Some added that they didn’t think their religion addressed humans’ origins at all. “I don’t think Buddhism has any theory on the first human being or anything. For Buddhism, we don’t really have a strong sense of how the first human came along,” said a Buddhist man in Singapore (age 22).

Hindu views on evolution

“I don’t think evolution has anything to do with religion, nothing to do with Hinduism. That was just adaptation. For example, apes to men. It was just adaptation that people eventually changed over time.” – Hindu man, age 26, Singapore

“The concept (of evolution) is the same. The Hindus say it in a different way, and modern science says it in a scientific way.” – Hindu woman, age 27, Malaysia

Buddhist views on evolution

“[Buddhism says] we are all made out of the atoms and molecules, not that we are created by God. Like Christians believe that we are created by God, but no, I as a practicing Buddhist do not believe in that.” – Buddhist woman, age 60, Malaysia

There is limited global survey data on this issue. However, Pew Research Center’s 2014 Religious Landscape Study found that 86% of Buddhists and 80% of Hindus in the U.S. said that humans and other living things have evolved over time, with majorities also saying this was due to natural processes.

Surveys of Christians globally find that majorities in most publics surveyed accept the idea that humans and other living things have evolved over time

Pew Research Center surveys conducted in Central and Eastern Europe and Latin America find that a majority of Christians in most countries in these regions say humans and other living things have evolved over time. An 18-country median of 61% of Christians say this in Central and Eastern Europe, while a median of 30% say instead that humans and other living things have existed in their present form since the beginning of time. The median views on this issue are similar in Latin America (59% and 35%, respectively).

science and religion essay in english

Views of American Christians are about the same as those global medians: 58% in a 2018 Pew Research Center survey said that humans and other living things have evolved over time, while 42% said they have always existed in their current form.

People’s responses to questions about evolution can vary depending on how the question is asked , however. Specifically, a 2018 Pew Research Center survey focusing on beliefs about the origins of humans found more white evangelical Protestants, Black Protestants and Catholics expressed a belief in evolution when given the option to say that humans evolved with guidance from God or a higher power .

Such differences in how Christians see the issue of evolution are broadly consistent with an analysis by Fern Elsdon-Baker and her research completed with colleagues in the UK and Canada, which suggest that people’s views on evolution can be nuanced, depending on the exact questions asked.

science and religion essay in english

Interviewees across Muslim, Hindu and Buddhist groups cite tension with research that “goes against nature” or involves harm to animals

Two areas of potential conflict with science cut across religious groups. Interviewees from all three groups raised concerns about scientific research that interferes with nature in some way or that causes harm to animals.

Views on animal welfare and scientific research

“When we do scientific research, we just have to ensure we did not endanger other living things, including animals and humans. We don’t bring harm to any of the people, that is the basic moral value.” – Hindu man, age 22, Malaysia

“In Islam, for example, you shouldn’t subject any human or animals to cruelty. So, I believe if you want to do any testing on rats, you need to ask yourself: “Will the rats suffer?’” – Muslim man, age 59, Singapore

In discussing scientific research using gene editing, cloning and reproductive technologies such as in vitro fertilization, Muslim, Hindu and Buddhist interviewees raised the idea that such practices may go against the natural order or interfere with nature. As one Buddhist man simply put it: “If you have anything that interferes with the law of nature, you will have conflict. If you leave nature alone, you will have no conflict” (age 64, Singapore). Similarly, a Muslim woman said “anything that disrupts or changes the natural state” goes against religious beliefs (age 20, Singapore).

When probed about potential areas of scientific research that should be “off limits” from a religious perspective, individuals from all three religious groups talked about the need to consider animal welfare (and sometimes human welfare) in scientific research. This idea occasionally came up when interviewees were asked for their thoughts about cloning and gene editing; others mentioned animal welfare concerns at other points of the interview, along with the need for ethical treatment of living things in general. Buddhists and Hindus in particular emphasized the need to “do no harm” when probed about characteristics that make someone a good follower of their religions.

A few interviewees thought one other topic should be off limits to scientific exploration: research aimed at core beliefs such as the existence of God, the heavens or holy scripture.

science and religion essay in english

Touchpoints between religion and biotechnology research areas

Interviewees were asked to talk about their awareness of and views about each of three specific research areas in biotechnology – new technologies to help women get pregnant, gene editing for babies, and animal cloning. People had generally positive views of pregnancy technology such as in vitro fertilization, although Muslim interviewees pointed out potential objections depending on how these techniques are used. Views of gene editing and cloning were more wide-ranging, with no particular patterns associated with the religious affiliation of the interviewees.

Individuals from all three religions generally approved of pregnancy technology and in vitro fertilization

The first scientific development raised for discussion involved technologies to help women get pregnant. Interviewees often volunteered that they were familiar with in vitro fertilization, commonly referred to as IVF, which is an assisted reproductive technology. Individuals who expressed positive views about IVF mentioned things pertaining to the help it brings to people trying to conceive in modern times. Some even surmised that IVF itself or the knowledge to develop it was a gift from God.

Buddhists and Hindus on IVF

“I don’t think my religion would have any comments on [IVF and surrogacy]. I think Christians would have more comments on it. Like the very staunch Christians, they think that they can’t do this and that. They are very specific.” – Buddhist woman, age 26, Singapore

“It’s a good thing. Some couples don’t have the chance to get babies. With these technologies, people are finding happiness.” – Hindu man, age 24, Malaysia

Muslims accept pregnancy technologies, with conditions

“You cannot use another person to carry your baby, but people want their own flesh-and-blood baby. So, [IVF] is a really good opportunity. Because otherwise people usually just adopt, and it’s not their flesh and blood. They don’t want that.” – Muslim woman, age 24, Singapore

“In my opinion, IVF does not have any conflict with the religion because it helps to continue the descendants and it involves the correct and qualified person. … The man should be the person who is qualified and marry the woman, and the wife should be the person who is qualified to receive the fetus from the man.” – Muslim man, age 24, Malaysia

“For that particular woman to perform this scientific procedure, the company that executes this procedure must make sure that the woman has a certificate of marriage, meaning legitimately married. I think it is that simple. If she is not married, but she wants (to perform this procedure), I don’t think the company should do it. It is immoral.” – Muslim man, age 36, Malaysia

Even among supporters of these technologies, one common sentiment was that people were either unsure of where their religion stood on this issue or thought that other people – those who were older, more conservative or more religious – might be against it. “I think the old-timers are having a bit of a difficult time with being OK with [IVF]. The young generation, my generation, and the ones younger are OK with this,” said one Hindu man (age 26, Singapore).

Some Hindus and Buddhists noted that they were comfortable with pregnancy technologies themselves, but said that there is pushback from other religions, particularly Islam and Christianity. For instance, when asked about IVF, one Buddhist man said, “Oh, wow, that’s a very good question. Controversy, right? I heard about such before, I think, especially coming from Christianity. But, my personal take, I feel it is fine. It’s still trying to get the balance of being a believer of a religion vs. overly superstitious or believing too much in that religion that you forgo the reality of life going on” (Singapore, age 37). Another noted that Buddhism and Hinduism don’t have the same staunch views on IVF as Muslims. “In Buddhism, we don’t have this type of restriction. It’s totally different from other [religions], if I’m not wrong. If you talk about Muslims, there is. If you talk about Hindus, I think also they don’t,” he said (age 43, Singapore).

Muslim interviewees tended to accept technologies to facilitate pregnancy. However, some Muslims emphasized that they would only be OK with these technologies if certain criteria were met – specifically, if the technologies were used by married couples, and with the couples’ own genetic material. “IVF is fine with me because it uses the couple’s egg and sperm and the mother’s body. You need help inseminating the egg, that’s all,” said one Muslim man (age 59, Singapore). Some Muslims also expressed concern about surrogacy in particular; they said Islam prohibits bringing outside parties into a marriage, and that surrogacy is effectively having a third person enter the marriage. A few other Muslims in the study mentioned the need to consult edicts or talk with leaders in the religious community before they would be able to be fully supportive, a common practice for many controversial issues in Islam.

Opinions varied widely on gene editing and animal cloning

Interviewees, regardless of their religion, said the idea of curing a baby of disease before birth or preventing a disease that a child could develop later in life would be a helpful, acceptable use of gene editing. But they often viewed gene editing for cosmetic reasons much more negatively.

Views on gene editing vary depending on how it is used

“I think science and technology aims to help the people. If you modify the baby, it is not good for them. The baby might also not want what the parents edited. In terms of the treatment of diseases, I think is good, as you can cure the baby.” – Buddhist man, age 23, Malaysia

“I like one half of it, the other half I don’t like. The half that I like was eliminating the diseases. The part where you can make the eye color and all that? I wouldn’t say I’m against it, but I’m definitely not up for it.” – Hindu woman, age 40, Singapore

Muslims’ concerns with “playing God”

“Cloning, to put it simply, you’re delving into an area where you’re playing God. It is concerning because if it’s taken as something that’s normal, it means that humans can do things that previously no one could do. That means we could create ourselves. That goes against the beliefs that I have, because as a Muslim, while we have the ability to do certain things, it does not mean that we should do those things.” – Muslim man, age 29, Singapore

Several interviewees brought up the idea of not agreeing with gene editing out of fear that people might want to Westernize their children. For example, some repeated the concern that gene editing would be used to create babies with blond hair and blue eyes. “In terms of the diseases, I think it is acceptable. If they want to change the hair or eyes color? We are not European people,” said one Muslim woman (age 47, Malaysia).

