What Is Statistical Analysis?

what is a statistical analysis in research

Statistical analysis is a technique we use to find patterns in data and make inferences about those patterns to describe variability in the results of a data set or an experiment. 

In its simplest form, statistical analysis answers questions about:

  • Quantification — how big/small/tall/wide is it?
  • Variability — growth, increase, decline
  • The confidence level of these variabilities

What Are the 2 Types of Statistical Analysis?

  • Descriptive Statistics:  Descriptive statistical analysis describes the quality of the data by summarizing large data sets into single measures. 
  • Inferential Statistics:  Inferential statistical analysis allows you to draw conclusions from your sample data set and make predictions about a population using statistical tests.

What’s the Purpose of Statistical Analysis?

Using statistical analysis, you can determine trends in the data by calculating your data set’s mean or median. You can also analyze the variation between different data points from the mean to get the standard deviation . Furthermore, to test the validity of your statistical analysis conclusions, you can use hypothesis testing techniques, like P-value, to determine the likelihood that the observed variability could have occurred by chance.

More From Abdishakur Hassan The 7 Best Thematic Map Types for Geospatial Data

Statistical Analysis Methods

There are two major types of statistical data analysis: descriptive and inferential. 

Descriptive Statistical Analysis

Descriptive statistical analysis describes the quality of the data by summarizing large data sets into single measures. 

Within the descriptive analysis branch, there are two main types: measures of central tendency (i.e. mean, median and mode) and measures of dispersion or variation (i.e. variance , standard deviation and range). 

For example, you can calculate the average exam results in a class using central tendency or, in particular, the mean. In that case, you’d sum all student results and divide by the number of tests. You can also calculate the data set’s spread by calculating the variance. To calculate the variance, subtract each exam result in the data set from the mean, square the answer, add everything together and divide by the number of tests.

Inferential Statistics

On the other hand, inferential statistical analysis allows you to draw conclusions from your sample data set and make predictions about a population using statistical tests. 

There are two main types of inferential statistical analysis: hypothesis testing and regression analysis. We use hypothesis testing to test and validate assumptions in order to draw conclusions about a population from the sample data. Popular tests include Z-test, F-Test, ANOVA test and confidence intervals . On the other hand, regression analysis primarily estimates the relationship between a dependent variable and one or more independent variables. There are numerous types of regression analysis but the most popular ones include linear and logistic regression .  

Statistical Analysis Steps  

In the era of big data and data science, there is a rising demand for a more problem-driven approach. As a result, we must approach statistical analysis holistically. We may divide the entire process into five different and significant stages by using the well-known PPDAC model of statistics: Problem, Plan, Data, Analysis and Conclusion.

statistical analysis chart of the statistical cycle. The chart is in the shape of a circle going clockwise starting with one and going up to five. Each number corresponds to a brief description of that step in the PPDAC cylce. The circle is gray with blue number. Step four is orange.

In the first stage, you define the problem you want to tackle and explore questions about the problem. 

Next is the planning phase. You can check whether data is available or if you need to collect data for your problem. You also determine what to measure and how to measure it. 

The third stage involves data collection, understanding the data and checking its quality. 

4. Analysis

Statistical data analysis is the fourth stage. Here you process and explore the data with the help of tables, graphs and other data visualizations.  You also develop and scrutinize your hypothesis in this stage of analysis. 

5. Conclusion

The final step involves interpretations and conclusions from your analysis. It also covers generating new ideas for the next iteration. Thus, statistical analysis is not a one-time event but an iterative process.

Statistical Analysis Uses

Statistical analysis is useful for research and decision making because it allows us to understand the world around us and draw conclusions by testing our assumptions. Statistical analysis is important for various applications, including:

  • Statistical quality control and analysis in product development 
  • Clinical trials
  • Customer satisfaction surveys and customer experience research 
  • Marketing operations management
  • Process improvement and optimization
  • Training needs 

More on Statistical Analysis From Built In Experts Intro to Descriptive Statistics for Machine Learning

Benefits of Statistical Analysis

Here are some of the reasons why statistical analysis is widespread in many applications and why it’s necessary:

Understand Data

Statistical analysis gives you a better understanding of the data and what they mean. These types of analyses provide information that would otherwise be difficult to obtain by merely looking at the numbers without considering their relationship.

Find Causal Relationships

Statistical analysis can help you investigate causation or establish the precise meaning of an experiment, like when you’re looking for a relationship between two variables.

Make Data-Informed Decisions

Businesses are constantly looking to find ways to improve their services and products . Statistical analysis allows you to make data-informed decisions about your business or future actions by helping you identify trends in your data, whether positive or negative. 

Determine Probability

Statistical analysis is an approach to understanding how the probability of certain events affects the outcome of an experiment. It helps scientists and engineers decide how much confidence they can have in the results of their research, how to interpret their data and what questions they can feasibly answer.

You’ve Got Questions. Our Experts Have Answers. Confidence Intervals, Explained!

What Are the Risks of Statistical Analysis?

Statistical analysis can be valuable and effective, but it’s an imperfect approach. Even if the analyst or researcher performs a thorough statistical analysis, there may still be known or unknown problems that can affect the results. Therefore, statistical analysis is not a one-size-fits-all process. If you want to get good results, you need to know what you’re doing. It can take a lot of time to figure out which type of statistical analysis will work best for your situation .

Thus, you should remember that our conclusions drawn from statistical analysis don’t always guarantee correct results. This can be dangerous when making business decisions. In marketing , for example, we may come to the wrong conclusion about a product . Therefore, the conclusions we draw from statistical data analysis are often approximated; testing for all factors affecting an observation is impossible.

Built In’s expert contributor network publishes thoughtful, solutions-oriented stories written by innovative tech professionals. It is the tech industry’s definitive destination for sharing compelling, first-person accounts of problem-solving on the road to innovation.

Great Companies Need Great People. That's Where We Come In.

Table of Contents

Types of statistical analysis, importance of statistical analysis, benefits of statistical analysis, statistical analysis process, statistical analysis methods, statistical analysis software, statistical analysis examples, career in statistical analysis, choose the right program, become proficient in statistics today, what is statistical analysis types, methods and examples.

What Is Statistical Analysis?

Statistical analysis is the process of collecting and analyzing data in order to discern patterns and trends. It is a method for removing bias from evaluating data by employing numerical analysis. This technique is useful for collecting the interpretations of research, developing statistical models, and planning surveys and studies.

Statistical analysis is a scientific tool in AI and ML that helps collect and analyze large amounts of data to identify common patterns and trends to convert them into meaningful information. In simple words, statistical analysis is a data analysis tool that helps draw meaningful conclusions from raw and unstructured data. 

The conclusions are drawn using statistical analysis facilitating decision-making and helping businesses make future predictions on the basis of past trends. It can be defined as a science of collecting and analyzing data to identify trends and patterns and presenting them. Statistical analysis involves working with numbers and is used by businesses and other institutions to make use of data to derive meaningful information. 

Given below are the 6 types of statistical analysis:

Descriptive Analysis

Descriptive statistical analysis involves collecting, interpreting, analyzing, and summarizing data to present them in the form of charts, graphs, and tables. Rather than drawing conclusions, it simply makes the complex data easy to read and understand.

Inferential Analysis

The inferential statistical analysis focuses on drawing meaningful conclusions on the basis of the data analyzed. It studies the relationship between different variables or makes predictions for the whole population.

Predictive Analysis

Predictive statistical analysis is a type of statistical analysis that analyzes data to derive past trends and predict future events on the basis of them. It uses machine learning algorithms, data mining , data modelling , and artificial intelligence to conduct the statistical analysis of data.

Prescriptive Analysis

The prescriptive analysis conducts the analysis of data and prescribes the best course of action based on the results. It is a type of statistical analysis that helps you make an informed decision. 

Exploratory Data Analysis

Exploratory analysis is similar to inferential analysis, but the difference is that it involves exploring the unknown data associations. It analyzes the potential relationships within the data. 

Causal Analysis

The causal statistical analysis focuses on determining the cause and effect relationship between different variables within the raw data. In simple words, it determines why something happens and its effect on other variables. This methodology can be used by businesses to determine the reason for failure. 

Statistical analysis eliminates unnecessary information and catalogs important data in an uncomplicated manner, making the monumental work of organizing inputs appear so serene. Once the data has been collected, statistical analysis may be utilized for a variety of purposes. Some of them are listed below:

  • The statistical analysis aids in summarizing enormous amounts of data into clearly digestible chunks.
  • The statistical analysis aids in the effective design of laboratory, field, and survey investigations.
  • Statistical analysis may help with solid and efficient planning in any subject of study.
  • Statistical analysis aid in establishing broad generalizations and forecasting how much of something will occur under particular conditions.
  • Statistical methods, which are effective tools for interpreting numerical data, are applied in practically every field of study. Statistical approaches have been created and are increasingly applied in physical and biological sciences, such as genetics.
  • Statistical approaches are used in the job of a businessman, a manufacturer, and a researcher. Statistics departments can be found in banks, insurance businesses, and government agencies.
  • A modern administrator, whether in the public or commercial sector, relies on statistical data to make correct decisions.
  • Politicians can utilize statistics to support and validate their claims while also explaining the issues they address.

Become a Data Science & Business Analytics Professional

  • 28% Annual Job Growth By 2026
  • 11.5 M Expected New Jobs For Data Science By 2026

Data Analyst

  • Industry-recognized Data Analyst Master’s certificate from Simplilearn
  • Dedicated live sessions by faculty of industry experts

Data Scientist

  • Add the IBM Advantage to your Learning
  • 25 Industry-relevant Projects and Integrated labs

Here's what learners are saying regarding our programs:

Gayathri Ramesh

Gayathri Ramesh

Associate data engineer , publicis sapient.

The course was well structured and curated. The live classes were extremely helpful. They made learning more productive and interactive. The program helped me change my domain from a data analyst to an Associate Data Engineer.

A.Anthony Davis

A.Anthony Davis

Simplilearn has one of the best programs available online to earn real-world skills that are in demand worldwide. I just completed the Machine Learning Advanced course, and the LMS was excellent.

Statistical analysis can be called a boon to mankind and has many benefits for both individuals and organizations. Given below are some of the reasons why you should consider investing in statistical analysis:

  • It can help you determine the monthly, quarterly, yearly figures of sales profits, and costs making it easier to make your decisions.
  • It can help you make informed and correct decisions.
  • It can help you identify the problem or cause of the failure and make corrections. For example, it can identify the reason for an increase in total costs and help you cut the wasteful expenses.
  • It can help you conduct market analysis and make an effective marketing and sales strategy.
  • It helps improve the efficiency of different processes.

Given below are the 5 steps to conduct a statistical analysis that you should follow:

  • Step 1: Identify and describe the nature of the data that you are supposed to analyze.
  • Step 2: The next step is to establish a relation between the data analyzed and the sample population to which the data belongs. 
  • Step 3: The third step is to create a model that clearly presents and summarizes the relationship between the population and the data.
  • Step 4: Prove if the model is valid or not.
  • Step 5: Use predictive analysis to predict future trends and events likely to happen. 

Although there are various methods used to perform data analysis, given below are the 5 most used and popular methods of statistical analysis:

Mean or average mean is one of the most popular methods of statistical analysis. Mean determines the overall trend of the data and is very simple to calculate. Mean is calculated by summing the numbers in the data set together and then dividing it by the number of data points. Despite the ease of calculation and its benefits, it is not advisable to resort to mean as the only statistical indicator as it can result in inaccurate decision making. 

Standard Deviation

Standard deviation is another very widely used statistical tool or method. It analyzes the deviation of different data points from the mean of the entire data set. It determines how data of the data set is spread around the mean. You can use it to decide whether the research outcomes can be generalized or not. 

Regression is a statistical tool that helps determine the cause and effect relationship between the variables. It determines the relationship between a dependent and an independent variable. It is generally used to predict future trends and events.

Hypothesis Testing

Hypothesis testing can be used to test the validity or trueness of a conclusion or argument against a data set. The hypothesis is an assumption made at the beginning of the research and can hold or be false based on the analysis results. 

Sample Size Determination

Sample size determination or data sampling is a technique used to derive a sample from the entire population, which is representative of the population. This method is used when the size of the population is very large. You can choose from among the various data sampling techniques such as snowball sampling, convenience sampling, and random sampling. 

Everyone can't perform very complex statistical calculations with accuracy making statistical analysis a time-consuming and costly process. Statistical software has become a very important tool for companies to perform their data analysis. The software uses Artificial Intelligence and Machine Learning to perform complex calculations, identify trends and patterns, and create charts, graphs, and tables accurately within minutes. 

Look at the standard deviation sample calculation given below to understand more about statistical analysis.

The weights of 5 pizza bases in cms are as follows:

Calculation of Mean = (9+2+5+4+12)/5 = 32/5 = 6.4

Calculation of mean of squared mean deviation = (6.76+19.36+1.96+5.76+31.36)/5 = 13.04

Sample Variance = 13.04

Standard deviation = √13.04 = 3.611

A Statistical Analyst's career path is determined by the industry in which they work. Anyone interested in becoming a Data Analyst may usually enter the profession and qualify for entry-level Data Analyst positions right out of high school or a certificate program — potentially with a Bachelor's degree in statistics, computer science, or mathematics. Some people go into data analysis from a similar sector such as business, economics, or even the social sciences, usually by updating their skills mid-career with a statistical analytics course.

Statistical Analyst is also a great way to get started in the normally more complex area of data science. A Data Scientist is generally a more senior role than a Data Analyst since it is more strategic in nature and necessitates a more highly developed set of technical abilities, such as knowledge of multiple statistical tools, programming languages, and predictive analytics models.

Aspiring Data Scientists and Statistical Analysts generally begin their careers by learning a programming language such as R or SQL. Following that, they must learn how to create databases, do basic analysis, and make visuals using applications such as Tableau. However, not every Statistical Analyst will need to know how to do all of these things, but if you want to advance in your profession, you should be able to do them all.

Based on your industry and the sort of work you do, you may opt to study Python or R, become an expert at data cleaning, or focus on developing complicated statistical models.

You could also learn a little bit of everything, which might help you take on a leadership role and advance to the position of Senior Data Analyst. A Senior Statistical Analyst with vast and deep knowledge might take on a leadership role leading a team of other Statistical Analysts. Statistical Analysts with extra skill training may be able to advance to Data Scientists or other more senior data analytics positions.

