The Mathematics Department at MIT is a world leader in pure and applied mathematical research and education. In pure mathematics we explore exciting current research directions in most of the major fields. In applied mathematics , we look for important connections with other disciplines that may inspire interesting and useful mathematics, and where innovative mathematical reasoning may lead to new insights and applications. Our applied math group focuses on biology, combinatorics, computer science, scientific computing, numerical analysis, and areas of physical applied mathematics.

The Department currently has about 50 faculty members, including many current and former faculty who have received the highest distinctions including an Abel Prize; two National Medals of Science; two MacArthur Awards; two Bôcher, two Cole, five Veblen, one Fulkerson and nine Steele Prizes. Nineteen are members of the National Academies of Science and Engineering and thirty are members of the American Academy of Arts and Sciences. See the award listings for more details.

Post-doctoral Instructors

Instructors in pure and applied mathematics, including CLE Moore Instructors, have the opportunity to reside at MIT for two or three years and work with our faculty. Teaching loads are kept light to provide good conditions for launching research programs. We aim to have roughly 30 Instructors in the Department at any given time.

We are fortunate to attract outstanding students at all levels. Our graduate program trains students for top academic and industrial research positions, and typically has over 100 students enrolled, including many international students. MIT undergraduates are top performers at the Putnam Competition —in the most recent 2023 competition, MIT had the 1st place team and all 5 of the 5 highest ranking individuals. Additionally, 63 MIT students were among those with Honorable Mention or higher. Approximately 360 students are enrolled in one of our two undergraduate programs: Mathematics (course 18) and Mathematics with Computer Science (course 18C).

Environment

Our Department benefits from the lively mathematical community in the Boston area including the outstanding departments at Harvard and other nearby universities.

The Clay Mathematics Institute is a wonderful resource for bringing visitors and hosting important colloquia and workshops. Weekly seminars are held at MIT ; many organized by graduate students. Our annual Simons Lecture series brings distinguished speakers on the latest developments.

Our excellent staff help us run the Department. Most of them can be found in Department Headquarters and in the Math Academic Services office .

GradApply

maths phd mit

  • Core Members
  • Affiliate Members

Interdisciplinary Doctoral Program in Statistics

  • Minor in Statistics and Data Science
  • MicroMasters program in Statistics and Data Science
  • Data Science and Machine Learning: Making Data-Driven Decisions
  • Stochastics and Statistics Seminar
  • IDSS Distinguished Seminars
  • IDSS Special Seminar
  • SDSC Special Events
  • Online events
  • IDS.190 Topics in Bayesian Modeling and Computation
  • Past Events
  • LIDS & Stats Tea

The Interdisciplinary PhD in Statistics (IDPS) is designed for students currently enrolled in a participating MIT doctoral program who wish to develop their understanding of 21st century statistics, using concepts of computation and data analysis as well as elements of classical statistics and probability within their chosen field of study.

Participating programs: Aeronautics & Astronautics Brain and Cognitive Sciences Economics Mathematics Mechanical Engineering Physics Political Science Social and Engineering Systems

How to join IDPS:

Doctoral students in participating programs may submit a selection form between the end of their second semester and penultimate semester in their doctoral program. Selection forms are due by the current semester add date, and students will be notified of a decision by the drop date.

Required documents include a CV, unofficial transcript, anticipated course plan and thesis proposal or statement of interest in statistics.  For access to the selection form or for further information, please contact the IDSS Academic Office at [email protected]

Graduate Departments:

MIT Statistics + Data Science Center Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139-4307 617-253-1764

maths phd mit

  • Accessibility
  • Interdisciplinary PhD in Aero/Astro and Statistics
  • Interdisciplinary PhD in Brain and Cognitive Sciences and Statistics
  • Interdisciplinary PhD in Economics and Statistics
  • Interdisciplinary PhD in Mathematics and Statistics
  • Interdisciplinary PhD in Mechanical Engineering and Statistics
  • Interdisciplinary PhD in Physics and Statistics
  • Interdisciplinary PhD in Political Science and Statistics
  • Interdisciplinary PhD in Social & Engineering Systems and Statistics
  • LIDS & Stats Tea
  • Spring 2023
  • Spring 2022
  • Spring 2021
  • Fall – Spring 2020
  • Fall 2019 – IDS.190 – Topics in Bayesian Modeling and Computation
  • Fall 2019 – Spring 2019
  • Fall 2018 and earlier

Browse Course Material

Course info.

  • Dr. Andrew Sutherland

Departments

  • Mathematics

As Taught In

  • Algebra and Number Theory
  • Topology and Geometry

Learning Resource Types

Number theory i, course description.

An image comprised of multiple interconnected multi-colored circles.

You are leaving MIT OpenCourseWare

MIT CCSE

Academic Programs

  • CSE PhD Overview
  • Dept-CSE PhD Overview
  • CSE Doctoral Theses
  • Program Overview and Curriculum
  • For New CCSE Students
  • Terms of Reference

MIT Doctoral Programs in Computational Science and Engineering

The Center for Computational Science and Engineering (CCSE) offers two doctoral programs in computational science and engineering (CSE) – one leading to a standalone PhD degree in CSE offered entirely by CCSE (CSE PhD) and the other leading to an interdisciplinary PhD degree offered jointly with participating departments in the School of Engineering and the School of Science (Dept-CSE PhD).

While both programs enable students to specialize at the doctoral level in a computation-related field via focused coursework and a thesis, they differ in essential ways. The standalone CSE PhD program is intended for students who intend to pursue research in cross-cutting methodological aspects of computational science. The resulting doctoral degree in Computational Science and Engineering is awarded by CCSE via the the Schwarzman College of Computing. In contrast, the interdisciplinary CSE PhD program is intended for students who are interested in computation in the context of a specific engineering or science discipline. For this reason, this degree is offered jointly with participating departments across the Institute; the interdisciplinary degree is awarded in a specially crafted thesis field that recognizes the student’s specialization in computation within the chosen engineering or science discipline.

For more information about CCSE’s doctoral programs, please explore the links on the left. Information about our application and admission process is available via the ‘ Admissions ‘ tab in our menu. MIT Registrar’s Office provides graduate tuition and fee rates as set by the MIT Corporation and the Graduate Admissions section of MIT’s Office of Graduate Education (OGE) website contains additional information about costs of attendance and funding .