Views of cloning were similarly conditional. Individuals from all three religions remarked on their disapproval of cloning for humans. But interviewees generally found animal cloning to be a much more acceptable practice. Many people interviewed envisioned useful outcomes for society from animal cloning, such as providing meat to feed more people, or to help preserve nearly extinct animals. For example, a Hindu woman said, cloning “is a good idea because some of the animals, like tigers, are on the brink of extinction, so I think it is good to clone before they are extinct” (age 27, Malaysia).

Many of the issues raised about gene editing and cloning mirrored each other. Some of the concerns were based on religious traditions and values. For example, primarily Muslim interviewees mentioned that cloning could interfere with the power of God, who should be the only one who can create.

To the extent Hindus and Buddhists in the study expressed religious concerns pertaining to gene editing and cloning, they generally brought up the idea that these scientific methods might interfere with karma or reincarnation. (Some interviewees also mentioned the potential of IVF to interfere with karma, but they were generally less concerned about this.) One Buddhist woman, talking about gene editing, said: “Sometimes the person is born with sufferings, and it is because maybe previously he had been doing some evil things” (age 45, Singapore). When asked about cloning, a Hindu man expressed similar views. “For Hinduism, we believe that how we look like, how we are, our hands and our legs, it’s because of our past life. So, for example, they will always say that if I am handsome and I’m smart, it’s because in my past life I actually was a nicer person to people. Because of karma, because of reincarnation, I was born back into the better person” (Hindu man, age 25, Singapore).

science and religion essay in english

Religious differences fade as interviewees think about the value of government investments in scientific research

Not all aspects of science are seen through a religious lens. Regardless of their religion, the people we spoke with overwhelmingly described investment in scientific research, including medicine, engineering and technology, as worthwhile. Malaysians and Singaporeans alike broadly shared this feeling.

Support for investment in scientific research

“I think it is very, very worth investing because the research is not just gathering information and data, but indirectly it creates job opportunities for the future. These would be very useful for the future and it can directly help a country to develop.” – Muslim man, age 33, Malaysia

“For me, engineering and technology investment is worthwhile because we want to be comparable to other advanced countries.” – Muslim man, age 21, Malaysia

“It’s never enough [investment], because the more we do, the better results we’ll get. … Maybe one day there would be a cure for cancer in a very easy way. Maybe they will be able to detect mental illnesses through scans. If that is possible through research, it will be a breakthrough for a lot of people.” – Hindu man, age 38, Singapore

On scientific research and national prestige

“If we do something that no other countries have been doing, we can make good money out of it and we can be a pioneer in that field. A lot of Malaysians have been contributing their ideas to other countries, but not to their own country. … So why not we do it for our own country, and get a name for Malaysia, and get famous.” – Hindu woman, age 29, Malaysia

In both countries, interviewees described government investment in science as a way to encourage economic development while also improving the lives of everyday people. People often were particularly enthusiastic about government investment in medicine and spoke of its potential to improve their country’s medical infrastructure and care for an aging population.

But others expressed some hesitation about government investment because they felt their government wasn’t doing a good job of ensuring that the research produced meaningful results, or because they thought the research didn’t benefit the public directly. “If there’s results, then it will be worthwhile. … I don’t think [there are results] because I’ve never heard anybody say ‘Wow, Singapore has discovered a new drug,’” said one Buddhist woman (Singapore, 26). Some interviewees also said they supported government investment in medical research, but that they thought the private sector could take care of investment in engineering or technology.

Malaysians also mentioned that a sense of national pride or prestige could come from government investment in science and the subsequent achievements. For example, one Buddhist woman (age 29) said research on medicine and technology could help Malaysia “become famous compared with other countries.” A Hindu man, 24, said he hoped the government would increase its spending on engineering and technology, because it would provide more jobs and show that Malaysia is a high-achieving country. He said more investment would “[help] a lot of people to achieve their dreams. You are putting Malaysia in the top table.” Another Malaysian man expressed a similar sentiment, saying: “For me, engineering and technology investment is worthwhile because we want to be comparable to other advanced countries” (Muslim, age 21).

We appreciate the thoughtful comments and guidance from Sharon Suh, Ajay Verghese and Pew Research Center religion experts including Besheer Mohamed, Neha Sahgal and Director of Religion Research Alan Cooperman on an earlier draft of this essay.

We greatly benefited from Mike Lipka’s editorial guidance, graphic design from Bill Webster, and copy editing from Aleksandra Sandstrom.

  • Based on Pew Research Center analysis of the 2018 Wellcome Global Monitor for all countries with at least 150 Muslim respondents in the survey sample. ↩
  • Based on Pew Research Center analysis of the 2018 Wellcome Global Monitor for all countries with at least 150 Hindu respondents in the survey sample. ↩
  • Based on Pew Research Center analysis of the 2018 Wellcome Global Monitor for all countries with at least 150 Buddhist respondents in the survey sample. ↩
  • Based on Pew Research Center analysis of the 2018 Wellcome Global Monitor for all countries with at least 150 Christian respondents in the survey sample. ↩
  • A similar perspective emerged from interviews with religious leaders in a 2016 Pew Research Center study about the possibility of using biotechnological interventions to augment human capabilities. To take one example, Lutheran theologian Ted Peters expected many mainline Protestant churches to see such developments positively because “I think they will see much of this for what it is: an effort to take advantage of these new technologies to help improve human life,” he said. ↩