Supercharge your career in AI and ML with Simplilearn's comprehensive courses. Gain the skills and knowledge to transform industries and unleash your true potential. Enroll now and unlock limitless possibilities!

Program Name AI Engineer Post Graduate Program In Artificial Intelligence Post Graduate Program In Artificial Intelligence Geo All Geos All Geos IN/ROW University Simplilearn Purdue Caltech Course Duration 11 Months 11 Months 11 Months Coding Experience Required Basic Basic No Skills You Will Learn 10+ skills including data structure, data manipulation, NumPy, Scikit-Learn, Tableau and more. 16+ skills including chatbots, NLP, Python, Keras and more. 8+ skills including Supervised & Unsupervised Learning Deep Learning Data Visualization, and more. Additional Benefits Get access to exclusive Hackathons, Masterclasses and Ask-Me-Anything sessions by IBM Applied learning via 3 Capstone and 12 Industry-relevant Projects Purdue Alumni Association Membership Free IIMJobs Pro-Membership of 6 months Resume Building Assistance Upto 14 CEU Credits Caltech CTME Circle Membership Cost $$ $$$$ $$$$ Explore Program Explore Program Explore Program

Hope this article assisted you in understanding the importance of statistical analysis in every sphere of life. Artificial Intelligence (AI) can help you perform statistical analysis and data analysis very effectively and efficiently. 

If you are a science wizard and fascinated by the role of AI in statistical analysis, check out this amazing Caltech Post Graduate Program in AI & ML course in collaboration with Caltech. With a comprehensive syllabus and real-life projects, this course is one of the most popular courses and will help you with all that you need to know about Artificial Intelligence. 

Our AI & Machine Learning Courses Duration And Fees

AI & Machine Learning Courses typically range from a few weeks to several months, with fees varying based on program and institution.

Get Free Certifications with free video courses

Introduction to Data Analytics Course

Data Science & Business Analytics

Introduction to Data Analytics Course

Introduction to Data Science

Introduction to Data Science

Learn from Industry Experts with free Masterclasses

Ai & machine learning.

Gain Gen AI expertise in Purdue's Applied Gen AI Specialization

Unlock Your Career Potential: Land Your Dream Job with Gen AI Tools

Make Your Gen AI & ML Career Shift in 2024 a Success with iHUB DivyaSampark, IIT Roorkee

Recommended Reads

Free eBook: Guide To The CCBA And CBAP Certifications

Understanding Statistical Process Control (SPC) and Top Applications

A Complete Guide on the Types of Statistical Studies

Digital Marketing Salary Guide 2021

What Is Data Analysis: A Comprehensive Guide

A Complete Guide to Get a Grasp of Time Series Analysis

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

what is a statistical analysis in research

Statistical Analysis in Research: Meaning, Methods and Types

Home » Videos » Statistical Analysis in Research: Meaning, Methods and Types

The scientific method is an empirical approach to acquiring new knowledge by making skeptical observations and analyses to develop a meaningful interpretation. It is the basis of research and the primary pillar of modern science. Researchers seek to understand the relationships between factors associated with the phenomena of interest. In some cases, research works with vast chunks of data, making it difficult to observe or manipulate each data point. As a result, statistical analysis in research becomes a means of evaluating relationships and interconnections between variables with tools and analytical techniques for working with large data. Since researchers use statistical power analysis to assess the probability of finding an effect in such an investigation, the method is relatively accurate. Hence, statistical analysis in research eases analytical methods by focusing on the quantifiable aspects of phenomena.

What is Statistical Analysis in Research? A Simplified Definition

Statistical analysis uses quantitative data to investigate patterns, relationships, and patterns to understand real-life and simulated phenomena. The approach is a key analytical tool in various fields, including academia, business, government, and science in general. This statistical analysis in research definition implies that the primary focus of the scientific method is quantitative research. Notably, the investigator targets the constructs developed from general concepts as the researchers can quantify their hypotheses and present their findings in simple statistics.

When a business needs to learn how to improve its product, they collect statistical data about the production line and customer satisfaction. Qualitative data is valuable and often identifies the most common themes in the stakeholders’ responses. On the other hand, the quantitative data creates a level of importance, comparing the themes based on their criticality to the affected persons. For instance, descriptive statistics highlight tendency, frequency, variation, and position information. While the mean shows the average number of respondents who value a certain aspect, the variance indicates the accuracy of the data. In any case, statistical analysis creates simplified concepts used to understand the phenomenon under investigation. It is also a key component in academia as the primary approach to data representation, especially in research projects, term papers and dissertations. 

Most Useful Statistical Analysis Methods in Research

Using statistical analysis methods in research is inevitable, especially in academic assignments, projects, and term papers. It’s always advisable to seek assistance from your professor or you can try research paper writing by CustomWritings before you start your academic project or write statistical analysis in research paper. Consulting an expert when developing a topic for your thesis or short mid-term assignment increases your chances of getting a better grade. Most importantly, it improves your understanding of research methods with insights on how to enhance the originality and quality of personalized essays. Professional writers can also help select the most suitable statistical analysis method for your thesis, influencing the choice of data and type of study.

Descriptive Statistics

Descriptive statistics is a statistical method summarizing quantitative figures to understand critical details about the sample and population. A description statistic is a figure that quantifies a specific aspect of the data. For instance, instead of analyzing the behavior of a thousand students, research can identify the most common actions among them. By doing this, the person utilizes statistical analysis in research, particularly descriptive statistics.

  • Measures of central tendency . Central tendency measures are the mean, mode, and media or the averages denoting specific data points. They assess the centrality of the probability distribution, hence the name. These measures describe the data in relation to the center.
  • Measures of frequency . These statistics document the number of times an event happens. They include frequency, count, ratios, rates, and proportions. Measures of frequency can also show how often a score occurs.
  • Measures of dispersion/variation . These descriptive statistics assess the intervals between the data points. The objective is to view the spread or disparity between the specific inputs. Measures of variation include the standard deviation, variance, and range. They indicate how the spread may affect other statistics, such as the mean.
  • Measures of position . Sometimes researchers can investigate relationships between scores. Measures of position, such as percentiles, quartiles, and ranks, demonstrate this association. They are often useful when comparing the data to normalized information.

Inferential Statistics

Inferential statistics is critical in statistical analysis in quantitative research. This approach uses statistical tests to draw conclusions about the population. Examples of inferential statistics include t-tests, F-tests, ANOVA, p-value, Mann-Whitney U test, and Wilcoxon W test. This

Common Statistical Analysis in Research Types

Although inferential and descriptive statistics can be classified as types of statistical analysis in research, they are mostly considered analytical methods. Types of research are distinguishable by the differences in the methodology employed in analyzing, assembling, classifying, manipulating, and interpreting data. The categories may also depend on the type of data used.

Predictive Analysis

Predictive research analyzes past and present data to assess trends and predict future events. An excellent example of predictive analysis is a market survey that seeks to understand customers’ spending habits to weigh the possibility of a repeat or future purchase. Such studies assess the likelihood of an action based on trends.

Prescriptive Analysis

On the other hand, a prescriptive analysis targets likely courses of action. It’s decision-making research designed to identify optimal solutions to a problem. Its primary objective is to test or assess alternative measures.

Causal Analysis

Causal research investigates the explanation behind the events. It explores the relationship between factors for causation. Thus, researchers use causal analyses to analyze root causes, possible problems, and unknown outcomes.

Mechanistic Analysis

This type of research investigates the mechanism of action. Instead of focusing only on the causes or possible outcomes, researchers may seek an understanding of the processes involved. In such cases, they use mechanistic analyses to document, observe, or learn the mechanisms involved.

Exploratory Data Analysis

Similarly, an exploratory study is extensive with a wider scope and minimal limitations. This type of research seeks insight into the topic of interest. An exploratory researcher does not try to generalize or predict relationships. Instead, they look for information about the subject before conducting an in-depth analysis.

The Importance of Statistical Analysis in Research

As a matter of fact, statistical analysis provides critical information for decision-making. Decision-makers require past trends and predictive assumptions to inform their actions. In most cases, the data is too complex or lacks meaningful inferences. Statistical tools for analyzing such details help save time and money, deriving only valuable information for assessment. An excellent statistical analysis in research example is a randomized control trial (RCT) for the Covid-19 vaccine. You can download a sample of such a document online to understand the significance such analyses have to the stakeholders. A vaccine RCT assesses the effectiveness, side effects, duration of protection, and other benefits. Hence, statistical analysis in research is a helpful tool for understanding data.

Sources and links For the articles and videos I use different databases, such as Eurostat, OECD World Bank Open Data, Data Gov and others. You are free to use the video I have made on your site using the link or the embed code. If you have any questions, don’t hesitate to write to me!

Support statistics and data, if you have reached the end and like this project, you can donate a coffee to “statistics and data”..

Copyright © 2022 Statistics and Data

Skip to main content

  • SAS Viya Platform
  • Learn About SAS Viya
  • Try It and Buy It
  • Move to SAS Viya
  • Risk Management
  • All Products & Solutions
  • Public Sector
  • Life Sciences
  • Retail & Consumer Goods
  • All Industries
  • Contracting with SAS
  • Customer Stories

Why Learn SAS?

Demand for SAS skills is growing. Advance your career and train your team in sought after skills

  • Train My Team
  • Course Catalog
  • Free Training
  • My Training
  • Academic Programs
  • Free Academic Software
  • Certification
  • Choose a Credential
  • Why get certified?
  • Exam Preparation
  • My Certification
  • Communities
  • Ask the Expert
  • All Webinars
  • Video Tutorials
  • YouTube Channel
  • SAS Programming
  • Statistical Procedures
  • New SAS Users
  • Administrators
  • All Communities
  • Documentation
  • Installation & Configuration
  • SAS Viya Administration
  • SAS Viya Programming
  • System Requirements
  • All Documentation
  • Support & Services
  • Knowledge Base
  • Starter Kit
  • Support by Product
  • Support Services
  • All Support & Services
  • User Groups
  • Partner Program
  • Find a Partner
  • Sign Into PartnerNet

Learn why SAS is the world's most trusted analytics platform, and why analysts, customers and industry experts love SAS.

Learn more about SAS

  • Annual Report
  • Vision & Mission
  • Office Locations
  • Internships
  • Search Jobs
  • News & Events
  • Newsletters
  • Trust Center
  • support.sas.com
  • documentation.sas.com
  • blogs.sas.com
  • communities.sas.com
  • developer.sas.com

Select Your Region

Middle East & Africa

Asia Pacific

  • Canada (English)
  • Canada (Français)
  • United States
  • Bosnia & Herz.
  • Česká Republika
  • Deutschland
  • Magyarország
  • North Macedonia
  • Schweiz (Deutsch)
  • Suisse (Français)
  • United Kingdom
  • Middle East
  • Saudi Arabia
  • South Africa
  • Indonesia (Bahasa)
  • Indonesia (English)
  • New Zealand
  • Philippines
  • Thailand (English)
  • ประเทศไทย (ภาษาไทย)
  • Worldwide Sites

Create Profile

Get access to My SAS, trials, communities and more.

Edit Profile

Background 186250730b

Statistical Analysis

Look around you. statistics are everywhere..

The field of statistics touches our lives in many ways. From the daily routines in our homes to the business of making the greatest cities run, the effects of statistics are everywhere.

Statistical Analysis Defined

What is statistical analysis? It’s the science of collecting, exploring and presenting large amounts of data to discover underlying patterns and trends. Statistics are applied every day – in research, industry and government – to become more scientific about decisions that need to be made. For example:

  • Manufacturers use statistics to weave quality into beautiful fabrics, to bring lift to the airline industry and to help guitarists make beautiful music.
  • Researchers keep children healthy by using statistics to analyze data from the production of viral vaccines, which ensures consistency and safety.
  • Communication companies use statistics to optimize network resources, improve service and reduce customer churn by gaining greater insight into subscriber requirements.
  • Government agencies around the world rely on statistics for a clear understanding of their countries, their businesses and their people.

Look around you. From the tube of toothpaste in your bathroom to the planes flying overhead, you see hundreds of products and processes every day that have been improved through the use of statistics.

Analytics Insights

Analytics Insights

Connect with the latest insights on analytics through related articles and research., more on statistical analysis.

  • What are the next big trends in statistics?
  • Why should students study statistics?
  • Celebrating statisticians: W. Edwards Deming
  • Statistics: The language of science
Statistics is so unique because it can go from health outcomes research to marketing analysis to the longevity of a light bulb. It’s a fun field because you really can do so many different things with it.

Besa Smith President and Senior Scientist Analydata

Statistical Computing

Traditional methods for statistical analysis – from sampling data to interpreting results – have been used by scientists for thousands of years. But today’s data volumes make statistics ever more valuable and powerful. Affordable storage, powerful computers and advanced algorithms have all led to an increased use of computational statistics.

Whether you are working with large data volumes or running multiple permutations of your calculations, statistical computing has become essential for today’s statistician. Popular statistical computing practices include:

  • Statistical programming – From traditional analysis of variance and linear regression to exact methods and statistical visualization techniques, statistical programming is essential for making data-based decisions in every field.
  • Econometrics – Modeling, forecasting and simulating business processes for improved strategic and tactical planning. This method applies statistics to economics to forecast future trends.
  • Operations research – Identify the actions that will produce the best results – based on many possible options and outcomes. Scheduling, simulation, and related modeling processes are used to optimize business processes and management challenges.
  • Matrix programming – Powerful computer techniques for implementing your own statistical methods and exploratory data analysis using row operation algorithms.
  • Statistical quality improvement – A mathematical approach to reviewing the quality and safety characteristics for all aspects of production.

Backgrounds_84A0920

Careers in Statistical Analysis

With everyone from The New York Times to Google’s Chief Economist Hal Varien proclaiming statistics to be the latest hot career field, who are we to argue? But why is there so much talk about careers in statistical analysis and data science? It could be the shortage of trained analytical thinkers. Or it could be the demand for managing the latest big data strains. Or, maybe it’s the excitement of applying mathematical concepts to make a difference in the world.

If you talk to statisticians about what first interested them in statistical analysis, you’ll hear a lot of stories about collecting baseball cards as a child. Or applying statistics to win more games of Axis and Allies. It is often these early passions that lead statisticians into the field. As adults, those passions can carry over into the workforce as a love of analysis and reasoning, where their passions are applied to everything from the influence of friends on purchase decisions to the study of endangered species around the world.

