Resilience in agri-food supply chains: a critical analysis of the literature and synthesis of a novel framework

Supply Chain Management

ISSN : 1359-8546

Article publication date: 27 March 2018

Issue publication date: 12 June 2018

Resilience in agri-food supply chains (AFSCs) is an area of significant importance due to growing supply chain volatility. While the majority of research exploring supply chain resilience has originated from a supply chain management perspective, many other disciplines (such as environmental systems science and the social sciences) have also explored the topic. As complex social, economic and environmental constructs, the priority of resilience in AFSCs goes far beyond the company specific focus of supply chain management works and would conceivably benefit from including more diverse academic disciplines. However, this is hindered by inconsistencies in terminology and the conceptual components of resilience across different disciplines. The purpose of this study is to use a systematic literature review to identify which multidisciplinary aspects of resilience are applicable to AFSCs and to generate a novel AFSC resilience framework.

Design/methodology/approach

This paper uses a structured and multidisciplinary review of 137 articles in the resilience literature followed by critical analysis and synthesis of findings to generate new knowledge in the form of a novel AFSC resilience framework.

Findings indicate that the complexity of AFSCs and subsequent exposure to almost constant external interference means that disruptions cannot be seen as a one-off event; thus, resilience must concern the ability to not only maintain core function but also adapt to changing conditions.

Practical implications

A number of resilience elements can be used to enhance resilience, but their selection and implementation must be carefully matched to relevant phases of disruption and assessed on their broader supply chain impacts. In particular, the focus must be on overall impact on the ability of the supply chain as a whole to provide food security rather than to boost individual company performance.

Originality/value

The research novelty lies in the utilisation of wider understandings of resilience from various research fields to propose a rigorous and food-specific resilience framework with end consumer food security as its main focus.

  • Sustainability
  • Food industry
  • Systematic literature review
  • Food security
  • Supply chain disruptions

Stone, J. and Rahimifard, S. (2018), "Resilience in agri-food supply chains: a critical analysis of the literature and synthesis of a novel framework", Supply Chain Management , Vol. 23 No. 3, pp. 207-238. https://doi.org/10.1108/SCM-06-2017-0201

Emerald Publishing Limited

Copyright © 2018, Jamie Stone and Shahin Rahimifard

Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

1. Introduction

It is increasingly accepted that supply chains in all forms face increasing volatility across a range of business parameters from energy cost, to raw material availability and currency exchange rates ( Norrman and Jansson, 2004 ; Neiger et al. , 2009 ; Christopher and Holweg 2011 ; Vlajic et al. , 2013 ). Agri-food supply chains (AFSCs), which include all steps involved in production, manufacturing and distribution of food until its final consumption, not only share these general risks but also face their own unique vulnerabilities due to the limited shelf life of food, and variability in quality and availability of raw materials as organic products ( Dani and Deep, 2010 ). There is evidence that these vulnerabilities may become more pronounced in future. For example, the quality and quantity of raw ingredients in many parts of the world will likely be challenged by an increased incidence of extreme weather linked to climate change ( Karl, 2009 ; ESRC Public Policy Seminar, 2012 ; Allison et al. , 2009 ).

Moving beyond the projected impacts of climate change, the global population is expected to increase to over 9 billion by 2050, with much of the growth in current population projected to be in urban areas ( Kastner et al. , 2012 ). As many parts of the globe become wealthier, they are increasingly witnessing a dietary transition towards greater amounts of meat, dairy and more heavily processed foods ( Suweis et al. , 2015 ). This is often associated with negative impacts on dietary health and, with increasing pressure on environmental resources, is required to produce these types of food ( Popkin, 1999 ; Godfray et al. , 2010 ).

Herein lies a major challenge referred to as a “perfect storm” by many ( Benton et al. , 2012 ; Ingram et al. , 2013 ). Not only are we likely to require more food to feed the world’s growing population but also our ability to produce and deliver this food without disruption is likely to be constrained. It is widely projected that extreme weather volatility, energy price fluctuations and logistics restrictions, particularly in urban areas, will result in increased risk of disruption ( Morgan, 2016 ; McMichael et al. , 2007 ). In the past, food systems designed for economic efficiency, now must be re-evaluated for resilience. This is broadly understood to refer to the ability of an entity or system to react to disruptions (both foreseeable and unforeseeable) in such a way that core function is maintained ( Barroso et al. , 2011 ).

However, the contexts in which resilience is currently being explored are diverse, ranging from engineering ( Pimm, 1984 ) and ecological systems science ( Holling, 1973 ) to psychology ( Luthar et al. , 2000 ), supply chain resilience (SCRES) ( Christopher and Peck, 2004 ) and community resilience ( King, 2008 ). This has resulted in a fragmented and sometimes inconsistent research field. For example, depending on the research context, the “definition” and thus overall goal of resilience can vary widely. Furthermore, there is often inconsistency in the physical “Elements”; for example, spare inventory or alternate suppliers, which are suggested to help make an entity resilient. In turn, the “Strategies” (i.e. how an entity decides which “element” to use in a given situation) used by entities are often highly variable. The terms “Definition”, “Elements” and “Strategies” have been carefully worded so as to be consistent with terms identified as key principles of resilience in the literature ( Christopher and Lee, 2004 ; Hohenstein et al. , 2015 ; Pereira et al. , 2014 ; Kamalahmadi and Parast, 2016 ).

This fragmentation has not gone unnoticed, particularly in the supply chain management (SCM) field. Ponomarov and Holcomb (2009) , in their extensive review, consider a number of the different definitions and propose a synthesised, comprehensive definition of SCRES. Hohenstein et al. (2015) develop this and systematically identify commonly cited “elements” and the phases of disruption in which they are useful. Building on this, Kamalahmadi and Parast (2016) developed the concept of resilience elements by considering strategies by which an organisation could implement such resilience elements.

Where many of the aforementioned works have tended to focus on organisational competitive advantage (even if it is in the context of a wider supply chain) in the face of adversity, the focus of attempts to enhance resilience in AFSCs should concern the unbroken flow of safe and appropriate food to end consumers in the face of disruption ( Tendall et al. , 2015 ). This means that any resilience definitions, elements and strategies will likely need to be adapted to suit an AFSC context. One possible way of achieving this would be to expand SCM understandings of resilience to consider other research perspectives on resilience such as community resilience and ecological systems resilience; both of these areas not only play a key role in supporting AFSCs but also are likely to suffer if AFSCs fail ( Falkowski, 2017 ). This is particularly relevant for resilience “elements” because SCM works have tended to focus on the most commonly cited ones, particularly flexibility and redundancy ( Hohenstein et al. , 2015 ). Yet there are many less commonly explored “elements” of resilience, particularly from non-SCM perspectives, such as “adaptive management” and “community resources”, that would feasibly be useful in designing an AFSC-specific understanding of resilience ( Smith et al. , 2016 ; Sinclair et al. , 2014 ; Milestad and Darnhofer, 2003 ).

How can the multidisciplinary concept of resilience be applied to AFSCs?

To answer this question, a holistic approach is taken to review the literature for definitions, elements and strategies that are important for resilience in AFSCs (including understandings from SCM, operations management, ecological systems and social systems). The findings are then synthesised into a food security-orientated framework for implementing resilience in developed world AFSCs.

As such, the paper is structured as follows. First, the methodology which describes the systematic literature review (SLR) process in detail is presented. The paper then proceeds to descriptively analyse the resilience literature to identify broad trends in the approaches of different research fields to resilience before focussing in detail on the fit of the literature to the identified review question and its associated sub-questions. Next, the results of the SLR are applied to contemporary AFSC structures to generate a holistic framework that defines and considers AFSC-specific resilience elements and strategies. Finally, the implications of the review findings in terms of both supply chain theory and practice are considered before concluding remarks, and recommendations for future research are presented.

2. Methodology

The requirements for selecting the methodology were that it must enable the identification, analysis and synthesis of secondary data from a broad range of disciplines into a holistic understanding based on fit to a specific review question. For this reason, the SLR process was chosen. The SLR approach differs from more general literature reviews in terms of comprehensiveness (ensuring that all relevant material is included), specificity (identification of salient points through fit to carefully selected review questions) and transparency/replicability (adding reliability to findings) ( Tranfield et al. , 2003 ). Crucially, the SLR approach also enables synthesis of ideas which not only aids wider scholarly dissemination of key concepts and advances the research field but also effectively creates new knowledge, thus being of equal value to new research ( Rousseau et al. , 2008 ; Light and Pillemer, 1986 ). With this in mind, the review methodology used in this paper followed the method of Denyer and Tranfield (2009) and consisted of five distinct steps which are outlined in Figure 1 and which are now described in detail.

2.1 Step 1: review question formulation

The first step in an SLR is the formulation of a specific, purposeful, review question to determine the scope and focus of the review. The aim of this review is to comprehensively identify definitions, elements and strategies for resilience and to develop a holistic framework for how they apply to AFSCs. Hence, this review aims to address Q1 .

What definitions of resilience are appropriate for describing AFSCs?

What resilience elements and strategies can be applied to AFSC resilience?

How can appropriate definitions, elements and strategies be conceptually linked to provide a food security focussed framework of AFSC resilience?

2.2 Step 2: locating relevant literature

The purpose of this phase is to design search criteria in such a way as to ensure the identified literature is comprehensive enough to capture all salient points relevant to the review question ( Denyer and Tranfield, 2009 ). One of the key research gaps driving this review was the need to cover a variety of fields relevant to AFSCs, not simply SCM, and therefore avoiding bias in selection was vital. Therefore, the following multi-database, cross-disciplinary online citation services were used: Google Scholar, Web of Science, ProQuest, Science Direct, Wiley Online, Emerald and Scopus. Consistent with a number of other SLRs in the area of resilience, this paper used a number of defined keywords as search criteria as summarised in Table I . The search was performed in December 2016, and the search for keywords was restricted to title and abstract. Keywords were initially selected based on the authors’ collective knowledge of the field which enabled them to draw up a long list of terms commonly associated with resilience in the literature. Following standard SLR practice ( Hohenstein et al. , 2015 ; Kamalahmadi and Parast, 2016 ), these were critiqued and validated through consultation with other research colleagues allowing us to arrive at the shortlist presented in Table I .

Search strings were composed of primary keywords and secondary keywords. The primary search phrase used in all databases was either “Community”, “Socio-Ecological System” or “Supply Chain”. Each primary search phrase was accompanied by AND “resilience/resiliency”. In addition, each search involved a secondary keyword which was one of either: “Risk/Risk Management”, “OR Vulnerability”, “OR Volatility”, “OR Security”, “OR Mitigation” or “OR Business Continuity”. These variations were run exhaustively, e.g. “Community” AND “Resilience” AND “Security”.

2.3 Literature selection and evaluation

From the initial search criteria, this review sourced a total of 1,270 articles. To maintain transparency and to ensure fit of identified material to the review question, stringent selection criteria were applied to this initial search pool. While material was not limited by publication date, materials were restricted to those published in the English language. Additionally, in line with other SLRs in the area of resilience ( Hohenstein et al. , 2015 ; Kamalahmadi and Parast, 2016 ), material was limited to peer reviewed publications as an indicator of the academic rigour of identified literature ( Light and Pillemer, 1986 ). Once duplicates, non-peer reviewed results and non-English publications were excluded, and the remaining pool numbered 239 articles. Scanning of Introductions and Conclusions provided a better understanding of the fit of the material to the review question and its associated sub-questions. At this stage, 104 articles were excluded due to either being inaccessible (six articles), or being beyond the scope of AFSC-relevant resilience definitions, elements and strategies. Work cited in all accepted articles was also scanned for titles that matched the keyword criteria. In total, this provided a final review size of 137 articles ( Figure 2 ).