  • Skip to Content
  • Bulletin Home

MIT Bulletin

  • Interdisciplinary Programs >
  • Graduate Programs >
  • Around Campus
  • Academic Program
  • Administration
  • Arts at MIT
  • Campus Media
  • Fraternities, Sororities, and Independent Living Groups
  • Medical Services
  • Priscilla King Gray Public Service Center
  • Religious Organizations
  • Student Government
  • Work/​Life and Family Resources
  • Advising and Support
  • Digital Learning
  • Disability and Access Services
  • Information Systems and Technology
  • Student Financial Services
  • Writing and Communication Center
  • Major Course of Study
  • General Institute Requirements
  • Independent Activites Period
  • Undergraduate Research Opportunities Program
  • First-​Year Advising Seminars
  • Interphase EDGE/​x
  • Edgerton Center
  • Grading Options
  • Study at Other Universities
  • Internships Abroad
  • Career Advising and Professional Development
  • Teacher Licensure and Education
  • ROTC Programs
  • Financial Aid
  • Medical Requirements
  • Graduate Study at MIT
  • General Degree Requirements
  • Other Institutions
  • Registration
  • Term Regulations and Examination Policies
  • Academic Performance and Grades
  • Policies and Procedures
  • Privacy of Student Records
  • Abdul Latif Jameel Poverty Action Lab
  • Art, Culture, and Technology Program
  • Broad Institute of MIT and Harvard
  • Center for Archaeological Materials
  • Center for Bits and Atoms
  • Center for Clinical and Translational Research
  • Center for Collective Intelligence
  • Center for Computational Science and Engineering
  • Center for Constructive Communication
  • Center for Energy and Environmental Policy Research
  • Center for Environmental Health Sciences
  • Center for Global Change Science
  • Center for International Studies
  • Center for Real Estate
  • Center for Transportation &​ Logistics
  • Computer Science and Artificial Intelligence Laboratory
  • Concrete Sustainability Hub
  • D-​Lab
  • Deshpande Center for Technological Innovation
  • Division of Comparative Medicine
  • Haystack Observatory
  • Initiative on the Digital Economy
  • Institute for Medical Engineering and Science
  • Institute for Soldier Nanotechnologies
  • Institute for Work and Employment Research
  • Internet Policy Research Initiative
  • Joint Program on the Science and Policy of Global Change
  • Knight Science Journalism Program
  • Koch Institute for Integrative Cancer Research
  • Laboratory for Financial Engineering
  • Laboratory for Information and Decision Systems
  • Laboratory for Manufacturing and Productivity
  • Laboratory for Nuclear Science
  • Legatum Center for Development and Entrepreneurship
  • Lincoln Laboratory
  • Martin Trust Center for MIT Entrepreneurship
  • Materials Research Laboratory
  • McGovern Institute for Brain Research
  • Microsystems Technology Laboratories
  • MIT Center for Art, Science &​ Technology
  • MIT Energy Initiative
  • MIT Environmental Solutions Initiative
  • MIT Kavli Institute for Astrophysics and Space Research
  • MIT Media Lab
  • MIT Office of Innovation
  • MIT Open Learning
  • MIT Portugal Program
  • MIT Professional Education
  • MIT Sea Grant College Program
  • Nuclear Reactor Laboratory
  • Operations Research Center
  • Picower Institute for Learning and Memory
  • Plasma Science and Fusion Center
  • Research Laboratory of Electronics
  • Simons Center for the Social Brain
  • Singapore-​MIT Alliance for Research and Technology Centre
  • Sociotechnical Systems Research Center
  • Whitehead Institute for Biomedical Research
  • Women's and Gender Studies Program
  • Architecture (Course 4)
  • Art and Design (Course 4-​B)
  • Art, Culture, and Technology (SM)
  • Media Arts and Sciences
  • Planning (Course 11)
  • Urban Science and Planning with Computer Science (Course 11-​6)
  • Aerospace Engineering (Course 16)
  • Engineering (Course 16-​ENG)
  • Biological Engineering (Course 20)
  • Chemical Engineering (Course 10)
  • Chemical-​Biological Engineering (Course 10-​B)
  • Chemical Engineering (Course 10-​C)
  • Engineering (Course 10-​ENG)
  • Engineering (Course 1-​ENG)
  • Electrical Engineering and Computer Science (Course 6-​2)
  • Electrical Science and Engineering (Course 6-​1)
  • Computation and Cognition (Course 6-​9)
  • Computer Science and Engineering (Course 6-​3)
  • Computer Science and Molecular Biology (Course 6-​7)
  • Electrical Engineering and Computer Science (MEng)
  • Computer Science and Molecular Biology (MEng)
  • Health Sciences and Technology
  • Archaeology and Materials (Course 3-​C)
  • Materials Science and Engineering (Course 3)
  • Materials Science and Engineering (Course 3-​A)
  • Materials Science and Engineering (PhD)
  • Mechanical Engineering (Course 2)
  • Mechanical and Ocean Engineering (Course 2-​OE)
  • Engineering (Course 2-​A)
  • Nuclear Science and Engineering (Course 22)
  • Engineering (Course 22-​ENG)
  • Anthropology (Course 21A)
  • Comparative Media Studies (CMS)
  • Writing (Course 21W)
  • Economics (Course 14-​1)
  • Mathematical Economics (Course 14-​2)
  • Data, Economics, and Design of Policy (MASc)
  • Economics (PhD)
  • Global Studies and Languages (Course 21G)
  • History (Course 21H)
  • Linguistics and Philosophy (Course 24-​2)
  • Philosophy (Course 24-​1)
  • Linguistics (SM)
  • Literature (Course 21L)
  • Music (Course 21M-​1)
  • Theater Arts (Course 21M-​2)
  • Political Science (Course 17)
  • Science, Technology, and Society/​Second Major (STS)
  • Business Analytics (Course 15-​2)
  • Finance (Course 15-​3)
  • Management (Course 15-​1)
  • Biology (Course 7)
  • Chemistry and Biology (Course 5-​7)
  • Brain and Cognitive Sciences (Course 9)
  • Chemistry (Course 5)
  • Earth, Atmospheric and Planetary Sciences (Course 12)
  • Mathematics (Course 18)
  • Mathematics with Computer Science (Course 18-​C)
  • Physics (Course 8)
  • Department of Electrical Engineering and Computer Science
  • Institute for Data, Systems, and Society
  • Chemistry and Biology
  • Climate System Science and Engineering
  • Computation and Cognition
  • Computer Science and Molecular Biology
  • Computer Science, Economics, and Data Science
  • Humanities and Engineering
  • Humanities and Science
  • Urban Science and Planning with Computer Science
  • African and African Diaspora Studies
  • American Studies
  • Ancient and Medieval Studies
  • Applied International Studies
  • Asian and Asian Diaspora Studies
  • Biomedical Engineering
  • Energy Studies
  • Entrepreneurship and Innovation
  • Environment and Sustainability
  • Latin American and Latino/​a Studies
  • Middle Eastern Studies
  • Polymers and Soft Matter
  • Public Policy
  • Russian and Eurasian Studies
  • Statistics and Data Science
  • Women's and Gender Studies
  • Advanced Urbanism
  • Computational and Systems Biology
  • Computational Science and Engineering
  • Design and Management (IDM &​ SDM)
  • Joint Program with Woods Hole Oceanographic Institution
  • Leaders for Global Operations
  • Microbiology
  • Music Technology and Computation
  • Operations Research
  • Real Estate Development
  • Social and Engineering Systems
  • Supply Chain Management
  • Technology and Policy
  • Transportation
  • School of Architecture and Planning
  • School of Engineering
  • Aeronautics and Astronautics Fields (PhD)
  • Artificial Intelligence and Decision Making (Course 6-​4)
  • Biological Engineering (PhD)
  • Nuclear Science and Engineering (PhD)
  • School of Humanities, Arts, and Social Sciences
  • Humanities (Course 21)
  • Humanities and Engineering (Course 21E)
  • Humanities and Science (Course 21S)
  • Sloan School of Management
  • School of Science
  • Brain and Cognitive Sciences (PhD)
  • Earth, Atmospheric and Planetary Sciences Fields (PhD)
  • Interdisciplinary Programs (SB)
  • Climate System Science and Engineering (Course 1-​12)
  • Computer Science, Economics, and Data Science (Course 6-​14)
  • Interdisciplinary Programs (Graduate)
  • Computation and Cognition (MEng)
  • Computational Science and Engineering (SM)
  • Computational Science and Engineering (PhD)
  • Computer Science, Economics, and Data Science (MEng)
  • Leaders for Global Operations (MBA/​SM and SM)
  • Music Technology and Computation (SM and MASc)
  • Real Estate Development (SM)
  • Statistics (PhD)
  • Supply Chain Management (MEng and MASc)
  • Technology and Policy (SM)
  • Transportation (SM)
  • Aeronautics and Astronautics (Course 16)
  • Aerospace Studies (AS)
  • Civil and Environmental Engineering (Course 1)
  • Comparative Media Studies /​ Writing (CMS)
  • Comparative Media Studies /​ Writing (Course 21W)
  • Computational and Systems Biology (CSB)
  • Computational Science and Engineering (CSE)
  • Concourse (CC)
  • Data, Systems, and Society (IDS)
  • Earth, Atmospheric, and Planetary Sciences (Course 12)
  • Economics (Course 14)
  • Edgerton Center (EC)
  • Electrical Engineering and Computer Science (Course 6)
  • Engineering Management (EM)
  • Experimental Study Group (ES)
  • Global Languages (Course 21G)
  • Health Sciences and Technology (HST)
  • Linguistics and Philosophy (Course 24)
  • Management (Course 15)
  • Media Arts and Sciences (MAS)
  • Military Science (MS)
  • Music and Theater Arts (Course 21M)
  • Naval Science (NS)
  • Science, Technology, and Society (STS)
  • Special Programs
  • Supply Chain Management (SCM)
  • Urban Studies and Planning (Course 11)
  • Women's and Gender Studies (WGS)

Interdisciplinary Doctoral Program in Statistics

The Interdisciplinary Doctoral Program in Statistics is an opportunity for students in a multitude of disciplines to specialize at the doctoral level in a statistics-grounded view of their field. Participating programs include Aeronautics and Astronautics, Brain and Cognitive Sciences, Economics, Mathematics, Mechanical Engineering, Physics, Political Science, and the IDSS Social and Engineering Systems Doctoral Program.

The program is administered jointly by the Statistics and Data Science Center and the participating academic units. Students enrolled in a doctoral program in a participating department may choose to be considered for the Interdisciplinary Doctoral Program in Statistics. Please refer to the program's website for details on the selection process.

Selected students will complete the home department’s degree requirements (including the qualifying exam) along with specified statistics requirements including a doctoral seminar, coursework in probability, statistics, computation and statistics, and data analysis, and a dissertation that utilizes statistical methods in a substantial way. 

For more information about the program, contact the Statistics Academic Administrator .

MIT Academic Bulletin

Print this page.

The PDF includes all information on this page and its related tabs. Subject (course) information includes any changes approved for the current academic year.

ISO Home

Doctoral Degrees

A doctoral degree requires the satisfactory completion of an approved program of advanced study and original research of high quality..

Please note that the Doctor of Philosophy (PhD) and Doctor of Science (ScD) degrees are awarded interchangeably by all departments in the School of Engineering and the School of Science, except in the fields of biology, cognitive science, neuroscience, medical engineering, and medical physics. This means that, excepting the departments outlined above, the coursework and expectations to earn a Doctor of Philosophy and for a Doctor of Science degree from these schools are generally the same. Doctoral students may choose which degree they wish to complete.

