• Permanent Scientific Staff
  • Permanent Technical Staf
  • PhD Students
  • Close collaborators
  • Hybrid Quantum Systems
  • Superconducting Weak Links
  • Electrodynamics of quantum circuits
  • Single microwave photon detection
  • Articles by date
  • Superconducting Qubits
  • Hybrid Structures for Quantum Information
  • Mesoscopic Josephson effect: Andreev Bound States in weak links
  • Mesoscopic Superconductivity
  • Energy relaxation and phase coherence of electrons in diffusive wires
  • Mesoscopic transport
  • Mesosocopic QED
  • Coulomb blockade
  • Electron pumping
  • Arriving by Car
  • Arriving by Public Transportations
  • Arriving By Plane

Comments are closed.

a. cottet ph.d. thesis universite paris vi 2002

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

  •  We're Hiring!
  •  Help Center

Audrey Cottet

  • Add Social Profiles (Facebook, Twitter, etc.)

Audrey Cottet

  • Other Affiliations: add
  • Research Interests: Ptolemaic and Roman Egypt , Musical Iconography , Animals in Roman spectacles , Ancient Soundscapes , Classical Archaeology , and Physique () edit
  • About: I am a CNRS Research Director at the Ecole Normale Superieure of Paris. I have a primary research activity in Theoret... more I am a CNRS Research Director at the Ecole Normale Superieure of Paris. I have a primary research activity in Theoretical Physics and a secondary research activity in Archaeomusicology. I have performed an experimental PhD on superconducting quantum bits (Saclay, France, 1999-2002). This work lead to the first superconducting quantum bit prototype with a lifetime of the order of a microsecond (Science 296, 886 (2002)). After this thesis, I became a theorist of hybrid mesoscopic and nanoscopic structures. I was a post-doc in Basel, Switzerland (2002-2005), and then Paris (2005-2008), working on spin dependent transport in quantum dots as well as superconducting and ferromagnetic proximity effects. My highlights include the development of nanospintronics with carbon nanotubes (Nature Phys. 1, 99 (2005)), and predictions of positive current cross-correlations in quantum dot circuits (Phys. Rev. Lett. 92, 206801 (2004)/ Phys. Rev. B 70, 115315 (2004)), which were confirmed experimentally by the team of Prof. C. Marcus. I am now focusing on the development of Cavity Quantum Electrodynamics with hybrid nanocircuits, in close collaboration with the experimental "Hybrid Quantum Circuits" team headed by Takis Kontos. The first experimental results of this collaboration include a coherent spin/photon coupling at the single spin level (Science 349, 6246 (2015)) and the observation of the frozen charge dynamics in a Kondo impurity (Nature 545, 71 (2017)). Very recently, I have also started working on the quantum detection of the Dark Matter and on the superconductivity effect in Weyl semimetals. My secondary research activity on archeomusicology focuses on concussion idiophones, which are small percussion instruments such as castanets or cymbals. I have recently published two peer-reviewed articles on cymbals playing in the Roman Empire, in the journals "CLARA" hosted by the Historical Museum of Oslo and "Early Music" edited by Oxford Academic. (I am a CNRS Research Director at the Ecole Normale Superieure of Paris. I have a primary research activity in Theoretical Physics and a secondary research activity in Archaeomusicology. <br /><br />I have performed an experimental PhD on superconducting quantum bits (Saclay, France, 1999-2002). This work lead to the first superconducting quantum bit prototype with a lifetime of the order of a microsecond (Science 296, 886 (2002)). After this thesis, I became a theorist of hybrid mesoscopic and nanoscopic structures. I was a post-doc in Basel, Switzerland (2002-2005), and then Paris (2005-2008), working on spin dependent transport in quantum dots as well as superconducting and ferromagnetic proximity effects. My highlights include the development of nanospintronics with carbon nanotubes (Nature Phys. 1, 99 (2005)), and predictions of positive current cross-correlations in quantum dot circuits (Phys. Rev. Lett. 92, 206801 (2004)/ Phys. Rev. B 70, 115315 (2004)), which were confirmed experimentally by the team of Prof. C. Marcus. I am now focusing on the development of Cavity Quantum Electrodynamics with hybrid nanocircuits, in close collaboration with the experimental &quot;Hybrid Quantum Circuits&quot; team headed by Takis Kontos. The first experimental results of this collaboration include a coherent spin/photon coupling at the single spin level (Science 349, 6246 (2015)) and the observation of the frozen charge dynamics in a Kondo impurity (Nature 545, 71 (2017)). Very recently, I have also started working on the quantum detection of the Dark Matter and on the superconductivity effect in Weyl semimetals.<br /><br />My secondary research activity on archeomusicology focuses on concussion idiophones, which are small percussion instruments such as castanets or cymbals. I have recently published two peer-reviewed articles on cymbals playing in the Roman Empire, in the journals &quot;CLARA&quot; hosted by the Historical Museum of Oslo and &quot;Early Music&quot; edited by Oxford Academic.) edit
  • Advisors: edit