Learn more about current and historical statisticians:

  • Ask a statistician videos cover current uses and future trends in statistics.
  • SAS loves stats profiles statisticians working at SAS.
  • Celebrating statisticians commemorates statistics practitioners from history.

Statistics Procedures Community

Join our statistics procedures community, where you can ask questions and share your experiences with SAS statistical products. SAS Statistical Procedures

Statistical Analysis Resources

  • Statistics training
  • Statistical analytics tutorials
  • Statistics and operations research news
  • SAS ® statistics products

Want more insights?

Fraud & Risk Insights

Risk & Fraud

Discover new insights on risk and fraud through research, related articles and much  more..

Big Data Insights

Get more insights on big data including articles, research and other hot topics.

Marketing Insights

Explore insights from marketing movers and shakers on a variety of timely topics.

Learn more about sas products and solutions.

Research Graduate

The Best PhD and Masters Consulting Company

graph, diagram, growth-3033203.jpg

Introduction to Statistical Analysis: A Beginner’s Guide.

Statistical analysis is a crucial component of research work across various disciplines, helping researchers derive meaningful insights from data. Whether you’re conducting scientific studies, social research, or data-driven investigations, having a solid understanding of statistical analysis is essential. In this beginner’s guide, we will explore the fundamental concepts and techniques of statistical analysis specifically tailored for research work, providing you with a strong foundation to enhance the quality and credibility of your research findings.

1. Importance of Statistical Analysis in Research:

Research aims to uncover knowledge and make informed conclusions. Statistical analysis plays a pivotal role in achieving this by providing tools and methods to analyze and interpret data accurately. It helps researchers identify patterns, test hypotheses, draw inferences, and quantify the strength of relationships between variables. Understanding the significance of statistical analysis empowers researchers to make evidence-based decisions.

2. Data Collection and Organization:

Before diving into statistical analysis, researchers must collect and organize their data effectively. We will discuss the importance of proper sampling techniques, data quality assurance, and data preprocessing. Additionally, we will explore methods to handle missing data and outliers, ensuring that your dataset is reliable and suitable for analysis.

3. Exploratory Data Analysis (EDA):

Exploratory Data Analysis is a preliminary step that involves visually exploring and summarizing the main characteristics of the data. We will cover techniques such as data visualization, descriptive statistics, and data transformations to gain insights into the distribution, central tendencies, and variability of the variables in your dataset. EDA helps researchers understand the underlying structure of the data and identify potential relationships for further investigation.

4. Statistical Inference and Hypothesis Testing:

Statistical inference allows researchers to make generalizations about a population based on a sample. We will delve into hypothesis testing, covering concepts such as null and alternative hypotheses, p-values, and significance levels. By understanding these concepts, you will be able to test your research hypotheses and determine if the observed results are statistically significant.

5. Parametric and Non-parametric Tests:

Parametric and non-parametric tests are statistical techniques used to analyze data based on different assumptions about the underlying population distribution. We will explore commonly used parametric tests, such as t-tests and analysis of variance (ANOVA), as well as non-parametric tests like the Mann-Whitney U test and Kruskal-Wallis test. Understanding when to use each type of test is crucial for selecting the appropriate analysis method for your research questions.

6. Correlation and Regression Analysis:

Correlation and regression analysis allow researchers to explore relationships between variables and make predictions. We will cover Pearson correlation coefficients, multiple regression analysis, and logistic regression. These techniques enable researchers to quantify the strength and direction of associations and identify predictive factors in their research.

7. Sample Size Determination and Power Analysis:

Sample size determination is a critical aspect of research design, as it affects the validity and reliability of your findings. We will discuss methods for estimating sample size based on statistical power analysis, ensuring that your study has sufficient statistical power to detect meaningful effects. Understanding sample size determination is essential for planning robust research studies.

Conclusion:

Statistical analysis is an indispensable tool for conducting high-quality research. This beginner’s guide has provided an overview of key concepts and techniques specifically tailored for research work, enabling you to enhance the credibility and reliability of your findings. By understanding the importance of statistical analysis, collecting and organizing data effectively, performing exploratory data analysis, conducting hypothesis testing, utilizing parametric and non-parametric tests, and considering sample size determination, you will be well-equipped to carry out rigorous research and contribute valuable insights to your field. Remember, continuous learning, practice, and seeking guidance from statistical experts will further enhance your skills in statistical analysis for research.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Data Center
  • Applications
  • Open Source

Logo

Datamation content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More .

Statistical analysis is a systematic method of gathering, analyzing, interpreting, presenting, and deriving conclusions from data. It employs statistical tools to find patterns, trends, and links within datasets to facilitate informed decision-making. Data collection, description, exploratory data analysis (EDA), inferential statistics, statistical modeling, data visualization, and interpretation are all important aspects of statistical analysis.

Used in quantitative research to gather and analyze data, statistical data analysis provides a more comprehensive view of operational landscapes and gives organizations the insights they need to make strategic, evidence-based decisions. Here’s what you need to know.

Table of Contents

Featured Partners: Data Analysis Software

Zoho Analytics

How Does Statistical Analysis Work?

The strategic use of statistical analysis procedures helps organizations get insights from data to make educated decisions. Statistical analytic approaches, which include everything from data extraction to the creation of actionable recommendations, provide a systematic approach to comprehending, interpreting, and using large datasets. By navigating these complex processes, businesses uncover hidden patterns in their data and extract important insights that can be used as a compass for strategic decision-making.

Extracting and Organizing Raw Data

Extracting and organizing raw data entails gathering information from a variety of sources, combining datasets, and assuring data quality through rigorous cleaning. In healthcare, for example, this method may comprise combining patient information from several systems to assess patterns in illness prevalence and treatment outcomes.

Identifying Essential Data

Identifying key data—and excluding irrelevant data—necessitates a thorough analysis of the dataset. Analysts use variable selection strategies to filter datasets to emphasize characteristics most relevant to the objectives, resulting in more focused and meaningful analysis.

Developing Innovative Collection Strategies 

Innovative data collection procedures include everything from creating successful surveys and organizing experiments to data mining to extract data from a wide range of sources. Researchers in environmental studies might use remote sensing technology to obtain data on how plants and land cover change over time. Modern approaches such as satellite photography and machine learning algorithms help scientists improve the depth and precision of data collecting, opening the way for more nuanced analyses and informed decision-making.

Collaborating With Experts

Collaborating with clients and specialists to review data analysis tactics can align analytical approaches with organizational objectives. In finance, for example, engaging with investment professionals ensures that data analysis tactics analyze market trends and make educated investment decisions. Analysts may modify their tactics by incorporating comments from domain experts, making the ensuing study more relevant and applicable to the given sector or subject.

Creating Reports and Visualizations 

Creating data reports and visualizations entails generating extensive summaries and graphical representations for clarity. In e-commerce, reports might indicate user purchase trends using visualizations like heatmaps to highlight popular goods. Businesses that display data in a visually accessible format can rapidly analyze patterns and make data-driven choices that optimize product offers and improve the entire consumer experience.

Analyzing Data Findings 

This step entails using statistical tools to discover patterns, correlations, and insights in the dataset. In manufacturing, data analysis can identify connections between production factors and product faults, leading process improvement efforts. Engineers may discover and resolve fundamental causes using statistical tools and methodologies, resulting in higher product quality and operational efficiency.

Acting on the Data

Synthesizing findings from data analysis leads to the development of organizational recommendations. In the hospitality business, for example, data analysis might indicate trends in client preferences, resulting in strategic suggestions for tailored services and marketing efforts. Continuous improvement ideas based on analytical results help the firm adapt to a changing market scenario and compete more effectively.

The Importance of Statistical Analysis

The importance of statistical analysis goes far beyond data processing; it is the cornerstone in giving vital insights required for strategic decision-making, especially in the dynamic area of presenting new items to the market. Statistical analysis, which meticulously examines data, not only reveals trends and patterns but also provides a full insight into customer behavior, preferences, and market dynamics.

This abundance of information is a guiding force for enterprises, allowing them to make data-driven decisions that optimize product launches, improve market positioning, and ultimately drive success in an ever-changing business landscape.

2 Types of Statistical Analysis

There are two forms of statistical analysis, descriptive statistics, and statistical inference, both of which play an important role in guaranteeing data correctness and communicability using various analytical approaches.

By combining the capabilities of descriptive statistics with statistical inference, analysts can completely characterize the data and draw relevant insights that extend beyond the observed sample, guaranteeing conclusions that are resilient, trustworthy, and applicable to a larger context. This dual method improves the overall dependability of statistical analysis, making it an effective tool for obtaining important information from a variety of datasets.

Descriptive Statistics

This type of statistical analysis is all about visuals. Raw data doesn’t mean much on its own, and the sheer quantity can be overwhelming to digest. Descriptive statistical analysis focuses on creating a basic visual description of the data or turning information into graphs, charts, and other visuals that help people understand the meaning of the values in the data set. Descriptive analysis isn’t about explaining or drawing conclusions, though. It is only the practice of digesting and summarizing raw data to better understand it.

Statistical Inference

Inferential statistics practices involve more upfront hypotheses and follow-up explanations than descriptive statistics. In this type of statistical analysis, you are less focused on the entire collection of raw data and instead, take a sample and test your hypothesis or first estimation. From this sample and the results of your experiment, you can use inferential statistics to infer conclusions about the rest of the data set.

6 Benefits of Statistical Analysis

Statistical analysis enables a methodical and data-driven approach to decision-making and helps organizations maximize the value of their data, resulting in increased efficiency, informed decision-making, and innovation. Here are six of the most important benefits:

  • Competitive Analysis: Statistical analysis illuminates your company’s objective value—knowing common metrics like sales revenue and net profit margin allows you to compare your performance to competitors.
  • True Sales Visibility: The sales team says it is having a good week, and the numbers look good, but how can you accurately measure the impact on sales numbers? Statistical data analysis measures sales data and associates it with specific timeframes, products, and individual salespeople, which gives better visibility of marketing and sales successes.
  • Predictive Analytics: Predictive analytics allows you to use past numerical data to predict future outcomes and areas where your team should make adjustments to improve performance.
  • Risk Assessment and Management: Statistical tools help organizations analyze and manage risks more efficiently. Organizations may use historical data to identify possible hazards, anticipate future outcomes, and apply risk mitigation methods, lowering uncertainty and improving overall risk management.
  • Resource Optimization: Statistical analysis identifies areas of inefficiency or underutilization, improving personnel management, budget allocation, and resource deployment and leading to increased operational efficiency and cost savings.
  • Informed Decision Making: Statistical analysis allows businesses to base judgments on factual data rather than intuition. Data analysis allows firms to uncover patterns, trends, and correlations, resulting in better informed and strategic decision-making processes.

5-Step Statistical Analysis Process

Here are five essential steps for executing a thorough statistical analysis. By carefully following these stages, analysts may undertake a complete and rigorous statistical analysis, creating the framework for informed decision-making and providing actionable insights for both individuals and businesses.

Step 1: Data Identification and Description

Identify and clarify the features of the data to be analyzed. Understanding the nature of the dataset is critical in building the framework for a thorough statistical analysis.

Step 2: Establishing the Population Connection

Make progress toward creating a meaningful relationship between the studied data and the larger sample population from which it is drawn. This stage entails contextualizing the data within the greater framework of the population it represents, increasing the analysis’s relevance and application.

Step 3: Model Construction and Synthesis

Create a model that accurately captures and synthesizes the complex relationship between the population under study and the unique dataset. Creating a well-defined model is essential for analyzing data and generating useful insights.

Step 4: Model Validity Verification

Apply the model to thorough testing and inspection to ensure its validity. This stage guarantees that the model properly represents the population’s underlying dynamics, which improves the trustworthiness of future analysis and results.

Step 5: Predictive Analysis of Future Trends

Using predictive analytics tools , you may take your analysis to the next level. This final stage forecasts future trends and occurrences based on the developed model, providing significant insights into probable developments and assisting with proactive decision-making.

5 Statistical Analysis Methods

There are five common statistical analysis methods, each adapted to distinct data goals and guiding rapid decision-making. The approach you choose is determined by the nature of your dataset and the goals you want to achieve.

Finding the mean—the average, or center point, of the dataset—is computed by adding all the values and dividing by the number of observations. In real-world situations, the mean is used to calculate a representative value that captures the usual magnitude of a group of observations. For example, in educational evaluations, the mean score of a class provides educators with a concise measure of overall performance, allowing them to determine the general level of comprehension.

Standard Deviation

The standard deviation measures the degree of variance or dispersion within a dataset. By demonstrating how far individual values differ from the mean, it provides information about the dataset’s general dispersion. In practice, the standard deviation is used in financial analysis to analyze the volatility of stock prices. A higher standard deviation indicates greater price volatility, which helps investors evaluate and manage risks associated with various investment opportunities.

Regression analysis seeks to understand and predict connections between variables. This statistical approach is used in a variety of disciplines, including marketing, where it helps anticipate sales based on advertising spend. For example, a corporation may use regression analysis to assess how changes in advertising spending affect product sales, allowing for more efficient resource allocation for future marketing efforts.

Hypothesis Testing

Hypothesis testing is used to determine the validity of a claim or hypothesis regarding a population parameter. In medical research, hypothesis testing may be used to compare the efficacy of a novel medicine against a traditional treatment. Researchers develop a null hypothesis, implying that there is no difference between treatments, and then use statistical tests to assess if there is sufficient evidence to reject the null hypothesis in favor of the alternative.

Sample Size Determination

Choosing an adequate sample size is critical for producing trustworthy and relevant results in a study. In clinical studies, for example, researchers determine the sample size to ensure that the study has the statistical power to detect differences in treatment results. A well-determined sample size strikes a compromise between the requirement for precision and practical factors, thereby strengthening the study’s results and helping evidence-based decision-making.

Bottom Line: Identify Patterns and Trends With Statistical Analysis

Statistical analysis can provide organizations with insights into customer behavior, market dynamics, and operational efficiency. This information simplifies decision-making and prepares organizations to adapt and prosper in changing situations. Organizations that use top-tier statistical analysis tools can leverage the power of data, uncover trends, and stay at the forefront of innovation, assuring a competitive advantage in today’s ever-changing technological world.

Interested in statistical analysis? Learn how to run Monte Carlo simulations and master logistic regression in Excel.

Subscribe to Data Insider

Learn the latest news and best practices about data science, big data analytics, artificial intelligence, data security, and more.