Sign up for our Religion newsletter

Sent weekly on Wednesday

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

June 30, 1998 ESSAY Science and Religion: Bridging the Great Divide By GEORGE JOHNSON ver since science began drifting away from religion, centuries ago, each has dreamed of subsuming the other. Scientists, in their boldest moments, speak of explaining away all the mysteries by empirical inquiry, leaving no need for ancient wisdom. And the faithful, fervently believing in spiritual forces unmeasurable by any meter, find it absurd that God's children would aspire to heaven solely by building telescopes and computers -- scientific Towers of Babel. They have longed for a reality beyond the shadowplay of the material realm. Credit: Joan Hall Left between these extremes are many people who are both scientific and religious, and confused about whether a bridge can ever cross the divide. Every few decades, this hope for reconciliation, or "dialogue," experiences a revival. The most recent may be the biggest, with books, conferences and television shows trying to find a common ground between two fundamentally different ways of thinking about the world. In the 1970's scholars tried to merge science with Eastern religion; the emphasis now is on rejoining science with monotheistic, usually Christian, faith. Not all the work is motivated by religious passion. In his new best-selling book, "Consilience" (Knopf), the Harvard biologist Edward O. Wilson tries to revive the Enlightenment dream of a unified system of knowledge that would embrace not only the sciences but also morality and ethics, removing them from the uncertainties of religion. Here the effort is not to make science spiritual but to make religion scientific. But most of the longing for reconciliation comes from the religious side. With a $3 million grant from the John Templeton Foundation, which is fueling much of the metaphysics boom with its considerable resources, a modest newsletter on science and religion was reborn this year as a glossy magazine called Science & Spirit. "We see a growing number of individuals looking toward religion to explain what science cannot, and asking science to validate religious teachings," the publisher, Kevin Sharpe, said. This fall, PBS will broadcast "Faith and Reason," a documentary written and narrated by Margaret Wertheim and partly financed with $190,000 from the Templeton Foundation, featuring interviews with scientists about God. In the last two years, a steady stream of books with titles like "Cybergrace: The Search for God in the Digital World" and "God & the Big Bang: Discovering Harmony Between Science & Spirituality" has been published. THE CONFERENCE A Universe With Purpose ne of the most conspicuous events was a heavily promoted conference called "Science and the Spiritual Quest," held this month in Berkeley, Calif., by the Center for Theology and the Natural Sciences. The Templeton Foundation gave the center $1.4 million for the conference. For four days scientists, most of them Christians, Jews or Muslims, testified about their efforts to resolve personal conflicts over science and religion. All seemed to share the conviction that this is a purposeful universe, that there is a reason to be here. "Theology is not some airy-fairy form of metaphysical speculation," said John C. Polkinghorne, a Cambridge University particle physicist turned Anglican priest whose books include "Quarks, Chaos & Christianity" and the newly published "Belief in God in an Age of Science." Like science, he said, religion is rooted in encounters with reality -- though in the latter case encounters include spiritual revelations whose truths lie in the unreachable realm of the subjective. The pervading question was whether this kind of experience could ever be studied scientifically. For most of the century people have espoused the view that science and religion should be kept apart to avoid the inevitable combustions. But to logical minds it has always been troubling that two opposing ways could exist to explain the same universe. Science and religion spring from the human obsession with finding order in the world. But surely there can be only one true explanation for reality. Life was either created or it evolved. Prayer is either communication with God or a psychological salve. The universe is either pervaded by spiritual forces or ruled by nothing but physical laws. One way out of the dilemma has been to embrace a kind of deism: The Almighty created the universe according to certain specifications and then left it to run on its own. "God" becomes a metaphor for the laws that science tries to uncover. Or religion can be explained away scientifically. "There is a hereditary selective advantage to membership in a powerful group united by devout belief and purpose," Wilson wrote in "Consilience." He warned against letting this genetically ingrained drive overpower the intellect. "If history and science have taught us anything, it is that passion and desire are not the same as truth. The human mind evolved to believe in the gods. It did not evolve to believe in biology." It is important not to confuse the universe as it is with the universe as we wish it would be. THE THEORIES Limits of Science Can Lead to Religion or many scientists, the point of the scientific enterprise is to replace religious teachings with verifiable theories, and to pretend otherwise is self-delusion. "We're working on building up a complete picture of the universe, which, if we succeed, will be a complete understanding of the universe and everything that's in it," Richard Dawkins, a University of Oxford biologist, said in a preview copy of "Faith and Reason." He found it baffling that some of his colleagues struggle to keep God in the picture. "I don't understand why they waste their time going into this other stuff, which never has added anything to the storehouse of human wisdom, and I don't see that it ever will," he said. But others, like the cosmologist Allan Sandage, have found that their search for objective truth has led them to questions that science cannot answer. "The most amazing thing to me is existence itself," Sandage said at the Berkeley conference. "Why is there something instead of nothing?" He said this impenetrable mystery drove him to become a believer. "How is it that inanimate matter can organize itself to contemplate itself? That's outside of any science I know." Science, like religion, is ultimately built on a platform of beliefs and assumptions. No one can prove that the universe is mathematical or that the same laws that seem to hold in the here and now can be applied to the distant quasars or to the first moments of time. These are among the tenets of the faith, marking the point at which reasoning can begin. "Science is not able to question these issues," Dr. George Ellis, a professor of applied mathematics at the University of Capetown and a Quaker, said at the conference. "It takes them for granted as its bedrock." It is not just the coincidence of the approaching millennium that is inspiring hopes for what would be the grandest unified theory. Faced with science's undeniable success in modeling the world, people find it harder to accept religious teachings that cannot be verified. Many Christians were disturbed when radiocarbon dating suggested that the Shroud of Turin was not Jesus's burial cloth but a medieval forgery, and they hope that new scientific data, not religious fiat, will overturn the old research. Even the creationists realized long ago that they can't sway the opposition simply by asserting that their beliefs are true because they are written in the Bible. They proffer scientific proof -- pseudoscientific, those outside the faith would say -- that life and the universe were created as described in Genesis. But science, too, is feeling its limits, leaving a vacuum that religion is happy to rush into. Neuroscientists can explain the brain, on a rough level, as networks of communicating cells called neurons. But it is hard to imagine a satisfying theory of the conscious experience -- what it is like to be alive. And no amount of theorizing is apt to converge on a persuasive explanation of where the mathematical laws are written or what happened before the Big Bang. Humans can observe and reason, but ultimately the mind encounters chasms. Then the only choice is to retreat or take the great leap and choose what to believe. THE MONEY Dollars Fuel Effort To Put God in Science or all the genuine philosophical longings, the recent drive to put God back in science would not be nearly so intense without the millions of Templeton dollars looking for places to land. "We are searching for a serious rapprochement between science and religion," Charles Harper, the executive director and vice president of the Templeton Foundation, said at the conference. The money and the inspiration come from the investor John Marks Templeton, founder of the Templeton Growth Fund and other ventures, who retired in 1992 to work full time on his philanthropy. The most prominent of Sir John's endeavors (he was knighted in 1987) is the annual Templeton Prize for Progress in Religion, guaranteed to exceed the Nobel Prizes in monetary value. (Templeton thought Alfred Nobel snubbed spirituality.) Early winners of the Templeton award, first given in 1973, were usually religious leaders like Mother Teresa. More recently the prizes, now more than $1 million, have gone to the political scientist Michael Novak and the physicist and science writer Paul Davies. The Center for Theology and the Natural Sciences in Berkeley is receiving $12.6 million from Templeton to help develop science and religion programs at universities. The American Association for the Advancement of Science received $1.3 million "to help establish a science and religion dialogue." Last year the foundation's announcement that it would award grants of $100,000 to $200,000 for a program in "forgiveness studies" sent behavioral scientists scrambling to write proposals. Among the work being funded are "Forgiveness and Community: A Game-Theoretic Analysis," "Assessment of Forgiveness: Psychometric, Interpersonal, and Psychophysiological Correlates" and "Does Forgiveness Enhance Brain Activation Associated With Empathy in Victims of Assault?" Those who submitted proposals were asked to include a section about how their research would address the issues clarified in Templeton's books "Discovering the Laws of Life" and "Worldwide Laws of Life: 200 Eternal Spiritual Principles." A major focus of the foundation is publishing some 20 works by and about Templeton. The foundation is also encouraging scientific research on what its literature describes as "optimism, hope and personal control." THE DISCOURSE Polite Talk, But No Passion udging from the conference, no amount of money is likely to succeed in blending science and religion into a common pursuit. A kind of Sunday school politeness pervaded the meeting, with none of the impassioned confrontations expected from such an emotionally charged subject. "Many of the speakers have been preaching to the choir," Sandage complained. "There are no atheists on the program, only strict believers." Many of the speakers avoided grappling with religion directly, content to ponder mysteries that have disturbed scientists for decades. The Stanford University cosmologist, Andrei Linde, speculated on the tantalizing possibility that consciousness, the very hallmark of humanity, could be an intrinsic part of the universe -- as fundamental to the warp and woof of creation as space and time. After all, he said, our subjective experience is the only thing each of us is really sure of. All else is speculation. "Our knowledge of the world begins not with matter but with perceptions," Linde argued. "I know for sure that my pain exists, my 'green' exists, and my 'sweet' exists. I do not need any proof of their existence, because these events are a part of me; everything else is a theory." It is to explain the source of these perceptions that we posit the existence of an outside reality, forgetting that this is just a supposition. The existence of a real world is another of the tenets of the scientific faith. It is impossible to proceed without it. But many scientists would find the view that consciousness is the root of everything to be hopelessly anthropomorphic and even solipsistic. The conference might also have booked prominent scientists, like Stephen Jay Gould, who argue that consciousness, as powerful as it necessarily seems to its holders, may be just an accident of evolution. Behind consciousness, one can choose to find God. Or not. Without a decisive experiment, it is a matter of personal belief, not of science. The astrophysicist John Barrow of the University of Sussex spoke of another longstanding mystery: the dazzling cosmological coincidences that make life possible. If certain physical constants had slightly different values, stars would not have formed to cook up the atoms that made the biological molecules. Since early in the century some truth seekers have taken this sort of argument as a reason to believe that the universe was created with people in mind. But one is also free to choose the opposite belief: that the coincidences simply show that life is indeed an incredible fluke. It was hard to know what to make of some of the presentations. Dr. Mitchell Marcus, chairman of the computer science department at the University of Pennsylvania, speculated that the craft of artificial intelligence -- designing thinking computers -- is a modern realization of the school of Jewish mysticism based on the Kabala. According to this ancient teaching, it is not quarks and leptons but the first 10 numbers and the 22 letters of the Hebrew alphabet that are the true fundamental particles: the elements of the divine utterance that gave rise to creation. "Computer scientists," he declared, "are the Kabba lists of today." The ancient rabbis are said to have used magical incantations to create beings called golems. The programmers create their simulated creatures with incantations of computer code. The audience politely applauded after each presentation. But there was little sense of intellectual excitement, that people were coming to grips with the disturbing issue of whether there really is a God. Most of the presentations consisted more simply of heartfelt testimonials about the difficulties of constantly being pulled by two powerfully conflicting attractions, the material and the spiritual, the known and the unknowable. And some of the speakers seemed to believe that, for all the efforts to bring them together, science and religion must inevitably go their separate ways. "Would I do science differently if I weren't a Quaker?" asked Dr. Jocelyn Bell Burnell, chairwoman of the physics department of the Open University in England. "I don't think so." Sandage, the cosmologist, matter of factly put it like this: "I don't go to a biology book to learn how to live. I don't go to the Bible to learn about science." As science continues to draw its picture of the physical world, each question it answers will inevitably raise more. So there will always be mysteries, the voids in human knowledge where religious awe can grow. George Johnson has written ``Fire in the Mind: Science, Faith, and the Search for Order'' (Knopf, 1995). ESSAY is published weekly, on Tuesdays. Click here for a list of links to other columns in the series.

The Endless

September 1, 2022

Essay on Science and Religion- Important to all students

Essay on Science and Religion

Science and Religion Essay

Introduction: This is an age of science. But religion is a belief in higher unseen controlling power. They have a reciprocal relation. Science is the most in formidable truth in human history. Perhaps, this is the most obvious reason some people would like to prove the authenticity of religion by illustrating scientific theories which are otherwise completely incompatible with religion. Religion has its own appeal to mankind. But science and religion are two incongruous subjects.