Publication Date: Nov 14, 2003

Publication date: jan 4, 2005, publication date: 2001, publication name: macroscopic quantum coherence and quantum computing, research interests: physics , superconductivity , transistor , and amplifier (), publication date: 2004, publication name: quantum computing and quantum bits in mesoscopic systems, research interests: physics (), publication date: 2003, publication name: new directions in mesoscopic physics (towards nanoscience), research interests: computer science , quantum computer , and quantum gate (), publication date: 2002, publication name: international workshop on superconducting nano-electronics devices, research interests: physics and coulomb blockade (), publication name: physica scripta, research interests: physics , quantum information , mathematical sciences , physical sciences , quantum decoherence theory , and 4 more constant time delay , excited states , transition period , and superposition principle ( constant time delay , excited states , transition period , and superposition principle ), publisher: american association for the advancement of science (aaas), publication name: science, research interests: physics , microwave , science , medicine , multidisciplinary , and 5 more quantum coherence , electrical circuit theory , quantum , quality factor , and radio frequency ( quantum coherence , electrical circuit theory , quantum , quality factor , and radio frequency ), publisher: american physical society (aps), publication name: physical review letters, research interests: physics , condensed matter physics , medicine , physical sciences , and ddc (), publisher: elsevier bv, publication name: physica e: low-dimensional systems and nanostructures, research interests: materials engineering , physics , quantum mechanics , nanotechnology , quantum coherence , and 6 more electrical circuit theory , quantum , quantum circuits , degree of freedom , electronic circuit , and building block ( electrical circuit theory , quantum , quantum circuits , degree of freedom , electronic circuit , and building block ), publication name: physica c: superconductivity, research interests: materials engineering , physics , condensed matter physics , quantum coherence , quantum computer , and electrical and electronic engineering (), publisher: wiley-blackwell, publication name: fortschritte der physik, research interests: physics , quantum physics , microwave , protein science , electrical circuit theory , and 6 more mathematical sciences , physical sciences , oscillations , precession , excited states , and spin echo ( mathematical sciences , physical sciences , oscillations , precession , excited states , and spin echo ), publisher: university of oslo library, publication date: 2022, publication name: clara, research interests: flute and clara (), publisher: oxford university press (oup), publication date: 2021, publication name: early music, research interests: early music , art , and dance (), publication name: physical review b, research interests: physics , quantum mechanics , mesoscopic physics , physical , and photon (), publisher: springer science and business media llc, publication date: 2019, publication name: npj quantum information, research interests: physics and quantum (), publication date: 2014, research interests: physics , physical sciences , and chemical sciences (), publication date: 2011, research interests: physics , magnetic field , physical sciences , electron transport , chemical sciences , and spin polarization (), publication name: nature materials, research interests: multidisciplinary and nature materials (), doi: 10.1103/physrevb.102.155105.

Enter the email address you signed up with and we'll email you a reset link.

  • Academia.edu Publishing
  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Citations per year

Duplicate citations, merged citations, add co-authors co-authors, cited by view all.

Takis Kontos

Implementing Qubits with Superconducting Integrated Circuits

Cite this chapter.