Applicants interested in graduate education should apply to the department or graduate program conducting research in the area of interest. Some departments require a doctoral candidate to take a “minor” program outside of the student’s principal field of study; if you wish to apply to one of these departments, please consider additional fields you may like to pursue.

Below is a list of programs and departments that offer doctoral-level degrees.

This site uses cookies to give you the best possible experience. By browsing our website, you agree to our use of cookies.

If you require further information, please visit the Privacy Policy page.

 alt=

  • Undergraduate
  • Postdoctoral Programs
  • Future Engineers
  • Professional Education
  • Open Access
  • Global Experiences
  • Student Activities
  • Leadership Development
  • Graduate Student Fellowships
  • Aeronautics and Astronautics
  • Biological Engineering
  • Chemical Engineering
  • Civil and Environmental Engineering
  • Electrical Engineering and Computer Science
  • Institute for Medical Engineering and Science
  • Materials Science and Engineering
  • Mechanical Engineering
  • Nuclear Science and Engineering
  • Industry Collaborations
  • Engineering in Action
  • In The News
  • Video Features
  • Newsletter: The Infinite
  • Ask an Engineer
  • Facts and Figures
  • Diversity, Equity & Inclusion
  • Staff Spotlights
  • Commencement 2023

Maz Abulnaga is a PhD candidate whose work is changing the way researchers and physicians study the placenta with the goal of improving health outcomes for mothers and babies. Specifically, Maz develops algorithms for studying the placental shape in fetal magnetic resonance imaging, an imaging modality that is being used to track the health and function of the placenta, identify pathology, and support patient outcomes. Maz has made several contributions to the theoretical and algorithmic foundations of volumetric geometry processing and has successfully applied his models to clinical research of the placenta. With the support of his MathWorks Fellowship, Maz will develop geometry processing and machine-learning algorithms to quantify placental shape and functional changes throughout pregnancy, which are necessary to identify pathology and plan pregnancy outcomes. He has recently developed a novel approach to provide a standardized representation of placental shape that is being used by researchers globally. He envisions developing a set of open-source tools to enable clinical studies to improve our understanding of placental and fetal development with the goal of revolutionizing fetal-maternal health.

https://engineering.mit.edu/wp-content/uploads/2023/02/Mazdak_Abulnaga_MathWorks-2022.jpg

Maz  Abulnaga

Maz Abulnaga

Bernardo is a PhD student in mechanical engineering whose research examines the synthesis of robust strategies for grasping and dexterous manipulation. Specifically, he is examining the problem of caging, a geometric property by which a set of fingers manipulate an object by trapping it rather than immobilizing it. He has developed an explicit optimization approach to formulate the caging condition as a convex mixed-integer optimization problem. This was the first of its kind, since caging had previously been approached as either a topological or computational geometry problem. More recently, he has extended the formulation to synthesizing grasping strategies with certificates of correctness, a problem that is of high interest today both in academia and industry. He uses MATLAB’s Robotics Toolbox, Optimization Toolbox, and Deep Learning Toolbox as the main prototyping interface. In addition, his work has resulted in several tools that have been made open to the robotics and MathWorks communities, including ABB ROS Interface, Contact-TrajectoryOptimization Models, and Certified Grasping Toolbox. Bernando earned a BSc in electronics engineering from Universidad Simón Bolívar, Venezuela

https://engineering.mit.edu/wp-content/uploads/Aceituno-Bernardo.jpg

Bernardo Aceituno - Cabeza

Bernardo Aceituno - Cabeza

Sayed Saad Afzal is a PhD candidate whose research interests lie in developing novel low-cost and low-power distributed sensor technologies and systems for climate monitoring, environmental sustainability, and food security. Specifically, Sayed is working on ocean sensor technologies to monitor vital signs such as biodiversity and carbon balance. With the support of a MathWorks Fellowship, he will advance his successful work on an underwater sensor utilizing backscatter, a technique that enables communication with 1 million times less power than existing systems. He recently used this technology to build one of the world’s first battery-free underwater cameras, enabling long-duration monitoring in remote ocean locations. MathWorks tools such as MATLAB’s DSP System Toolbox and Signal Processing Toolbox are crucial tools in his research. Sayed has already made notable technological contributions with implications for climate monitoring, food security, and ecology. His future work has tremendous potential to advance sensor technologies, supporting innovative research and a sustainable future.

https://engineering.mit.edu/wp-content/uploads/2023/10/Afzal_Saad-Sayed_mathworks2023_headshot.jpg

Sayed Saad  Afzal

Sayed Saad Afzal

Shashank is a PhD student in mechanical engineering whose research primarily focuses on the development of reduced-order, rate-dependent methods for a variety of granular intrusion problems, such as meteorite impacts and animal and vehicular locomotion in sands and deserts (a field referred to as terramechanics). He uses large-scale, detailed numerical simulations to understand the physics of such scenarios, which in turn allows him to develop robust reduced-order models that can be run in real time. He uses MATLAB for various purposes in his research, most importantly for the implementation of reduced-order models for granular intrusion, allowing for the real-time simulation of diverse intrusion scenarios with different system properties and intruder shapes. Shashank earned a BTech in mechanical engineering fromIITGandhinagar, India and an SM in mechanical engineering from MIT.He also worked as a scientist at the Defense Research and Development Organization, India before joining MIT

https://engineering.mit.edu/wp-content/uploads/Agarwal-Shashank.jpg

Shashank Agarwal

Shashank Agarwal

Mohammad is a PhD student in civil and environmental engineering whose research is focused on explaining and predicting biodiversity changes using mathematical models. Specifically, his goal is to provide closed-form solutions using computational methods in order to skip the impossible task of simulating all possible parameter values and combinations and to establish rigorous and testable estimates about the probability of persistence of species. He is developing his own code and integrating libraries from MATLAB with the goal of generating a computational package that will allow researchers to work with different ecological models, derive the range of parameter values (or combinations of parameter values) compatible with the persistence of a given species in an ecological system, and estimate the probabilities (or risks) of species extinctions or species invasions. Mohammad earned a BS in mathematics and a BS in electrical engineering from Rensselaer Polytechnic Institute and an SM in civil and environmental engineering, an SM in electrical engineering and computer science, and an SM in computation for design and optimization from MIT.

https://engineering.mit.edu/wp-content/uploads/Aladwani-Mohammad.jpg

Mohammad  AlAdwani

Mohammad AlAdwani

Jasmine Jerry Aloor is a PhD candidate in robotics, aerospace engineering, and artificial intelligence whose research seeks to address the challenge of balancing efficiency and fairness in multi-agent teams using reinforcement learning. As a MathWorks Fellow, Jasmine will pursue research exploring motion planning and control for dynamic multi-agent systems, with a special emphasis on safety, robustness, and human interactivity. Jasmine’s past research endeavors include work in imitation learning for social navigation, control barrier functions, and coverage path planning; recent projects include the development of a safe and socially aware motion planning method using imitation learning for general aviation aircraft in multi-aircraft shared airspace and the design and testing of an improvised box-wing micro air vehicle. MATLAB supports design, modeling, and analysis across her research interests. Jasmine’s innovative work has the could improve machine learning and autonomous systems and help them realize their full potential.

https://engineering.mit.edu/wp-content/uploads/2023/10/Aloor_Jasmine_mathworks2023_headshot.jpg

Jasmine Jerry  Aloor

Jasmine Jerry Aloor

Abtin Ameri is a PhD candidate whose research interests lie at the intersection of quantum computing and plasma physics, with the goal of advancing the use of fusion energy. Specifically, Abtin is working on the development of quantum algorithms for the numerical simulation of fusion reactors by identifying candidate problems suitable for a quantum computing approach and exploring how to mathematically frame those problems to maximize the added efficiency that quantum computers may offer. With the support of a MathWorks Fellowship, Abtin will investigate whether the problem of determining plasma stability in fusion reactors can be efficiently computed on quantum platforms. MATLAB has been an indispensable tool at each step of his work. Abtin’s ambitious research, if successful, will be the first example of a quantum algorithm with immediate relevance to fusion research and could expedite progress toward putting fusion energy on the grid, contributing to sustainable energy solutions and mitigating the impacts of climate change.

https://engineering.mit.edu/wp-content/uploads/2023/10/Ameri_Abtin_mathworks2023_headshot.jpg

Abtin  Ameri

Abtin Ameri

Pasquale is a PhD student in aerospace engineering. He is developing general-purpose tools for estimation that are robust to corrupted information and adversarial attacks, run in real-time, and require minimal tuning. His interests include safe and trustworthy perception with application to single and multi-robot autonomous systems. He uses MATLAB on a regular basis, including the Computer Vision Toolbox and Robotics System Toolbox for his work on robust estimation. He earned his SB in computer science from University of Pisa, Italy, an SM in embedded computing systems from Scuola Superiore Sant’Anna of Pisa, Italy and an SM in aeronautics and astronautics from MIT. Prior to MIT, he was a research scientist at the United Technologies Research Center, Ireland.