Similar articles

Crm software examples: 10 industry use cases and tools for 2024, coursera: machine learning (ml) courses for certification in 2024, 12 top data mining certifications of 2024, get the free newsletter.

Subscribe to Data Insider for top news, trends & analysis

Latest Articles

What is cybersecurity definitions,..., crm software examples: 10..., coursera: machine learning (ml)..., 76 top saas companies....

Logo

Ever wondered how we make sense of vast amounts of data to make informed decisions? Statistical analysis is the answer. In our data-driven world, statistical analysis serves as a powerful tool to uncover patterns, trends, and relationships hidden within data. From predicting sales trends to assessing the effectiveness of new treatments, statistical analysis empowers us to derive meaningful insights and drive evidence-based decision-making across various fields and industries. In this guide, we'll explore the fundamentals of statistical analysis, popular methods, software tools, practical examples, and best practices to help you harness the power of statistics effectively. Whether you're a novice or an experienced analyst, this guide will equip you with the knowledge and skills to navigate the world of statistical analysis with confidence.

What is Statistical Analysis?

Statistical analysis is a methodical process of collecting, analyzing, interpreting, and presenting data to uncover patterns, trends, and relationships. It involves applying statistical techniques and methodologies to make sense of complex data sets and draw meaningful conclusions.

Importance of Statistical Analysis

Statistical analysis plays a crucial role in various fields and industries due to its numerous benefits and applications:

  • Informed Decision Making : Statistical analysis provides valuable insights that inform decision-making processes in business, healthcare, government, and academia. By analyzing data, organizations can identify trends, assess risks, and optimize strategies for better outcomes.
  • Evidence-Based Research : Statistical analysis is fundamental to scientific research, enabling researchers to test hypotheses, draw conclusions, and validate theories using empirical evidence. It helps researchers quantify relationships, assess the significance of findings, and advance knowledge in their respective fields.
  • Quality Improvement : In manufacturing and quality management, statistical analysis helps identify defects, improve processes, and enhance product quality. Techniques such as Six Sigma and Statistical Process Control (SPC) are used to monitor performance, reduce variation, and achieve quality objectives.
  • Risk Assessment : In finance, insurance, and investment, statistical analysis is used for risk assessment and portfolio management. By analyzing historical data and market trends, analysts can quantify risks, forecast outcomes, and make informed decisions to mitigate financial risks.
  • Predictive Modeling : Statistical analysis enables predictive modeling and forecasting in various domains, including sales forecasting, demand planning, and weather prediction. By analyzing historical data patterns, predictive models can anticipate future trends and outcomes with reasonable accuracy.
  • Healthcare Decision Support : In healthcare, statistical analysis is integral to clinical research, epidemiology, and healthcare management. It helps healthcare professionals assess treatment effectiveness, analyze patient outcomes, and optimize resource allocation for improved patient care.

Statistical Analysis Applications

Statistical analysis finds applications across diverse domains and disciplines, including:

  • Business and Economics : Market research , financial analysis, econometrics, and business intelligence.
  • Healthcare and Medicine : Clinical trials, epidemiological studies, healthcare outcomes research, and disease surveillance.
  • Social Sciences : Survey research, demographic analysis, psychology experiments, and public opinion polls.
  • Engineering : Reliability analysis, quality control, process optimization, and product design.
  • Environmental Science : Environmental monitoring, climate modeling, and ecological research.
  • Education : Educational research, assessment, program evaluation, and learning analytics.
  • Government and Public Policy : Policy analysis, program evaluation, census data analysis, and public administration.
  • Technology and Data Science : Machine learning, artificial intelligence, data mining, and predictive analytics.

These applications demonstrate the versatility and significance of statistical analysis in addressing complex problems and informing decision-making across various sectors and disciplines.

Fundamentals of Statistics

Understanding the fundamentals of statistics is crucial for conducting meaningful analyses. Let's delve into some essential concepts that form the foundation of statistical analysis.

Basic Concepts

Statistics is the science of collecting, organizing, analyzing, and interpreting data to make informed decisions or conclusions. To embark on your statistical journey, familiarize yourself with these fundamental concepts:

  • Population vs. Sample : A population comprises all the individuals or objects of interest in a study, while a sample is a subset of the population selected for analysis. Understanding the distinction between these two entities is vital, as statistical analyses often rely on samples to draw conclusions about populations.
  • Independent Variables : Variables that are manipulated or controlled in an experiment.
  • Dependent Variables : Variables that are observed or measured in response to changes in independent variables.
  • Parameters vs. Statistics : Parameters are numerical measures that describe a population, whereas statistics are numerical measures that describe a sample. For instance, the population mean is denoted by μ (mu), while the sample mean is denoted by x̄ (x-bar).

Descriptive Statistics

Descriptive statistics involve methods for summarizing and describing the features of a dataset. These statistics provide insights into the central tendency, variability, and distribution of the data. Standard measures of descriptive statistics include:

  • Mean : The arithmetic average of a set of values, calculated by summing all values and dividing by the number of observations.
  • Median : The middle value in a sorted list of observations.
  • Mode : The value that appears most frequently in a dataset.
  • Range : The difference between the maximum and minimum values in a dataset.
  • Variance : The average of the squared differences from the mean.
  • Standard Deviation : The square root of the variance, providing a measure of the average distance of data points from the mean.
  • Graphical Techniques : Graphical representations, including histograms, box plots, and scatter plots, offer visual insights into the distribution and relationships within a dataset. These visualizations aid in identifying patterns, outliers, and trends.

Inferential Statistics

Inferential statistics enable researchers to draw conclusions or make predictions about populations based on sample data. These methods allow for generalizations beyond the observed data. Fundamental techniques in inferential statistics include:

  • Null Hypothesis (H0) : The hypothesis that there is no significant difference or relationship.
  • Alternative Hypothesis (H1) : The hypothesis that there is a significant difference or relationship.
  • Confidence Intervals : Confidence intervals provide a range of plausible values for a population parameter. They offer insights into the precision of sample estimates and the uncertainty associated with those estimates.
  • Regression Analysis : Regression analysis examines the relationship between one or more independent variables and a dependent variable. It allows for the prediction of the dependent variable based on the values of the independent variables.
  • Sampling Methods : Sampling methods, such as simple random sampling, stratified sampling, and cluster sampling, are employed to ensure that sample data are representative of the population of interest. These methods help mitigate biases and improve the generalizability of results.

Probability Distributions

Probability distributions describe the likelihood of different outcomes in a statistical experiment. Understanding these distributions is essential for modeling and analyzing random phenomena. Some common probability distributions include:

  • Normal Distribution : The normal distribution, also known as the Gaussian distribution, is characterized by a symmetric, bell-shaped curve. Many natural phenomena follow this distribution, making it widely applicable in statistical analysis.
  • Binomial Distribution : The binomial distribution describes the number of successes in a fixed number of independent Bernoulli trials. It is commonly used to model binary outcomes, such as success or failure, heads or tails.
  • Poisson Distribution : The Poisson distribution models the number of events occurring in a fixed interval of time or space. It is often used to analyze rare or discrete events, such as the number of customer arrivals in a queue within a given time period.

Types of Statistical Analysis

Statistical analysis encompasses a diverse range of methods and approaches, each suited to different types of data and research questions. Understanding the various types of statistical analysis is essential for selecting the most appropriate technique for your analysis. Let's explore some common distinctions in statistical analysis methods.

Parametric vs. Non-parametric Analysis

Parametric and non-parametric analyses represent two broad categories of statistical methods, each with its own assumptions and applications.

  • Parametric Analysis : Parametric methods assume that the data follow a specific probability distribution, often the normal distribution. These methods rely on estimating parameters (e.g., means, variances) from the data. Parametric tests typically provide more statistical power but require stricter assumptions. Examples of parametric tests include t-tests, ANOVA, and linear regression.
  • Non-parametric Analysis : Non-parametric methods make fewer assumptions about the underlying distribution of the data. Instead of estimating parameters, non-parametric tests rely on ranks or other distribution-free techniques. Non-parametric tests are often used when data do not meet the assumptions of parametric tests or when dealing with ordinal or non-normal data. Examples of non-parametric tests include the Wilcoxon rank-sum test, Kruskal-Wallis test, and Spearman correlation.

Descriptive vs. Inferential Analysis

Descriptive and inferential analyses serve distinct purposes in statistical analysis, focusing on summarizing data and making inferences about populations, respectively.

  • Descriptive Analysis : Descriptive statistics aim to describe and summarize the features of a dataset. These statistics provide insights into the central tendency, variability, and distribution of the data. Descriptive analysis techniques include measures of central tendency (e.g., mean, median, mode), measures of dispersion (e.g., variance, standard deviation), and graphical representations (e.g., histograms, box plots).
  • Inferential Analysis : Inferential statistics involve making inferences or predictions about populations based on sample data. These methods allow researchers to generalize findings from the sample to the larger population. Inferential analysis techniques include hypothesis testing, confidence intervals, regression analysis, and sampling methods. These methods help researchers draw conclusions about population parameters, such as means, proportions, or correlations, based on sample data.

Exploratory vs. Confirmatory Analysis

Exploratory and confirmatory analyses represent two different approaches to data analysis, each serving distinct purposes in the research process.

  • Exploratory Analysis : Exploratory data analysis (EDA) focuses on exploring data to discover patterns, relationships, and trends. EDA techniques involve visualizing data, identifying outliers, and generating hypotheses for further investigation. Exploratory analysis is particularly useful in the early stages of research when the goal is to gain insights and generate hypotheses rather than confirm specific hypotheses.
  • Confirmatory Analysis : Confirmatory data analysis involves testing predefined hypotheses or theories based on prior knowledge or assumptions. Confirmatory analysis follows a structured approach, where hypotheses are tested using appropriate statistical methods. Confirmatory analysis is common in hypothesis-driven research, where the goal is to validate or refute specific hypotheses using empirical evidence. Techniques such as hypothesis testing, regression analysis, and experimental design are often employed in confirmatory analysis.

Methods of Statistical Analysis

Statistical analysis employs various methods to extract insights from data and make informed decisions. Let's explore some of the key methods used in statistical analysis and their applications.

Hypothesis Testing

Hypothesis testing is a fundamental concept in statistics, allowing researchers to make decisions about population parameters based on sample data. The process involves formulating null and alternative hypotheses, selecting an appropriate test statistic, determining the significance level, and interpreting the results. Standard hypothesis tests include:

  • t-tests : Used to compare means between two groups.
  • ANOVA (Analysis of Variance) : Extends the t-test to compare means across multiple groups.
  • Chi-square test : Assessing the association between categorical variables.

Regression Analysis

Regression analysis explores the relationship between one or more independent variables and a dependent variable. It is widely used in predictive modeling and understanding the impact of variables on outcomes. Key types of regression analysis include:

  • Simple Linear Regression : Examines the linear relationship between one independent variable and a dependent variable.
  • Multiple Linear Regression : Extends simple linear regression to analyze the relationship between multiple independent variables and a dependent variable.
  • Logistic Regression : Used for predicting binary outcomes or modeling probabilities.

Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to compare means across two or more groups. It partitions the total variability in the data into components attributable to different sources, such as between-group differences and within-group variability. ANOVA is commonly used in experimental design and hypothesis testing scenarios.

Time Series Analysis

Time series analysis deals with analyzing data collected or recorded at successive time intervals. It helps identify patterns, trends, and seasonality in the data. Time series analysis techniques include:

  • Trend Analysis : Identifying long-term trends or patterns in the data.
  • Seasonal Decomposition : Separating the data into seasonal, trend, and residual components.
  • Forecasting : Predicting future values based on historical data.

Survival Analysis

Survival analysis is used to analyze time-to-event data, such as time until death, failure, or occurrence of an event of interest. It is widely used in medical research, engineering, and social sciences to analyze survival probabilities and hazard rates over time.

Factor Analysis

Factor analysis is a statistical method used to identify underlying factors or latent variables that explain patterns of correlations among observed variables. It is commonly used in psychology, sociology, and market research to uncover underlying dimensions or constructs.

Cluster Analysis

Cluster analysis is a multivariate technique that groups similar objects or observations into clusters or segments based on their characteristics. It is widely used in market segmentation, image processing, and biological classification.

Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique used to transform high-dimensional data into a lower-dimensional space while preserving most of the variability in the data. It identifies orthogonal axes (principal components) that capture the maximum variance in the data. PCA is useful for data visualization, feature selection, and data compression.

How to Choose the Right Statistical Analysis Method?

Selecting the appropriate statistical method is crucial for obtaining accurate and meaningful results from your data analysis.

Understanding Data Types and Distribution

Before choosing a statistical method, it's essential to understand the types of data you're working with and their distribution. Different statistical methods are suitable for different types of data:

  • Continuous vs. Categorical Data : Determine whether your data are continuous (e.g., height, weight) or categorical (e.g., gender, race). Parametric methods such as t-tests and regression are typically used for continuous data, while non-parametric methods like chi-square tests are suitable for categorical data.
  • Normality : Assess whether your data follows a normal distribution. Parametric methods often assume normality, so if your data are not normally distributed, non-parametric methods may be more appropriate.

Assessing Assumptions

Many statistical methods rely on certain assumptions about the data. Before applying a method, it's essential to assess whether these assumptions are met:

  • Independence : Ensure that observations are independent of each other. Violations of independence assumptions can lead to biased results.
  • Homogeneity of Variance : Verify that variances are approximately equal across groups, especially in ANOVA and regression analyses. Levene's test or Bartlett's test can be used to assess homogeneity of variance.
  • Linearity : Check for linear relationships between variables, particularly in regression analysis. Residual plots can help diagnose violations of linearity assumptions.

Considering Research Objectives

Your research objectives should guide the selection of the appropriate statistical method.

  • What are you trying to achieve with your analysis? : Determine whether you're interested in comparing groups, predicting outcomes, exploring relationships, or identifying patterns.
  • What type of data are you analyzing? : Choose methods that are suitable for your data type and research questions.
  • Are you testing specific hypotheses or exploring data for insights? : Confirmatory analyses involve testing predefined hypotheses, while exploratory analyses focus on discovering patterns or relationships in the data.

Consulting Statistical Experts

If you're unsure about the most appropriate statistical method for your analysis, don't hesitate to seek advice from statistical experts or consultants:

  • Collaborate with Statisticians : Statisticians can provide valuable insights into the strengths and limitations of different statistical methods and help you select the most appropriate approach.
  • Utilize Resources : Take advantage of online resources, forums, and statistical software documentation to learn about different methods and their applications.
  • Peer Review : Consider seeking feedback from colleagues or peers familiar with statistical analysis to validate your approach and ensure rigor in your analysis.