Book cover

  • Michel H. Devoret 2 &
  • John M. Martinis 3 , 4  

2349 Accesses

6 Citations

Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs of superconducting qubits based on multi-junction circuits have solved the problem of isolation from unwanted extrinsic electromagnetic perturbations. We discuss in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it.

  • Quantum information
  • quantum computation
  • superconducting devices
  • Josephson tunnel junctions
  • integrated circuits

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000).

Google Scholar  

M. Tinkham, Introduction to Superconductivity (Krieger, Malabar, 1985).

J. M. Martinis, M. H. Devoret, J. Clarke, Phys. Rev. Lett. 55 , 1543 (1985); M. H. Devoret, J. M. Martinis, J. Clarke, Phys. Rev. Lett. 55 , 1908 (1985); J. M. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. 35 , 4682 (1987).

Article   ADS   Google Scholar  

J. M. Martinis and M. Nahum, Phys Rev. B 48 , 18316 (1993).

B. D. Josephson, in Superconductivity , R. D. Parks (ed.) (Marcel Dekker, New York, 1969).

K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, New York, 1986).

I. Giaever, Phys. Rev. Lett. 5 ,147, 464 (1960).

A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149 , 347 (1983); A. J. Leggett, J. Phys. CM 14 , R415 (2002).

Article   Google Scholar  

D. P. DiVincenzo, arXiv:quant-ph/0002077.

R. P. Feynman, Lectures on Physics , Vol. 2, Chap. 23, (Addison-Wesley, Reading, 1964).

MATH   Google Scholar  

D. C. Mattis and J. Bardeen, Phys. Rev. 111 , 412 (1958).

Article   MATH   ADS   Google Scholar  

P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73 , 565 (2001).

Article   ADS   MathSciNet   Google Scholar  

J. M. Martinis and K. Osborne, in Quantum Information and Entanglement , eds. J. M. Raimond, D. Esteve, and J. Dalibard, Les Houches Summer School Series, arXiv:cond-mat/0402430.

J. Clarke, Proc. IEEE 77 , 1208 (1989).

D. J. Van Harlingen, B. L. T. Plourde, T. L. Robertson, P. A. Reichardt, and John Clarke, preprint.

R. W. Simmonds, K. M. Lang, D. A. Hite, D. P. Pappas, and J. M. Martinis, accepted for publication in Phys. Rev. Lett.

M. Büttiker, Phys. Rev. B 36 , 3548 (1987).

V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M. H. Devoret, Physica Scripta T 76 , 165 (1998).

Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398 , 786 (1999).

Yu. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73 , 357 (2001).

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Science 296 , 286 (2002).

A. Barone and G. Paternò, Physics and Applications of the Josephson Effect (Wiley, New York, 1992).

S. Han, R. Rouse, and J. E. Lukens, Phys. Rev. Lett. 84 , 1300 (2000); J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406 , 43 (2000).

J. E. Mooij, T. P. Orlando, L. Levitov, Lin Tian, C. H. van der Wal, and S. Lloyd, Science 285 , 1036 (1999); C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhem, R. N. Schouten, C. Harmans, T. P. Orlando, S. Loyd, and J. E. Mooij, Science 290 , 773 (2000).

J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89 , 117901 (2002).

M. Steffen, J. Martinis, and I. L. Chuang, PRB 68 , 224518 (2003).

M. H. Devoret and R. J. Schoelkopf, Nature 406 , 1039 (2002).

A. N. Korotkov and D. V. Averin, Phys. Rev. B 64 , 165310 (2001).

A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve, and M. H. Devoret, Physica C 367 , 197 (2002).

I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret, cond-mat/0312623, submitted to Phys. Rev. Lett.

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Fortschritte der Physik 51 , 462 (2003).

I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299 , 1869 (2003).

J. Mannik and J. E. Lukens, Phys. Rev. Lett. 92 , 057004 (2004).

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf, cond-mat/0408367, accepted by Nature.