2.4 Step 4: analysis and synthesis

The objective of this stage was to analyse and synthesise the final literature pool of 137 articles to identify new knowledge about the multi-disciplinary concept of food SCRES that would not have been apparent from reading each of the papers individually. Analysis was conducted using a Microsoft Excel spreadsheet to record summaries of the positions of each of the 137 articles regarding the key resilience concepts of definition, elements and implementation strategies. Synthesis was achieved via an integrative approach which compared multi-disciplinary works for convergent, divergent and co-evolving understandings of the aforementioned resilience concepts and used the results to build a synergistic conceptual framework of food SCRES. This was chosen over alternative approaches to synthesis, such as aggregative approaches as evidence suggests it better suits heterogeneous source material ( Rousseau et al. , 2008 ).

2.5 Step 5: reporting and using the findings

In this stage of an SLR, the findings from the analysis of the entire review pool, the relationships between salient concepts and the extent to which this information has addressed the review questions are reported ( Denyer and Tranfield, 2009 ). Typically, synthesised findings can also be applied in a novel context to help generate new understandings of the relationships between concepts that may have been studied in isolation in the literature. In the context of this paper, Section 3 reports the findings of the review in relation to the review question and sub-questions. It proceeds to then synthesise and apply the findings in the form of a holistic framework that models resilience in AFSCs.

3. Findings

This section presents the analysis and synthesis of the final literature pool of 137 articles. First, to understand how resilience as a concept has developed over time and across multiple disciplines, a descriptive analysis of articles by publication date, publication journal, subject area and methodology is performed. The literature is then investigated more specifically from the perspective of each of the three review sub-questions. Finally, the salient concepts from each of the review sub-questions are unified in a novel framework modelling key concepts relating to resilience in AFSCs.

3.1 Descriptive analysis

Table II highlights that 40 per cent of the final 137 works reviewed originated in one of the leading seven journals of which Supply Chain Management: An International Journal and International Journal of Production Economics were the most popular. All of the aforementioned journals represent either the fields of SCM or operations management, in which the priority of resilience efforts tended to focus on business continuity and particularly competitiveness of individual actors ( Hohenstein et al. , 2015 ; Pereira et al. , 2014 ; Elleuch et al. , 2016a , 2016b ). Indeed, when all publication sources are considered, 75 per cent of all articles considered in this review have an SCM or operations management origin. However, less common but still important sources of resilience literature were found in journals from a range of other disciplines which included ecological systems, social systems and engineering/physical systems as outlined in Figure 3 . These alternative disciplines are an important source of resilience research, particularly publications with a focus on social systems, where the priority of resilience tends to be on the adaptive capacity of complex systems ( Tendall et al. , 2015 ; Milestad and Darnhofer, 2003 ). The authors feel that this supports the previous contention that existing works which explore resilience from an SCM and/or operations management perspective, with their focus on individual business continuity and competitive advantage, are not always readily transferrable to the topic of AFSCs.

Another notable observation is that all of the articles reviewed were published post-2000 with 65 per cent being published post-2010, suggesting that interest in the application of resilience as a concept is recent and growing phenomena. Evidence suggests that this is in response to a number of wide ranging and unexpected disruptions including Hurricane Katrina, the Icelandic eruptions at Eyjafjallajökull in 2010, the Fukushima nuclear disaster, as well as major terrorist incidents such as the 9/11 attacks in America and the 7/7 attacks in the UK ( Kinsey et al. , 2007 ; Sheffi, 2001 ; Scholten et al. , 2014 ; Christopher and Lee, 2004 ).

Figure 4 analyses the literature according to its adopted methodology. Methodology is classified according to four categories borrowed from Natarajarathinam et al. (2009) : conceptual/theoretical, analytical, empirical and applied. The term conceptual/theoretical refers to works which synthesise or develop existing understanding of SCRES but which are not supported by any empirical work. Literature reviews are classed within this category. Works involving substantial simulation or mathematical modelling of a real-world supply chain issue with specified parameters fall within the analytical category. Articles that involve the collection of real world data and its evaluation are classed as empirical. Finally, case studies, interviews and other forms of gathering thoughts and opinions are classed as applied. Ultimately, the most common form of methodological approach was conceptual/theoretical which accounted for 52 (38 per cent) of the reviewed articles.

The authors of this review concur with Hohenstein et al. (2015) that this represents the importance of theory building in what is still a relatively new research area. Encouragingly, in recent years, there have been an increasing number of empirical works, case-specific applied works and mathematical analysis-based works which suggests that the focus is moving away from defining resilience towards trying to understand what its functional “elements” are. However, a large number of such works attempt to measure or model resilience based on a very small number of commonly cited “elements”, particularly flexibility and redundancy; for example, Braunscheidel and Suresh (2009) , Skipper and Hanna (2009) and Datta et al. (2007) . While such works are highly valuable in the sense that there is a real need to empirically validate emerging resilience theories, there is a risk that resilience as a practical target could be oversimplified. This descriptive analysis of the resilience literature will now be used as a base from which to explore each of the review sub-questions individually.

3.2 Addressing Q1.1

This section addresses review sub-question one by exploring how resilience has been defined as a concept by different research fields ( Figure 3 ). Resilience can best be thought of as an umbrella term for a range of linked factors that help ensure continuity in the face of disruption ( Tendall et al. , 2015 ). Before exploring the concept in more detail, it is important to provide clarity on the relationship between resilience and the similar terms of “sustainability” and “robustness” which investigation suggests are sometimes used interchangeably. Using the definition of sustainability outlined in the Brundtland Report: “meeting the needs of the present without compromising the ability of future generations to meet their own needs”, sustainability can be described as a normative measurement for assessing long-term performance against ideal environmental, economic and social standards ( Derissen et al. , 2011 ).

By contrast, resilience is more of a descriptive methodology concerning short-term ability to withstand and/or adapt to disturbance ( Tendall et al. , 2015 ). As such, it is a key attribute for any organisation with long-term sustainability goals in complex systems with ever-changing drivers. Thus, an organisation can be resilient and unsustainable, but not sustainable without the presence of resilience, as it would be too susceptible to short-term derailment from excessive exposure to disruption. Robustness is another term which is related to resilience and frequently used interchangeably. However, the two are separate terms, with robustness prioritising strength to withstand disturbances, whereas resilient systems include flexibility to adapt to disturbance ( Asbjornslett, 1999 ; Jüttner et al. , 2003 ). In this way, it is possible to see robustness as a component of resilience, and in turn, resilience as a short-term enabler of long-term sustainability ( McDaniels et al. , 2008 ). To summarise, while these terms would therefore appear to be synergistic, it is erroneous to use them interchangeably ( Redman, 2014 ).

Moving on to focus on resilience, while a relatively new addition in the context of SCM and AFSCs in specific, it is by no means a new concept. The term has Latin origins, stemming from the word “resi-lire”, meaning to spring back and was first used by physicists to describe the stability of materials and their ability to resist external shocks ( Manyena, 2006 ). It entered popular use in the field of Ecology in the 1960s and from there began to be translated to a range of new subject fields aided by a seminal article by Crawford Stanley Holling in 1973 ( Holling, 1973 ). This article divided resilience into two distinct definitions that are commonly used today: engineering resilience and ecological resilience.

In the engineering definition, resistance to disturbance and the speed by which the system returns to a state of equilibrium are the marks of resilience. The phrase “a state of equilibrium” refers to the notion of optimal day to day operations ( Rose, 2011 ). Heavy emphasis is placed on return time, efficiency, constancy and predictability, which it is claimed are the marks of a sound engineering design and hence the name ( Holling, 1996 ). In the ecological definition, resilience is also measured by resistance to disturbance and speed of return to a state of equilibrium, but this definition also accepts that there are multiple possible equilibriums that the system could flip into depending on the magnitude of the disturbance.

It has been pointed out that a major shortcoming of both the engineering and ecological definitions of resilience is that they presume closed systems within which different actors can establish states of equilibrium. This is clearly not the case in something as complex as a food system where intertwined social, environmental, economic and political factors drive constant change across key operating parameters. In response to this, several authors have proposed a third definition of resilience which has been termed “Evolutionary” or “Adaptive” Resilience ( Walker et al. , 2006 ; King, 2008 ; Folke, 2006 ; Ambulkar et al. , 2015 ). For consistency, we use the term adaptive resilience from now onwards in this review.

Adaptive resilience describes complex social–ecological systems where the interactions between different scales (for example, from individual species, to forests, to entire ecosystems), periods (referred to as temporal scales) and geographic distances (referred to as spatial scales) are all considered vital for overall system resilience. As such, there cannot be a “state of equilibrium” because external interference is continuous. Instead, resilience is something that is cyclical and cumulatively developed by a continual process of adaptation and learning from ongoing disturbances. It has been proposed that this continuous adaptive cycle has four distinct stages: exploitation, conservation, release and reorganisation as shown in Figure 5 ( Allen et al. , 2014 ; Walker et al. , 2006 ).

The first phase is exploitation, which in the context of a business, is marked by use of readily available resources to form structure and core business priorities. An example might be that of a new start-up company with a novel product and market dominance. However, as an organisation grows, it will eventually reach a point where its size binds ever larger quantities of resources and its connectivity increases cross-scale interactions, known as the conservation phase. The existence of the phase is supported by evidence collected by Peck (2005) in multi-sectorial supply chain interviews. An example view expressed by a consultant in Electronics Manufacturing is:

It’s when the supply chain is supposed to be in the established steady state that it is most vulnerable, because that’s the point when it’s most susceptible to external effects. That’s when most people are trying to optimise and reduce control limits to reduce the variability of the process, but external risks may have changed the original scenario. ( Peck, 2005 ).

In AFSCs in specific, this phase has been likened to contemporary drives towards intensification of agriculture and centralisation of factories and distribution centres, representing accumulation of capital and growing interconnectivity. Other assets bound up in AFSCs include significant amounts of land, water, carbon and other nutrients embodied in food ( Fraser et al. , 2005 ).

Whether from the perspective of an entire food system or a single business within the existing system, this phase is where susceptibility to disturbance is at its highest because so many assets are tied up in the current way of doing things and connectivity means exposure is at its highest. There is the potential for significant loss of resources if a big enough disturbance occurs, and this is known as the “Release” phase. This does not necessarily comprise pure financial loss, but might also concern loss of resources bound up in no longer tenable business structures. The business does not necessarily collapse at this point, but there will need to be some sort of adaptation (the Reorganisation Phase) at which point the cycle begins again ( Davoudi et al. , 2012 ).

Influencing the adaptive cycle are three components: “resilience” (capacity to absorb change), “adaptability” (capacity to evolve a given form of operation) and “transformability” (ability to completely change an untenable system of operation). These are effectively control mechanisms with which an organisation can influence the adaptive cycle stages ( Figure 5 ). The adaptive cycle also differs from the engineering and ecological definitions of resilience by its underlying consideration of “Panarchy” ( Allen et al. , 2014 ). This represents complexity in a system where disruptions do not necessarily have to originate within the same period or geographic proximity as the focal organisation. This means that the relationships between cause and effect of a disturbance do not necessarily have to be linear. As such, small influences such as the input of single staff members in the face of disruption can have just as much, or even more, impact than large scale interventions. Such unpredictability challenges the adequacy of conventional risk management tools, such as extrapolation of past trends as a way of forecasting future events ( Trkman and McCormack, 2009 ). The key differences between the engineering, ecological and evolutionary definitions of resilience are summarised in Table III .