By carefully considering these factors and consulting with experts when needed, you can confidently choose the suitable statistical method to address your research questions and obtain reliable results.

Statistical Analysis Software

Choosing the right software for statistical analysis is crucial for efficiently processing and interpreting your data. In addition to statistical analysis software, it's essential to consider tools for data collection, which lay the foundation for meaningful analysis.

What is Statistical Analysis Software?

Statistical software provides a range of tools and functionalities for data analysis, visualization, and interpretation. These software packages offer user-friendly interfaces and robust analytical capabilities, making them indispensable tools for researchers, analysts, and data scientists.

  • Graphical User Interface (GUI) : Many statistical software packages offer intuitive GUIs that allow users to perform analyses using point-and-click interfaces. This makes statistical analysis accessible to users with varying levels of programming expertise.
  • Scripting and Programming : Advanced users can leverage scripting and programming capabilities within statistical software to automate analyses, customize functions, and extend the software's functionality.
  • Visualization : Statistical software often includes built-in visualization tools for creating charts, graphs, and plots to visualize data distributions, relationships, and trends.
  • Data Management : These software packages provide features for importing, cleaning, and manipulating datasets, ensuring data integrity and consistency throughout the analysis process.

Popular Statistical Analysis Software

Several statistical software packages are widely used in various industries and research domains. Some of the most popular options include:

  • R : R is a free, open-source programming language and software environment for statistical computing and graphics. It offers a vast ecosystem of packages for data manipulation, visualization, and analysis, making it a popular choice among statisticians and data scientists.
  • Python : Python is a versatile programming language with robust libraries like NumPy, SciPy, and pandas for data analysis and scientific computing. Python's simplicity and flexibility make it an attractive option for statistical analysis, particularly for users with programming experience.
  • SPSS : SPSS (Statistical Package for the Social Sciences) is a comprehensive statistical software package widely used in social science research, marketing, and healthcare. It offers a user-friendly interface and a wide range of statistical procedures for data analysis and reporting.
  • SAS : SAS (Statistical Analysis System) is a powerful statistical software suite used for data management, advanced analytics, and predictive modeling. SAS is commonly employed in industries such as healthcare, finance, and government for data-driven decision-making.
  • Stata : Stata is a statistical software package that provides tools for data analysis, manipulation, and visualization. It is popular in academic research, economics, and social sciences for its robust statistical capabilities and ease of use.
  • MATLAB : MATLAB is a high-level programming language and environment for numerical computing and visualization. It offers built-in functions and toolboxes for statistical analysis, machine learning, and signal processing.

Data Collection Software

In addition to statistical analysis software, data collection software plays a crucial role in the research process. These tools facilitate data collection, management, and organization from various sources, ensuring data quality and reliability.

When it comes to data collection, precision and efficiency are paramount. Appinio offers a seamless solution for gathering real-time consumer insights, empowering you to make informed decisions swiftly. With our intuitive platform, you can define your target audience with precision, launch surveys effortlessly, and access valuable data in minutes.   Experience the power of Appinio and elevate your data collection process today. Ready to see it in action? Book a demo now!

Book a Demo

How to Choose the Right Statistical Analysis Software?

When selecting software for statistical analysis and data collection, consider the following factors:

  • Compatibility : Ensure the software is compatible with your operating system, hardware, and data formats.
  • Usability : Choose software that aligns with your level of expertise and provides features that meet your analysis and data collection requirements.
  • Integration : Consider whether the software integrates with other tools and platforms in your workflow, such as data visualization software or data storage systems.
  • Cost and Licensing : Evaluate the cost of licensing or subscription fees, as well as any additional costs for training, support, or maintenance.

By carefully evaluating these factors and considering your specific analysis and data collection needs, you can select the right software tools to support your research objectives and drive meaningful insights from your data.

Statistical Analysis Examples

Understanding statistical analysis methods is best achieved through practical examples. Let's explore three examples that demonstrate the application of statistical techniques in real-world scenarios.

Example 1: Linear Regression

Scenario : A marketing analyst wants to understand the relationship between advertising spending and sales revenue for a product.

Data : The analyst collects data on monthly advertising expenditures (in dollars) and corresponding sales revenue (in dollars) over the past year.

Analysis : Using simple linear regression, the analyst fits a regression model to the data, where advertising spending is the independent variable (X) and sales revenue is the dependent variable (Y). The regression analysis estimates the linear relationship between advertising spending and sales revenue, allowing the analyst to predict sales based on advertising expenditures.

Result : The regression analysis reveals a statistically significant positive relationship between advertising spending and sales revenue. For every additional dollar spent on advertising, sales revenue increases by an estimated amount (slope coefficient). The analyst can use this information to optimize advertising budgets and forecast sales performance.

Example 2: Hypothesis Testing

Scenario : A pharmaceutical company develops a new drug intended to lower blood pressure. The company wants to determine whether the new drug is more effective than the existing standard treatment.

Data : The company conducts a randomized controlled trial (RCT) involving two groups of participants: one group receives the new drug, and the other receives the standard treatment. Blood pressure measurements are taken before and after the treatment period.

Analysis : The company uses hypothesis testing, specifically a two-sample t-test, to compare the mean reduction in blood pressure between the two groups. The null hypothesis (H0) states that there is no difference in the mean reduction in blood pressure between the two treatments, while the alternative hypothesis (H1) suggests that the new drug is more effective.

Result : The t-test results indicate a statistically significant difference in the mean reduction in blood pressure between the two groups. The company concludes that the new drug is more effective than the standard treatment in lowering blood pressure, based on the evidence from the RCT.

Example 3: ANOVA

Scenario : A researcher wants to compare the effectiveness of three different teaching methods on student performance in a mathematics course.

Data : The researcher conducts an experiment where students are randomly assigned to one of three groups: traditional lecture-based instruction, active learning, or flipped classroom. At the end of the semester, students' scores on a standardized math test are recorded.

Analysis : The researcher performs an analysis of variance (ANOVA) to compare the mean test scores across the three teaching methods. ANOVA assesses whether there are statistically significant differences in mean scores between the groups.

Result : The ANOVA results reveal a significant difference in mean test scores between the three teaching methods. Post-hoc tests, such as Tukey's HSD (Honestly Significant Difference), can be conducted to identify which specific teaching methods differ significantly from each other in terms of student performance.

These examples illustrate how statistical analysis techniques can be applied to address various research questions and make data-driven decisions in different fields. By understanding and applying these methods effectively, researchers and analysts can derive valuable insights from their data to inform decision-making and drive positive outcomes.

Statistical Analysis Best Practices

Statistical analysis is a powerful tool for extracting insights from data, but it's essential to follow best practices to ensure the validity, reliability, and interpretability of your results.

  • Clearly Define Research Questions : Before conducting any analysis, clearly define your research questions or objectives . This ensures that your analysis is focused and aligned with the goals of your study.
  • Choose Appropriate Methods : Select statistical methods suitable for your data type, research design , and objectives. Consider factors such as data distribution, sample size, and assumptions of the chosen method.
  • Preprocess Data : Clean and preprocess your data to remove errors, outliers, and missing values. Data preprocessing steps may include data cleaning, normalization, and transformation to ensure data quality and consistency.
  • Check Assumptions : Verify that the assumptions of the chosen statistical methods are met. Assumptions may include normality, homogeneity of variance, independence, and linearity. Conduct diagnostic tests or exploratory data analysis to assess assumptions.
  • Transparent Reporting : Document your analysis procedures, including data preprocessing steps, statistical methods used, and any assumptions made. Transparent reporting enhances reproducibility and allows others to evaluate the validity of your findings.
  • Consider Sample Size : Ensure that your sample size is sufficient to detect meaningful effects or relationships. Power analysis can help determine the minimum sample size required to achieve adequate statistical power.
  • Interpret Results Cautiously : Interpret statistical results with caution and consider the broader context of your research. Be mindful of effect sizes, confidence intervals, and practical significance when interpreting findings.
  • Validate Findings : Validate your findings through robustness checks, sensitivity analyses, or replication studies. Cross-validation and bootstrapping techniques can help assess the stability and generalizability of your results.
  • Avoid P-Hacking and Data Dredging : Guard against p-hacking and data dredging by pre-registering hypotheses, conducting planned analyses, and avoiding selective reporting of results. Maintain transparency and integrity in your analysis process.

By following these best practices, you can conduct rigorous and reliable statistical analyses that yield meaningful insights and contribute to evidence-based decision-making in your field.

Conclusion for Statistical Analysis

Statistical analysis is a vital tool for making sense of data and guiding decision-making across diverse fields. By understanding the fundamentals of statistical analysis, including concepts like hypothesis testing, regression analysis, and data visualization, you gain the ability to extract valuable insights from complex datasets. Moreover, selecting the appropriate statistical methods, choosing the right software, and following best practices ensure the validity and reliability of your analyses. In today's data-driven world, the ability to conduct rigorous statistical analysis is a valuable skill that empowers individuals and organizations to make informed decisions and drive positive outcomes. Whether you're a researcher, analyst, or decision-maker, mastering statistical analysis opens doors to new opportunities for understanding the world around us and unlocking the potential of data to solve real-world problems.

How to Collect Data for Statistical Analysis in Minutes?

Introducing Appinio , your gateway to effortless data collection for statistical analysis. As a real-time market research platform, Appinio specializes in delivering instant consumer insights, empowering businesses to make swift, data-driven decisions.

With Appinio, conducting your own market research is not only feasible but also exhilarating. Here's why:

  • Obtain insights in minutes, not days:  From posing questions to uncovering insights, Appinio accelerates the entire research process, ensuring rapid access to valuable data.
  • User-friendly interface:  No advanced degrees required! Our platform is designed to be intuitive and accessible to anyone, allowing you to dive into market research with confidence.
  • Targeted surveys, global reach:  Define your target audience with precision using our extensive array of demographic and psychographic characteristics, and reach respondents in over 90 countries effortlessly.

Register now EN

Get free access to the platform!

Join the loop 💌

Be the first to hear about new updates, product news, and data insights. We'll send it all straight to your inbox.

Get the latest market research news straight to your inbox! 💌

Wait, there's more

What is a Confidence Interval and How to Calculate It

09.04.2024 | 29min read

What is a Confidence Interval and How to Calculate It?

What is Field Research Definition Types Methods Examples

05.04.2024 | 27min read

What is Field Research? Definition, Types, Methods, Examples

What is Cluster Sampling Definition Methods Examples

03.04.2024 | 29min read

What is Cluster Sampling? Definition, Methods, Examples

  • Submit your COVID-19 Pandemic Research
  • Research Leap Manual on Academic Writing
  • Conduct Your Survey Easily
  • Research Tools for Primary and Secondary Research
  • Useful and Reliable Article Sources for Researchers
  • Tips on writing a Research Paper
  • Stuck on Your Thesis Statement?
  • Out of the Box
  • How to Organize the Format of Your Writing
  • Argumentative Versus Persuasive. Comparing the 2 Types of Academic Writing Styles
  • Very Quick Academic Writing Tips and Advices
  • Top 4 Quick Useful Tips for Your Introduction
  • Have You Chosen the Right Topic for Your Research Paper?
  • Follow These Easy 8 Steps to Write an Effective Paper
  • 7 Errors in your thesis statement
  • How do I even Write an Academic Paper?
  • Useful Tips for Successful Academic Writing

Collaborative Governance in Government Administration in the Field of State Security Along the Republic of Indonesia (RI)-Malaysia Border Area

It service management system practices in kenya, introduction economic and psychological well-being during covid-19 pandemic in albania, a need for sustainability.

  • Designing a Framework for Assessing Agripreneurship Action for the Green Scheme Irrigation Projects, Namibia
  • The Potential Utilisation of Artificial Intelligence (AI) in Enterprises
  • Case Study – Developing a National Research and Evidence Base for The Health and Wellbeing Chapter of The Welsh Government’s 2023 Innovation Strategy for Wales
  • The Impacts of Technology Innovation on Customer Satisfaction, Employee and Leadership Commitment in CSR Practice
  • Current Developments on the Chinese Real Estate Market
  • Slide Share

Research leap

Understanding statistical analysis: A beginner’s guide to data interpretation

Statistical analysis is a crucial part of research in many fields. It is used to analyze data and draw conclusions about the population being studied. However, statistical analysis can be complex and intimidating for beginners. In this article, we will provide a beginner’s guide to statistical analysis and data interpretation, with the aim of helping researchers understand the basics of statistical methods and their application in research.

What is Statistical Analysis?

Statistical analysis is a collection of methods used to analyze data. These methods are used to summarize data, make predictions, and draw conclusions about the population being studied. Statistical analysis is used in a variety of fields, including medicine, social sciences, economics, and more.

Statistical analysis can be broadly divided into two categories: descriptive statistics and inferential statistics. Descriptive statistics are used to summarize data, while inferential statistics are used to draw conclusions about the population based on a sample of data.

Descriptive Statistics

Descriptive statistics are used to summarize data. This includes measures such as the mean, median, mode, and standard deviation. These measures provide information about the central tendency and variability of the data. For example, the mean provides information about the average value of the data, while the standard deviation provides information about the variability of the data.

Inferential Statistics

Inferential statistics are used to draw conclusions about the population based on a sample of data. This involves making inferences about the population based on the sample data. For example, a researcher might use inferential statistics to test whether there is a significant difference between two groups in a study.

Statistical Analysis Techniques

There are many different statistical analysis techniques that can be used in research. Some of the most common techniques include:

Correlation Analysis: This involves analyzing the relationship between two or more variables.

Regression Analysis: This involves analyzing the relationship between a dependent variable and one or more independent variables.

T-Tests: This is a statistical test used to compare the means of two groups.

Analysis of Variance (ANOVA): This is a statistical test used to compare the means of three or more groups.

Chi-Square Test: This is a statistical test used to determine whether there is a significant association between two categorical variables.

Data Interpretation

Once data has been analyzed, it must be interpreted. This involves making sense of the data and drawing conclusions based on the results of the analysis. Data interpretation is a crucial part of statistical analysis, as it is used to draw conclusions and make recommendations based on the data.

When interpreting data, it is important to consider the context in which the data was collected. This includes factors such as the sample size, the sampling method, and the population being studied. It is also important to consider the limitations of the data and the statistical methods used.