https://engineering.mit.edu/wp-content/uploads/Antonante-Pasquale.jpg

Pasquale Antonante

Pasquale Antonante

Nicolas is a PhD student in electrical engineering and computer science whose research focuses on medical imaging technology. He is trying to solve challenging MRI problems by creating and distributing the hardware and computational tools needed for simultaneous optimization of coil geometries, encoding field patterns, and received-signal reconstruction algorithms. He has observed that the steps, or modules, that make up most MRI sequences often have conflicting patient-specific field pattern requirements. Nicolas developed a general MATLAB-based framework for use at scan time that optimizes the field patterns for each sequence module. The framework reads patient rapid-scan data from the imager, exploits the coil pre-characterization and convex formulations to efficiently compute sets of sequence-module optimized coil currents, and then transfers the coil currents sets, along with triggering conditions, to the coil driver array. Nicolas earned an SB in electrical engineering from MIT.

https://engineering.mit.edu/wp-content/uploads/Arango-Nicolas.jpg

Nicolas  Arango

Nicolas Arango

Attias Ariel is a PhD candidate whose research is focused on designing resilient structures in urban environments that are better able to withstand natural disasters. With the support of a MathWorks Fellowship, he will develop a novel approach, assessing the resilience of urban structures by combining finite elements and statistical physics principles. This strategy characterizes fracture at the element level using spins, describing fracture in a statistical ensemble, effectively bridging the gap between brittle fracture theory and statistical physics. Through his research, which takes extensive use of MathWorks tools, Attias is providing solutions to several computational challenges associated with structural resilience, including fracture initiation, fracture branching, computational efficiency, and in-situ prediction of fracture propagation. His goals include creating a new framework for considering the fragility of structures and the analysis of their life cycle. Attias’s research could have a significant impact on design for the structures of tomorrow, ultimately improving the safety and sustainability of our communities.

https://engineering.mit.edu/wp-content/uploads/2023/10/Ariel_Attias_mathworks2023_headshot.jpg

Attias  Ariel

Attias Ariel

Toros Arikan is a PhD candidate whose interdisciplinary work integrates signal processing, machine learning, and computational imaging to significantly expand the capabilities of sensing systems for acoustic, radio frequency (RF), and optical modalities. With the support of a MathWorks Fellowship, Toros will pursue innovative research that takes a new, and potentially highly useful, view of system design. Traditionally, system designs are based on relatively low-dimensional models. Toros’s work, by contrast, embraces high-dimensional models and finds potential in that complexity for better performance and surprising new capabilities. One example is the presence of unknown complex obstacles and reflecting structure in physical environments that can improve object localization and scene imaging performance. MATLAB tools play a central role in Toros’s research, serving as his algorithm prototyping and experimental data analysis environment. The tools, methods, and insights emerging from this work hold important potential for future research and applications, including the acoustic and RF communities. To help realize these new possibilities, Toros will make the resulting tools of his research widely available through the MathWorks File Exchange.

https://engineering.mit.edu/wp-content/uploads/2023/02/Arikan-Toros_MathWorks-2022.jpg

Toros  Arikan

Toros Arikan

Anantha Narayanan Suresh Babu is a PhD candidate whose research combines computational modeling, uncertainty quantification, Bayesian learning, and scientific machine learning, with applications to sea ice and ocean dynamics. Sea ice is rapidly changing, and submesoscale currents have recently been found to be ubiquitous in the upper ocean. Anantha’s work seeks to broaden our modeling of these complex, nonlinear sea ice and submesoscale dynamics, by melding fundamental physics with limited data. Supported by a MathWorks Fellowship, he is developing probabilistic models and using Bayesian and machine learning to create sea ice rheologies and submesoscale closure models. These new learning methods can discriminate between existing models, detect missing physics, and discover new dynamics formulations utilizing only sparse, indirect, and noisy measurements. Anantha’s work relies on his custom MATLAB framework and could yield useful numerical tools and schemes for fellow researchers. His work has the potential to impact both ocean and data sciences. Ultimately, his results could be valuable for climate modeling, environmental monitoring and forecasting, marine ecosystem protection, resource management, maritime transport, and policy and decision-making for the future of our planet.

https://engineering.mit.edu/wp-content/uploads/2023/10/Babu_Anantha-Narayanan-Suresh_mathworks2023_headshot.jpg

Anantha Narayanan Suresh  Babu

Anantha Narayanan Suresh Babu

Taylor Elise Baum is a PhD candidate whose research interests lie in developing systems that enhance clinician decision-making processes for cardiovascular system management. Currently, Taylor is working on a closed-loop blood pressure control (CLBPC) system to improve blood pressure management in intensive care units and operating rooms. A MathWorks Fellowship will allow her to advance the system toward eventual human testing. Milestone achievements include her development of a physiologically based theoretical framework for the system; a cardiovascular state estimation method to inform control decisions; and an end-to-end hardware system for monitoring blood pressure and controlling vasoactive medications in swine. Notable is her method for cardiovascular state estimation based on the Windkessel model, which has improved accuracy and time resolution compared with current approaches. She is now leading preparations for upcoming animal testing, a crucial step toward human testing. Taylor makes extensive use of MathWorks tools and is pursuing research with strong potential to enhance clinical decision- making in cardiovascular medicine, leading to improved patient outcomes and future innovations in engineering applications for health care.

https://engineering.mit.edu/wp-content/uploads/2023/10/Baum_Taylor-Elise_mathworks2023_headshot.jpg

Taylor Elise  Baum

Taylor Elise Baum

Maanasa Bhat is a PhD candidate who is integrating interests in health, energy, and materials science to develop innovative new approaches to synthesis of nanomaterials. As a MathWorks Fellow, Maanasa is designing a flame-based synthesis process to manufacture nanomaterials for low-cost sensors and photocatalysts with a wide range of potential environmental and health applications. The goal of Maanasa’s work is to build a broader understanding of the physical and chemical mechanisms involved in the flame synthesis process. The aim is to strengthen connections between the input operating conditions and the composition and morphology of output products to achieve high controllability. MathWorks tools have been indispensable in this research. As her project progresses, Maanasa hopes to tailor the novel flame synthesis process she has developed for specific uses such as the detection of methane leaks, pollutant emissions in air, as well as breath diagnosis for hard-to-detect conditions such as endometriosis and fibroids.

https://engineering.mit.edu/wp-content/uploads/2023/02/Bhat-Maanasa_MechE_MathWorks-2022.jpg

Maanasa  Bhat

Maanasa Bhat

Harsh G. Bhundiya is a PhD candidate who is applying structural engineering, computational modeling, and design techniques to purse his interest in space structures. His work is ushering in a new paradigm for constructing large structures in orbit, called in-space manufacturing, with an enormous potential impact on space applications. Drawing on MathWorks tools, Harsh has reached exciting milestones, including the development of a path-planning framework called Bend-Forming, which enables the creation of paraboloids, isogrid columns, and other structural elements that can be linked together to form large structures such as RF reflectors and solar sails. As a MathWorks Fellow, Harsh will characterize the compression behaviors of these structures and study the effects of processing defects on their buckling response through experiments and nonlinear finite element analysis. Simulink and Simscape Multibody will play critical roles in this work. Harsh was pleased to share previous work on MathWorks File Exchange, and will continue to share his research, as he seeks to create a new generation of large space structures for diverse applications.

https://engineering.mit.edu/wp-content/uploads/2023/02/Bhundiya-Harsh_MathWorks-2022.jpg

Harsh G.  Bhundiya

Harsh G. Bhundiya

Artittaya (Tiya) Boonkird is a PhD candidate whose primary research interest is in developing machine learning models to predict material properties, with an emphasis on materials containing defects. Specifically, Tiya is examining how the introduction of defects into materials may enhance their mechanical, electrical, and magnetic properties, and how these defects can be controlled to enable useful applications, such as in the semiconductor industry. A MathWorks Fellowship will support Tiya’s work to develop a machine-learning model to extract information about defect type and distribution from x-ray diffraction data collected at various parameter ranges that are typically fixed in conventional measurements. These insights could enable another way to experimentally characterize defects, leading to a better understanding of how they influence material properties. MATLAB is an indispensable tool in Tiya’s work, which has strong potential to advance materials research and offer new avenues for material development in industry.

https://engineering.mit.edu/wp-content/uploads/2023/10/Boonkird_Artittaya_Tiya_mathworks2023_headshot.jpg

Artittaya (Tiya)  Boonkird

Artittaya (Tiya) Boonkird

A PhD student in electrical engineering and computer science, Roberto is a member of the Organic and Nanostructured Electronics Lab. He uses MATLAB’s versatile Partial Differential Equation (PDE), Global Optimization, and ParallelComputingToolboxes to solve, model, and fit the group’s experimental data sets on carrier recombination and diffusion in semiconductors for optoelectronic applications. Leveraging the PDE Toolbox, his most recent work, “AccurateDetermination of Semiconductor Diffusion Coefficient Using Confocal Microscopy,” explores common pitfalls in modeling charge carrier diffusion in semiconductors that were elucidated by simulations carried out using the PDE toolbox. He is now focused on modeling semiconductors for solar applications that present anisotropic diffusion and complex boundaries using the PDE Toolbox coupled with the Parallel Computing and the Global Optimization Toolboxes to optimize multi-variable minimization problems. The Parallel Computing Toolbox has been essential in bringing the computation times down to manageable time frames, allowing him to explore multiple schemes that could represent the complex carrier diffusion anisotropy that is observed. He earned an SB in electrical engineering and physics fromMIT.