Science & religion: Science deals with the material world that we know, religion is concerned with a divine order that we imagine. Science believes in things that can be proved. Religion deals with ideas that cannot be proved. Science depends on reason, religion on the institution.

The scientist bases himself on material facts; religion takes its stand on spiritual ideas. The scientist works in the laboratory of the material world; the religion teacher probes into the recesses of the inward mind. The goal of science is an achievement and that of religion is realization. Hence there exists a hostility between the man of science and the man of religion.

The basis of civilization: Modern civilization is based on science, In every sphere of modern life, science is an inevitable and integral reality. It is beyond one’s imagination how many people are nowadays under the influence of science and technology.

In the material world, we cannot remain isolated for a moment from science. But humans have to lead a spiritual life in addition to their material lives. To a human being, nothing is as true as death. We do not know where we have come from and where shall have to go. In a materialistic world, science gives us everything we need. This contribution is beyond any doubt.

History of theology: Scientific theories do not have any paradoxes, any controversy or any contradictions. Unlike the philosophy of science, religion is divided into thousand ways of faiths, based on millions of different roots. The history of theology talks about monotheistic religions.

All old religions including Hinduism preached in their prime of many gods and goddesses. But present almost all religions preach the Oneness of God. Both science and religion have ambivalent impacts on human life.

The repercussions of science such as a threat to global warming, depletion in ozone layer etc. and modern lethal arsenals such as nuclear, biological and chemical weapons, ballistic missiles etc. can be dealt with by science itself.

The degeneration of these courses of science could be prevented by more scientific researches, Although religion brought peace in human souls which are, however, pathetically vulnerable to the fears of death and other mysteries of life.

The follows of religion can by no means be averted. One way to keep out interdenominational contentions out of the society is to make a state secular. But several particular religions often bar a state from being secular. Thus a state patronizes science for the sake of the people. But when she patronizes a particular religion, troubles are unleashed.

Don’t Forget to Check: Essay in English

Man’s beliefs: It has to be admitted that man believes in religion absolutely, It would be impossible for him to take the material world seriously and life would cease to function. Fortunately, a compromise is made; the man pays lip service to religion and God and then gives himself up to worldly things. This leads him to practice unconsciously a whole series of deceptions. He lives a kind of double life.

He condemns worldly goods and devotes himself to accumulate riches. He preaches love and goes on making wars. He believes in immortality, yet continues to regard death as evil. His religion teaches him to worship God within himself, yet he makes a display of it. This sort of disparity between belief and action or theory and practice would be unthinkable to science and may be said to damage human character permanently.

Fundamental opposition: Science and religion seem to go on side by side but there is a fundamental opposition between science and religion. Religion would be sought by men as long as there remains a feeling of helplessness before the uncertainty of an incalculable future. In his adversity, in his aging, man feels the necessity of turning to something for some sort of help and solace.

Hence science and religion will maintain their paralleled courses which, however, will never converge. It has been the case since man sought ways of gaining objective and knowledge. The only respect in which man has advanced or changed is this the modern man does not persecute the man of science as his  curious, self many ancestors did in the past, although he may not like his materialistic gospel of life.

Conclusion: It is the religion which once hindered scientific developments. In Europe churches executed many researchers and scientists. There are other stories of science and religion together. I lot of books has been written to amalgamate science and religion out to no purpose. So the more we keep religion a lot from science, the better it is for mankind.

How are science and religion related?

Science mainly deals with the material world that we know, whereas religion is concerned with a divine order that we imagine. Science believes proved or proven things. Religion deals with ideas that cannot be proved.

Can science and religion work together?

Science and religion may go on side by side but there is a fundamental opposition between science and religion.

Do science and religion contradict each other?

There is a fundamental opposition between science and religion. Religion would be sought by men as long as there remains a feeling of helplessness before the uncertainty of an incalculable future. In his adversity, in his aging, man feels the necessity of turning to something for some sort of help and solace.

science and religion essay in english

About the Author

This is my personal Blog. I love to play with Web. Blogging, Web design, Learning, traveling and helping others are my passion.This blog is the place where I write anything whatever comes to my mind. You can call it My Personal Diary. This blog is the partner of My Endless Journey

Comment Policy: Your words are your own, so be nice and helpful if you can. Please, only use your real name and limit the number of links submitted in your comment. We accept clean XHTML in comments, but don't overdo it, please.Let's have a personal and meaningful discussion.

Please Say Something or Ask Any question about this topic! Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Three Essays on Religion

Author:  King, Martin Luther, Jr.

Date:  September 1, 1948 to May 31, 1951 ?

Location:  Chester, Pa. ?

Genre:  Essay

Topic:  Martin Luther King, Jr. - Education

In the following three essays, King wrestles with the role of religion in modern society. In the first assignment, he calls science and religion “different though converging truths” that both “spring from the same seeds of vital human needs.” King emphasizes an awareness of God’s presence in the second document, noting that religion’s purpose “is not to perpetuate a dogma or a theology; but to produce living witnesses and testimonies to the power of God in human experience.” In the final handwritten essay King acknowledges the life-affirming nature of Christianity, observing that its adherents have consistently “looked forward for a time to come when the law of love becomes the law of life.”

"Science and Religion"

There is widespread belief in the minds of many that there is a conflict between science and religion. But there is no fundamental issue between the two. While the conflict has been waged long and furiously, it has been on issues utterly unrelated either to religion or to science. The conflict has been largely one of trespassing, and as soon as religion and science discover their legitimate spheres the conflict ceases.

Religion, of course, has been very slow and loath to surrender its claim to sovereignty in all departments of human life; and science overjoyed with recent victories, has been quick to lay claim to a similar sovereignty. Hence the conflict.

But there was never a conflict between religion and science as such. There cannot be. Their respective worlds are different. Their methods are dissimilar and their immediate objectives are not the same. The method of science is observation, that of religion contemplation. Science investigates. Religion interprets. One seeks causes, the other ends. Science thinks in terms of history, religion in terms of teleology. One is a survey, the other an outlook.

The conflict was always between superstition disguised as religion and materialism disguised as science, between pseudo-science and pseudo-religion.

Religion and science are two hemispheres of human thought. They are different though converging truths. Both science and religion spring from the same seeds of vital human needs.

Science is the response to the human need of knowledge and power. Religion is the response to the human need for hope and certitude. One is an outreaching for mastery, the other for perfection. Both are man-made, and like man himself, are hedged about with limitations. Neither science nor religion, by itself, is sufficient for man. Science is not civilization. Science is organized knowledge; but civilization which is the art of noble and progressive communal living requires much more than knowledge. It needs beauty which is art, and faith and moral aspiration which are religion. It needs artistic and spiritual values along with the intellectual.

Man cannot live by facts alone. What we know is little enough. What we are likely to know will always be little in comparison with what there is to know. But man has a wish-life which must build inverted pyramids upon the apexes of known facts. This is not logical. It is, however, psychological.

Science and religion are not rivals. It is only when one attempts to be the oracle at the others shrine that confusion arises. Whan the scientist from his laboratory, on the basis of alleged scientific knowledge presumes to issue pronouncements on God, on the origin and destiny of life, and on man's place in the scheme of things he is [ passing? ] out worthless checks. When the religionist delivers ultimatums to the scientist on the basis of certain cosomologies embedded in the sacred text then he is a sorry spectacle indeed.

When religion, however, on the strength of its own postulates, speaks to men of God and the moral order of the universe, when it utters its prophetic burden of justice and love and holiness and peace, then its voice is the voice of the eternal spiritual truth, irrefutable and invincible.,

"The Purpose of Religion"

What is the purpose of religion? 1  Is it to perpetuate an idea about God? Is it totally dependent upon revelation? What part does psychological experience play? Is religion synonymous with theology?

Harry Emerson Fosdick says that the most hopeful thing about any system of theology is that it will not last. 2  This statement will shock some. But is the purpose of religion the perpetuation of theological ideas? Religion is not validated by ideas, but by experience.

This automatically raises the question of salvation. Is the basis for salvation in creeds and dogmas or in experience. Catholics would have us believe the former. For them, the church, its creeds, its popes and bishops have recited the essence of religion and that is all there is to it. On the other hand we say that each soul must make its own reconciliation to God; that no creed can take the place of that personal experience. This was expressed by Paul Tillich when he said, “There is natural religion which belongs to man by nature. But there is also a revealed religion which man receives from a supernatural reality.” 3 Relevant religion therefore, comes through revelation from God, on the one hand; and through repentance and acceptance of salvation on the other hand. 4  Dogma as an agent in salvation has no essential place.

This is the secret of our religion. This is what makes the saints move on in spite of problems and perplexities of life that they must face. This religion of experience by which man is aware of God seeking him and saving him helps him to see the hands of God moving through history.

Religion has to be interpreted for each age; stated in terms that that age can understand. But the essential purpose of religion remains the same. It is not to perpetuate a dogma or theology; but to produce living witnesses and testimonies to the power of God in human experience.