Best Practices for Statistical Analysis

To ensure that statistical analysis is conducted correctly and effectively, there are several best practices that should be followed. These include:

Clearly define the research question : This is the foundation of the study and will guide the analysis.

Choose appropriate statistical methods: Different statistical methods are appropriate for different types of data and research questions.

Use reliable and valid data: The data used for analysis should be reliable and valid. This means that it should accurately represent the population being studied and be collected using appropriate methods.

Ensure that the data is representative: The sample used for analysis should be representative of the population being studied. This helps to ensure that the results of the analysis are applicable to the population.

Follow ethical guidelines : Researchers should follow ethical guidelines when conducting research. This includes obtaining informed consent from participants, protecting their privacy, and ensuring that the study does not cause harm.

Statistical analysis and data interpretation are essential tools for any researcher. Whether you are conducting research in the social sciences, natural sciences, or humanities, understanding statistical methods and interpreting data correctly is crucial to drawing accurate conclusions and making informed decisions. By following the best practices for statistical analysis and data interpretation outlined in this article, you can ensure that your research is based on sound statistical principles and is therefore more credible and reliable. Remember to start with a clear research question, use appropriate statistical methods, and always interpret your data in context. With these guidelines in mind, you can confidently approach statistical analysis and data interpretation and make meaningful contributions to your field of study.

Suggested Articles

data analysis

Types of data analysis software In research work, received cluster of results and dispersion in…

what is a statistical analysis in research

How to use quantitative data analysis software   Data analysis differentiates the scientist from the…

what is a statistical analysis in research

Using free research Qualitative Data Analysis Software is a great way to save money, highlight…

Learn about ethical standards and conducting research in an ethical and responsible manner.

Research is a vital part of advancing knowledge in any field, but it must be…

Related Posts

what is a statistical analysis in research

Comments are closed.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is a statistical analysis in research

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection  methods, and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

event feedback software

Event Feedback Software: Top 11 Best in 2024

Apr 9, 2024

free market research tools

Top 10 Free Market Research Tools to Boost Your Business

Behavior analytics tools

Best 15 Behavior Analytics Tools to Explore Your User Actions

Apr 8, 2024

concept testing tools

Top 7 Concept Testing Tools to Elevate Your Ideas in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organisations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organise and summarise the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalise your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarise your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, frequently asked questions about statistics.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalise your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Population vs sample

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalisable findings, you should use a probability sampling method. Random selection reduces sampling bias and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to be biased, they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalising your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalise your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialised, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalised in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardised indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarise them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organising data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualising the relationship between two variables using a scatter plot .

By visualising your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimise the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasises null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Statistical analysis is the main method for analyzing quantitative research data . It uses probabilities and models to test predictions about a population from sample data.

Is this article helpful?

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, between-subjects design | examples, pros & cons, more interesting articles.

  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Correlation Coefficient | Types, Formulas & Examples
  • Descriptive Statistics | Definitions, Types, Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | Meaning, Formula & Examples
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Inferential Statistics | An Easy Introduction & Examples
  • Levels of measurement: Nominal, ordinal, interval, ratio
  • Missing Data | Types, Explanation, & Imputation
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Skewness | Definition, Examples & Formula
  • T-Distribution | What It Is and How To Use It (With Examples)
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Interval Data? | Examples & Definition
  • What Is Nominal Data? | Examples & Definition
  • What Is Ordinal Data? | Examples & Definition
  • What Is Ratio Data? | Examples & Definition
  • What Is the Mode in Statistics? | Definition, Examples & Calculator

Enago

Why is Statistical Analysis an Important Part of Research?

Why is Statistical Analysis an Important Part of Research?

You’ve probably heard the old joke about statistics: “Torture the numbers long enough, and they’ll say whatever you want them to say.” Statistics are quoted daily in the news media, yet often these quotes are poorly explained or fail to provide context or analysis. Misrepresentation of statistics is no reason to avoid using statistical analysis in research. 

On the contrary, it makes an even stronger argument for including statistical analysis in research and academic studies. High-quality statistical analysis in research is vital to making it clear what the importance of the research is and helping future researchers build on your work. It can also make it easier for laypersons to understand the significance of complex academic research. Let’s talk about what statistical analysis in research is, and explore why it is such a critical tool to help us understand our world better, from science and medicine to humanities and social sciences.

What is Statistical Analysis in Research?

 The word statistics, simply put, describes a range of methods for collecting, arranging, analyzing, and reporting quantitative data. Because statistics focuses on quantitative data, data in this case is usually in the form of numbers. So, we can understand statistical analysis in research as a systematic, proven approach to analyzing numerical data so that we can maximize our understanding of what the numbers are telling us. It’s a numerical form of analysis in a research paper.

We use statistical analysis in research for several reasons. The main reason is that while it is often impossible to study all of a target set, it is usually possible to study a small sample of that set. Whether you want to examine humans, animals, plants, rocks, stars, or atoms, a small subset is often all that is available and possible to study within the time and budgetary constraints that researchers must work under. However, the chances that a random sample will be representative of the whole are not high. There is always going to be some variation. How do researchers handle this type of variation when trying to understand data collected from samples? You guessed it -- through statistical analysis. Statistical analysis methods account for variation and differences, and that is why they are so critical to performing high quality research analysis in your paper.

Collecting and analyzing data through statistics is a really important part of furthering our understanding of everything from human behavior to the universe itself. One reason for this is that our assumptions about the world around us are often based on personal experience and anecdotes, but we as individuals lack a broad perspective. It takes time, dedication, and careful work to really understand what is happening in the world around us. Much of what we know and understand about the world today is thanks to hardworking researchers performing statistical analysis in research. Without this research analysis, it would be a lot harder to know what’s going on around us.

Are Statistics Always Useful?

Statistics can be, but are not always, useful. We can determine whether statistics are helpful by looking at the quality of the data gathered and the quality and rigor of the statistical analysis performed. Great statistical analysis is worthless if the data itself is poorly collected or not representative. And even the best data can mislead us when the statistical analysis performed is poor and leads to erroneous results.

It is a sad fact that some writers and researchers who use obscure or inappropriate statistical methodology as a way to get the results they are aiming for, or who fail to provide clear statistical analysis and therefore mislead their readers about the significance of their data. Poor use of statistical methods have led to a replication crisis in science, where the results of many studies cannot be reproduced. Some have argued that this replication crisis is because while collecting data has become much easier in recent decades, scientists and researchers are not adequately trained in statistical analysis in research. The replication crisis has led to falling public trust in science, the consequences of which became sharply clear during the COVID-19 pandemic.

How Can You Improve Statistical Analysis in Your Research?

So how can you avoid misusing data and producing poor quality statistical analysis in your research paper? The first way is to make sure you have a solid understanding of the scientific method. Create a hypothesis, test that hypothesis, and then analyze what happened. Be familiar with the ways that people use and misuse statistical analysis in research to present false conclusions. This will help you improve the quality of your own work and increase your ability to identify and call out poorly performed research analysis in academic papers.

Finally, don’t be afraid to reach out for assistance with your work. You don’t need to spend hours in front of your computer trying to perform statistical analysis with software and statistical analysis methods you don’t fully understand. There are services available to help you turn your data and methods into easy-to-understand results - and they are legitimate services that help researchers perform technical work without interfering their research. These services can do everything from recommending what statistical model you should use to verifying your data. They can also perform full statistical analysis in your research paper for you. Don’t worry about becoming a casualty of poor quality statistical analysis ever again - use the statistical analysis services available to you!

Our English Editing Services

TIE

Top Impact Scientific Editing New

Top Impact Scientific Editing Service offers in-depth scientific and developmental

AE

Substantive Editing Popular

Substantive Editing, our popular flagship service, is specifically tailored for quality.

NE

Copy Editing

Our professional Copy Editing service is designed for quality-conscious authors.

Our Experts

English Editing expert

Similar Articles

7 Proven Strategies to Proofread Effectively

7 Proven Strategies to Proofread Effectively

How are Editing, Copy Editing & Proofreading Different?

How are Editing, Copy Editing & Proofreading Different?

Editing vs. Copyediting: What's the Difference?

Editing vs. Copyediting: What's the Difference?

What Are The Different Types of Book Editing?

What Are The Different Types of Book Editing?

What Are the Steps in Editing a Document?

What Are the Steps in Editing a Document?

Substantive Editing vs. Copyediting: What's the Difference?

Substantive Editing vs. Copyediting: What's the Difference?

Why Copy Editing is Important

Why Copy Editing is Important

A Step-by-Step Guide to Journal Editing

A Step-by-Step Guide to Journal Editing

phone

We use cookies to offer you a personalized experience. By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Crit Care Med
  • v.25(Suppl 2); 2021 May

An Introduction to Statistics: Choosing the Correct Statistical Test

Priya ranganathan.

1 Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India

The choice of statistical test used for analysis of data from a research study is crucial in interpreting the results of the study. This article gives an overview of the various factors that determine the selection of a statistical test and lists some statistical testsused in common practice.

How to cite this article: Ranganathan P. An Introduction to Statistics: Choosing the Correct Statistical Test. Indian J Crit Care Med 2021;25(Suppl 2):S184–S186.

In a previous article in this series, we looked at different types of data and ways to summarise them. 1 At the end of the research study, statistical analyses are performed to test the hypothesis and either prove or disprove it. The choice of statistical test needs to be carefully performed since the use of incorrect tests could lead to misleading conclusions. Some key questions help us to decide the type of statistical test to be used for analysis of study data. 2

W hat is the R esearch H ypothesis ?

Sometimes, a study may just describe the characteristics of the sample, e.g., a prevalence study. Here, the statistical analysis involves only descriptive statistics . For example, Sridharan et al. aimed to analyze the clinical profile, species distribution, and susceptibility pattern of patients with invasive candidiasis. 3 They used descriptive statistics to express the characteristics of their study sample, including mean (and standard deviation) for normally distributed data, median (with interquartile range) for skewed data, and percentages for categorical data.

Studies may be conducted to test a hypothesis and derive inferences from the sample results to the population. This is known as inferential statistics . The goal of inferential statistics may be to assess differences between groups (comparison), establish an association between two variables (correlation), predict one variable from another (regression), or look for agreement between measurements (agreement). Studies may also look at time to a particular event, analyzed using survival analysis.

A re the C omparisons M atched (P aired ) or U nmatched (U npaired )?

Observations made on the same individual (before–after or comparing two sides of the body) are usually matched or paired . Comparisons made between individuals are usually unpaired or unmatched . Data are considered paired if the values in one set of data are likely to be influenced by the other set (as can happen in before and after readings from the same individual). Examples of paired data include serial measurements of procalcitonin in critically ill patients or comparison of pain relief during sequential administration of different analgesics in a patient with osteoarthritis.

W hat are the T ype of D ata B eing M easured ?

The test chosen to analyze data will depend on whether the data are categorical (and whether nominal or ordinal) or numerical (and whether skewed or normally distributed). Tests used to analyze normally distributed data are known as parametric tests and have a nonparametric counterpart that is used for data, which is distribution-free. 4 Parametric tests assume that the sample data are normally distributed and have the same characteristics as the population; nonparametric tests make no such assumptions. Parametric tests are more powerful and have a greater ability to pick up differences between groups (where they exist); in contrast, nonparametric tests are less efficient at identifying significant differences. Time-to-event data requires a special type of analysis, known as survival analysis.

H ow M any M easurements are B eing C ompared ?

The choice of the test differs depending on whether two or more than two measurements are being compared. This includes more than two groups (unmatched data) or more than two measurements in a group (matched data).

T ests for C omparison

( Table 1 lists the tests commonly used for comparing unpaired data, depending on the number of groups and type of data. As an example, Megahed and colleagues evaluated the role of early bronchoscopy in mechanically ventilated patients with aspiration pneumonitis. 5 Patients were randomized to receive either early bronchoscopy or conventional treatment. Between groups, comparisons were made using the unpaired t test for normally distributed continuous variables, the Mann–Whitney U -test for non-normal continuous variables, and the chi-square test for categorical variables. Chowhan et al. compared the efficacy of left ventricular outflow tract velocity time integral (LVOTVTI) and carotid artery velocity time integral (CAVTI) as predictors of fluid responsiveness in patients with sepsis and septic shock. 6 Patients were divided into three groups— sepsis, septic shock, and controls. Since there were three groups, comparisons of numerical variables were done using analysis of variance (for normally distributed data) or Kruskal–Wallis test (for skewed data).

Tests for comparison of unpaired data

A common error is to use multiple unpaired t -tests for comparing more than two groups; i.e., for a study with three treatment groups A, B, and C, it would be incorrect to run unpaired t -tests for group A vs B, B vs C, and C vs A. The correct technique of analysis is to run ANOVA and use post hoc tests (if ANOVA yields a significant result) to determine which group is different from the others.

( Table 2 lists the tests commonly used for comparing paired data, depending on the number of groups and type of data. As discussed above, it would be incorrect to use multiple paired t -tests to compare more than two measurements within a group. In the study by Chowhan, each parameter (LVOTVTI and CAVTI) was measured in the supine position and following passive leg raise. These represented paired readings from the same individual and comparison of prereading and postreading was performed using the paired t -test. 6 Verma et al. evaluated the role of physiotherapy on oxygen requirements and physiological parameters in patients with COVID-19. 7 Each patient had pretreatment and post-treatment data for heart rate and oxygen supplementation recorded on day 1 and day 14. Since data did not follow a normal distribution, they used Wilcoxon's matched pair test to compare the prevalues and postvalues of heart rate (numerical variable). McNemar's test was used to compare the presupplemental and postsupplemental oxygen status expressed as dichotomous data in terms of yes/no. In the study by Megahed, patients had various parameters such as sepsis-related organ failure assessment score, lung injury score, and clinical pulmonary infection score (CPIS) measured at baseline, on day 3 and day 7. 5 Within groups, comparisons were made using repeated measures ANOVA for normally distributed data and Friedman's test for skewed data.