In Table IV , the review pool is analysed according to which of the three definitions authors adopt. In total, 48 of the 137 articles being reviewed offered a definition for resilience. As Q1.1 concerns identifying suitable definitions of resilience for AFSCs, literature definitions were compared on whether they were from articles considering AFSCs in specific, or from different perspectives on resilience. Thirteen of the articles offering definitions considered AFSCs in specific (although this specificity was not always obvious in the definition provided) and 35 were more general in focus. The broader research contexts of the review articles were also compared to identify if certain research fields prioritise a specific type of definition.

Engineering definitions were distinguished by their focus solely on resisting and recovering rapidly from external disturbances with minimal impact on system deliverables. Ecological definitions, on the other hand, focussed on the amount of change a system can endure and recover from, possibly involving moving to a new equilibrium, while maintaining core functions. Adaptive definitions made no mention of states of equilibrium but instead focussed on adaptive change to volatile external operating environments. As such, in addition to mention of ability to “resist” and “recover”, the ability to “adapt” or “reorganise”, whether in response to, or in anticipation of a disruption was common in such definitions ( Wu et al. , 2013 ; King, 2008 ; Cimellaro et al. , 2010 ).

It was identified that overall there was a slight preference for the adaptive definition of resilience. This is particularly true in works that were AFSC specific in focus, many of which hailed from a social systems perspective. Such works frequently considered resilience at community and societal scales and prioritised a system’s ability to continue providing food, rather than economic viability of individual businesses within the chain. Here, end consumers and the different AFSCs that feed them are considered within the sphere of the wider natural world, where change is constant and control over that change by any given actor is small. For example, as complex social-ecological systems, AFSCs are dependent on a number of ecosystem services to produce food, and significant social-economic factors to manufacture and transport food. Each of these is exposed to vulnerabilities, for example, in the form of policy interventions, consumer demand and environmental management.

A breakdown in any one of these areas can lead to harvests failing, transport links breaking and consumer demands and tastes changing ( Milman and Short, 2008 ; Yang and Xu, 2015 ). Therefore logically, to be resilient in such a world is to prioritise constant adaptation and reorganisation. As such, the complexity of vulnerability sources is much broader than an individual organisation might consider from a risk management perspective, and this would explain the observed preference for the adaptive definition. Key features of adaptive food definitions included the ability to maintain “function” as well as the ability of systems to adapt rather than to return to existing states of equilibrium. Tendall et al. (2015) advance the field by linking “function” with the United Nations Food and Agricultural Organisation definition of food security which concerns the four pillars of availability, access, utilisation and stability of food to end consumers ( Fao, 2012 ; Tendall et al. , 2015 ).

In comparison, non-AFSC-specific works saw greater contribution from organisational management and engineering/physical systems approaches. In these contexts, resilience consideration often takes place within an enclosed system, for example, a factory, and vulnerabilities tend to be more controllable and predictable (for example, machine faults, staff illness, etc.), thus encouraging pursuit of a single optimal management strategy ( Vlajic et al. , 2013 ; Berle et al. , 2011 ). This can be seen as analogous to a “state of equilibrium” and would explain the preference in such works for an ecological definition of resilience where the focus is on a particular organisation’s competitive advantage, specifically, minimising the time and cost of a disruption and exploiting competitor weaknesses ( Pereira et al. , 2014 ; Kim et al. , 2015 ; Todo et al. , 2015 ).

Articles in the area of SCM, regardless of whether they are AFSC focussed or not, have shown a growing shift away from engineering definitions of resilience towards adaptive definitions in recent years. There is evidence that this transition is linked to increasing awareness of the importance of constantly changing operating environments, in particular, the evolving challenges and opportunities of outsourcing to low-cost countries ( Tang and Musa, 2011 ).

Moving forward, a number of definitions in Table IV refer to one or more of the following abilities: to “Resist”, to “Recover” and/or “Adapt”( Soni et al. , 2014 ; Fahimnia and Jabbarzadeh, 2016 ; Leat and Revoredo-Giha, 2013 ; Annarelli and Nonino, 2016 ). Ponomarov and Holcomb (2009) categorised these into the distinct phases of readiness, response and recovery. Readiness refers to an organisation’s ability to anticipate disruption and either prepare for it or avoid it. Response refers to either innate or pre-planned elements that mitigate the impact of a disruption, as it happens. Recovery refers to the ability of an organisation to repair losses caused by a disruption and return to meeting core priorities. Hohenstein et al. (2015) add the fourth phase of “Growth” which concerns learning from and adapting core priorities post disruption so that competitiveness actually improves compared to pre-disruption levels. However, it has been noted that many articles overwhelmingly see disruption in light of the reactive and recovery phases only ( Higgins et al. , 2010 ; Hohenstein et al. , 2015 ).

Therefore, to summarise findings in relation to review Q1.1 , it has been identified that resilience of AFSCs is frequently equated with the ability not only to resist disruption but also particularly to maintain the core function of supplying food to end consumers. The priority of resilience in AFSCs can therefore be described as the food security of end consumers. AFSCs are also incredibly complex systems involving myriad bio-geophysical, social, economic and political drivers and feedbacks that must be managed holistically to enhance resilience. Therefore, any definition of AFSC resilience must include the ability to adapt in line with changing operating environments as well as to prioritise availability, access, suitability and stability of food supply. To do so, it must consider more than the traditional phases of resisting and recovering from disruption and also include anticipation and post-disruption learning. Therefore, the authors of this paper propose the following definition of AFSC resilience:

The collective ability of Agri-food supply chain stakeholders to ensure acceptable, sufficient and stable food supplies, at the required times and locations, via accurate anticipation of disruptions and the use of strategies which delay impact, aid rapid recovery and allow cumulative learning post-disruption.

This definition builds on existing adaptive definitions of food-related resilience by incorporating the priority of food security rather than individual organisational competitiveness. By nature, it implies that resilience strategies must consider how resilience strategies implemented by one actor impact overall SCRES. Furthermore, by incorporating the fourth food security pillar of stability, the synergistic relationship between resilience and sustainability is highlighted.

A key component of this definition is the word “mechanisms” and to explore what this practically entails; this review now moves on to Q1.2 to identify AFSC relevant resilience “elements” and “strategies”.

3.3 Addressing Q1.2

There have been a number of works which propose strategies for manipulating an actor’s resilience, many of which fall within the SCM discipline. Such strategies frequently rely on the assumption that resilience can be controlled by a portfolio of variously named “antecedents”, “attributes”, “capabilities”, “elements” and “enhancers” which are management tools to counteract specific vulnerabilities ( Hohenstein et al. , 2015 ; Pettit et al. , 2010 ; Pereira et al. , 2014 ; Kamalahmadi and Parast, 2016 ). For consistency, and in line with Christopher and Peck (2004) , Hohenstein et al. (2015) and Kamalahmadi and Parast (2016) , the term “elements” is used from now onwards.

In total, 61 articles proposed one or more key elements for resilience. From these, this review identified 40 unique resilience elements. This breadth of resilience elements has, to the author’s knowledge, not been attempted previously in the literature. These elements varied significantly in terms of “scope”. This refers to whether resilience elements were applicable in response to disruptions within an individual organisation (for example, machinery faults) or within a supply chain (for example, loss of a specific supplier), in which case, elements addressed ways in which the supply chain could collectively adapt. The list of identified elements and their respective scope and publication sources are given in Table V . It should be noted that some elements appear in both the intra-organisational and intra-supply chain columns albeit with different contexts. For example, redundancy at an organisational level refers to spare capacity and inventory, but at a supply chain level describes alternative transport routes between stages or backup infrastructure. When ranked according to the number of papers mentioning a specific element, flexibility, risk aware culture, redundancy and early warning detection systems were the most commonly cited elements at an organisational level. At a supply chain level, collaboration, flexibility, agility, visibility and adaptability were, respectively, the most commonly cited elements.

Despite there being a number of highly cited resilience elements, the overwhelming majority of elements identified appeared in less than 10 per cent of papers reviewed. This suggests that there is poor consensus on what elements are the most important for resilience. For example, Fiksel (2003) proposes four elements: diversity, efficiency, adaptability and cohesion. Pettit et al. (2010) on the other hand identifies 14 different elements. Without empirical validation, it is difficult to be sure that just because a resilience element is cited more frequently, that it is more significant for resilience than a less commonly cited capability. In particular, many of the less commonly cited elements are from research fields that are less active in the area of resilience, such as ecological and social systems. Such elements concern interactions and relations between organisations, communities and the natural environment as well as their ability to adapt, which are of major significance to “adaptive resilience” in AFSCs. Therefore, there is a need to capture the relationship between such elements and the more commonly cited elements.

The authors of this review identified that of the 40 resilience elements, some were broad in scope and some were much narrower, referring to specific aspects of the broader elements. These are referred to as “Core” and “Supporting” elements, respectively. For example, at a supply chain level, the authors of this review propose that flexibility is a “Core” resilience element, concerning supply chain wide alternative options of responding to a disruption. The resilience elements of “I016 Knowledge Management” and “IO16 Market Position” for example, while enabling resilience in their own right, are often cited as aspects of “IO1 Flexibility” ( Carvalho et al. , 2012a , 2012b ; Pettit et al. , 2010 ; Tomlin, 2006 ). Therefore, while IO15 and IO16 are not duplicates of IO1, they can be seen as “Supporting” resilience elements. This novel method of categorising resilience elements of relevance to AFSCs is shown in Figure 6 . Categorising resilience elements in this way is useful for application to AFSCs because elements that represent communities and ecosystem services can be more easily recognised as supporters of more commonly cited elements. The proposed “Core” elements at an organisational level are now described in more detail.

3.3.1 Proposed “core” intra-organisational resilience elements

3.3.1.1 intra-organisational 1: flexibility..

At an organisational perspective, flexibility was cited in 14.75 per cent of articles reviewed. For most organisations, there will be two broad areas in which flexibility can be implemented; at sourcing and at production and distribution ( Pettit et al. , 2010 ). At sourcing, flexibility concerns ability to quickly change inputs (or mode of receiving inputs) through utilisation of common product platforms, product modularity, multiple pathways, supply contract flexibility and alternate suppliers ( Tomlin, 2006 ). At production and distribution, flexibility entails the ability to quickly change outputs or the mode of delivery, for example, via multi-sourcing, delayed commitment/production, alternate distribution channels and fast re-routing of requirements ( Carvalho et al. , 2012a , 2012b ). “Financial Strength” (IO9) concerns easily accessible liquid assets and so is a pre-requisite for many of the aforementioned flexibility options ( Pal et al. , 2014 ).

“Human Resource Management” (IO12) and “Knowledge Management” (IO15) concern aspects of how skills are developed, used and retained in an organisation so as to be able to rapidly adapt to changing job roles in a disruption ( Zsidisin and Wagner, 2010 ). Both are important enablers of an organisation being able to switch sourcing inputs, production processes and distribution approaches. “Market Position” (IO16) concerns factors such as brand equity, customer loyalty, market share and product differentiation, which can influence response and recovery options; thus, “Market Position” can be seen as an enabler of flexibility. For example, in a disruption, a strong brand image combined with good customer communication can enable a supplier to promote substitute product lines, perhaps even securing future market share ( Pettit et al. , 2010 ).