[ signed ] M. L. King Jr. 5

"The Philosophy of Life Undergirding Christianity and the Christian Ministry"

Basically Christianity is a value philosophy. It insists that there are eternal values of intrinsic, self-evidencing validity and worth, embracing the true and the beautiful and consummated in the Good. This value content is embodied in the life of Christ. So that Christian philosophy is first and foremost Christocentric. It begins and ends with the assumption that Christ is the revelation of God. 6

We might ask what are some of the specific values that Christianity seeks to conserve? First Christianity speaks of the value of the world. In its conception of the world, it is not negative; it stands over against the asceticisms, world denials, and world flights, for example, of the religions of India, and is world-affirming, life affirming, life creating. Gautama bids us flee from the world, but Jesus would have us use it, because God has made it for our sustenance, our discipline, and our happiness. 7  So that the Christian view of the world can be summed up by saying that it is a place in which God is fitting men and women for the Kingdom of God.

Christianity also insists on the value of persons. All human personality is supremely worthful. This is something of what Schweitzer has called “reverence for life.” 8  Hunan being must always be used as ends; never as means. I realize that there have been times that Christianity has short at this point. There have been periods in Christians history that persons have been dealt with as if they were means rather than ends. But Christianity at its highest and best has always insisted that persons are intrinsically valuable. And so it is the job of the Christian to love every man because God love love. We must not love men merely because of their social or economic position or because of their cultural contribution, but we are to love them because  God  they are of value to God.

Christianity is also concerned about the value of life itself. Christianity is concerned about the good life for every  child,  man,  and  woman and child. This concern for the good life and the value of life is no where better expressed than in the words of Jesus in the gospel of John: “I came that you might have life and that you might have it more abundantly.” 9  This emphasis has run throughout the Christian tradition. Christianity has always had a concern for the elimination of disease and pestilence. This is seen in the great interest that it has taken in the hospital movement.

Christianity is concerned about increasing value. The whole concept of the kingdom of God on earth expressing a concern for increasing value. We need not go into a dicussion of the nature and meaning of the Kingdom of God, only to say that Christians throughout the ages have held tenaciouly to this concept. They have looked forward for a time to come when the law of love becomes the law of life.

In the light of all that we have said about Christianity as a value philosophy, where does the ministry come into the picture? 10

1.  King may have also considered the purpose of religion in a Morehouse paper that is no longer extant, as he began a third Morehouse paper, “Last week we attempted to discuss the purpose of religion” (King, “The Purpose of Education,” September 1946-February 1947, in  Papers  1:122).

2.  “Harry Emerson Fosdick” in  American Spiritual Autobiographies: Fifteen Self-Portraits,  ed. Louis Finkelstein (New York: Harper & Brothers, 1948), p. 114: “The theology of any generation cannot be understood, apart from the conditioning social matrix in which it is formulated. All systems of theology are as transient as the cultures they are patterned from.”

3.  King further developed this theme in his dissertation: “[Tillich] finds a basis for God's transcendence in the conception of God as abyss. There is a basic inconsistency in Tillich's thought at this point. On the one hand he speaks as a religious naturalist making God wholly immanent in nature. On the other hand he speaks as an extreme supernaturalist making God almost comparable to the Barthian ‘wholly other’” (King, “A Comparison of the Conceptions of God in the Thinking of Paul Tillich and Henry Nelson Wieman,” 15 April 1955, in  Papers  2:535).

4.  Commas were added after the words “religion” and “salvation.”

5.  King folded this assignment lengthwise and signed his name on the verso of the last page.

6.  King also penned a brief outline with this title (King, “The Philosophy of Life Undergirding Christianity and the Christian Ministry,” Outline, September 1948-May 1951). In the outline, King included the reference “see Enc. Of Religion p. 162.” This entry in  An Encyclopedia of Religion,  ed. Vergilius Ferm (New York: Philosophical Library, 1946) contains a definition of Christianity as “Christo-centric” and as consisting “of eternal values of intrinsic, self-evidencing validity and worth, embracing the true and the beautiful and consummated in the Good.” King kept this book in his personal library.

7.  Siddhartha Gautama (ca. 563-ca. 483 BCE) was the historical Buddha.

8.  For an example of Schweitzer's use of the phrase “reverence for life,” see Albert Schweitzer, “The Ethics of Reverence for Life,”  Christendom  1 (1936): 225-239.

9.  John 10:10.

10.  In his outline for this paper, King elaborated: “The Ministry provides leadership in helping men to recognize and accept the eternal values in the Xty religion. a. The necessity of a call b. The necessity for disinterested love c. The [ necessity ] for moral uprightness” (King, “Philosophy of Life,” Outline, September 1948-May 1951).

Source:  CSKC-INP, Coretta Scott King Collection, In Private Hands, Sermon file.

©  Copyright Information

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical Literature
  • Classical Reception
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Archaeology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Emotions
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Variation
  • Language Families
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Lexicography
  • Linguistic Theories
  • Linguistic Typology
  • Linguistic Anthropology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Modernism)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Culture
  • Music and Religion
  • Music and Media
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Society
  • Law and Politics
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Oncology
  • Medical Toxicology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Medical Ethics
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Games
  • Computer Security
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Neuroscience
  • Cognitive Psychology
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business History
  • Business Strategy
  • Business Ethics
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Methodology
  • Economic Systems
  • Economic History
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Theory
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Science and Religion: A Very Short Introduction (1st edn)

A newer edition of this book is available.

  • < Previous
  • Next chapter >

1 (page 1) p. 1 What are science–religion debates really about?

  • Published: July 2008
  • Cite Icon Cite
  • Permissions Icon Permissions

‘What are science–religion debates really about?’ explains how there is more to the relationship between science and religion than meets the eye, and certainly more than just conflict. Pioneers of early modern science such as Isaac Newton and Robert Boyle saw their work as part of a religious enterprise devoted to understanding God's creation. Academics and journalists alike continue to write as if there were some ongoing general relationship between science and religion, in terms of which particular contemporary episodes might be understood. Even if that relationship really exists only in our imaginations, it is still important to try to understand how it got there.

Signed in as

Institutional accounts.

  • GoogleCrawler [DO NOT DELETE]
  • Google Scholar Indexing

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code

Institutional access

  • Sign in with a library card Sign in with username/password Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Sign in through your institution

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Sign in with a library card

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • School Guide
  • English Grammar Free Course
  • English Grammar Tutorial
  • Parts of Speech
  • Figure of Speech
  • Tenses Chart
  • Essay Writing
  • Email Writing
  • NCERT English Solutions
  • English Difference Between
  • SSC CGL English Syllabus
  • SBI PO English Syllabus
  • SBI Clerk English Syllabus
  • IBPS PO English Syllabus
  • IBPS CLERK English Syllabus
  • Subhash Chandra Bose Essay in English: Check 100, 200, 300 Words Essay
  • Rabindranath Tagore Essay in English For Students
  • 800 Words Essay On Internet in English for Students
  • 800+ Words Essay on My Dream For Students
  • Essay on My House in English: Check 300, 500 & 800 Words Essay
  • Pandit Jawaharlal Nehru Essay in English For Students
  • Essay on My Favourite Book For Students
  • My Village Essay in English For Students
  • 500+ Words Essay on Swami Vivekananda in English for Students
  • Essay on My Favourite Game in English For Students
  • Essay on India of My Dreams For Students
  • My Aim in Life Essay For Students: 100, 200 & 500 Words Essay
  • Essay on My Father in English: 300, 500 & 800 Words Essay
  • Essay on Dog For Kids and Children: Check 200, 300 & 500 Words Essay
  • Essay on Summer Vacation For Students in English: Samples Class 3 to 5
  • 500+Words Essay on My Hobby in English
  • APJ Abdul Kalam Essay For Students: Samples 100 to 500 Words
  • 500+ Words Essay on Air Pollution
  • Swachh Bharat Abhiyan Essay in English: Check 200, 300 & 500 Words Essay

Essay on Science in English: Check 200, 300 & 500 Words Essay

Science is the study of logic. It explains why the world is round, why stars twinkle, why light travels faster than sound, why hawks soar higher than crows, why sunflowers face the sun and other phenomena. Science answers every question logically rather than offering mystical interpretations. Students are very interested in science as a topic. This subject is indeed crucial for those hoping to pursue careers in science and related professions.

People who are knowledgeable in science are more self-assured and aware of their environment. Knowing the cause and origin of natural events, a person knowledgeable in science will not be afraid of them.

However, science also has a big impact on a country’s technological advancement and illiteracy.

Table of Content

English-language Long and Short Science Essay

Essay on science  (200 words), essay on science (300 words), essay on science (400 words), essay on science (500 words), essay on science (600 words).

We have included a brief and lengthy English essay on science below for your knowledge and convenience. The writings have been thoughtfully crafted to impart to you the relevance and meaning of science. You will understand what science is, why it matters in daily life, and how it advances national progress after reading the writings. These science essays can be used for essay writing, debate, and other related activities at your institution or school.

Science entails a thorough examination of the behavior of the physical and natural world. Research, experimentation, and observation are used in the study.