Tests for comparison of paired data

T ests for A ssociation between V ariables

( Table 3 lists the tests used to determine the association between variables. Correlation determines the strength of the relationship between two variables; regression allows the prediction of one variable from another. Tyagi examined the correlation between ETCO 2 and PaCO 2 in patients with chronic obstructive pulmonary disease with acute exacerbation, who were mechanically ventilated. 8 Since these were normally distributed variables, the linear correlation between ETCO 2 and PaCO 2 was determined by Pearson's correlation coefficient. Parajuli et al. compared the acute physiology and chronic health evaluation II (APACHE II) and acute physiology and chronic health evaluation IV (APACHE IV) scores to predict intensive care unit mortality, both of which were ordinal data. Correlation between APACHE II and APACHE IV score was tested using Spearman's coefficient. 9 A study by Roshan et al. identified risk factors for the development of aspiration pneumonia following rapid sequence intubation. 10 Since the outcome was categorical binary data (aspiration pneumonia— yes/no), they performed a bivariate analysis to derive unadjusted odds ratios, followed by a multivariable logistic regression analysis to calculate adjusted odds ratios for risk factors associated with aspiration pneumonia.

Tests for assessing the association between variables

T ests for A greement between M easurements

( Table 4 outlines the tests used for assessing agreement between measurements. Gunalan evaluated concordance between the National Healthcare Safety Network surveillance criteria and CPIS for the diagnosis of ventilator-associated pneumonia. 11 Since both the scores are examples of ordinal data, Kappa statistics were calculated to assess the concordance between the two methods. In the previously quoted study by Tyagi, the agreement between ETCO 2 and PaCO 2 (both numerical variables) was represented using the Bland–Altman method. 8

Tests for assessing agreement between measurements

T ests for T ime-to -E vent D ata (S urvival A nalysis )

Time-to-event data represent a unique type of data where some participants have not experienced the outcome of interest at the time of analysis. Such participants are considered to be “censored” but are allowed to contribute to the analysis for the period of their follow-up. A detailed discussion on the analysis of time-to-event data is beyond the scope of this article. For analyzing time-to-event data, we use survival analysis (with the Kaplan–Meier method) and compare groups using the log-rank test. The risk of experiencing the event is expressed as a hazard ratio. Cox proportional hazards regression model is used to identify risk factors that are significantly associated with the event.

Hasanzadeh evaluated the impact of zinc supplementation on the development of ventilator-associated pneumonia (VAP) in adult mechanically ventilated trauma patients. 12 Survival analysis (Kaplan–Meier technique) was used to calculate the median time to development of VAP after ICU admission. The Cox proportional hazards regression model was used to calculate hazard ratios to identify factors significantly associated with the development of VAP.

The choice of statistical test used to analyze research data depends on the study hypothesis, the type of data, the number of measurements, and whether the data are paired or unpaired. Reviews of articles published in medical specialties such as family medicine, cytopathology, and pain have found several errors related to the use of descriptive and inferential statistics. 12 – 15 The statistical technique needs to be carefully chosen and specified in the protocol prior to commencement of the study, to ensure that the conclusions of the study are valid. This article has outlined the principles for selecting a statistical test, along with a list of tests used commonly. Researchers should seek help from statisticians while writing the research study protocol, to formulate the plan for statistical analysis.

Priya Ranganathan https://orcid.org/0000-0003-1004-5264

Source of support: Nil

Conflict of interest: None

R eferences

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Choosing the Right Statistical Test | Types & Examples

Choosing the Right Statistical Test | Types & Examples

Published on January 28, 2020 by Rebecca Bevans . Revised on June 22, 2023.

Statistical tests are used in hypothesis testing . They can be used to:

  • determine whether a predictor variable has a statistically significant relationship with an outcome variable.
  • estimate the difference between two or more groups.

Statistical tests assume a null hypothesis of no relationship or no difference between groups. Then they determine whether the observed data fall outside of the range of values predicted by the null hypothesis.

If you already know what types of variables you’re dealing with, you can use the flowchart to choose the right statistical test for your data.

Statistical tests flowchart

Table of contents

What does a statistical test do, when to perform a statistical test, choosing a parametric test: regression, comparison, or correlation, choosing a nonparametric test, flowchart: choosing a statistical test, other interesting articles, frequently asked questions about statistical tests.

Statistical tests work by calculating a test statistic – a number that describes how much the relationship between variables in your test differs from the null hypothesis of no relationship.

It then calculates a p value (probability value). The p -value estimates how likely it is that you would see the difference described by the test statistic if the null hypothesis of no relationship were true.

If the value of the test statistic is more extreme than the statistic calculated from the null hypothesis, then you can infer a statistically significant relationship between the predictor and outcome variables.

If the value of the test statistic is less extreme than the one calculated from the null hypothesis, then you can infer no statistically significant relationship between the predictor and outcome variables.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

You can perform statistical tests on data that have been collected in a statistically valid manner – either through an experiment , or through observations made using probability sampling methods .

For a statistical test to be valid , your sample size needs to be large enough to approximate the true distribution of the population being studied.

To determine which statistical test to use, you need to know:

  • whether your data meets certain assumptions.
  • the types of variables that you’re dealing with.

Statistical assumptions

Statistical tests make some common assumptions about the data they are testing:

  • Independence of observations (a.k.a. no autocorrelation): The observations/variables you include in your test are not related (for example, multiple measurements of a single test subject are not independent, while measurements of multiple different test subjects are independent).
  • Homogeneity of variance : the variance within each group being compared is similar among all groups. If one group has much more variation than others, it will limit the test’s effectiveness.
  • Normality of data : the data follows a normal distribution (a.k.a. a bell curve). This assumption applies only to quantitative data .

If your data do not meet the assumptions of normality or homogeneity of variance, you may be able to perform a nonparametric statistical test , which allows you to make comparisons without any assumptions about the data distribution.

If your data do not meet the assumption of independence of observations, you may be able to use a test that accounts for structure in your data (repeated-measures tests or tests that include blocking variables).

Types of variables

The types of variables you have usually determine what type of statistical test you can use.

Quantitative variables represent amounts of things (e.g. the number of trees in a forest). Types of quantitative variables include:

  • Continuous (aka ratio variables): represent measures and can usually be divided into units smaller than one (e.g. 0.75 grams).
  • Discrete (aka integer variables): represent counts and usually can’t be divided into units smaller than one (e.g. 1 tree).

Categorical variables represent groupings of things (e.g. the different tree species in a forest). Types of categorical variables include:

  • Ordinal : represent data with an order (e.g. rankings).
  • Nominal : represent group names (e.g. brands or species names).
  • Binary : represent data with a yes/no or 1/0 outcome (e.g. win or lose).

Choose the test that fits the types of predictor and outcome variables you have collected (if you are doing an experiment , these are the independent and dependent variables ). Consult the tables below to see which test best matches your variables.

Parametric tests usually have stricter requirements than nonparametric tests, and are able to make stronger inferences from the data. They can only be conducted with data that adheres to the common assumptions of statistical tests.

The most common types of parametric test include regression tests, comparison tests, and correlation tests.

Regression tests

Regression tests look for cause-and-effect relationships . They can be used to estimate the effect of one or more continuous variables on another variable.

Comparison tests

Comparison tests look for differences among group means . They can be used to test the effect of a categorical variable on the mean value of some other characteristic.

T-tests are used when comparing the means of precisely two groups (e.g., the average heights of men and women). ANOVA and MANOVA tests are used when comparing the means of more than two groups (e.g., the average heights of children, teenagers, and adults).

Correlation tests

Correlation tests check whether variables are related without hypothesizing a cause-and-effect relationship.

These can be used to test whether two variables you want to use in (for example) a multiple regression test are autocorrelated.

Non-parametric tests don’t make as many assumptions about the data, and are useful when one or more of the common statistical assumptions are violated. However, the inferences they make aren’t as strong as with parametric tests.

Prevent plagiarism. Run a free check.

This flowchart helps you choose among parametric tests. For nonparametric alternatives, check the table above.

Choosing the right statistical test

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient
  • Null hypothesis

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Statistical tests commonly assume that:

  • the data are normally distributed
  • the groups that are being compared have similar variance
  • the data are independent

If your data does not meet these assumptions you might still be able to use a nonparametric statistical test , which have fewer requirements but also make weaker inferences.

A test statistic is a number calculated by a  statistical test . It describes how far your observed data is from the  null hypothesis  of no relationship between  variables or no difference among sample groups.

The test statistic tells you how different two or more groups are from the overall population mean , or how different a linear slope is from the slope predicted by a null hypothesis . Different test statistics are used in different statistical tests.

Statistical significance is a term used by researchers to state that it is unlikely their observations could have occurred under the null hypothesis of a statistical test . Significance is usually denoted by a p -value , or probability value.

Statistical significance is arbitrary – it depends on the threshold, or alpha value, chosen by the researcher. The most common threshold is p < 0.05, which means that the data is likely to occur less than 5% of the time under the null hypothesis .

When the p -value falls below the chosen alpha value, then we say the result of the test is statistically significant.

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Choosing the Right Statistical Test | Types & Examples. Scribbr. Retrieved April 9, 2024, from https://www.scribbr.com/statistics/statistical-tests/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, hypothesis testing | a step-by-step guide with easy examples, test statistics | definition, interpretation, and examples, normal distribution | examples, formulas, & uses, what is your plagiarism score.

  • How it works

Ratio Data: Definition, Examples, and Analysis

Published by Owen Ingram at September 2nd, 2021 , Revised On July 20, 2023

There are a total of four types of data in statistics primarily. They are nominal data, ordinal data, ratio data, and interval data.

Ordinal Data : This type of data is classified into categories. However, the distance between these categories is unknown.

Nominal Data : Nominal data is used to label variables without assigning any quantitative value to them.

Ratio Data: This is a kind of qualitative data that measures variables on a continuous scale.

Interval Data : This data type is measured along a scale and has an equal distance between its values.

If you’re looking to learn everything there is to know about the ratio data, then you’re at the right place. Let’s take a look into the definition, examples, and analysis of ratio data.

What is a Ratio Data?

A Ratio scale is the fourth type of measurement scale and is quantitative in nature. It is similar to interval data , where each value is placed at an equal distance from its subsequent value. However, it has a ‘true zero,’ which means that zero possesses a meaning.

The ratio scale contains the characteristics of nominal, ordinal, and interval scales and is, therefore, used widely in market research.

Examples of Ratio Data

Here are some of the common examples of ratio data:

  • Mass and Weight

In Market Research, it is used to evaluate:

  • Number of customers

Ratio Data vs. Interval Data – The Difference

Both interval and ratio data have equal values placed between two variables . However, one significant difference between the two is the presence of the ‘true zero.’ The ratio data has a true zero, which denotes an absence of a variable. For example, in interval data, you can measure temperature beyond 0 degrees because zero, in this case, holds a value. However, in ratio data, the variables never fall beneath zero.

An example of this is body mass. We know mass is measured from 0 as a starting point and goes above. It does not fall beneath zero.

Characteristics of Ratio Data

Here are some of the characteristics of the ratio data:

  • Absolute zero: As explained earlier, ratio scales have an absolute zero. Although they are not categorical, they have a specific order and have equal distance between their values. We can use multiplication or division to describe them because of the absolute zero characteristics in the ratio scales. For example, 40kg is twice more than 20kg, or the distance from point A to B is 50km which is twice less than the distance from point B to C, i.e., 150km.
  • No negative number: Because ratio scales have an absolute zero, they do not have significant negative numbers. Unlike interval scales where -10 would hold a meaningful, ratio scales begin from a certain point as a way of measurement.
  • Possibilities for statistical measurement: Since ratio scales have an absolute zero, variables in this type of data can be added, subtracted, multiplied, or divided. Furthermore, all measures of central tendency can be performed with ratio scales. These include the mean , mode , and median .

Not sure which statistical tests to use for your data?

Let the experts at researchprospect do the daunting work for you. 📊📈.

Using our approach, we illustrate how to collect data, sample sizes, validity, reliability, credibility, and ethics, so you won’t have to do it all by yourself!

How is Ratio Data Collected?

There are several ways to collect ratio data. Your method solely depends on the type of research you’re doing. Common ways to collect data are surveys, questionnaires, and interviews.

  • Interviews: In this method, participants are interviewed ad data is collected from there. Such discussions are often structured, semi-structured, or unstructured. They can be either face-to-face, telephonic, panel or group, and computer-assisted.
  • Questionnaires and Surveys: This is a standard data collection method for qualitative data. A survey or a questionnaire is handed out to participants, and they are asked to answer a series of questions. Their answers are then recorded for qualitative analysis.
  • Direct Observation: Ratio data can also be collected through direct observation. For example, if you were to measure the height of some athletes, there will be a point zero. A measurement of 0 would indicate an absence of the athlete.
  • Automated Data Collectors: Some roads have automated speed calculators, which are an efficient and practical way to collect data.

Here’s an example,

Question: How much is your family’s monthly income?

Possible answers: $0-$5000, $5000-$10,000, $10,000-$15,000, $15,000 or more.

Note: The distance between the intervals is equal, i.e., $5000.There is also a true zero. Also, the answer can not be negative, i.e., $ -20

Analyzing Ratio Data

Ratio Data can be analyzed and interpreted in precisely the same way as the interval way. These include the following methods:

  • Mean : This is the average of the interval data set. Mean can be calculated by adding the numbers in the interval data set and dividing this total by the number of values in the set.
  • Median : Median is used to determine the middle value in the data set. Since all values in the interval data are equal distance apart, the median is easy to calculate.
  • Mode : This is the value that is the most occurring in the data set.
  • Standard Deviation: This measures the dispersion of a data set relative to its mean.
  • Percentiles: This is the percentage of values that fall below a specific number from the data set. For example, let’s suppose the 75th percentile of an IELTS test is 6.0 overall. If you scored an overall 6.0, this would mean that your score was better than 75% of the IELTS test takers.
  • Range : This is the difference between the highest and the lowest value in the data set.

What Statistical Tests can you do with Ratio Data?

You can perform several statistical tests with ratio scales, mainly,

  • Pearson Correlation
  • Simple Linear Regression

And that’s a wrap! That’s all you need to know about ratio data, its definition, examples, and analysis.

FAQs About Ratio Data

What are the main differences between interval and ratio scales.

  • Interval scales do not have a true zero, whereas ratio scales do.
  • Negative numbers have meaning in interval scales, whereas negative numbers do not hold any meaningful value in ratio scales.
  • Interval data can only be expressed using addition or subtraction, whereas ratio data can be expressed using addition, subtraction, multiplication, and division.

What are the examples of Ratio Scales?

Some common examples of ratio scales are age, distance, speed, and mass. What are the four levels of measurement of data? The four levels of measurement of data are nominal , ordinals , interval , and ratio data.