3.3.1.2 Intra-organisational 2: risk aware culture.

Risk aware culture was referred to in 14.75 per cent of papers reviewed and was used to broadly describe the infrastructure a firm has in place to manage risk. It goes beyond risk management in the sense of an assigned individual(s) simply identifying and mitigating risks on a case by case basis ( Finch, 2004 ; Blome and Schoenherr, 2011 ; Jüttner and Maklan, 2011 ; Gölgeci and Ponomarov, 2015 ). Instead, it concerns the presence of a culture that encourages and enables organisation wide learning and adaptation from past disruptions and also leadership that espouses this ( Christopher and Lee, 2004 ; Peck, 2005 ). It has been suggested that this may manifest in the form of high organisation wide efficiency, the presence of a business continuity plan and a high degree of joint decision making ( Thun and Hoenig, 2011 ; Neureuther and Kenyon, 2009 ; Ritchie and Brindley, 2007 ). These principals were reflected in “Efficiency” (IO6), which concerns how resources are used so as to avoid unnecessary waste and disruption and “Leadership Commitment” (IO10), which concerns the quality of leadership and how it interacts with the rest of an organisation. Equally, “Business Continuity” (IO13), which concerns contingency plans for “mission critical” assets, “Innovation” (IO14), the presence of shared beliefs, openness to learning and joint decision-making both feed into the ability of an organisation to anticipate and respond to risk. Finally, “Adaptive Management” (IO17) which concerns the active monitoring of decisions made in relation to past disruptions and their outcomes enables incremental learning and adaptation to risk. Thus, all are supporting elements of IO2 Risk Aware Culture.

3.3.1.3 Intra-organisational 3: redundancy.

Redundancy at the firm level was one of the most commonly cited resilience elements, appearing in 13.1 per cent of papers. Firm level redundancy concerns excess capacity to what is normally required. In this way, it buffers normal activities rather than providing options to do things differently as is the case with the element of “flexibility”. One example could be spare inventory capacity, either in terms of ramping up production or in terms of excess storage space or transport capacity ( McKinnon, 2006 ; Aigbogun et al. , 2014 ). However, such approaches typically come at the cost of reduced efficiency and must be matched on an individual basis to specific identified risks ( Ponis and Koronis, 2012 ; Manuj and Mentzer, 2008 ). It has been suggested that redundancy is best targeted at risk sources from beyond supply chain boundaries (such as natural disasters) and that elements such as “flexibility” are more effective for dealing with intra-supply chain disruptions (Wieland and Wallenburg. 2013).

3.3.1.4 Intra-organisational 4: early warning detection systems.

Early warning detection systems were referred to in 8 per cent of papers and concern a broad suite of attributes aimed at providing enhanced foresight of disruption so that an organisation can spend more time preparing and less time reacting to disruption. It includes not only monitoring abilities in the form of physical IT infrastructure but also the staff training and internal information flows that allow effective utilisation of information obtained, particularly with the rise of “Big Data” and The Internet of Things (IOT) ( Christopher and Lee, 2004 ; Stecke and Kumar, 2009 ). As such, actions which an organisation can put in place internally to maximise warning of disruptions, such as “Inventory Management” (IO8), and to act on them, such as “Contingency Plans” (IO7), and “Relationships” (IO11) are key “Supporting” elements. Clearly, there are major overlaps between early warning detection systems which are considered to be intra-organisation and “visibility” which is often discussed in an inter-organisational context.

3.3.1.5 Intra-organisational 5: security.

Security concerns defence of assets (including knowledge, staff physical assets) against deliberate attack or intrusion. It is distinct from more general insurance and risk management and is increasingly pertinent in terms of food supply chains, given recent issues with traceability ( Pettit et al. , 2010 ; Bakshi and Kleindorfer, 2009 ; Elleuch et al. , 2016a, 2016b ).

3.3.2 Proposed “core” intra-supply chain resilience elements

3.3.2.1 intra-supply chain 1: collaboration..

Collaboration was cited in 31 per cent of papers reviewed and refers to two or more actors working together to generate advantages that could not be achieved individually ( Habermann et al. , 2015 ; Zacharia et al. , 2009 ; Lee, 2014 ; Scholten and Schilder, 2015 ). This can range from sharing of limited information to joint decision making, synchronisation of operations and more equal sharing of risk and assets, depending upon end consumer need and the level of trust between partners ( Barratt, 2004 ; Giannakis and Louis, 2011 ). A number of “Supporting” elements are important in enabling collaboration to occur effectively and these include “Established Communication Lines” (IS13) which can aid the speed and effectiveness of coordination post-disruption as well as “Trust” (IS14) which influences the willingness of entities to talk in the first place. “Cohesion” (IS17), is also closely related as it concerns unifying factors such as mutual end consumers that can drive collaboration. “Bargaining Power” (IS20) concerns factors such as high relative purchasing power that might drive adversarial rather than collaborative supply chain relations. All of these supporting elements are enables of a “collaborative” AFSC.

3.3.2.2 Intra-supply chain 2: flexibility.

In a supply chain context, flexibility was cited in 29 per cent of papers. Here, it concerned the degree by which a supply chain can maintain function and respond effectively to changing operating environments and customer requests through partnerships ( Lam and Bai, 2016 ; Richey et al. 2009). It concerns alternate options that partners or the wider operating environment can provide, for example, postponement options, alternate infrastructure, logistics or staff ( Gligor and Holcomb, 2012 ; Stevenson and Spring, 2007 ). “Node Criticality” (IS6) which concerns relative numbers of single key suppliers or buyers in a supply chain is a key aspect as is “Node Complexity” (IS18) which considers the density of actors in a supply chain and the distances between them (Saenz et al. , 2015; Stecke and Kumar, 2009 ). Interestingly, “Node Complexity” is also a key enabler of “Information Flow” (IS7) in addition to “Flexibility” (IS2), as it determines the efficiency and effectiveness with which information is transmitted within a supply chain ( Pereira et al. , 2014 ; Smith et al. , 2016 ). In turn, “Information Flow” (IS7) is a key “Supporting” element of the “Core” elements of “Visibility” (IS4) and “Adaptability” (IS3) highlighting the fact that supporting elements can serve to achieve multiple “core” elements. A final supporter of AFSC flexibility is “Community Resources” (IS21) which considers the range of ecological, economic, social, physical, institutional and cultural resources a community can draw upon when faced with disruption ( Smith et al. , 2016 ).

3.3.2.3 Intra-supply chain 3: agility.

In total, 27.8 per cent of papers referred to agility as a supply chain-wide resilience element. Agility is closely related to flexibility, but whereas flexibility concerns alternative “options”, agility relates to how these options are used and particularly the speed at which they can be implemented to recover lost functionality ( Sharifi and Zhang, 1999 ; Dubey et al. , 2014 ). Interestingly, while agility focuses on quick recovery, it does not always have to involve the most efficient response ( Braunscheidel and Suresh, 2009 ; Swafford et al. , 2006 ). As such, “Velocity” (IS8) which concerns the speed and efficiency with which products traverse a supply chain, and “Rapidity” (IS12), which concerns the ability of a supply chain to meet objectives in a timely manner both aid overall agility ( Christopher and Lee, 2004 ; Tendall et al. , 2015 ; Johnson et al. , 2013 ). Additionally, supply chain “Risk Management Orientation” (IS15) which concerns supply chain wide presence of procedures to identify and develop contingency plans for disruptions can enhance recovery speed and effectiveness, thus contributing to agility. Equally, “Responsiveness” (IS22) which concerns a supply chain’s ability to respond to consumer demands, particularly via lead time reduction efforts, also supports overall supply chain agility (Saenz et al. , 2015; Aramyan et al. , 2007 ).

3.3.2.4 Intra-supply chain 4: visibility.

Visibility is cited by 24 per cent of papers as being a key supply chain scale resilience element. It concerns the ability to see structures, products and processes from one end of the supply chain to the other ( Pettit et al. , 2013 ). Clearly therefore, there is major overlap with “Information Flow” (IS7) which concerns effective and efficient flow of information from one end of the supply chain to the other ( Soni et al. , 2014 ; Faisal and Banwet, 2006 ). However, it is not only about information flow but also about directing the right knowledge to the right people at the right time ( Christopher and Lee, 2004 ; Carvalho et al. , 2014 ). Therefore, it is very much about information management. Such information can concern company processes and assets or, alternatively, the wider operating environment, for example, consumer trends and competitor technology. As such, visibility is synergistic with “Collaboration” (IS1) ( Brandon-Jones et al. , 2014 ; Gunasekaran et al. , 2011 ; Aigbogun et al. , 2014 ).

3.3.2.5 Intra-supply chain 5: adaptability.

Adaptability is a measure of a system’s ability to adapt incrementally or to completely transform in response to a changing operating environment ( Sinclair et al. , 2014 ; Tukamuhabwa et al. , 2015 ). It is distinct from “Agility” (IS3) which concerns tactical level adaptations and instead focuses on system wide evolution in response to changing operating environments. To be able to do so, a supply chain’s “adaptability” is also dependent on the presence of “Self-Organisation” (IS11) which refers to the autonomy, ability and will of a system to internally organise itself as opposed to being driven by external forces. ( Milestad and Darnhofer, 2003 ; Lebel et al. , 2006 ). Equally important is “Co-Learning” (IS19) which involves the procedures in place to aid system wide joint learning from both near misses and actual disruptions ( King, 2008 ; Pettit et al. , 2010 ).

3.3.2.6 Intra-supply chain 9: redundancy.

Redundancy at a supply chain scale concerns system-wide design of emergency back-up and storage facilities, surplus pathways between nodes and the extent to which different supply chain nodes and components are replaceable ( Bode et al. , 2011 ; Ratick et al. , 2008 ). It was cited by 9 per cent of papers reviewed as being a key supply chain wide resilience enabler. An important “Supporting” element is “Robustness” (IS10) which is a marker of a system’s ability to absorb change without losing core functionality ( Ivanov et al. , 2015 ). In turn, the principles of “Robustness” seem to be almost identical to those of “Buffer Capacity” (IS23) ( Milestad and Darnhofer, 2003 ; Spiegler et al. , 2012 ). “Diversity” (IS16) has also been linked to redundancy in the context of different skill sets that can be used to reach the same outcome at a supply chain level ( Fiksel, 2003 ).

Having identified relevant resilience elements from the literature, this section now completes Q1.2 by exploring the resilience strategies that help an organisation to identify what resilience elements to use in a given situation and time. It was observed that one of the more common approaches in the literature was to focus on resilience elements with the highest citation factor ( Manuj and Mentzer, 2008 ; Christopher and Lee, 2004 ; Ratick et al. , 2008 ). In very industry specific works, this approach is effective, however, as was identified in the introduction of this review, AFSCs must consider a broad range of risks stemming from social, environmental and economic drivers. This means that the right resilience element might not always be the most highly cited element. This is addressed in Figure 6 by the proposal of a range of “Core” and more focussed “Supporting” elements that are highly situation specific. However, this means that there is a need for a more thorough implementation strategy.

One solution is to use the “phases” of disruption which were identified in addressing Q1.1 as being major components of many resilience definitions in the literature. These phases are “Readiness” (the ability to anticipate potential disruptions), “Response” (the ability to mitigate the impact of a disruption as it happens) and “Recovery” (the ability to return to core function and repair losses rapidly) as identified by Ponomarov and Holcomb (2009) . Added to these three is “Growth” (the ability to adapt for competitive advantage) as described by Hohenstein et al. (2015) . Hohenstein et al. (2015) further develop the use of phases by attempting to match a small number of resilience elements to a “Proactive” Strategy (aligned to the “Readiness” phase) and “Reactive” Strategy (aligned to the “Response”, “Recovery” and “Growth” Phases). While useful and novel, the proposed groupings consist of a narrow range of the elements compared to those identified by this review ( Figure 6 ), and furthermore, these are heavily orientated towards organisational competitiveness, rather than how a complex system, such as an AFSC, can maintain function and adapt.