A. Lupascu, C. J. M. Verwijs, R. N. Schouten, C. J. P. M. Harmans, J. E. Mooij, cond-mat/0311510, submitted to Phys. Rev. Lett.

Variable electrostatic transformer: controllable coupling of two charge qubits, D.V. Aver-in, C. Bruder, Phys. Rev. Lett. 91 , 057003 (2003).

A. Blais, A. Maassen van den Brink, A. M. Zagoskin, Phys. Rev. Lett. 90 , 127901 (2003)

A. Pashkin Yu, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai, Nature 421 (2003).

J. B. Majer, Superconducting Quantum Circuits , PhD Thesis, TU Delft, (2002); J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. P. J. Harmans, and J. E. Mooij, arXiv:cond-mat/0308192.

A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood, Science 300 , 1548 (2003).

C. Rigetti and M. Devoret, unpublished.

Y. Nakamura, A. Pashkin Yu, and J. S. Tsai, Phys. Rev. Lett. 88 , 047901 (2002).

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Forts, der Physik 51 , 462 (2003); E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion and D. Esteve, submitted.

J. Preskill, J. Proc. R. Soc. London Ser. A 454 , 385 (1998).

Article   MATH   ADS   MathSciNet   Google Scholar  

B. Yurke and J. S. Denker, Phys. Rev. A 29 , 1419 (1984).

M. H. Devoret in “ Quantum Fluctuations ”, S. Reynaud, E. Giacobino, J. Zinn-Justin (eds.) (Elsevier, Amsterdam, 1996), p. 351.

A. Cottet, Implementation of a quantum bit in a superconducting circuit , PhD Thesis, Université Paris 6, 2002.

A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University Press, Oxford, 1985).

R. J. Schoelkopf, A. A. Clerk, S. M. Girvin, K. W. Lehnert, and M. H. Devoret, ar-Xiv:cond-mat/0210247.

K. W. Lehnert, K. Bladh, L. F. Spietz, D. Gunnarsson, D. I. Schuster, P. Delsing, and R. J. Schoelkopf, Phys. Rev. Lett. 90 , 027002 (2002).

J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang, and C. Urbina, Phys. Rev. B 67 , 462 (2003).

Download references

Author information

Authors and affiliations.

Applied Physics Department, Yale University, New Haven, CT, 06520, USA

Michel H. Devoret

National Institute of Standards and Technology, Boulder, CO, 80305, USA

John M. Martinis

Physics Department, University of California, Santa Barbara, CA, 93106, USA

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Army Research Office, Research Triangle Park, North Carolina

Henry O. Everitt ( Senior Research Scientist ) ( Senior Research Scientist )

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Devoret, M.H., Martinis, J.M. (2005). Implementing Qubits with Superconducting Integrated Circuits. In: Everitt, H.O. (eds) Experimental Aspects of Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/0-387-27732-3_12

Download citation

DOI : https://doi.org/10.1007/0-387-27732-3_12

Publisher Name : Springer, Boston, MA

Print ISBN : 978-0-387-23045-0

Online ISBN : 978-0-387-27732-5

eBook Packages : Physics and Astronomy Physics and Astronomy (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Charge-insensitive qubit design derived from the Cooper pair box

  • Phys.Rev.A 76 (2007) 4 , 042319
  • Published: Oct 12, 2007
  • cond-mat/0703002 [cond-mat.mes-hall]
  • 10.1103/physreva.76.042319
  • ADS Abstract Service

Citations per year

  • superconductivity
  • Cooper pairs
  • sensitivity

Quantum cryptography

  • Rev.Mod.Phys. 74 (2002) 145-195
  • quant-ph/0101098
  • 10.1103/RevModPhys.74.145
  • Proc.Roy.Soc.Lond.A A 439 (1992) 553

Quantum mechanics helps in searching for a needle in a haystack

  • Phys.Rev.Lett. 79 (1997) 325-328
  • quant-ph/9706033
  • 10.1103/PhysRevLett.79.325