The scientific disciplines are diverse. The social sciences, formal sciences, and natural sciences are some of them. Subcategories and sub-sub-categories have been created from these basic categories. The natural sciences include physics, chemistry, biology, earth science, and astronomy; the social sciences include history, geography, economics, political science, sociology, psychology, social studies, and anthropology; and the formal sciences include computer science, logic, statistics, decision theory, and mathematics.

The world has positively transformed because of science. Throughout history, science has produced several inventions that have improved human convenience. We cannot fathom our lives without several of these inventions since they have become essential parts of them.

Global scientists persist in their experiments and occasionally produce more advanced innovations, some of which spark global revolutions. Even if science is helpful, some people have abused knowledge, usually those in positions of authority, to drive an arms race and destroy the environment.

There is no common ground between the ideologies of science and religion. These seeming opposite viewpoints have historically led to a number of confrontations and still do.

Science is a way to learn about, comprehend, examine, and experiment with the physical and natural features of the world in order to apply it to the development of newer technologies that improve human convenience. In science, observation and experimentation are broad and not restricted to a specific concept or area of study.

Applications of Science

Science has given us almost everything we use on a daily basis. Everything, from laptops to washing machines, microwaves to cell phones, and refrigerators to cars, is the result of scientific experimentation. Here are some ways that science affects our daily lives:

Not only are refrigerators, grills, and microwaves examples of scientific inventions, but gas stoves, which are frequently used for food preparation, are as well.

Medical Interventions

Scientific advancements have made it feasible to treat a number of illnesses and conditions. Thus, science encourages healthy living and has helped people live longer.

Interaction

These days, mobile phones and internet connections are necessities in our life and were all made possible by scientific advancements. These innovations have lowered barriers to communication and widened global connections.

E nergy Source

The creation and application of numerous energy forms have been facilitated by the discovery of atomic energy. One of its greatest innovations is electricity, and everyone is aware of the effects it has on daily life.

Variety in Cuisine

There has also been an increase in food diversity. These days, a wide variety of fruits and vegetables are available year-round. It’s not necessary to wait for a given season to enjoy a certain meal. This modification is the result of scientific experimentation.

So, science is a part of our daily existence. Without scientific advancements, our lives would have been considerably more challenging and varied. Nonetheless, we cannot ignore the fact that a great deal of scientific innovation has contributed to environmental deterioration and a host of health issues for humankind.

There are essentially three main disciplines of science. The Natural Sciences, Social Sciences, and Formal Sciences are some of them. To examine different aspects, these branches are further divided into subcategories. This is a thorough examination of these groups and their subgroups.

Scientific Subdisciplines

Natural Science

This is the study of natural phenomena, as the name implies. It investigates how the cosmos and the world function. Physical science and life science are subcategories of natural science.

a) Science of Physics

The subcategories of physical science comprise the following:

  • Physics is the study of matter’s and energy’s properties.
  • Chemistry is the study of the materials that make up matter.
  • The study of space and celestial bodies is called astronomy.
  • Ecology is the study of how living things interact with their natural environments and with one another.
  • Geology: It studies the composition and physical makeup of Earth.
  • Earth science is the study of the atmosphere and the physical makeup of the planet.
  • The study of the physical and biological components and phenomena of the ocean is known as oceanography.
  • Meteorology: It studies the atmospheric processes.

The subcategories of life science include the following:

  • The study of living things is called biology.
  • The study of plants is known as botany.
  • The study of animals is known as zoology.

c) Social Science

This includes examining social patterns and behavioral patterns in people. It is broken down into more than one subcategory. Among them are:

  • History: The examination of past occurrences
  • Political science is the study of political processes and governmental structures.
  • Geographic: Study of the atmospheric and physical characteristics of Earth.
  • Human society is studied in social studies.
  • Sociology: The study of how societies form and operate.

Academic Sciences

It is the area of study that examines formal systems like logic and mathematics. It encompasses the subsequent subcategories:

  • Numbers are studied in mathematics.
  • Reasoning is the subject of logic.
  • Statistics: It is the study of numerical data analysis.
  • Mathematical analysis of decision-making in relation to profit and loss is known as decision theory.
  • The study of abstract organization is known as systems theory.
  • Computer science is the study of engineering and experimentation as a foundation for computer design and use.

Scientists from several fields have been doing in-depth research and testing numerous facets of the subject matter in order to generate novel ideas, innovations, and breakthroughs. Although these discoveries and technologies have made life easier for us, they have also permanently harmed both the environment and living things.

Introduction

Science is the study of various physical and natural phenomena’ structures and behaviors. Before drawing any conclusions, scientists investigate these factors, make extensive observations, and conduct experiments. In the past, science has produced a number of inventions and discoveries that have been beneficial to humanity.

I deas in Religion and Science

In science, new ideas and technologies are developed through a methodical and rational process; in religion, however, beliefs and faith are the only factors considered. In science, conclusions are reached by careful observation, analysis, and experimentation; in religion, however, conclusions are rarely reached through reason. As a result, they have very different perspectives on things.

Science and Religion at Odds

Because science and religion hold different opinions on many issues, they are frequently perceived as being at odds. Unfortunately, these disputes occasionally cause social unrest and innocent people to suffer. These are a few of the most significant disputes that have happened.

The World’s Creation

The world was formed in six days, according to many conservative Christians, sometime between 4004 and 8000 BCE. However, cosmologists assert that the Earth originated about 4.5 billion years ago and that the cosmos may be as old as 13.7 billion years.

The Earth as the Universe’s Center

Among the most well-known clashes is this one. Earth was considered to be the center of the universe by the Roman Catholic Church. They say that it is surrounded by the Sun, Moon, stars, and other planets. Famous Italian mathematician and astronomer Galileo Galilei’s discovery of the heliocentric system—in which the Sun is at the center of the solar system and the Earth and other planets orbit it—led to the conflict.

Eclipses of the Sun and Moon

Iraq was the scene of one of the first wars. The locals were informed by the priests that the moon eclipse was caused by the gods’ restlessness. These were seen as foreboding and intended to overthrow the kings. When the local astronomers proposed a scientific explanation for the eclipse, a disagreement arose.

There are still many myths and superstitions concerning solar and lunar eclipses around the world, despite astronomers providing a compelling and rational explanation for their occurrence.

In addition to these, there are a number of other fields in which religious supporters and scientists hold divergent opinions. While scientists, astronomers, and biologists have evidence to support their claims, the majority of people adhere closely to religious beliefs.

Not only do religious activists frequently oppose scientific methods and ideas, but many other facets of society have also taken issue with science since its discoveries are leading to a host of social, political, environmental, and health problems. Nuclear weapons are one example of a scientific invention that threatens humanity. In addition, the processes involved in preparation and the utilization of the majority of scientifically created equipment contribute to pollution, making life more difficult for all.

In the previous few decades, a number of scientific advancements and discoveries have greatly eased people’s lives. The previous ten years were not an anomaly. A good number of important scientific discoveries were acknowledged. The top ten most amazing recent scientific inventions are shown below.

New Developments and Findings in Science

Amputee Gains Control of Biomechanical Hand via Mental After a tragic accident took away his forearm, Pierpaolo Petruzziello, an Italian, used his mind to control a biomechanical hand attached to his arm. The hand used wires and electrodes to connect to the nerves in his arm. He became the first to become skilled at doing motions like gripping objects, wriggling his fingers, and moving.

The Global Positioning System

In 2005, the Global Positioning System, or GPS as it is more often known, went into commercial use. It was incorporated into mobile devices and worked wonders for tourists all over the world. Traveling to more recent locations and needing instructions couldn’t be simpler.

The Self-Driving Car Toyota debuted Prius shortly after Google launched its own self-driving car experiment in 2008. The accelerator, steering wheel, and brake pedals are absent from this vehicle. It runs without the need for user input because it is driven by an electric motor. To guarantee that the driverless experience is seamless and secure, it is integrated with specialized software, a collection of sensors, and precise digital maps.

Android, widely regarded as one of the most significant innovations of the decade, revolutionized the market by flooding it with devices running Java and Symbian earlier on. These days, Android is the operating system used by the majority of smartphones. Millions of applications are supported by it.

c) Computer Vision

A number of sub-domains fall under the umbrella of computer vision, including learning, video tracking, object recognition, object pose estimation, event detection, indexing, picture restoration, and scene reconstruction. In order to produce symbolic information, the field includes methods for processing, analyzing, obtaining, and understanding images in high-dimensional data from the real world.

d) Touch Screen Technology

It appears that touch screen technology has taken over the planet. The popularity of touch screen gadgets can be attributed to their ease of use. These gadgets are becoming quite popular everywhere.

e) Method of 3D Printing

The 3D printer is capable of producing a wide range of items, such as lamps, cookware, accessories, and much more. Alternatively referred to as additive manufacturing, this process uses digital model data from electronic data sources like Additive Manufacturing Files (AMF) to construct three-dimensional items of any shape.