The authors of this review therefore propose the categorisation of the resilience elements identified ( Figure 6 ) by phase as presented in Figure 7 . For consistency, the “Readiness”, “Response” and “Recovery” phases identified by Ponomarov and Holcomb (2009) have been retained. In this context, elements categorised in the Readiness Phase concern elements that assist in monitoring changes to the operating environment and those which, while being useful in later phases, must be built in in advance. Elements in the Response Phase focus on mitigating the impact of disruption and helping to maintain functionality. Elements in the Recovery Phase are orientated towards minimising the time needed to restore any lost functionality and enabling adaptation at an operational level (such as accepting new ingredients or distribution routes). In this review, the “Growth” phase identified by Hohenstein et al. (2015) has been renamed as the “Adaptive” phase. This is because the context of the growth phases supports the notion of competitive advantage and incremental improvement of the pre-disruption state of equilibrium ( Hohenstein et al. ,2015 ).

However, exploration of the adaptive theory of resilience (addressed in Q1.1 ), suggests that the focus of this phase in an AFSC context should be the alignment of core values with an ever-changing operating environment. Therefore, adaptive phase elements concern the ability for long term, system wide, adaptation, perhaps significantly affecting core function, in response to changing operating environments.

At an organisational level, four of the five “Core” resilience elements are readiness phase elements. Early warning detection by nature involves techniques of generating forewarning of possible disruptions ahead. Flexibility, redundancy and security must all be built in advance ( Pettit et al. , 2010 ; Manuj and Mentzer, 2008 ). None are free, and this necessitates careful matching to vulnerabilities identified by early warning detection. Risk aware culture, the final organisational “Core” resilience element, is an adaptive phase element due to its focus on systemic learning from past disruptions, and joint decision-making to bolster future preparedness. Interestingly, “Supporting” elements are not necessarily used at the same stage as their matching “Core” element. For example, under the “Core” element of Early Warning Detection Systems, the “Supporting” element “Contingency Planning” is a readiness phase element; however, the “Supporting” elements of “Inventory Planning” and “Relationships” between teams and individuals, while established in preparation, are actually used at the response phase.

At a supply chain level, distribution of “Core” elements by phase is much more even, with redundancy and flexibility appearing as readiness phase elements, collaboration and visibility as response phase elements, agility as a recovery phase element and adaptability as an adaptive phase element. Flexibility and redundancy concern advanced design of products, processes, infrastructure and transport routes in preparation for disruption ( Sheffi and Rice, 2005 ; Stecke and Kumar, 2009 ). Collaboration and visibility concern relative ability to work with supply chain partners to mitigate disruption and maintain core function. While they are supplemented by readiness phase activities such as contingency planning and establishing IT infrastructure, the actions themselves are commonly cited as response elements ( Jüttner and Maklan, 2011 ; Scholten et al. , 2014 ). Agility is most commonly cited as a recovery element and is concerned with the ability to rapidly make good lost functionality through making tactical changes in response to the new operating environment ( Wieland and Wallenburg, 2013 ; Braunscheidel and Suresh, 2009 ). Adaptability on the other hand is an adaptive phase element and concerns the relative freedom a supply chain has to fundamentally realign itself at a strategic level post disruption. This might be, for example, a system-wide overhaul of logistics, but to do so, there needs to be a culture of discussion and joint learning/decision-making across supply chain partners ( Estrada-Flores et al. , 2009 ).

3.4 Addressing Q1.3

This paper has so far analysed the multi-disciplinary definitions, elements and strategies concerning resilience and identified aspects that are of importance to AFSCs. In addressing Q1.3 , this paper will now synthesise the identified multidisciplinary aspects of resilience into a conceptual framework of AFSC resilience.

A network of potentially thousands of participants, in stark contrast to the widely accepted view of a linear buyer–seller chain reaching from farm to consumer.

It is important to appreciate that a vast range of supporting dependencies such as equipment suppliers, fuel infrastructure, financial services and logistics, among others, enable food to reach end consumers.

Strong social drivers, such as health, lifestyle, the need to protect the natural world, as well as economic goals.

Strong genetic, environmental and climatic variability.

Food products are naturally variable in colour, shape and size even before the effect of the growing environment and particularly climate change are considered in terms of their effect on yield.

Low-value end products.

Food is typically purchased frequently and represents a low proportion of household expenditure in relation to other consumer goods such as electronics (although it is accepted that proportion of household expenditure can vary significantly depending on location).

Declining margins.

A range of factors, in addition to those described in challenge (d), including globalisation and the increasing dominance of large multiple food retailers, are driving ever lower margins in AFSCs.

Figure 8 explores how these challenges manifest as unique risk sources for each of the traditional AFSC stages: primary production, processing, distribution, catering, retail and consumption ( Elleuch et al. , 2016a, 2016b ).

Primary producers face a range of natural stressors which put yield and quality at risk, such as disease and bad weather, as well as anthropogenic damage to natural capital such as pollination, soil fertility and water access. Historically, they have also faced major downstream pressure from buyers which has squeezed their margins, often driving smaller farmers, and thus production diversity, out of business.

Food processors, who historically held much more supply chain power, are similarly facing downwards pressure from large retailers, favouring “lean” approaches which reduce non-value adding activities, thus reducing flexibility and redundancy ( Van der Vorst and Beulens, 2002 ). Increasingly, viability is dependent on brand differentiation, a gap which retailers are fast closing with their own “private labels”.

Wholesalers are traditional stock holders in AFSCs and major risks stem from a reduction in customer base as smaller “cash and carry” buyers are being replaced by large supermarkets. Catering is commonly the biggest source of value in modern AFSCs. Key strengths include customer responsiveness and diversity, although there is some risk from market concentration.

Retailers themselves are often described as the gateways of modern AFSCs due to their market share and proximity to end consumers. Yet, the “Just in Time” models which enable them to offer high variety and value leaves them at risk of supply disruption. Their proximity to consumers also means that they can have less time to react to changing consumer demands.

The resilience of each stage described so far is vital in ensuring food security, or in more specifically, that food is physically available (ready for consumption in principle), accessible (somewhere the consumer can access it), acceptable (in a form that is culturally acceptable), safe and reliable.

In addition to their own unique risks, all of the stages together are influenced by a number of overarching risk sources in the wider social, political, environmental and economic spheres ( Colicchia et al. , 2010 ; Vlajic et al. , 2013 ). These risk sources can often be separated by significant distance and even periods from a given organisation or supply chain and their impacts are not linear ( Vlajic et al. , 2012 ). For example, recent extreme weather in key regions of Spain and Italy decreased production by as much as 60 per cent. Due to retailer sourcing policies across the continent, many initiated decades ago, where focus was placed on a relatively small number of large-scale intensive producers, often purely for economic reasons, large sections of Europe suffered severe vegetable shortages in the winter of 2016-2017. Due to the growing times of crops, and length of buyer contracts, such disruptions can take many months to resolve ( Food Navigator, 2017 ). Thus, it is vital that distance, time and scale are considered together.

One approach to addressing this issue is to break down AFSCs into constituent stages and optimise them based on average operating conditions, perhaps by identifying resilience elements and strategies as has been attempted at a farm, processing, retail and community level in the literature ( Milestad and Darnhofer, 2003 ; King, 2008 ; Leat and Revoredo-Giha, 2013 ; Macfadyen et al. , 2015 ). However, optimising individual stages of a supply chain in this way does not necessarily allow them to adapt to novel situations, and it is possible that optimising one stage may be detrimental to upstream or downstream stages which is unacceptable if the end goal is a more reliable food system overall.

In response, the authors of this review propose that the adaptive definition of resilience is an important lens through which any understanding of AFSC resilience must be built. The adaptive definition prioritises the role of cross-scale system component interactions to the point that external volatility is presumed to be a permanent feature and as such, rather than being a one-off fix, resilience must be seen as a cyclical process of “conservation”, “release”, “reorganization” and “exploitation”. In particular, similarities between the drive towards concentration of assets and connectivity in today’s global AFSCs and the “conservation” phase suggest vulnerability to major disruptions.

In addressing Q1.2 , this paper identified the importance of capturing multidisciplinary “Supporting” elements of resilience, which reflect the role of social and environmental components of AFSCs rather than the traditional economic buyer–seller relations described in many supply chain works. These resilience elements are vital in addressing the unique AFSC risk sources identified previously. This review has also identified the importance of phase-based strategies of identifying which “Core” and “Supporting” resilience elements should be used and when. Therefore, the framework of AFSC resilience proposed is a synergistic one, combining the ecological science understanding of adaptive systems and “panarchy”, with resilience elements and strategies originating from SCM. A descriptive example of this framework can be found in Figure 9 .

The framework proposes that parallels can be drawn between the four stages of the adaptive cycle (conservative, release, reorganisation and exploitation) and the four phases of a disruption, respectively (readiness, response, recovery and adaptation). It is proposed that there is similarity between the readiness phase of a disruption and the conservation stage of the adaptive cycle due to both considering the relative preparedness of a system before a disruption. There are also similarities between the response phase of a disruption and the release stage of the adaptive cycle, as both focus on the effects of a disruption. Similarly, there are overlaps between the recovery phase of a disruption and the reorganisation stage of the adaptive cycle as both concern regaining functionality. Finally, overlaps also exist between the adaptive phase of a disruption and the exploitation stage of the adaptive cycle, as both involve growth potential as a result of adaptation to previous disruptions.

These relations are exemplified in Figure 9 from the perspectives of an organisation, in this case a food processor, and the overarching food supply chain. Each faces a unique example risk from those categorised in Figure 8 ; the food processor a novel food product launched by a competitor unexpectedly and the supply chain, a serious regional natural disaster.

By dividing the disruption into phases, the food processor and the broader supply chain are able to assign bespoke mitigating resilience “elements” from those categorised in Figure 6 . To better reflect characteristics of AFSCs, such as their importance to end consumer food security and diverse range of stakeholders, the actions for each resilience “element” are divided into social, environmental and economic indicators. This distinguishes them from previous works which have applied resilience elements for the purpose of organisational competitiveness. Not only do these three indicators represent the broad dependencies of food systems but they are also commonly used as the three pillars of sustainability; thus, the framework underpins the synergistic relationship between resilience and sustainability identified by others. Using the example of the supply chain, actions at the response phase where collaboration was identified as a suitable “Core” element include the need to work together as a supply chain to ensure food is available, safe and accessible to consumers. At an environmental level, the caveat is added that efforts to get food to consumers, perhaps by using alternative logistics, do not come at the cost of excessive pollution.

Economically, it is vital that organisations do their best not to exploit competitive advantage and drive food price inflation for end consumers. This, of course, is highly idealised, and the reality is that actions by individual organisations, in this example the food processor, to an earlier threat such as product competition, may actually preclude them from working collaboratively at a supply chain level. This represents a major advantage of using the adaptive model because it can explore the cross-scale interactions that can take place over great geographical and temporal distances.