Quantum-state engineering with Josephson-junction devices

  • Karlsruhe U. and
  • Landau Inst.
  • Karlsruhe, Forschungszentrum
  • Karlsruhe U.
  • Rev.Mod.Phys. 73 (2001) 357-400
  • cond-mat/0011269
  • 10.1103/RevModPhys.73.357
  • M.H. Devoret ,
  • J.M. Martinis

Superconducting Qubits: A Short Review

  • A. Wallraff ,
  • cond-mat/0411174

Superconducting Circuits and Quantum Information

  • Michigan U.
  • Phys.Today 58 (2005) 11 , 42-47
  • 10.1063/1.2155757
  • V. Bouchiat ,
  • D. Esteve ,
  • M.H. Devoret
  • Phys.Scripta T 76 (1998) 165

Coherent control of macroscopic quantum states in a single-Cooper-pair box

  • Y. Nakamura ,
  • Yu. A. Pashkin ,
  • Nature 398 (1999) 786-788
  • 10.1038/19718
  • J.R. Friedman ,
  • S.K. Tolpygo ,
  • J.E. Lukens
  • Nature 406 (2000) 43
  • A.C.J. ter Haar ,
  • F.K. Wilhelm ,
  • R.N. Schouten ,
  • C.J.P.M. Harmans
  • Science 290 (2000) 773

Rabi Oscillations in a Large Josephson-Junction Qubit

  • NIST, Boulder
  • Phys.Rev.Lett. 89 (2002) 11 , 117901
  • 10.1103/PhysRevLett.89.117901

Decoherence in Josephson Qubits from Dielectric Loss

  • UC, Santa Barbara
  • Phys.Rev.Lett. 95 (2005) 21 , 210503
  • 10.1103/PhysRevLett.95.210503

Decoherence in a superconducting quantum bit circuit

  • DAPNIA, Saclay
  • DAPNIA, Saclay and
  • Royal Holloway, U. of London
  • Phys.Rev.B 72 (2005) 13 , 134519
  • 10.1103/PhysRevB.72.134519
  • M. Steffen ,
  • M. Ansmann ,
  • R. McDermott ,
  • R.C. Bialczak
  • Phys.Rev.Lett. 97 (2006) 050502

Low-decoherence flux qubit

  • Fudan U. and
  • Fudan U., Surf. Phys. Lab. and
  • Wako, RIKEN
  • SUNY, Buffalo
  • Wako, RIKEN and
  • Michigan U., MCTP
  • Phys.Rev.B 75 (2007) 14 , 140515
  • 10.1103/PhysRevB.75.140515

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

  • Yale U. and
  • Phys.Rev.A 69 (2004) 6 , 062320
  • 10.1103/PhysRevA.69.062320
  • A. Aassime ,
  • A. Cottet ,
  • Science 296 (2002) 886

Resolving photon number states in a superconducting circuit

  • D.I. Schuster ,
  • A.A. Houck ,
  • J.A. Schreier ,
  • J.M. Gambetta
  • Nature 445 (2007) 7127 , 515-518
  • 10.1038/nature05461
  • J.M. Gambetta ,
  • B.R. Johnson
  • cond-mat/0702648
  • S. Goldstein
  • Proc.Roy.Soc.Edinburgh 49 (1929) 210

LKB - Quantum fluctuation and relativity

Most of them available on thesis servers, in french or in english (as indicated by the titles below).

IMAGES

  1. Th`ese de Doctorat de l'université Paris VI Pierre et Marie Curie Mlle

    a. cottet ph.d. thesis universite paris vi 2002

  2. Théses présentées à la Faculté des Sciences de Paris pour obtenir le

    a. cottet ph.d. thesis universite paris vi 2002

  3. 25 June in 1903, Marie Curie defends her doctoral thesis on radioactive

    a. cottet ph.d. thesis universite paris vi 2002

  4. Thesis

    a. cottet ph.d. thesis universite paris vi 2002

  5. Fanny COTTET

    a. cottet ph.d. thesis universite paris vi 2002

  6. Doctor of Philosophy (PhD) Thesis Université Pierre & Marie Curie

    a. cottet ph.d. thesis universite paris vi 2002

VIDEO

  1. Phd Defence of Steffi Kohl

  2. Exp19_Access_Ch4_Cap

  3. paris 2/6/2012

  4. Création de "Passage" par Guillaume Cottet-Dumoulin et Miklos Schön le 02/02/2008

  5. Inria Ph.D. Thesis Defense

  6. Nca artist showing their creativity

COMMENTS

  1. Implementation of a quantum bit in a superconducting circuit

    PDF | On Sep 30, 2002, Audrey Cottet published Implementation of a quantum bit in a superconducting circuit | Find, read and cite all the research you need on ResearchGate