You May Also Like

Statistical tests are used for testing the hypothesis to determine the relaltionship between variables but which statistical test you should use?

Data collecting is the process of gathering, measuring, and analyzing information or data using standard validated techniques.

P-value in statistics is the probability of getting outcomes at least as extreme as the outcomes of a statistical hypothesis test, assuming the null hypothesis to be correct.

USEFUL LINKS

LEARNING RESOURCES

secure connection

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

medRxiv

Maternal and Infant Research Electronic Data Analysis (MIREDA): A protocol for creating a common data model for federated analysis of UK birth cohorts and the life course.

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael Seaborne
  • For correspondence: [email protected]
  • ORCID record for Hope Jones
  • ORCID record for Neil Cockburn
  • ORCID record for Stevo Durbaba
  • ORCID record for Tom Giles
  • ORCID record for Arturo Gonzalez-Izquierdo
  • ORCID record for Amy Hough
  • ORCID record for Dan Mason
  • ORCID record for Armando Mendez-Villalon
  • ORCID record for Carlos Sanchez-Soriano
  • ORCID record for Chris Orton
  • ORCID record for David Ford
  • ORCID record for Phillip Quinlan
  • ORCID record for Krish Nirantharakumar
  • ORCID record for Lucilla Poston
  • ORCID record for Rebecca Reynolds
  • ORCID record for Gillian Santorelli
  • ORCID record for Sinead Brophy
  • Info/History
  • Preview PDF

Introduction Birth cohorts are valuable resources for studying early life, the determinants of health, disease, and development. They are essential for studying life course. Electronic cohorts are live, dynamic longitudinal cohorts using anonymised, routinely collected data. There is no selection bias through direct recruitment, but they are limited to health and administrative system data and may lack contextual information. The MIREDA (Maternal and Infant Research Electronic Data Analysis) partnership creates a UK-wide birth cohort by aligning existing electronic birth cohorts to have the same structure, content, and vocabularies, enabling UK-wide federated analyses. Objectives 1) Create a core dynamic, live UK-wide electronic birth cohort with approximately 100,000 new births per year using a common data model (CDM). 2) Provide data linkage and automation for long-term follow up of births from MuM-PreDiCT and the Born-in initiatives of Bradford, Wales, Scotland, and South London for comparable analyses. Methods We will establish core data content and collate linkable data. Use a suite of extraction, transformation, and load (ETL) tools will be used to transform the data for each birth cohort into the CDM. Transformed datasets will remain within each cohorts trusted research environment (TRE). Metadata will be uploaded for the public to the Health Data Research (HDRUK) Innovation Gateway. We will develop a single online data access request for researchers. A cohort profile will be developed for researchers to reference the resource. Ethics Each cohort has approval from their TRE through compliance with their project application processes and information governance. Dissemination We will engage with researchers in the field to promote our resource through partnership networking, publication, research collaborations, conferences, social media, and marketing communications strategies. Keywords: Birth Cohort, Life Course Perspective, Data Science, Data Curation, Routinely Collected Health Data, Electronic Health Records, Unified Medical Language System.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by an MRC Partnership Grant [MR/X02055X/1], MatCHNet pump-priming [U20005/302873] and an MRC Programme Grant [MR/X009742/1].

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Access to data is granted according to the information governance requirements of each TRE. The Data Protection Act 2018 is not applicable to anonymised data and the OMOP CDM will be anonymised and provide aggregated data and statistics only. Each TRE has ethical approval for its operation and use, thus no additional ethical approval was required beyond the standard project approval by official channels.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

There was an error in the order of authorship and a missing punctuation mark after the title abstract. Also needed to update the authors order in the file I uploaded as it did not match that of the paper.

Data Availability

Data will be available upon reasonable request through the Health Data Research (HDRUK) Innovation Gateway.

View the discussion thread.

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Addiction Medicine (316)
  • Allergy and Immunology (619)
  • Anesthesia (160)
  • Cardiovascular Medicine (2281)
  • Dentistry and Oral Medicine (280)
  • Dermatology (201)
  • Emergency Medicine (370)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (803)
  • Epidemiology (11586)
  • Forensic Medicine (10)
  • Gastroenterology (680)
  • Genetic and Genomic Medicine (3597)
  • Geriatric Medicine (337)
  • Health Economics (618)
  • Health Informatics (2309)
  • Health Policy (915)
  • Health Systems and Quality Improvement (865)
  • Hematology (335)
  • HIV/AIDS (753)
  • Infectious Diseases (except HIV/AIDS) (13167)
  • Intensive Care and Critical Care Medicine (757)
  • Medical Education (359)
  • Medical Ethics (100)
  • Nephrology (389)
  • Neurology (3358)
  • Nursing (191)
  • Nutrition (507)
  • Obstetrics and Gynecology (652)
  • Occupational and Environmental Health (647)
  • Oncology (1763)
  • Ophthalmology (526)
  • Orthopedics (209)
  • Otolaryngology (284)
  • Pain Medicine (223)
  • Palliative Medicine (66)
  • Pathology (441)
  • Pediatrics (1008)
  • Pharmacology and Therapeutics (422)
  • Primary Care Research (406)
  • Psychiatry and Clinical Psychology (3067)
  • Public and Global Health (5999)
  • Radiology and Imaging (1226)
  • Rehabilitation Medicine and Physical Therapy (715)
  • Respiratory Medicine (811)
  • Rheumatology (367)
  • Sexual and Reproductive Health (353)
  • Sports Medicine (318)
  • Surgery (389)
  • Toxicology (50)
  • Transplantation (171)
  • Urology (142)

Rapid assessment of surface water quality using statistical multivariate analysis approach: Oder River system case study

  • Balcerowska-Czerniak, Grażyna
  • Gorczyca, Beata

Many physicochemical and biological monitored parameters must be taken into consideration to fully evaluate the surface water environmental condition. However, there are situations where a simple and rapid assessment of the poor water quality situations is critically important. This work presents a universal methodology for monitoring of many parameters simultaneously and early detection out-of-control samples in a real-time mode. The approach uses multivariate statistical quality control chart based on Principal Component Analysis (PCA) model with two well-known measures of abnormal behaviour in a process or system: Hoteling's T 2 statistics and Q-statistic. The proposed TQ_PCA quality index provides on-line assessment of the water sample quality, with no specific knowledge and assumptions about control limits for monitored parameters required. A water sample is assessed through the simple control chart using the PCA model established for training/reference samples. The power of the proposed index has been tested using water quality data from the Oder River, including the time of the largest ecological disaster in recent European river history. The proposed index showed excellent analysis performance for physicochemical water quality dataset from Polish stations and physicochemical and biological water quality dataset from German/Frankfurt station, confirming earlier reports. There were consecutive number of alarms reported by the statistical index, a month prior to the disaster when there were no evident changes in the individual parameters. The method presented in this study demonstrated capability of assessment of the major water quality parameters, whose changes preempt the uncommon event. The presented TQ_PCA index could be easily extended to any research involving a large dataset of monitoring parameters from any industrial chemical process.

  • Quality monitoring;
  • Water quality index;
  • Physicochemical parameters;
  • Multivariate analysis;
  • Hotelling T<SUP>2</SUP> chart;
  • Principal component analysis

IMAGES

  1. 7 Types of Statistical Analysis: Definition and Explanation

    what is a statistical analysis in research

  2. Standard statistical tools in research and data analysis

    what is a statistical analysis in research

  3. 7 Types of Statistical Analysis: Definition and Explanation

    what is a statistical analysis in research

  4. 7 Types of Statistical Analysis: Definition and Explanation

    what is a statistical analysis in research

  5. 7 Types of Statistical Analysis with Best Examples

    what is a statistical analysis in research

  6. Statistical Analysis Types

    what is a statistical analysis in research

VIDEO

  1. Tools for statistical analysis /Research methodology /malayalam

  2. What is Data Analysis in research

  3. Introduction to Data

  4. The Statistical Analysis Process

  5. Introduction to Statistical Inference

  6. Quantitative Research Methods, Types and Examples

COMMENTS

  1. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations.

  2. What Is Statistical Analysis? (Definition, Methods)

    Statistical analysis is useful for research and decision making because it allows us to understand the world around us and draw conclusions by testing our assumptions. Statistical analysis is important for various applications, including: Statistical quality control and analysis in product development. Clinical trials.

  3. What Is Statistical Analysis? Definition, Types, and Jobs

    Statistical analysis is the process of collecting and analyzing large volumes of data in order to identify trends and develop valuable insights. In the professional world, statistical analysts take raw data and find correlations between variables to reveal patterns and trends to relevant stakeholders. Working in a wide range of different fields ...

  4. What is Statistical Analysis? Types, Methods and Examples

    Statistical analysis is the process of collecting and analyzing data in order to discern patterns and trends. It is a method for removing bias from evaluating data by employing numerical analysis. This technique is useful for collecting the interpretations of research, developing statistical models, and planning surveys and studies.

  5. Introduction to Research Statistical Analysis: An Overview of the

    Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

  6. Statistical Analysis in Research: Meaning, Methods and Types

    A Simplified Definition. Statistical analysis uses quantitative data to investigate patterns, relationships, and patterns to understand real-life and simulated phenomena. The approach is a key analytical tool in various fields, including academia, business, government, and science in general. This statistical analysis in research definition ...

  7. Statistical Analysis: What it is and why it matters

    What is statistical analysis? It's the science of collecting, exploring and presenting large amounts of data to discover underlying patterns and trends. Statistics are applied every day - in research, industry and government - to become more scientific about decisions that need to be made. For example: Manufacturers use statistics to ...

  8. Introduction to Statistical Analysis: A Beginner's Guide

    Statistical analysis is an indispensable tool for conducting high-quality research. This beginner's guide has provided an overview of key concepts and techniques specifically tailored for research work, enabling you to enhance the credibility and reliability of your findings. By understanding the importance of statistical analysis, collecting ...

  9. Basic statistical tools in research and data analysis

    Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if ...

  10. Statistical Analysis: Definition, Examples

    Statistical analysis is the science of collecting data and uncovering patterns and trends. It's really just another way of saying "statistics.". After collecting data you can analyze it to: Summarize the data. For example, make a pie chart. Find key measures of location. For example, the mean tells you what the average (or "middling ...

  11. What Is Statistical Analysis? Ultimate Guide

    Statistical analysis is a systematic method of gathering, analyzing, interpreting, presenting, and deriving conclusions from data. It employs statistical tools to find patterns, trends, and links within datasets to facilitate informed decision-making. Data collection, description, exploratory data analysis (EDA), inferential statistics ...

  12. Statistical analysis: What It Is, Types, Uses & How to Do It

    It involves using statistical techniques and methods to analyze and make sense of information, helping researchers, analysts, and decision-makers understand patterns, relationships, and trends within data sets. Statistical analysis is fundamental to scientific research, business intelligence, quality control, and decision-making in various fields.

  13. Role of Statistics in Research

    Role of Statistics in Biological Research. Statistics is a branch of science that deals with collection, organization and analysis of data from the sample to the whole population. Moreover, it aids in designing a study more meticulously and also give a logical reasoning in concluding the hypothesis.

  14. What is Statistical Analysis? Types, Methods, Software, Examples

    Statistical analysis is a methodical process of collecting, analyzing, interpreting, and presenting data to uncover patterns, trends, and relationships. It involves applying statistical techniques and methodologies to make sense of complex data sets and draw meaningful conclusions.

  15. Understanding statistical analysis: A beginner's ...

    Statistical analysis is a collection of methods used to analyze data. These methods are used to summarize data, make predictions, and draw conclusions about the population being studied. Statistical analysis is used in a variety of fields, including medicine, social sciences, economics, and more. Statistical analysis can be broadly divided into ...

  16. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  17. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organisations. ... Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

  18. Why is Statistical Analysis an Important Part of Research?

    Statistical analysis methods account for variation and differences, and that is why they are so critical to performing high quality research analysis in your paper. Collecting and analyzing data through statistics is a really important part of furthering our understanding of everything from human behavior to the universe itself.

  19. An Introduction to Statistics: Choosing the Correct Statistical Test

    The choice of statistical test used for analysis of data from a research study is crucial in interpreting the results of the study. This article gives an overview of the various factors that determine the selection of a statistical test and lists some statistical testsused in common practice. How to cite this article: Ranganathan P. An ...

  20. Choosing the Right Statistical Test

    Statistical tests make some common assumptions about the data they are testing: Independence of observations (a.k.a. no autocorrelation): The observations/variables you include in your test are not related (for example, multiple measurements of a single test subject are not independent, while measurements of multiple different test subjects are ...

  21. 7 Types of Statistical Analysis Techniques (And Process Steps)

    3. Data presentation. Data presentation is an extension of data cleaning, as it involves arranging the data for easy analysis. Here, you can use descriptive statistics tools to summarize the data. Data presentation can also help you determine the best way to present the data based on its arrangement. 4.

  22. What Is Data Analysis? (With Examples)

    Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly, one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holmes proclaims in Sir Arthur Conan Doyle's A Scandal ...

  23. Ratio Data: Definition, Examples, and Analysis

    The ratio data has a true zero, which denotes an absence of a variable. For example, in interval data, you can measure temperature beyond 0 degrees because zero, in this case, holds a value. However, in ratio data, the variables never fall beneath zero. An example of this is body mass. We know mass is measured from 0 as a starting point and ...

  24. Global cancer statistics 2022: GLOBOCAN estimates of incidence and

    This article presents global cancer statistics by world region for the year 2022 based on updated estimates from the International Agency for Research on Cancer (IARC). There were close to 20 million new cases of cancer in the year 2022 (including nonmelanoma skin cancers [NMSCs]) alongside 9.7 million deaths from cancer (including NMSC).

  25. Maternal and Infant Research Electronic Data Analysis (MIREDA): A

    Introduction Birth cohorts are valuable resources for studying early life, the determinants of health, disease, and development. They are essential for studying life course. Electronic cohorts are live, dynamic longitudinal cohorts using anonymised, routinely collected data. There is no selection bias through direct recruitment, but they are limited to health and administrative system data and ...

  26. Rapid assessment of surface water quality using statistical

    The approach uses multivariate statistical quality control chart based on Principal Component Analysis (PCA) model with two well-known measures of abnormal behaviour in a process or system: Hoteling's T 2 statistics and Q-statistic. The proposed TQ_PCA quality index provides on-line assessment of the water sample quality, with no specific ...