A further key advantage of using the adaptive cycle as a basis for an AFSC framework is that it is cyclical in nature. In other words, there are no optimised “states of equilibrium” for an organisation to work towards, and this makes it inherently better suited to describing volatile operating environments, where disruptions are continuous, such as food systems, as illustrated in Figure 10 . As such, the emphasis is on ingraining resilience across all activities, rather than as a one-off tool to address individual disruption risks, and in doing so, resilience becomes cumulative. In this way, a resilient food system is more of a safe-fail system rather than a fail-safe system ( Anderies et al. , 2013 ).

4. Implications for supply chain theory and practice

In light of a number of recent high-profile disruptions to AFSCs such as the 2007-2008 food price spikes, the winter 2016-2017 European vegetable disruptions and projected future volatility, this review was designed to explore how the increasingly popular topic of resilience can be applied to AFSCs. In meeting this objective, definitions, elements and strategies of resilience were investigated, analysed based on their suitability for AFSCs and synthesised into a novel framework of AFSC resilience which considers AFSCs as complex systems rather than constituent organisational competitiveness, as has been the focus in the past.

This presents a number of implications at a practical level in terms of management and policy. Findings suggest that it is important to consider a wide range of resilience elements which go beyond the most commonly cited “Core” elements and to consider “Supporting” elements. Such “Supporting” elements often consider the broader relationships, knowledge management and capacities for learning and adapting which are vital in achieving “Core” elements such as flexibility and redundancy. These “Supporting” elements are also vital in understanding AFSC resilience from an “adaptive cycle” perspective, as they enable the links between organisational resilience strategies and broader supply chain wide resilience to be better understood. Ignoring such “Supporting elements” and the cross-scale interactions between different geographical and temporal points in a supply chain will restrict a given organisation’s resilience to outside volatility ( Caschili et al. , 2015 ).

Appreciating such links is important for ensuring that food systems are robust enough to guarantee food availability, access and acceptability which are three of the four main areas of food security, which in turn, is arguably the ultimate goal of food systems. In achieving the fourth goal, reliability, the broader sustainability impacts of chosen resilience elements must be considered, and this is enabled by using social and environmental, in addition to more traditional economic, indicators. Linked to this is the need to design resilience strategies around the different phases of disruption in which a resilience element must be implemented. This is vital because resilience elements often have a cost and, unless carefully matched to a specific vulnerability, can be highly resource inefficient and harmful to long-term sustainability ( Tang, 2006 ).

From a theory perspective, this review has identified what appears to be a growing consensus that the adaptive definition is best suited to describing supply chain and particularly AFSC resilience ( Table IV ). Furthermore, the focus of works across multiple disciplines appears to have moved on from definitions towards proposing resilience “elements” and “strategies”. However, to be useful in an adaptive context, it is imperative that such resilience “elements” and “strategies” consider not only an immediate organisation, or even its supply chain partners, but also broader social and environmental supply chain dependencies and their cross-scale interactions. In response to this challenge, this review comprehensively categorises 40 resilience elements from multiple research fields into “Core” and “Supporting” elements, enabling the valuation of less commonly cited elements which enable the ability to adapt and consider different spatial and temporal scales.

Yet, the framework proposed is conceptual in nature, and to help advance AFSC resilience theory, there is a need for empirical validation of the elements that help actors at the different stages of an AFSC ( Figure 8 ) to be resilient. There is also need for further development of the social, economic and environmental indicators proposed in Figure 9 which help organisations to “action” a given element whilst underpinning their resilience strategy in good sustainability practice. This is part of a broader need for future works to develop strategies for implementing resilience “elements” that aid wider supply chain delivery of food security, rather than strengthening individual organisations within that supply chain.

5. Conclusions

Resilience of national and global food systems is an increasingly important topic in light of growing volatility induced by challenges as diverse as climate change, population growth and resource constraints. Despite a growing interest in the concept of resilience from a number of research fields, a number of factors including the focus on food security as a priority, rather than economic competitiveness, as well as unique attributes of food as a biological resource, mean that these works are not readily adoptable by AFSCs. In response, this review systematically reviewed 137 relevant works to address Q1. To support this objective, the findings were analysed in the form of three review sub-questions.

In answering Q1.1 , 48 papers offered definitions, all of which were based on one of either the engineering definition (single optimum state of equilibrium), the ecological definition (multiple possible states of equilibrium) or the adaptive definition (no states of equilibrium, but rather a constant process of evolutionary learning in response to constant changes stemming from external systems). Analysis of publication dates suggest that the adaptive definition is increasingly accepted as the most appropriate way of describing complex systems such as supply chains, particularly AFSCs. A number of definitions referred to the abilities of readiness, response and recovery as being key resilience enablers and adaptive definitions often added a fourth capacity which was to “adapt” after disruptions, thus ensuring that resilience is relative to operating environments and not static idealised conditions. Yet, in many works, the priority of resilience is often organisational competitiveness. The findings suggest that for AFSCs the goal should be food security and therefore the following definition of AFSC resilience is proposed: The collective ability of AFSC stakeholders to ensure acceptable, sufficient and stable food supplies, at the required times and locations, via accurate anticipation of disruptions and the use of strategies which delay impact, aid rapid recovery and allow cumulative learning post-disruption.

In answering the first part of Q1.2 , 40 unique resilience elements were identified from 61 papers. A small number of elements received the majority of citations, and this was often how resilience “strategies” were formed in the literature ( Hohenstein et al. ,2015 ). Many of the less commonly cited elements explore interactions and relations between organisations, communities and the natural environment, as well as their ability to adapt, and this has important implications for how individual company actions can interact across spatial and temporal scales with broader AFSC resilience. In response, the unique categorisation of resilience elements into “Core” and “Supporting” elements is proposed to capture this value. sThis approach also allows the alignment of each to a relevant “phase” of disruption (readiness, response, recovery and adaptation) and in doing so, forms a more comprehensive resilience implementation “strategy”.

In addressing Q1.3 , relevant findings concerning resilience definitions, elements and strategies from the previous two review sub-questions were synthesised to propose a hybrid adaptive cycle-resilience element framework that was underpinned by a number of stage specific risks and characteristics of AFSCs. In this framework, it is proposed that resilience elements and their phases of use can be associated with the key principles of the adaptive cycle, namely, conservation, release, recovery and exploitation. In linking the two, the cyclical nature of disruptions is highlighted, reinforcing the cumulative nature of resilience efforts. Furthermore, because the adaptive cycle is designed with systems in mind, it captures the links between resilience elements used at an organisational level and their impacts on the corresponding adaptive phase in the wider supply chain. Not only is such a hybrid approach unique in its own right, but the application of AFSC stage-specific risk sources and indicators that consider social and environmental impacts, as well as the more traditional economic performance measures, when considering which resilience elements to use, better align this framework with food security and long-term sustainability rather than economic competitiveness.

6. Limitations and future work

This review has provided a timely and rigorous systematic review of a range of multidisciplinary works relevant to resilience in an AFSC context. Its novelty lies primarily in the synthesis of relevant concepts from a range of disciplines to form a more holistic view of AFSC resilience than would have been possible from reading any piece of the review material in isolation. However, it is at base a conceptual piece of work, which is restricted to information published in the peer reviewed literature. As such, while the authors feel that the practical implications of this work are potentially significant due to their ability to help align resilience at an organisational level with wider societal food security, empirical validation of the resilience elements and strategies described is a key next step. Furthermore, the framework described in Figure 9 is orientated towards developed world supply chain structures and specific risks in this context. However, resilience is equally pressing in developing world supply chains, particularly given the greater prevalence of subsistence agriculture in such regions and the fact that it is in the developing world that a great proportion of global population growth and urbanisation is projected to occur ( United Nations, Department of Economic and Social Affairs, Population Division, 2015 ; Gorton et al. , 2014 ). Here, it is likely that risks will stem from primary production challenges and post-harvest storage issues. This may therefore challenge the suitability of the mitigating resilience elements proposed in this paper. As such, adapting the framework for a developing world setting is something the authors aim to investigate in future work.

agri food supply chain management literature review

Systematic review methodology

agri food supply chain management literature review

Review process for literature selection and evaluation

agri food supply chain management literature review

Analysis of literature by research context and specificity to AFSCs

agri food supply chain management literature review

Methodological approaches taken to investigating resilience in the literature

agri food supply chain management literature review

The adaptive cycle of system dynamics

agri food supply chain management literature review

Proposed categorisation of resilience elements identified in the literature

agri food supply chain management literature review

Proposed strategy for using resilience elements based on phase of disruption

agri food supply chain management literature review

Unique AFSC risk sources from a whole supply chain perspective and that of individual actors within a given AFSC

agri food supply chain management literature review

Example application of proposed AFSC framework synthesising the adaptive cycle of resilience with resilience elements and phases

agri food supply chain management literature review

The cumulative nature of resilience

Literature sourcing key words

Review material by source

Comparison of engineering, ecological and adaptive definitions of resilience

Categorisation of reviewed literature by resilience definition

Survey of resilience elements from the literature

Aigbogun , O. , Ghazali , Z. and Razali , R. ( 2014 ), “ A framework to enhance supply chain resilience the case of Malaysian pharmaceutical industry ”, Global Business and Management Research , Vol. 6 No. 3 , p. 219 .

Allen , C.R. , Angeler , D.G. , Garmestani , A.S. , Gunderson , L.H. and Holling , C.S. ( 2014 ), “ Panarchy: theory and application ”, Ecosystems , Vol. 17 No. 4 , pp. 578 - 589 .

Allison , E.H. , Perry , A.L. , Badjeck , M.C. , Neil Adger , W. , Brown , K. , Conway , D. , Halls , A.S. , Pilling , G.M. , Reynolds , J.D. , Andrew , N.L. and Dulvey , N.K. ( 2009 ), “ Vulnerability of national economies to the impacts of climate change on fisheries ”, Fish and Fisheries , Vol. 10 No. 2 , pp. 173 - 196 .

Ambulkar , S. , Blackhurst , J. and Grawe , S. ( 2015 ), “ Firm’s resilience to supply chain disruptions: scale development and empirical examination ”, Journal of Operations Management , Vols 33/34 , pp. 111 - 122 .

Anderies , J. , Folke , C. , Walker , B. and Ostrom , E. ( 2013 ), “ Aligning key concepts for global change policy: Robustness, resilience, and sustainability ”, Ecology and Society , Vol. 18 No. 2 .

Annarelli , A. and Nonino , F. ( 2016 ), “ Strategic and operational management of organizational resilience: current state of research and future directions ”, Omega , Vol. 62 , pp. 1 - 18 .

Aramyan , L.H. , Lansink , A.G. , Van Der Vorst , J.G. and Kooten , O. ( 2007 ), “ Performance measurement in Agri-food supply chains: a case study ”, Supply Chain Management: An International Journal , Vol. 12 No. 4 , pp. 304 - 315 .

Asbjornslett , B.E. ( 1999 ), “ Assess the vulnerability of your production system ”, Production Planning & Control , Vol. 10 No. 3 , pp. 219 - 229 .

Bakshi , N. and Kleindorfer , P. ( 2009 ), “ Co-opetition and investment for supply chain resilience ”, Production and Operations Management , Vol. 18 No. 6 , pp. 583 - 603 .

Barratt , M. ( 2004 ), “ Understanding the meaning of collaboration in the supply chain ”, Supply Chain Management: An International Journal , Vol. 9 No. 1 , pp. 30 - 42 .

Barroso , A.P. , Machado , V.H. and Machado , V.C. ( 2011 ), Supply Chain Resilience Using The Mapping Approach , InTech , p. 161 .

Barthel , S. and Isendahl , C. ( 2013 ), “ Urban gardens, agriculture, and water management: sources of resilience for long-term food security in cities ”, Ecological Economics , 28 February , Vol. 86 , pp. 224 - 234 .