  2. Implementation of a combined charge-phase quantum bit in a

    DOI: 10.1016/S0921-4534(01)01014- Corpus ID: 73570111; Implementation of a combined charge-phase quantum bit in a superconducting circuit @article{Cottet2002ImplementationOA, title={Implementation of a combined charge-phase quantum bit in a superconducting circuit}, author={Audrey Cottet and Denis Vion and A. Aassime and P. Joyez and Daniel Est{\`e}ve and Michel H. Devoret}, journal={Physica ...

  3. Audrey Cottet: homepage

    2002 [7] "Superconducting ... PhD Thesis Implementation of a quantum bit in a superconducting circuit, Université Paris VI, 2002. HDR Thesis ...

  4. PDF Département de Physique de l'Ecole Normale supérieure

    Département de Physique de l'Ecole Normale supérieure

  5. PhD Theses

    Audrey Cottet: Implementation of a quantum bit in a superconducting circuit: 2002: Ronald Cron: Les contacts atomiques : un banc d'essai pour la physique mésoscopique: 2001: Frédéric Pierre: Electron-electron interaction in mesoscopic wires (in French), also in Ann. Phys. Fr., Vol. 26, N°4 2001, pp. 1-192: 2000: Vincent Bouchiat

  6. Implementation of a combined charge-phase quantum bit in a

    In this paper, we discuss a qubit circuit which is controlled both by a charge and by a phase. In this combined charge-phase qubit, qubit control is performed by acting on the gate charge like in the Cooper-pair box, but the measured quantity is a supercurrent, like in the flux box. The main interest of this Q - δ design is to provide (i) a ...

  7. Implementing Qubits with Superconducting Integrated Circuits

    A. Cottet, Implementation of a quantum bit in a superconducting circuit, PhD Thesis, Universit ´e Paris 6, 2002. A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University Press, Oxford, 1985).

  8. Audrey Cottet

    Audrey Cottet, École Normale Supérieure, Physique Department, Faculty Member. ... (2002)). After this thesis, I became a theorist of hybrid mesoscopic and nanoscopic structures. I was a post-doc in Basel, Switzerland (2002-2005), and then Paris (2005-2008), working on spin dependent transport in quantum dots as well as superconducting and ...

  9. Audrey Cottet (0000-0003-2044-7718)

    She first performed an experimental PhD on superconducting quantum bits (Saclay, France, 1999-2002). ... (2002)). After her thesis, Audrey became a theorist of hybrid mesoscopic and nanoscopic structures. She was a post-doc in Basel, Switzerland (2002-2005), and then Paris (2005-2008), working on spin dependent transport in quantum dots as well ...

  10. PDF Hybrid Quantum Circuits

    experimental thesis on Josephson superconducting circuits in the Quantronics group of Saclay (1999-2002). Then, I did a technical retraining during six years of post-doctoral studies (Basel (2002-2005), Orsay (2005-2007), Jussieu (2007{2008)) in order to become a condensed matter theorist. During these years, I studied the theory of quantum dot

  11. Audrey COTTET

    Audrey is primarily a physicist, working as a permanent CNRS researcher at the LPENS (Ecole Normale Supérieure, Paris). Her research themes include Cavity Quantum Electrodynamics with hybrid ...