Git Hub is an online hosting service and version control repository that was founded in 2008. It provides features including bug tracking, task management, feature requests, and the sharing of codes, apps, and other materials. The GitHub platform was first developed in 2007, and the website went live in 2008.

f) Smart Timepieces

The market for smart watches has been around for a while. The more recent models, like the one introduced by Apple, have garnered enormous popularity and come with a number of extra capabilities. Nearly all of the functionality found on smartphones are included in these watches, which are also more convenient to wear and use.

g) Websites for Crowdfunding

The emergence of crowdsourcing websites like Indiegogo, Kickstarter, and GoFundMe has been a blessing for innovators. Inventors, artists, and other creative people can share their ideas and gain the funding they need to put them into action by using these websites.

Global scientists constantly observe and experiment to develop new scientific discoveries that improve people’s lives. Not only do they consistently create new technologies, but they also adapt the ones that already exist whenever there is an opportunity. Even while these innovations have made life easier for humans, you are all aware of the numerous environmental, social, and political risks they have brought about.

500+ Words Essay on Mother Teresa in English For Students 500+ Words Essay on Swami Vivekananda in English for Students Rabindranath Tagore Essay in English For Students APJ Abdul Kalam Essay For Students: Check 500 Words Essay

Essay on Science- FAQs

Who is father of science.

Galileo is the father of science.

Why is it called science?

The word “scientia” has Latin origins and originally meant “knowledge,” “an expertness,” or “experience.”

What is science for students?

Science is the study of the world by observation, recording, listening, and watching. Science is the application of intellectual inquiry into the nature of the world and its behavior. Think like a scientist, anyone can.

What is science’s primary goal or objective?

Science’s primary goal is to provide an explanation for the facts. Moreover, science does not prohibit the explanation of facts in an arbitrary manner. Additionally, science organizes the data and develops theories to explain the data.

Describe what a scientific fact is.

Repeatable, meticulous observations or measurements made through experiments or other methods are referred to as scientific facts. Furthermore, empirical evidence is another name for a scientific fact. Most importantly, the development of scientific hypotheses depends on scientific facts.

Please Login to comment...

Similar reads.

  • English Blogs
  • School English
  • Google Introduces New AI-powered Vids App
  • Dolly Chaiwala: The Microsoft Windows 12 Brand Ambassador
  • 10 Best Free Remote Desktop apps for Android in 2024
  • 10 Best Free Internet Speed Test apps for Android in 2024
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

April 3, 2024

New Law Allowing Religion into Science Classrooms Is Dangerous for Everyone

It is imperative that we protect science education from “intelligent design” and other alternative “theories”

By Amanda L. Townley

Close up photograph of a 16-foot cross with the dome of the U.S. Capitol Building in Washington D.C. visible, out of focus, behind

Win McNamee/Getty Images

I grew up a creationist in the rural southeastern U.S. I am now a scientist, educator, wife, mother and person of faith. Regardless of whether you practice religion, you should fight to prohibit the teaching of nonscientific alternative ideas in science classrooms and use your vote and your voice to prevent the inclusion of religious beliefs in public education. A recently signed law in West Virginia illustrates why.

I often hear lamentations about the removal of God from public schools. These sentiments are based on a misinterpretation of the principle of the separation of church and state. In the U.S., religious beliefs and practices are protected and situated in their rightful place within people’s homes and communities so that individuals can choose what to teach their children regarding religion. Kids can still pray whenever they wish, gather with their peers, create faith-based groups or even nondisruptively practice their faith in school. Separating state and church means young people cannot be compelled to engage in religious actions by someone in a position of power, such as a teacher, administrator or lawmaker. Separation of church and state is as critical to people of faith as it is to those who do not practice faith traditions. The protection of personal religious freedoms was a vital component of the foundation of our nation.

On March 22 West Virginia governor Jim Justice signed a bill that purports to protect the ability of the state’s public school educators to teach scientific theories. There is no actual problem that the new law would solve, however; none of its supporters produced a teacher who plausibly claimed to have been oppressed. But the legislative history of the bill, known as Senate Bill 280, makes it clear that its real aim is to encourage educators to teach religiously motivated “alternatives” to evolution. As introduced, SB 280 would have expressly allowed the teaching of “ intelligent design ” in West Virginia’s public schools.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

The National Center for Science Education (NCSE), of which I am the executive director, monitors attempts to undermine the accurate and robust teaching of science education in K–12 public school classrooms. Most often, these attempts die in committee or fail to pass in state legislatures to become a law. This particular West Virginia bill appeared in a prior session and passed the state’s Senate in February 2023 before dying in the House Education Committee. This session, the Senate Education Committee adjusted the wording to remove the term “intelligent design” in favor of “scientific theories,” conspicuously failing to explain what that term does and does not include. During the floor discussion of Senate Bill 280, however, its sponsor, Amy Grady (Republican, District 4), declared that even as amended, the bill would protect the teaching of “intelligent design” in West Virginia’s public schools.

It’s been 19 years since a federal court in neighboring Pennsylvania took up the issue of whether “intelligent design,” like its predecessor “creation science,” can be constitutionally taught in public schools. Presiding over the case Kitzmiller v. Dover , Judge John E. Jones III, appointed to the bench by President George W. Bush, found that it cannot be. There was no appeal of his meticulous decision, and no court has ruled otherwise.

The policy makers in West Virginia would have done well to consult the decision in Kitzmiller . They would have learned about the legal perils awaiting any teacher or district unwise enough to invoke the protection of the newly enacted law in defense of teaching “intelligent design”; in Pennsylvania, the Dover Area School Board ended up paying more than $1 million of the plaintiffs’ legal fees. They might also have realized that their motivations rested on some common misconceptions.

The first misconception is that learning about evolution threatens students’ faith. Evolutionary biology, like any area of modern science, is simply a body of knowledge about the natural world and a set of methods and procedures for attaining, refining and testing that knowledge. Nothing in evolutionary biology denies the existence of God or places constraints on divine activity. Evolutionary biologists include people of many faiths and of none, and evolutionary biology is routinely taught in institutions of higher education, whether public or private, secular or sectarian, as the well-established area of modern science that it is.

A second misconception is that exposing students to “intelligent design” promotes religious freedom. (The proponents of “intelligent design” often claim their views have no religious motivation, but frame it otherwise when it suits their purposes.) On the contrary, because “intelligent design” reflects a narrow sectarian rejection of evolution, teaching it in school actually harms religious freedom.

The division of church and state is crucial for the religious freedom of everyone in the U.S. Yet some people hope for the undoing of this separation of religion and political power, mainly because they expect that those in power will share their particular religious beliefs. They should stop and think very carefully about the possible consequences of temporarily having their way.

In particular, with Senate Bill 280 now on the books, West Virginia educators are free to teach whatever “scientific theories” they please. With no definition of "scientific theories" in the law, a few misguided educators may present creationism—either old-fashioned “creation science” or newfangled and equally unscientific “intelligent design”—as a result. But the sky’s the limit. Why not geocentrism or flat-Earthery? Why not crystal healing? Why not racist views claiming that white people and Black people have separate ancestry? All of these notions, which stem from religious beliefs, not science, have been held up by their proponents as scientific theories, and West Virginia’s legislature and governor just opened the public classroom door to them.

West Virginia is only one state, but others—Mississippi, Louisiana and Tennessee—have similar laws on the books. As the nation continues to polarize along religious and political lines, more states may follow, compromising both science education and religious freedom.

For these reasons, people of all faiths and none should unite in fighting for religious freedom, including by ensuring that religiously motivated but unscientific “alternatives” to science are not allowed in public school classrooms. Failure to maintain the separation of church and state, and to instead favor a particular sectarian view, opens a door that, one day, people will wish could be closed.

This is an opinion and analysis article, and the views expressed by the author or authors are not necessarily those of Scientific American.

  • marquette.edu //
  • Contacts //
  • A-Z Index //
  • Give to Marquette

Marquette.edu  //  Career Center  //  Resources  // 

Properly Write Your Degree

The correct way to communicate your degree to employers and others is by using the following formats:

Degree - This is the academic degree you are receiving. Your major is in addition to the degree; it can be added to the phrase or written separately.  Include the full name of your degree, major(s), minor(s), emphases, and certificates on your resume.

Double Majors - You will not be receiving two bachelor's degrees if you double major. Your primary major determines the degree (Bachelor of Arts or Bachelor of Science). If you're not fully sure which of your majors is primary, check CheckMarq or call the registrar's office.

Example: Primary Major: Psychology ; Secondary Major: Marketing
  • Bachelor of Arts Degree in Psychology & Marketing

Primary Major: Marketing ; Secondary Major: Psychology

  • Bachelor of Science Degree in Marketing & Psychology

In a letter, you may shorten your degree by writing it this way:

  • In May 20XX, I will graduate with my Bachelor's degree in International Affairs.
  • In December 20XX, I will graduate with my Master's degree in Counseling Education.