https://engineering.mit.edu/wp-content/uploads/Brenes-Roberto.jpg

Roberto  Brenes

Roberto Brenes

Peng Cao is a PhD candidate who has demonstrated innovative use of MathWorks tools to make fundamental contributions to machine learning and digital health. Specifically, Peng’s research focuses on sensing systems, data analysis, and radio signals. MATLAB is an essential tool in this work, for numerical optimization, complex signal processing, and analysis and manipulation of radio signals and electromagnetic fields. The MathWorks Fellowship will support Peng’s cutting-edge research in several domains. She has developed new approaches to learning from crowdsourcing labels, including robust information-theoretic loss functions that enable learning from multiple labels and noisy labels, as well as semi-supervised, multimodal learning. Peng has also made notable advances in human-motion modeling with a transformer-based deep learning model for generative modeling of 3-D human motion. Another project yielded a new approach to enable robots to move quickly in indoor environments without colliding with people—one of the first such projects to demonstrate indoor localization around corners using radio signals. Most recently, Peng developed the first contactless system to monitor blood oxygen by employing a neural network to assess oxygen levels within 2 to 3 degrees. This work, which was validated with Covid-19 patients, has enormous potential for telehealth applications.

https://engineering.mit.edu/wp-content/uploads/2023/02/Cao-Peng_Mathworks-2022.jpg

Peng  Cao

Yifan (Henry) Cao is a PhD candidate working at the frontier of a new materials science field: high- entropy alloys (HEAs). HEAs offer valuable traits, such as high strength and fracture resistance. As a MathWorks Fellow, Henry will be expanding a new method he has developed to optimize machine learning interatomic potentials (MLP) in cross-scale atomistic simulations, thereby predicting HEA properties with greater efficiency than current methods. Although HEAs are created by mixing many chemical elements, local chemical ordering (LCO), the prominent mechanism underlying many of these properties, remains poorly understood. Henry’s research seeks to close that knowledge gap. Two MathWorks tools will play a central role in the project: Simulink, which will enable the development of a well-rounded MLP training set, and MATLAB, which will be used to extract physically important features and plot relevant data obtained from HEA cross-scale simulations. Henry also plans to explore potential applications of these tools in mesoscale, atomic, and quantum mechanics modeling approaches.

https://engineering.mit.edu/wp-content/uploads/2023/02/Cao-Yifan_Mathworks-2022.jpg

Yifan (Henry)  Cao

Yifan (Henry) Cao

Katherine is a master’s student in aeronautical and astronautical engineering and member of the Engineering SystemsLaboratory. A longtime MATLAB and Simulink user, her current research involves population modeling and simulation of pedestrian activity through transit environments. She is implementing agent-based modeling and simulation in order to capture the emergent phenomena of population groups moving across complex sites, both here on Earth and on Mars. She has used MATLAB to numerically simulate pedestrian flows in hallways using a social-force model and is currently developing a Java-based integrated, flexible platform to simulate agent behavior across multiple agent pools and simulation scenarios. Katherine earned a BS in aerospace engineering fromUniversity of Illinois.

https://engineering.mit.edu/wp-content/uploads/Carroll-Katherine.jpg

Katherine  Carroll

Katherine Carroll

 alt=

Smart. Open. Grounded. Inventive. Read our Ideas Made to Matter.

Which program is right for you?

MIT Sloan Campus life

Through intellectual rigor and experiential learning, this full-time, two-year MBA program develops leaders who make a difference in the world.

A rigorous, hands-on program that prepares adaptive problem solvers for premier finance careers.

A 12-month program focused on applying the tools of modern data science, optimization and machine learning to solve real-world business problems.

Earn your MBA and SM in engineering with this transformative two-year program.

Combine an international MBA with a deep dive into management science. A special opportunity for partner and affiliate schools only.

A doctoral program that produces outstanding scholars who are leading in their fields of research.

Bring a business perspective to your technical and quantitative expertise with a bachelor’s degree in management, business analytics, or finance.

A joint program for mid-career professionals that integrates engineering and systems thinking. Earn your master’s degree in engineering and management.

An interdisciplinary program that combines engineering, management, and design, leading to a master’s degree in engineering and management.

Executive Programs

A full-time MBA program for mid-career leaders eager to dedicate one year of discovery for a lifetime of impact.

This 20-month MBA program equips experienced executives to enhance their impact on their organizations and the world.

Non-degree programs for senior executives and high-potential managers.

A non-degree, customizable program for mid-career professionals.

PhD Program

Program overview.

Now Reading 1 of 4

Rigorous, discipline-based research is the hallmark of the MIT Sloan PhD Program. The program is committed to educating scholars who will lead in their fields of research—those with outstanding intellectual skills who will carry forward productive research on the complex organizational, financial, and technological issues that characterize an increasingly competitive and challenging business world.

Start here.

Learn more about the program, how to apply, and find answers to common questions.

Admissions Events

Check out our event schedule, and learn when you can chat with us in person or online.

Start Your Application

Visit this section to find important admissions deadlines, along with a link to our application.

Click here for answers to many of the most frequently asked questions.

PhD studies at MIT Sloan are intense and individual in nature, demanding a great deal of time, initiative, and discipline from every candidate. But the rewards of such rigor are tremendous:  MIT Sloan PhD graduates go on to teach and conduct research at the world's most prestigious universities.

PhD Program curriculum at MIT Sloan is organized under the following three academic areas: Behavior & Policy Sciences; Economics, Finance & Accounting; and Management Science. Our nine research groups correspond with one of the academic areas, as noted below.

MIT Sloan PhD Research Groups

Behavioral & policy sciences.

Economic Sociology

Institute for Work & Employment Research

Organization Studies

Technological Innovation, Entrepreneurship & Strategic Management

Economics, Finance & Accounting

Accounting  

Management Science

Information Technology

System Dynamics  

Those interested in a PhD in Operations Research should visit the Operations Research Center .  

PhD Students_Work and Organization Studies

PhD Program Structure

Additional information including coursework and thesis requirements.

MIT Sloan E2 building campus at night

MIT Sloan Predoctoral Opportunities

MIT Sloan is eager to provide a diverse group of talented students with early-career exposure to research techniques as well as support in considering research career paths.

A group of three women looking at a laptop in a classroom and a group of three students in the background

Rising Scholars Conference

The fourth annual Rising Scholars Conference on October 25 and 26 gathers diverse PhD students from across the country to present their research.

Now Reading 2 of 4

The goal of the MIT Sloan PhD Program's admissions process is to select a small number of people who are most likely to successfully complete our rigorous and demanding program and then thrive in academic research careers. The admission selection process is highly competitive; we aim for a class size of nineteen students, admitted from a pool of hundreds of applicants.

What We Seek

  • Outstanding intellectual ability
  • Excellent academic records
  • Previous work in disciplines related to the intended area of concentration
  • Strong commitment to a career in research

MIT Sloan PhD Program Admissions Requirements Common Questions

Dates and Deadlines

Admissions for 2024 is closed. The next opportunity to apply will be for 2025 admission. The 2025 application will open in September 2024. 

More information on program requirements and application components

Students in good academic standing in our program receive a funding package that includes tuition, medical insurance, and a fellowship stipend and/or TA/RA salary. We also provide a new laptop computer and a conference travel/research budget.

Funding Information

Throughout the year, we organize events that give you a chance to learn more about the program and determine if a PhD in Management is right for you.

PhD Program Events

May phd program overview.

During this webinar, you will hear from the PhD Program team and have the chance to ask questions about the application and admissions process.

June PhD Program Overview

July phd program overview, august phd program overview.

Complete PhD Admissions Event Calendar

Unlike formulaic approaches to training scholars, the PhD Program at MIT Sloan allows students to choose their own adventure and develop a unique scholarly identity. This can be daunting, but students are given a wide range of support along the way - most notably having access to world class faculty and coursework both at MIT and in the broader academic community around Boston.

Now Reading 3 of 4

Students Outside of E62

Profiles of our current students

MIT Sloan produces top-notch PhDs in management. Immersed in MIT Sloan's distinctive culture, upcoming graduates are poised to innovate in management research and education.

Academic Job Market

Doctoral candidates on the current academic market

Academic Placements

Graduates of the MIT Sloan PhD Program are researching and teaching at top schools around the world.

view recent placements 

MIT Sloan Experience

Now Reading 4 of 4

The PhD Program is integral to the research of MIT Sloan's world-class faculty. With a reputation as risk-takers who are unafraid to embrace the unconventional, they are engaged in exciting disciplinary and interdisciplinary research that often includes PhD students as key team members.