  12. ‪Audrey Cottet‬

    ‪LPENS, Ecole Normale Superieure and LPEM, ESPCI Paris‬ - ‪‪Cited by 6,294‬‬ - ‪Condensed Matter Physics‬ - ‪Archaeomusicology‬ ... A Cottet, D Vion, A Aassime, P Joyez, D Esteve, MH Devoret. Physica C: Superconductivity 367 (1-4), 197-203, 2002. 119: ... PhD Thesis, Université Paris 6, 2002. 113: 2002: Synthetic spin ...

  13. Decoherence of a Quantum Bit Circuit

    Decoherence is there a key issue since electrical circuits are more prone to decoherence than microscopic objects such as atoms. We introduce the different families of solid state qubits, which are either based on single particle states in semiconductor nanostructures, or on global quantum states of superconducting Josephson circuits.

  14. Implémentation d'un bit quantique dans un circuit supraconducteur

    In the sector labeled by s z and φ x , this Hamiltonian has a spectrum E n (s z , φ x ) and eigenfunctions ψ n (θ) which are determined by the solutions of the Mathieu equation.

  15. Implementing Qubits with Superconducting Integrated Circuits

    A. Cottet, Implementation of a quantum bit in a superconducting circuit, PhD Thesis, Université Paris 6, 2002. Google Scholar A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University Press, Oxford, 1985). Google Scholar

  16. PDF These˚ De Doctorat De L'Universite· Paris Vi

    Ph.D. THESIS OF THE UNIVERSITY OF PARIS VI Department : ELECTRONICS, COMMUNICATIONS AND COMPUTER SCIENCE Presented by : Hassan ABOUSHADY Thesis submitted to obtain the degree of DOCTOR OF THE UNIVERSITY OF PARIS VI DESIGN FOR REUSE OF CURRENT-MODE CONTINUOUS-TIME ANALOG-TO-DIGITAL CONVERTERS January 7, 2002 Committee in charge :

  17. Audrey Cottet: homepage

    Superconducting and ferromagnetic proximity effects. Archaeomusicology (secondary research activity) History of concussion idiophones. Professional addresses: laboratory LPENS at the Ecole Normale Supérieure of Paris. laboratory LPEM at the ESPCI Paris. Contact: audrey [dot]cottet [at]ens [dot]fr.

  18. Quantum information processing with superconducting circuits: a review

    [15] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Manipulating the quantum state of an electrical circuit Science 296 886-9. Crossref; Google Scholar [16] Martinis J M, Nam S, Aumentado J and Urbina C 2002 Rabi oscillations in a large Josephson-junction qubit Phys. Rev. Lett. 89 117901. Crossref ...

  19. INSPIRE

    Different approaches have been devised to cure this problem for superconducting qubits, a prime example being the operation of such devices at optimal working points, so-called "sweet spots." This latter approach led to significant improvement of T 2 T_2 T 2 times in Cooper pair box qubits [D. Vion et al., Science 296, 886 (2002)]. Here, we ...

  20. Audrey Cottet: homepage

    10/2005 - 09/2008: Post-doctoral researcher in Paris, France (LPS/Orsay, LPTHE/University Paris VI) 11/2002 - 09/2005: Post-doc in the Condensed Matter Theory Group, Univ. of Basel, Switzerland . 10/1999 - 10/2002: PhD in the Quantronics group (CEA-Saclay, France) Main achievements in Physics

  21. PDF Coherent coupling of a single spin to microwave cavity photons

    Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris Cedex 05, France *Correspondence to: [email protected] ...

  22. PhD thesis

    PhD thesis. Most of them available on thesis servers, in french or in english (as indicated by the titles below). Crépin, Pierre-Philippe (2019), "Quantum reflection of a cold antihydrogen wavepacket". Thesis at Université Pierre et Marie Curie - Paris VI, TEL server. Maury, Axel (2016), "Effet Casimir-Polder sur des atomes piégés".

  23. PDF Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity ...

    Laboratoire Pierre Aigrain, Ecole Normale Supe´rieure, CNRS UMR 8551, Laboratoire associe´ aux universite´s Pierre et Marie Curie et Denis Diderot, 24, rue Lhomond, 75231 Paris Cedex 05, France (Received 23 July 2011; published 16 December 2011)