Not sure which degree you are graduating with? Here is a list of Undergraduate Majors and corresponding degrees:

  • College of Arts & Sciences
  • College of Business Administration
  • College of Communication
  • College of Education
  • College of Engineering
  • College of Health Sciences
  • College of Nursing  

Student meets for an appointment at the Career Center

  • Online Resources
  • Handouts and Guides
  • College/Major Specific Resources
  • Grad Program Specific Resources
  • Diverse Population Resource s
  • Affinity Group Resources
  • Schedule an Appointment
  • Major/Career Exploration
  • Internship/Job Search
  • Graduate/Professional School
  • Year of Service
  • Resume and Cover Letter Writing

Handshake logo

  • Login to Handshake
  • Getting Started with Handshake
  • Handshake Support for Students
  • Handshake Support for Alumni
  • Handshake Information for Employers

CONNECT WITH US

Instagram

PROBLEM WITH THIS WEBPAGE? Report an accessibility problem  

To report another problem, please contact  [email protected]

Marquette University Holthusen Hall, First Floor Milwaukee, WI 53233 Phone: (414) 288-7423

  • Campus contacts
  • Search marquette.edu

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Privacy Policy Legal Disclaimer Non-Discrimination Policy Accessible Technology

© 2024 Marquette University

IMAGES

  1. Science and Religion Essay

    science and religion essay in english

  2. Science and Religion Essay

    science and religion essay in english

  3. Religions Essay

    science and religion essay in english

  4. Science and Religion Essay

    science and religion essay in english

  5. Religion ।। write an essay on religion in english ।। paragraph on

    science and religion essay in english

  6. Theme of Science and Religion in Life of Pi Free Essay Sample on

    science and religion essay in english

VIDEO

  1. Should Religion be part of Science Classrooms? 🤔 #neildegrassetyson

  2. Religion ।। write an essay on religion in english ।। paragraph on religion ।। essay writing

  3. Science and Religion: Exploring the Complexity Thesis

  4. Ep #19 Science & Religion

  5. Essay on blessings of science for class 7-12|importance of science|Advantages of science

  6. “Science without religion is lame, religion without science is blind: Albert Einstein”

COMMENTS

  1. Science and Religion Essay

    Religion is older than science. While science is concerned with matter and the physical world around us, religion deals with the spiritual mysteries of life: It defines the human relationship with God. It is concerned with the matter of the soul and good conduct. Its technique is not scientific. It believes in intuition and divine inspiration.

  2. Religion and Science

    This entry provides an overview of the topics and discussions in science and religion. Section 1 outlines the scope of both fields, and how they are related. Section 2 looks at the relationship between science and religion in five religious traditions, Christianity, Islam, Hinduism, Buddhism, and Judaism. Section 3 discusses contemporary topics ...

  3. Science and Religion Essay

    Long Essay on Science and Religion 500 Words in English. Long Essay on Science and Religion is usually given to classes 7, 8, 9, and 10. Since the 19th century, the relationship between science and religion has been characterized by 'harmony,' 'conflict,' 'complexity,' and 'mutual independence.'

  4. A complex God: why science and religion can co-exist

    Science and religion. Intelligent design. Religion. Register now. Science and religion are often cast as opponents in a battle for human hearts and minds. But far from the silo of strict ...

  5. The Intersection of Science and Religion

    Science and religion are based on different aspects of human experience. In science, explanations must be based on evidence drawn from examining the natural world. Scientifically based observations or experiments that conflict with an explanation eventually must lead to modification or even abandonment of that explanation. Religious faith, in ...

  6. Religion and Science: Similarities and Differences

    For instance, religion is divided into several groups with varying concepts and understanding of God. This further complicates efforts of concord between science and religion. In addition, science is faced with several unanswered questions. In essence, the science/religion debate is complex, tumultuous and many-faceted in its approach.

  7. On the Intersection of Science and Religion

    Similarly, a Pew Research Center survey conducted in 2011 and 2012 that examined the views of Muslims found that, in most regions, half or more said there was no conflict between religion and science, including 54% in Malaysia (Muslims in Singapore were not surveyed). Three-in-ten Malaysian Muslims said there is a conflict between science and religion; the share of Muslims around the world who ...

  8. Science and Religion: A Very Short Introduction

    Abstract. Science and Religion: A Very Short Introduction explores not only the key philosophical questions that underlie the debate between science and religion, but also the social, political, and ethical contexts that have made it such a fraught and interesting topic in the modern world. Offering perspectives from non-Christian religions and examples from across the physical, biological ...

  9. PDF SCIENCE AND RELIGION

    A major contribution to the historiography of science and religion, this book makes the most recent scholarship on this much misunderstood debate widely accessible. thomas dixon is Senior Lecturer in History at Queen Mary, University of London. He is the author of The invention of altruism (2008) and From passions to emotions (Cambridge, 2003).

  10. Relationship between religion and science

    God the Geometer — Gothic frontispiece of the Bible moralisée, representing God's act of Creation. France, mid-13th century The relationship between religion and science involves discussions that interconnect the study of the natural world, history, philosophy, and theology. Even though the ancient and medieval worlds did not have conceptions resembling the modern understandings of "science ...

  11. Essay: Science and Religion -- Bridging the Great Divide

    The American Association for the Advancement of Science received $1.3 million "to help establish a science and religion dialogue." Last year the foundation's announcement that it would award grants of $100,000 to $200,000 for a program in "forgiveness studies" sent behavioral scientists scrambling to write proposals.

  12. 18 Contributions from the History of Science and Religion

    It is sometimes assumed that a simple story can be told about the historical relationship between science and religion. On one overview, 'science' and 'religion' existed in harmony for centuries, conflicting only in the modern period. By contrast, the converse is often assumed: 'science' and 'religion' have existed in more or ...

  13. Religion and Science: A Brief Introduction to the Great Debate

    Synopsis. Religion versus science is a fascinating topic of debate for centuries with inconclusive results. The scientific community has constantly dealt with the puzzle of why and how religious ...

  14. Science and Religion

    and the National Science Foundation (Grant No. SES-8308523). An early version of this essay was presented in 1984 at West Virginia University, which also provided support for the research. I Donald Fleming, John William Draper and the Religion of Science (Philadelphia: Univ. Penn-sylvania Press, 1950), p. 131. OSIRIS, 2nd series, 1985, 1: 59-80 59

  15. PDF Essays on Religion, Science, and Society

    [Verzamelde opstellen. English] Essays on religion, science, and society / Herman Bavinck ; John Bolt, general editor ; Harry Boonstra and Gerrit Sheeres, translators. p. cm. Includes bibliographical references and indexes. ISBN 978--8010-3241-7 (cloth) 1. Christianity. I. Bolt, John, 1947- II. Title. BR123.B34513 2008 230—dc22 2007040631

  16. Science, Religion, and the Human Experience

    The essays explore implications for scientific knowledge, religious meaning, and the relationship between the two. Each essay has the flavor of a scholarly yet personal reflection on the paradox of how science and religion are enmeshed in the human experience. Keywords: domains, experience, faith, facts, knowledge, meaning, reason, religion ...

  17. (PDF) Science and Religion

    To this end, social scientific studies of religion provide some help. In a review of scholarship concerning religion and science, for example, Cragun (2015) notes that the social forms referred to ...

  18. Essay on Science and Religion- Important to all students

    Science depends on reason, religion on the institution. The scientist bases himself on material facts; religion takes its stand on spiritual ideas. The scientist works in the laboratory of the material world; the religion teacher probes into the recesses of the inward mind. The goal of science is an achievement and that of religion is realization.

  19. Three Essays on Religion

    Details. In the following three essays, King wrestles with the role of religion in modern society. In the first assignment, he calls science and religion "different though converging truths" that both "spring from the same seeds of vital human needs.". King emphasizes an awareness of God's presence in the second document, noting that ...

  20. What are science-religion debates really about?

    It is hardly surprising that this humiliation of the most celebrated scientific thinker of his day by the Catholic Inquisition on the (page 2) p. 2 grounds of his beliefs about astronomy and their contradiction of the Bible should have been interpreted by some as evidence of an inevitable conflict between science and religion. The modern encounter between evolutionists and creationists has ...

  21. Essay on Religions for Students and Children in English

    10 Lines on Religions Essay in English. 1. Sets of beliefs held passionately by a society or groups of people reflected in a world view are known as religion. 2. All the nonliterate or underdeveloped societies are known to have a religion. 3. There is no existence of any primitive society without religion.

  22. Science And Religion Essay

    Science and Religion Essays. Science and religion have always been in conflict with one another because they each represent complete opposite ideals, science is about how nature controls how the universe works and religion is about how God controls how the universe works.

  23. Essay on Science in English: Check 200, 300 & 500 Words Essay

    Essay on Science in English: Check 200, 300 & 500 Words Essay. Science is the study of logic. It explains why the world is round, why stars twinkle, why light travels faster than sound, why hawks soar higher than crows, why sunflowers face the sun and other phenomena. Science answers every question logically rather than offering mystical ...

  24. New Law Allowing Religion into Science Classrooms Is Dangerous for

    Amanda L. Townley is the executive director of the National Center for Science Education. An award-winning researcher and advocate, she specializes in science teacher education, evolution ...

  25. Properly Write Your Degree

    The correct way to communicate your degree to employers and others is by using the following formats: Degree - This is the academic degree you are receiving. Your major is in addition to the degree; it can be added to the phrase or written separately.