Benton , T. , Gallani , B. , Jones , C. , Lewis , K. and Tiffin , R. ( 2012 ), “ Severe weather and UK food chain resilience ”, Detailed Appendix to Synthesis Report (Biotechnology and Biological Sciences Research Council , available at: www.foodsecurity.ac.uk/assets/pdfs/frp-severe-weather-uk-food-chain-resilience.pdf

Berle , O. , Asbjørnslett , B.E. and Rice , J.B. ( 2011 ), “ Formal vulnerability assessment of a Maritime transportation system ”, Reliability Engineering & System Safety , Vol. 96 No. 6 , pp. 696 - 705 .

Blome , C. and Schoenherr , T. ( 2011 ), “ Supply chain risk management in financial crises–a multiple case-study approach ”, International journal of production economics , Vol. 134 No. 1 , pp. 43 - 57 .

Bode , C. , Wagner , S.M. , Petersen , K.J. and Ellram , L.M. ( 2011 ), “ Understanding responses to supply chain disruptions: insights from information processing and resource dependence perspectives ”, Academy of Management Journal , Vol. 54 No. 4 , pp. 833 - 856 .

Brandon-Jones , E. , Squire , B. , Autry , C.W. and Petersen , K.J. ( 2014 ), “ A contingent resource based perspective of supply chain resilience and robustness ”, Journal of Supply Chain Management , Vol. 50 No. 3 , pp. 55 - 73 .

Braunscheidel , M.J. and Suresh , N.C. ( 2009 ), “ The organizational antecedents of a firm’s supply chain agility for risk mitigation and response ”, Journal of Operations Management , Vol. 27 No. 2 , pp. 119 - 140 .

Bruneau , M. , Chang , S.E. , Eguchi , R.T. , Lee , G.C. , O’Rourke , T.D. , Reinhorn , A.M. , Shinozuka , M. , Tierney , K. , Wallace , W.A. and Von Winterfeldt , D. ( 2003 ), “ A framework to quantitatively assess and enhance the seismic resilience of communities ”, Earthquake Spectra , Vol. 19 No. 4 , pp. 733 - 752 .

Carvalho , H. , Azevedo , S.G. and Cruz-Machado , V. ( 2014 ), “ Supply chain management resilience: a theory building approach ”, International Journal of Supply Chain and Operations Resilience , Vol. 1 No. 1 , pp. 3 - 27 .

Carvalho , H. , Cruz–Machado , V.H. and Tavares , J.G. ( 2012a ), “ A mapping framework for assessing supply chain resilience ”, International Journal of Logistics Systems and Management , Vol. 12 No. 3 , pp. 354 - 373 .

Carvalho , H. , Barroso , A.P. , Azevedo , S. and Cruz-Machado , V.H. ( 2012b ), “ Supply chain redesign for resilience using simulation ”, Computers & Industrial Engineering , Vol. 62 No. 1 , pp. 329 - 341 .

Caschili , S. , Medda , F.R. and Wilson , A. ( 2015 ), “ An interdependent multi-layer model: resilience of international networks ”, Networks and Spatial Economics , Vol. 15 No. 2 , pp. 1 - 23 .

Christopher , M. and Holweg , M. ( 2011 ), “ Supply chain 2.0: managing supply chains in the era of turbulence ”, International Journal of Physical Distribution & Logistics Management , Vol. 41 No. 1 , pp. 63 - 82 .

Christopher , M. and Lee , H. ( 2004 ), “ Mitigating supply chain risk through improved confidence ”, International Journal of Physical Distribution & Logistics Management , Vol. 34 No. 5 , pp. 399 - 396 .

Christopher , M. and Peck , H. ( 2004 ), “ Building the resilient supply chain ”, The International Journal of Logistics Management , Vol. 15 No. 2 , pp. 1 - 14 .

Cimellaro , G.P. , Reinhorn , A.M. and Bruneau , M. ( 2010 ), “ Framework for analytical quantification of disaster resilience ”, Engineering Structures , Vol. 32 No. 11 , pp. 3639 - 3649 .

Colicchia , C. and Strozzi , F. ( 2012 ), “ Supply chain risk management: a new methodology for a systematic literature review ”, Supply Chain Management: An International Journal , Vol. 17 No. 4 , pp. 403 - 418 .

Colicchia , C. , Dallari , F. and Melacini , M. ( 2010 ), “ Increasing supply chain resilience in a global sourcing context ”, Production Planning & Control , Vol. 21 No. 7 , pp. 680 - 694 .

Cox , A. and Chicksand , D. ( 2005 ), “ The limits of lean management thinking: multiple retailers and food and farming supply chains ”, European Management Journal , Vol. 23 No. 6 , pp. 648 - 662 .

Dani , S. and Deep , A. ( 2010 ), “ Fragile food supply chains: reacting to risks ”, International Journal of Logistics Research and Applications , Vol. 13 No. 5 , pp. 395 - 410 .

Datta , P.P. , Christopher , M. and Allen , P. ( 2007 ), “ Agent-based modelling of complex production/distribution systems to improve resilience ”, International Journal of Logistics Research and Applications , Vol. 10 No. 3 , pp. 187 - 203 .

Davoudi , S. , Shaw , K. , Haider , L.J. , Quinlan , A.E. , Peterson , G.D. , Wilkinson , C. , Fünfgeld , H. , McEvoy , D. , Porter , L. and Davoudi , S. ( 2012 ), “ Resilience: a bridging concept or a dead end?” Reframing resilience: challenges for planning theory and practice interacting traps: Resilience assessment of a pasture management system in Northern Afghanistan urban resilience: what does it mean in planning practice? Resilience as a useful concept for climate change adaptation? The politics of resilience for planning: A cautionary note ”, Planning theory & practice , Vol. 13 No. 2 , pp. 299 - 333 .

Denyer , D. and Tranfield , D. ( 2009 ), “ Producing a systematic review ”.

Derissen , S. , Quaas , M.F. and Baumgärtner , S. ( 2011 ), “ The relationship between resilience and sustainability of ecological-economic systems ”, Ecological Economics , Vol. 70 No. 6 , pp. 1121 - 1128 .

Diabat , A. , Govindan , K. and Panicker , V.V. ( 2012 ), “ Supply chain risk management and its mitigation in a food industry ”, International Journal of Production Research , Vol. 50 No. 11 , pp. 3039 - 3050 .

Dubey , R. , Ali , S. and Aital , P. ( 2014 ), “ Mechanics of humanitarian supply chain agility and resilience and its empirical validation ”, International Journal of Services and Operations Management , Vol. 17 No. 4 , pp. 367 - 384 .

Durach , C.F. , Wieland , A. and Machuca , J.A. ( 2015 ), “ Antecedents and dimensions of supply chain robustness: a systematic literature review ”, International Journal of Physical Distribution & Logistics Management , 2 March , Vol. 45 Nos 1/2 , pp. 118 - 137 .

Elleuch , H. , Dafaoui , E. , Elmhamedi , A. and Chabchoub , H. ( 2016a ), “ Resilience and vulnerability in supply chain: literature review ”, IFAC-PapersOnLine , Vol. 49 No. 12 , pp. 1448 - 1453 .

Elleuch , H. , Dafaoui , E. , Elmhamedi , A. and Chabchoub , H. ( 2016b ), “ A quality function deployment approach for production resilience improvement in supply chain: case of agrifood industry ”, IFAC-PapersOnLine , Vol. 49 No. 31 , pp. 125 - 130 .

ESRC Public Policy Seminar ( 2012 ), Global Food Security Programme. Economic and Social Research Council (2012). Global Food Systems and UK Food Imports: Resilience, Safety and Security .

Estrada-Flores , S. , Higgin , A.J. and Larsen , K. ( 2009 ), “ Food distribution systems in a climate challenged future: fruit and vegetables as a case study ”, Proceedings of the Food, Farming & Health Conference , Melbourne , pp. 77 - 88 .

Fahimnia , B. and Jabbarzadeh , A. ( 2016 ), “ Marrying supply chain sustainability and resilience: a match made in heaven ”, Transportation Research Part E: Logistics and Transportation Research Part E , Vol. 91 , pp. 306 - 324 .

Faisal , M. and Banwet , D.K. ( 2006 ), “ Supply chain risk mitigation: modeling the enablers ”, Business Process Management Journal , Vol. 12 No. 4 , pp. 535 - 552 .

Falkowski , J. ( 2017 ), “ Resilience of farmer-processor relationships to adverse shocks: the case of dairy sector in Poland ”, British Food Journal , Vol. 117 No. 10 , pp. 2465 - 2483 .

Fao , ( 2012 ), The State of Food Insecurity in the World , IFAD , pp. 8 - 11 .

Fiksel , J. ( 2003 ), “ Designing resilient, sustainable systems ”, Environmental Science & Technology , Vol. 37 No. 23 , pp. 5330 - 5339 .

Finch , P. ( 2004 ), “ Supply chain risk management ”, Supply Chain Management: An International Journal , Vol. 9 No. 2 , pp. 183 - 196 .

Folke , C. ( 2006 ), “ Resilience: the emergence of a perspective for social–ecological systems analyses ”, Global Environmental Change , Vol. 16 No. 3 , pp. 253 - 267 .

Food Navigator ( 2017 ), “ EU Vegetable Shortage: Crisis or Opportunity? ”, www.foodnavigator.com/Market-Trends/EU-vegetable-shortage-Crisis-or-opportunity (accessed 30 May ).

Fraser , E.D. , Mabee , W. and Figge , F. ( 2005 ), “ A framework for assessing the vulnerability of food systems to future shocks ”, Futures , Vol. 37 No. 6 , pp. 465 - 479 .

Ghadge , A. , Dani , S. and Kalawsky , R. ( 2012 ), “ Supply chain risk management: present and future scope ”, The International Journal of Logistics Management , Vol. 23 No. 3 , pp. 313 - 339 .

Giannakis , M. and Louis , M. ( 2011 ), “ A multi-agent based framework for supply chain risk management ”, Journal of Purchasing and Supply Management , Vol. 17 No. 1 , pp. 23 - 31 .

Gligor , D.M. and Holcomb , M.C. ( 2012 ), “ Understanding the role of logistics capabilities in achieving supply chain agility: a systematic literature review ”, Supply Chain Management: An International Journal , Vol. 17 No. 4 , pp. 438 - 453 .

Godfray , H.C. , Beddington , J.R. , Crute , I.R. , Haddad , L. , Lawrence , D. , Muir , J.F. , Pretty , J. , Robinson , S. , Thomas , S.M. and Toulmin , C. ( 2010 ), “ Food security: the challenge of feeding 9 billion people ”, Science (New York, N.Y.) , Vol. 327 No. 5967 , pp. 812 - 818 .

Gölgeci , I. and Ponomarov , S.Y. ( 2015 ), “ How does firm innovativeness enable supply chain resilience? The moderating role of supply uncertainty and interdependence ”, Technology Analysis & Strategic Management , Vol. 27 No. 3 , pp. 267 - 282 .

Gorton , M. , Salvioni , C. and Hubbard , C. ( 2014 ), “ Semi-subsistence farms and alternative food supply chains ”, EuroChoices , Vol. 13 No. 1 , pp. 15 - 19 .

Gunasekaran , A. , Rai , B.K. and Griffin , M. ( 2011 ), “ Resilience and competitiveness of small and medium size enterprises: an empirical research ”, International Journal of Production Research , Vol. 49 No. 18 , pp. 5489 - 5509 .