Research centers across MIT Sloan and MIT provide a rich setting for collaboration and exploration. In addition to exposure to the faculty, PhD students also learn from one another in a creative, supportive research community.

Throughout MIT Sloan's history, our professors have devised theories and fields of study that have had a profound impact on management theory and practice.

From Douglas McGregor's Theory X/Theory Y distinction to Nobel-recognized breakthroughs in finance by Franco Modigliani and in option pricing by Robert Merton and Myron Scholes, MIT Sloan's faculty have been unmatched innovators.

This legacy of innovative thinking and dedication to research impacts every faculty member and filters down to the students who work beside them.

Faculty Links

  • Accounting Faculty
  • Economic Sociology Faculty
  • Finance Faculty
  • Information Technology Faculty
  • Institute for Work and Employment Research (IWER) Faculty
  • Marketing Faculty
  • Organization Studies Faculty
  • System Dynamics Faculty
  • Technological Innovation, Entrepreneurship, and Strategic Management (TIES) Faculty

Student Research

“MIT Sloan PhD training is a transformative experience. The heart of the process is the student’s transition from being a consumer of knowledge to being a producer of knowledge. This involves learning to ask precise, tractable questions and addressing them with creativity and rigor. Hard work is required, but the reward is the incomparable exhilaration one feels from having solved a puzzle that had bedeviled the sharpest minds in the world!” -Ezra Zuckerman Sivan Alvin J. Siteman (1948) Professor of Entrepreneurship

Sample Dissertation Abstracts - These sample Dissertation Abstracts provide examples of the work that our students have chosen to study while in the MIT Sloan PhD Program.

We believe that our doctoral program is the heart of MIT Sloan's research community and that it develops some of the best management researchers in the world. At our annual Doctoral Research Forum, we celebrate the great research that our doctoral students do, and the research community that supports that development process.

The videos of their presentations below showcase the work of our students and will give you insight into the topics they choose to research in the program.

How Should We Measure the Digital Economy?

2020 PhD Doctoral Research Forum Winner - Avinash Collis

Watch more MIT Sloan PhD Program  Doctoral Forum Videos

maths phd mit

Keep Exploring

Ask a question or register your interest

Faculty Directory

Meet our faculty.

maths phd mit

  • Department of Mathematics >
  • News & Events >
  • Events >

Tomasz Mrowka (MIT)

Myhill lecture series: forty years of four manifolds.

Mrowka.

Tomasz Mrowka

Contact: Daniel Sage, [email protected]

April 23, 24 and 25, 2024:  Join us for the Myhill Lecture Series: Forty Years of Four Manifolds, featuring Tomasz Mrowka (MIT). Since the twin breakthroughs in 1982-83 by Freedman and Donaldson the study of four manifolds has been developing rapidly. Freedman’s work showed that the homeomorphism problem for 4-dimensional manifolds was largely under control provided the fundamental group of the 4-manifold was not too complicated. Donaldson’s surprising applications of the Yang-Mills equations hinted that the situation for smooth structures was more complicated and that the tools for studying 4-manifolds would come from diverse parts of mathematics. These three lectures will survey a number of the developments that occurred in the ensuing 40 years.

Many problems have been resolved during this time. An few of highlights include; existence of exotic differentiable structures on ℝ4, the failure of the h-cobordism theorem in dimension four, the Thom conjecture on minimal genus of surfaces in the complex projective plane, the Weinstein conjecture on existence of closed Reeb orbits in dimension three, the disproof of the triangulation conjecture, .... 

Lecture 1 will focus on setting up the problems and basic questions in 4-manifold topology. Lecture 2 will discuss the many tools that have been developed to aid in this study: the Yang-Mills and Seiberg-Witten equations, Ozsváth and Szabó’s Heegaard Floer theory, Embedded Contact Homology and their applications to question in 3- and 4- dimensional topology.

Lecture 3 will try to sketch where the theory is headed, including the study the diffeomorphism groups of four dimensional manifolds. I hope to make the lectures independent but some things may flow from one lecture to another.

Tomasz Mrowka (MIT) April 23, 24 and 25, 2024 Tuesday, Wednesday, Thursday 4:00 P.M. each day 250 Mathematics Building UB North Campus

SPEAKER BIO:   Tomasz Mrowka's  research interests focus on problems in differential geometry and gauge theory. His work combines analysis, geometry, and topology, specializing in the use of partial differential equations, such as the Yang-Mills equations from particle physics to analyze low-dimensional mathematical objects. Jointly with Robert Gompf, he discovered four-dimensional models of space-time topology. 

A graduate of MIT, Mrowka received the Ph.D. from U.C. Berkeley in 1988 under the direction of Clifford Taubes and Robin Kirby. He joined the MIT mathematics faculty as professor in 1996, following faculty appointments at Stanford and at Caltech (professor 1994-96). He chaired the Graduate Student Committee 1999-02, and chaired the Pure Mathematics Committee, 2004-15. From 2014-2017 he served as Department Head. A prior Sloan fellow and Young Presidential Investigator, Mrowka was selected for a Clay Mathematics Visiting Professorship in 1995.

In 2007 he received the Veblen Prize in Geometry by the AMS, jointly with Peter Kronheimer, "for their joint contributions to both three- and four- dimensional topology through the development of deep analytical techniques and applications." Their book, Monopoles and Three Manifolds (Cambridge University Press) also garnered the 2011 Joseph Doob Prize of the AMS. He was appointed Singer Professor of Mathematics from 2007 to 2017. In 2017, Mrowka received a Simons Fellowship in Mathematics. In 2018 delivered a plenary address at ICM18 in Rio de Janeiro. He is a Fellow of the American Academy of Arts & Sciences (2007) and Member of the National Academy of Sciences (2015). Most recently, he was awarded the 2023 Leroy P. Steele Prize for Seminal Contribution to Research for his joint paper with Peter Kronheimer, ‘Gauge theory for embedded surfaces, I’ published in 1993 in Topology. 

MIT Faculty Profile Page.

  • Diversity & Inclusion
  • Community Values
  • Visiting MIT Physics
  • People Directory
  • Faculty Awards
  • History of MIT Physics
  • Policies and Procedures
  • Departmental Committees
  • Academic Programs Team
  • Finance Team
  • Meet the Academic Programs Team
  • Prospective Students
  • Requirements
  • Employment Opportunities
  • Research Opportunities
  • Graduate Admissions
  • Doctoral Guidelines
  • Financial Support
  • Graduate Student Resources
  • PhD in Physics, Statistics, and Data Science
  • MIT LEAPS Program
  • for Undergraduate Students
  • for Graduate Students
  • Mentoring Programs Info for Faculty
  • Non-degree Programs
  • Student Awards & Honors
  • Astrophysics Observation, Instrumentation, and Experiment
  • Astrophysics Theory
  • Atomic Physics
  • Condensed Matter Experiment
  • Condensed Matter Theory
  • High Energy and Particle Theory
  • Nuclear Physics Experiment
  • Particle Physics Experiment
  • Quantum Gravity and Field Theory
  • Quantum Information Science
  • Strong Interactions and Nuclear Theory
  • Center for Theoretical Physics
  • Affiliated Labs & Centers
  • Program Founder
  • Competition
  • Donor Profiles
  • Patrons of Physics Fellows Society
  • Giving Opportunties
  • physics@mit Journal: Fall 2023 Edition
  • Events Calendar
  • Physics Colloquia
  • Search for: Search

headshot

Graduate student Michael Calzadilla awarded 2024 NASA Hubble Fellowship

Michael Calzadilla grew up in Tampa, Florida. As a first-generation college student, he earned his bachelor’s degree in physics from the University of South Florida in 2015. He subsequently crossed the pond to complete a master’s degree in astronomy as a Gates Cambridge scholar under the guidance of Professor Andrew Fabian at the University of Cambridge. Michael will complete his doctorate in physics at the Massachusetts Institute of Technology in May 2024 with his advisor Professor Michael McDonald .

Michael’s work focuses on multiwavelength observations of galaxy clusters to study the baryon cycle that drives the evolution of all galaxies. The largest galaxies residing in these clusters grow via material cooling from their hot atmospheres, which is balanced by feedback from star formation and active galactic nuclei. As part of the South Pole Telescope collaboration, Michael’s work is among the first to leverage recent Sunyaev-Zeldovich-based detections of galaxy clusters to observe this cycling of material out to unprecedented redshifts.

As a Hubble Fellow, Michael will develop machine learning techniques for characterizing the thousands of galaxy clusters being discovered by next-generation cosmological surveys resulting in clean, unbiased samples of the earliest galaxy clusters. Using synergies with large X-ray, optical, and radio datasets, he will seek to answer when galaxy clusters first dynamically relaxed, and how the effectiveness of supermassive black hole feedback has changed over time. He will also use new observatories for more targeted follow-up to investigate the role of feedback-induced turbulence in regulating galaxy growth.

See NASA press release:  https://science.nasa.gov/missions/hubble/nasa-awards-astrophysics-postdoctoral-fellowships-for-2024/ See also   https://www.stsci.edu/stsci-research/fellowships/nasa-hubble-fellowship-program/2024-nhfp-fellows )

Related News

Tracy Slatyer poses in front of chalkboard

Tracy Slatyer awarded 2024 Guggenheim Fellowship

The columns of Building 7 are visible through green foliage on a sunny Spring day.

QS World University Rankings rates MIT No. 1 in 11 subjects for 2024

maths phd mit

School of Science announces 2024 Infinite Expansion Awards

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Programming functional fabrics

Press contact :, media download.

Lavender Tessmer threads a giant sewing machine. In the background are colorful spools of thread on the wall.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Lavender Tessmer threads a giant sewing machine. In the background are colorful spools of thread on the wall.

Previous image Next image

Encouraged by her family, Lavender Tessmer explored various creative pursuits from a young age, particularly textiles, including knitting and crocheting. When she came to MIT, she figured that working with textiles would remain just a hobby; she never expected them to become integral to her career path.

However, when she interviewed for a research assistant position in Self Assembly Lab , it just so happened that the lab had recently received funding from the Advanced Functional Fabrics of America, one of the manufacturing institutes launched during the Obama administration , for a textile-based project.

Tessmer, now a fifth-year doctoral student in design and computation within the School of Architecture and Planning, took on the project, working with Skylar Tibbits , associate professor of design research, and Caitlin Muller , associate professor in building technology. “At MIT, my interest in textiles really exploded and became the center of everything,” Tessmer says.

While textiles may appear commonplace, the Covid-19 pandemic underscored the need for textile products in safeguarding our general health and safety, particularly through the filtration necessary for masks. Recognizing the importance of manufacturing capabilities for textiles, Tessmer’s research has focused on programming textiles with specific functional properties while also considering the feasibility of large-scale manufacturing of such products.

A nonlinear path to MIT

Tessmer studied music as an undergraduate student at Duquesne University, pursuing a passion that bloomed as a high schooler. One assignment opened her eyes to a different career path: She was told to compare a piece of music to some other artistic medium. Through this assignment, she discovered the world of architecture by underscoring the systematic nature of both disciplines, emphasizing the need for repetition and structure to unleash creativity. “I immediately realized that’s what I want to do,” she says.

Tessmer switched gears and decided to devote the year after college to architecture, instead of auditioning for music ensembles. She says, “I always liked making things, and then, with architecture, I realized that you can make things as part of your profession.” She relied on the basic drafting skills that her father had taught her, and channeled these into building her architecture portfolio.

Ultimately, she decided to pursue a master’s degree in architecture at Washington University in St. Louis. She graduated with her master’s at the end of the 2007 economic recession, a time when jobs in architecture were scarce. She eagerly accepted a part-time role teaching at WashU. Over the next five years, this role evolved into a full-time lecturer role, where she taught students while also independently establishing her own design practice and leading various installation design projects. Fittingly, all of the installations were inspired by textiles. “They were these high-performance carbon-fiber braided structures that we hand-made into large-scale braided nets with specific geometries,” Tessmer explains.

“Squeezing everything” out of graduate school

Teaching at WashU was a great experience, but the practice-oriented nature of the architecture department motivated Tessmer to seek complementary perspectives on design. “I wanted a totally new venue that was supportive of research and pushing the boundaries of design. I wanted to see what other approaches were out there,” she says. As her interests continued to grow in that direction, she learned that MIT has some renowned researchers in the field. She decided to apply for a master’s degree in architecture studies, and ultimately a doctorate in design and computation, within the School of Architecture and Planning.

MIT’s program stood out to Tessmer because of the interdisciplinary approach of the architecture department. She says, “If you are an architect or designer, it is not strange to end up in a class full of people who are not architects, and that’s totally normal and even expected.” The integrated nature of her program is a shift from her previous academic experiences, where each discipline had been distinct and separate. She also values the lack of hierarchy between different disciplines within the architecture department here. “There is respect across disciplines for the contribution from each participant,” she says.

As an older student, Tessmer has a slightly different approach to graduate school, compared to her peers. She says, “MIT is amazing because there is so much variety and so many things that you can get involved in. But my style is to be hyperfocused on my interests. For me, there have been huge benefits to focusing on this specific thing and squeezing everything I can out of it, even in the face of all of these other opportunities.”

Tessmer has devoted herself to several projects throughout grad school, but all share a common thread: an emphasis on fiber development and textile programming. As a master’s student in the Self Assembly Lab, she utilized the inherent properties of materials and optimized their configurations for specific functions by integrating computation into the material itself. “At MIT, I learned a much broader definition of computation,” she says. “For example, in the Self Assembly Lab, we believe that material is a storage format of information and that you can program material to behave in certain ways.”  

The first project Tessmer worked on was designing a fiber that could respond to temperature fluctuations. Another project focused on embedding many different properties within a single fabric, potentially for astronauts. “The human body is so varied in the number of properties that you need to match,” she says. In conjunction with collaborators across multiple MIT departments, she designed a spacesuit sleeve with embedded padding, stretchable areas, a compression gradient, and various sensors. Her third project has focused on embedding shapechange behavior into fabric structures to enhance human comfort or fit, as an alternative to manual tailoring. Finally, in a return to her architectural roots, she is also working on designing a reinforced concrete beam using textiles, a more sustainable solution to building with concrete, which has a significant carbon footprint.

Another crucial aspect of Tessmer’s research is her focus on the feasibility of large-scale manufacturing for a product. She regularly relies on industrial-scale machinery and consults with manufacturing partners. She says, “The way research is being conducted in the lab is a close parallel to how it would be made in real life. The potential for a direct bridge between one and the other is a high priority for me and a constraint that I have tried to layer on to all of my projects.”

Dabbling in entrepreneurship

Tessmer says with a laugh, “My entire hobby [textiles] has now been absorbed into my research. So I am in the market for a new hobby.” For now, that hobby has taken the form of entrepreneurship. She has been exploring the commercialization potential of her technologies, having filed multiple patents and completed the Blueprint program with The Engine Accelerator. She hopes that one day her method for embedding properties in textiles, while also reducing manufacturing process steps, will be used for commercial fabrics.

As an example, she points to shoe manufacturing. “Your shoes are normally an assembly of lots of different materials and lots of different layers. Instead, my proposal to The Engine focused on embedding all of these properties in an automated way, eliminating the need for an extensive assembly process.” Tessmer envisions entrepreneurship as one of her potential future paths.

For the time being, however, she plans to remain in academia. “From the outside, being a professor seems like an unattainable position. However, I keep being surprised at my ability to get to the next level of the academic hierarchy.” She aims to integrate all her past experiences into a future research career, designing textiles within an architectural context, while also weaving in the constraints of manufacturing scalability.

Share this news article on:

Related links.

  • Lavender Tessmer
  • Self-Assembly Lab
  • Department of Architecture
  • School of Architecture and Planning

Related Topics

  • Graduate, postdoctoral
  • Manufacturing
  • Sustainability
  • Innovation and Entrepreneurship (I&E)

Related Articles

Close-up of a dress neckline on a mannequin being targeted by a laser

Is this the future of fashion?

Ganit Goldstein stands in one of MIT's makerspaces. 3D printers are visible in the background. A wall of windows shows greenery outside.

Redefining design through textiles

Photo of Lavender Tessmer wearing a black face mask in front of a wall full of spools of black and white thread

Fabric + form = a mask that uniquely fits your face

Previous item Next item

More MIT News

Headshot of a woman in a colorful striped dress.

A biomedical engineer pivots from human movement to women’s health

Read full story →

Closeup of someone’s hands holding a stack of U.S. patents. The top page reads “United States of America “ and “Patent” in gold lettering, among other smaller text. They are next to a window that looks down on a city street.

MIT tops among single-campus universities in US patents granted

Jennifer Rupp, Thomas Defferriere, Harry Tuller, and Ju Li pose standing in a lab, with a nuclear radiation warning sign in the background

A new way to detect radiation involving cheap ceramics

Photo of the facade of the MIT Schwarzman College of Computing building, which features a shingled glass exterior that reflects its surroundings

A crossroads for computing at MIT

Hammaad Adam poses in front of a window. A brick building with large windows is behind him.

Growing our donated organ supply

Two hands inspect a lung X-ray. One hand is illustrated with nodes and lines creating a neural network. The other is a doctor’s hand. Four “alert” icons appear on the lung X-ray.

New AI method captures uncertainty in medical images

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

IMAGES

  1. Mathematician finds balance and beauty in math

    maths phd mit

  2. mit masters in mathematics

    maths phd mit

  3. Women in mathematics aim for an equals sign

    maths phd mit

  4. At MIT, 268 take part in world's largest math competition for girls

    maths phd mit

  5. Ph.D. In Mathematics: Course, Eligibility Criteria, Admission, Syllabus

    maths phd mit

  6. Free Mathematics Graduate Courses by the MIT OpenCourseWare

    maths phd mit

VIDEO

  1. 3-Minute Thesis Competition 2023

  2. PhD Life Experience in India or Abroad

  3. Behind the scenes of math PhD student

  4. Please subscribe my new YouTube channel

  5. Definition and example of topological space

  6. University of Toronto: Centre for Applied Mathematics

COMMENTS

  1. Graduate

    Graduate Students 2018-2019. The department offers programs covering a broad range of topics leading to the Doctor of Philosophy and the Doctor of Science degrees (the student chooses which to receive; they are functionally equivalent). Candidates are admitted to either the Pure or Applied Mathematics programs but are free to pursue interests ...

  2. Admission

    You self-reported your grades in step 1, but we require an official transcript for all admitted students. If/when we request this, arrange for an official copy of your college transcript to be sent to: Academic Services, Room 2-110. Dept of Mathematics, MIT. 77 Massachusetts Ave. Cambridge MA 02139-4307.

  3. MIT Mathematics

    In total, 68 out of the top 100 test-takers who took the exam on December 2, 2023, were MIT students. Beyond the top 5 scorers, MIT students took 8 of the next 11 spots (each awarded $ 1,000), 7 of the next 10 after that (each awarded $ 250), and 48 out of a total of 75 honorable mentions. "I am incredibly proud of our students' amazing ...

  4. Department of Mathematics < MIT

    The Department of Mathematics offers training at the undergraduate, graduate, and postgraduate levels. Its expertise covers a broad spectrum of fields ranging from the traditional areas of "pure" mathematics, such as analysis, algebra, geometry, and topology, to applied mathematics areas such as combinatorics, computational biology, fluid dynamics, theoretical computer science, and theoretical ...

  5. PDF DEPARTMENT OF MATHEMATICS

    Graduate Study. The Mathematics Department o ers programs covering a broad range of topics leading to the Doctor of Philosophy or Doctor of Science degree. Candidates are admitted to either the Pure or Applied Mathematics programs but are free to pursue interests in both groups. Of the roughly 120 doctoral students, about two thirds are in Pure ...

  6. Faculty Directory

    MacVicar Faculty Fellow. Hahn, Jeremy. [email protected]. 2-374. Rockwell International Career Development Assistant Professor of Mathematics. Hosoi, Anette. [email protected]. 3-262. Professor of Mechanical Engineering and Mathematics.

  7. Mathematics

    Teaching is an important part of the graduate education in Mathematics and all students are expected to teach at least one semester and preferably more, whether supported through other means or not. ... MIT Office of Graduate Education 77 Massachusetts Avenue Room 3-107 Cambridge, MA 02139-4307. Contact Us: [email protected] (617) 253-4860. MIT ...

  8. About Us

    About Us. The Mathematics Department at MIT is a world leader in pure and applied mathematical research and education. In pure mathematics we explore exciting current research directions in most of the major fields. In applied mathematics, we look for important connections with other disciplines that may inspire interesting and useful ...

  9. Interdisciplinary PhD in Mathematics and Statistics

    PhD Earned on Completion: Mathematics and Statistics. IDPS/Mathematics Chair: Philippe Rigollet. ... MIT Statistics + Data Science Center Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139-4307 617-253-1764 Accessibility; About;

  10. Login

    Mathematics Graduate Admissions 2024 Login This web site allows you to prepare and submit an application to MIT Mathematics for Graduate Admissions. ... For technical assistance, please contact [email protected]. Email (or User ID): Password: This department is not currently accepting new applications. For more information, please see ...

  11. MIT Interdisciplinary Doctoral Program in Computational Science and

    The Math-CSE doctoral program of study consists of at least five graduate-level subjects in computational science and engineering selected from the approved list of Computational Concentration Subjects. Subjects taken as part of an MIT SM degree can be counted toward this requirement.

  12. MIT Department of Mathematics

    The Department of Mathematics at the Massachusetts Institute of Technology (also known as Course 18) is one of the premier mathematics departments both in the U.S. and the world. [1] [2] In the 2023 U.S. News & World Report rankings of the U.S. graduate programs for mathematics, MIT's program is ranked in the first place, tied only with that of ...

  13. Interdisciplinary Doctoral Program in Statistics

    Interdisciplinary Doctoral Program in Statistics. The Interdisciplinary PhD in Statistics (IDPS) is designed for students currently enrolled in a participating MIT doctoral program who wish to develop their understanding of 21st century statistics, using concepts of computation and data analysis as well as elements of classical statistics and probability within their chosen field of study.

  14. Computational Science and Engineering PhD

    77 Massachusetts Avenue. Building 35-434B. Cambridge MA, 02139. 617-253-3725. [email protected]. Website: Computational Science and Engineering PhD. Apply here. Application Opens:

  15. Number Theory I

    Download Course. This is the first semester of a one-year graduate course in number theory covering standard topics in algebraic and analytic number theory. At various points in the course, we will make reference to material from other branches of mathematics, including topology, complex analysis, representation theory, and algebraic geometry.

  16. MIT Doctoral Programs in Computational Science and Engineering

    The standalone CSE PhD program is intended for students who intend to pursue research in cross-cutting methodological aspects of computational science. The resulting doctoral degree in Computational Science and Engineering is awarded by CCSE via the the Schwarzman College of Computing. In contrast, the interdisciplinary CSE PhD program is ...

  17. Interdisciplinary Doctoral Program in Statistics < MIT

    The Interdisciplinary Doctoral Program in Statistics is an opportunity for students in a multitude of disciplines to specialize at the doctoral level in a statistics-grounded view of their field. Participating programs include Aeronautics and Astronautics, Brain and Cognitive Sciences, Economics, Mathematics, Mechanical Engineering, Physics ...

  18. Math Major

    Classes taken at MIT While we are happy to consider Transfer Credit for work done elsewhere, at least half of the subjects beyond 18.03 used to fulfill the requirements for the Mathematics major must be taken at MIT; i.e. at least four of the eight 12-unit subjects required for the course 18 options, and at least six of the twelve required for ...

  19. Doctoral Degrees

    A doctoral degree requires the satisfactory completion of an approved program of advanced study and original research of high quality. Please note that the Doctor of Philosophy (PhD) and Doctor of Science (ScD) degrees are awarded interchangeably by all departments in the School of Engineering and the School of Science, except in the fields of ...

  20. MIT School of Engineering

    A PhD student in electrical engineering and computer science, Roberto is a member of the Organic and Nanostructured Electronics Lab. He uses MATLAB's versatile Partial Differential Equation (PDE), Global Optimization, and ParallelComputingToolboxes to solve, model, and fit the group's experimental data sets on carrier recombination and ...

  21. PhD Program

    The goal of the MIT Sloan PhD Program's admissions process is to select a small number of people who are most likely to successfully complete our rigorous and demanding program and then thrive in academic research careers. The admission selection process is highly competitive; we aim for a class size of nineteen students, admitted from a pool ...

  22. Tomasz Mrowka (MIT)

    A graduate of MIT, Mrowka received the Ph.D. from U.C. Berkeley in 1988 under the direction of Clifford Taubes and Robin Kirby. He joined the MIT mathematics faculty as professor in 1996, following faculty appointments at Stanford and at Caltech (professor 1994-96). He chaired the Graduate Student Committee 1999-02, and chaired the Pure ...

  23. Graduate student Michael Calzadilla awarded 2024 NASA ...

    Graduate student Michael Calzadilla awarded 2024 NASA Hubble Fellowship. Nayanika Yellepeddi // MIT Kavli Institute for Astrophysics and Space Research // April 10, 2024. ... MIT Department of Physics 77 Massachusetts Avenue Building 4, Room 304 Cambridge, MA 02139 617-253-4800

  24. Here's how Mass. graduate schools rank nationally

    Among business schools, MIT Sloan ranked fifth and Harvard was sixth. The Carroll School of Management at Boston College landed 46th and Questrom School of Business at Boston University was 50th ...

  25. MIT tops among single-campus universities in US patents granted

    For the 10th consecutive year, MIT ranks No. 2 among all colleges and No. 1 among colleges with one main campus in the number of patents granted. MIT's Technology Licensing Office (TLO) bridges groundbreaking research to societal impact through patents and innovation. ... Graduate student Hammaad Adam is working to increase the supply of organs ...

  26. Grad alum Avi Wigderson wins Turing Award for 'groundbreaking insights

    Princeton graduate alumnus Avi Wigderson has won the 2023 A.M. Turing Award from the Association for Computing Machinery (ACM), recognizing his profound contributions to the mathematical underpinnings of computation. ... "Mathematics is foundational to computer science and Wigderson's work has connected a wide range of mathematical sub ...

  27. Programming functional fabrics

    Recognizing the importance of manufacturing capabilities for textiles, Tessmer's research has focused on programming textiles with specific functional properties while also considering the feasibility of large-scale manufacturing of such products. A nonlinear path to MIT. Tessmer studied music as an undergraduate student at Duquesne ...