Gunderson , L.H. ( 2001 ), Panarchy: Understanding Transformations in Human and Natural Systems , Island press .

Habermann , M. , Blackhurst , J. and Metcalf , A.Y. ( 2015 ), “ Keep your friends close? Supply chain design and disruption risk ”, Decision Sciences , Vol. 46 No. 3 , pp. 491 - 526 .

Higgins , A.J. , Miller , C.J. , Archer , A.A. , Ton , T. , Fletcher , C.S. and McAllister , R.R. ( 2010 ), “ Challenges of operations research practice in agricultural value chains ”, Journal of the Operational Research Society , Vol. 61 No. 6 , pp. 964 - 973 .

Ho , W. ( 2015 ), “ Green manufacturing supply chain design and operations decision support ”.

Hoek , R. , Harrison , A. and Christopher , M. ( 2001 ), “ Measuring agile capabilities in the supply chain ”, International Journal of Operations & Production Management , Vol. 21 Nos 1/2 , pp. 126 - 148 .

Hohenstein , N.O. , Feisel , E. , Hartmann , E. and Giunipero , L. ( 2015 ), “ Research on the phenomenon of supply chain resilience: a systematic review and paths for further investigation ”, International Journal of Physical Distribution & Logistics Management , Vol. 45 No. 1 , pp. 90 - 117 .

Holling , C.S. ( 1973 ), “ Resilience and stability of ecological systems ”, Annual Review of Ecology and Systematics , Vol. 4 No. 1 , pp. 1 - 23 .

Holling , C.S. ( 1996 ), “ Engineering resilience versus ecological resilience ”, Engineering within Ecological Constraints , Vol. 31 , pp. 31 - 44 .

Ingram , J.S. , Wright , H.L. , Foster , L. , Aldred , T. , Barling , D. , Benton , T.G. , Berryman , P.M. , Bestwick , C.S. , Bows-Larkin , A. , Brocklehurst , T.F. and Buttriss , J. ( 2013 ), “ Priority research questions for the Uk food system ”, Food Security , Vol. 5 No. 5 , pp. 617 - 636 .

Ivanov , D. , Sokolov , B. , Solovyeva , I. , Dolgui , A. and Jie , F. ( 2015 ), “ Ripple effect in the time-critical food supply chains and recovery policies ”, IFAC-PapersOnLine , Vol. 48 No. 3 , pp. 1682 - 1687 .

Johnson , N. , Elliott , D. and Drake , P. ( 2013 ), “ Exploring the role of social capital in facilitating supply chain resilience ”, Supply Chain Management: An International Journal , Vol. 18 No. 3 , pp. 324 - 336 .

Jüttner , U. ( 2005 ), “ Supply chain risk management: Understanding the business requirements from a practitioner perspective ”, The International Journal of Logistics Management , Vol. 16 No. 1 , pp 120 - 141 .

Jüttner , U. and Maklan , S. ( 2011 ), “ Supply chain resilience in the global financial crisis: an empirical study ”, Supply Chain Management: An International Journal , Vol. 16 No. 4 , pp. 246 - 259 .

Jüttner , U. , Peck , H. and Christopher , M. ( 2003 ), “ Supply chain risk management: outlining an agenda for future research ”, International Journal of Logistics: Research and Applications , Vol. 6 No. 4 , pp. 197 - 210 .

Kamalahmadi , M. and Parast , M.M. ( 2016 ), “ A review of the literature on the principles of enterprise and supply chain resilience: major findings and directions for future research ”, International Journal of Production Economics , Vol. 171 , pp. 116 - 133 .

Karl , T.R. ( 2009 ), Global Climate Change Impacts in the United States , United States Global Change Research Program, Cambridge University Press , New York, NY .

Kastner , T. , Rivas , M.J. , Koch , W. and Nonhebel , S. ( 2012 ), “ Global changes in diets and the consequences for land requirements for food ”, Proceedings of the National Academy of Sciences , Vol. 109 No. 18 , pp. 6868 - 6672 .

Kim , Y. , Chen , Y.S. and Linderman , K. ( 2015 ), “ Supply network disruption and resilience: a network structural perspective ”, Journal of Operations Management , Vol. 33-34 , pp. 43 - 59 .

King , C.A. ( 2008 ), “ Community resilience and contemporary Agri-ecological systems: reconnecting people and food, and people with people ”, Systems Research and Behavioral Science , Vol. 25 No. 1 , pp. 111 .

Kinsey , J. , Kaynts , K. , Ghosh , K. and Agiwal , S. ( 2007 ), Defending the Food Supply Chain: Retail Food, Foodservice and Their Wholesale Suppliers , Food Industry Center, Department of Applied Economics, University of Minnesota .

Kirwan , J. , Maye , D. ( 2013 ), “ Food security framings within the UK and the integration of local food systems ”, Journal of Rural Studies , Vol. 29 , pp. 91 - 100 .

Kleindorfer , P.R. and Saad , G.H. ( 2005 ), “ Managing disruption risks in supply chains ”, Production and Operations Management , Vol. 14 No. 1 , pp. 53 - 68 .

Lam , J.S.L. and Bai , X. ( 2016 ), “ A quality function deployment approach to improve Maritime supply chain resilience ”, Transportation Research Part E: Logistics and Transportation Review , Vol. 92 , pp. 16 - 27 .

Leat , P. and Revoredo-Giha , C. ( 2013 ), “ Risk and resilience in Agri-food supply chains: the case of the ASDA PorkLink supply chain in Scotland ”, Supply Chain Management: An International Journal , Vol. 18 No. 2 , pp. 219 - 231 .

Lebel , L. , Anderies , J. , Campbell , B. , Folke , C. , Hatfield-Dodds , S. , Hughes , T. and Wilson , J. ( 2006 ), “ Governance and the capacity to manage resilience in regional social-ecological systems ”, Ecology and Society , Vol. 11 No. 1 .

Lee , C.W. ( 2014 ), “ Establishing a decision-making model of global supply chain risk management from the perspective of risk and vulnerability ”, International Journal of Supply Chain and Operations Resilience , Vol. 1 No. 1 , pp. 28 - 53 .

Light , R.J. and Pillemer , D.B. ( 1986 ), Summing Up: The Science of Reviewing Research , Cambridge , Harvard University Press , Educational Researcher , pp. Xiii+ 191 .

Lodree , E.J. and Taskin , S. ( 2008 ), “ An insurance risk management framework for disaster relief and supply chain disruption inventory planning , Journal of the Operational Research Society , Vol. 59 No. 5 , pp. 674 - 684 .

Luthar , S.S. , Cicchetti , D. and Becker , B. ( 2000 ), “ The construct of resilience: a critical evaluation and guidelines for future work ”, Child Development , Vol. 71 No. 3 , pp. 543 - 562 .

McDaniels , T. , Chang , S. , Cole , D. , Mikawoz , J. and Longstaff , H. ( 2008 ), “ Fostering resilience to extreme events within infrastructure systems: characterizing decision contexts for mitigation and adaptation ”, Global Environmental Change , Vol. 18 No. 2 , pp. 310 - 318 .

McKinnon , A. ( 2006 ), “ Life without trucks: the impact of a temporary disruption of road freight transport on a national economy ”, Journal of Business Logistics , Vol. 27 No. 2 , pp. 227 - 250 .

McMichael , A.J. , Powles , J.W. , Butler , C.D. and Uauy , R. ( 2007 ), “ Food, livestock production, energy, climate change, and health ”, Lancet (London, England) , Vol. 370 No. 9594 , pp. 1253 - 1263 .

Macfadyen , S. , Tylianakis , J.M. , Letourneau , D.K. , Benton , T.G. , Tittonell , P. , Perring , M.P. , Gómez-Creutzberg , C. , Báldi , A. , Holland , J.M. , Broadhurst , L. and Okabe , K. ( 2015 ), “ The role of food retailers in improving resilience in global food supply ”, Global Food Security , Vol. 7 , pp. 1 - 8 .

Manning , L. and Soon , J.M. ( 2016 ), “ Building strategic resilience in the food supply chain ”, British Food Journal , Vol. 118 No. 6 , pp. 1477 - 1493 .

Manuj , I. and Mentzer , J.T. ( 2008 ), “ Global supply chain risk management ”, Journal of Business Logistics , Vol. 29 No. 1 , pp. 133 - 155 .

Manyena , S.B. ( 2006 ), “ The concept of resilience revisited ”, Disasters , Vol. 30 No. 4 , pp. 434 - 450 .

Milestad , R. and Darnhofer , I. ( 2003 ), “ Building farm resilience: the prospects and challenges of organic farming ”, Journal of Sustainable Agriculture , Vol. 22 No. 3 , pp. 81 - 97 .

Milman , A. and Short , A. ( 2008 ), “ Incorporating resilience into sustainability indicators: an example for the urban water sector ”, Global Environmental Change , Vol. 18 No. 4 , pp. 758 - 767 .

Munoz , A. and Dunbar , M. ( 2015 ), “ On the quantification of operational supply chain resilience ”, International Journal of Production Research , Vol. 53 No. 22 , pp. 6736 - 6751 .

Morgan , A. ( 2016 ), Feeding London 2030: Facing the Logistical Challenge , Global 78 , UK Warehouse Association , pp. 7 - 15 .

Natarajarathinam , M. , Capar , I. and Narayanan , A. ( 2009 ), “ Managing supply chains in times of crisis: a review of literature and insights ”, International Journal of Physical Distribution & Logistics Management , Vol. 39 No. 7 , pp. 535 - 573 .

Neiger , D. , Rotaru , K. and Churilov , L. ( 2009 ), “ Supply chain risk identification with value-focused process engineering ”, Journal of operations management , Vol. 27 No. 2 , pp. 154 - 168 .

Neureuther , B.D. and Kenyon , G. ( 2009 ), “ Mitigating supply chain vulnerability ”, Journal of Marketing Channels , Vol. 16 No. 3 , pp. 245 - 263 .

Norrman , A. and Jansson , U. ( 2004 ), “ Ericsson’s proactive supply chain risk management approach after a serious Sub-supplier accident ”, International journal of physical distribution & logistics Management , Vol. 34 No. 5 , pp. 434 - 456 .

Pal , R. , Torstensson , H. and Mattila , H. ( 2014 ), “ Antecedents of organizational resilience in economic crises – an empirical study of Swedish textile and clothing SMEs ”, International Journal of Production Economics , Vol. 147 , pp. 410 - 428 .

Paloviita , A. , Kortetmäki , T. , Puupponen , A. and Silvasti , T. ( 2016 ), “ Vulnerability matrix of the food system: operationalizing vulnerability and addressing food security ”, Journal of Cleaner Production , Vol. 135 , pp. 1242 - 1255 .

Peck , H. ( 2005 ), “ Drivers of supply chain vulnerability: an integrated framework ”, International Journal of Physical Distribution & Logistics Management , Vol. 35 No. 4 , pp. 210 - 232 .

Pereira , C. , Christopher , M. and Lago Da Silva , A. ( 2014 ), “ Achieving supply chain resilience: the role of procurement ”, Supply Chain Management: An International Journal , Vol. 19 Nos 5/6 , pp. 626 - 642 .

Pettit , T.J. , Croxton , K.L. and Fiksel , J. ( 2013 ), “ Ensuring supply chain resilience: development and implementation of an assessment tool ”, Journal of Business Logistics , Vol. 34 No. 1 , pp. 46 - 76 .

Pettit , T.J. , Fiksel , J. and Croxton , K.L. ( 2010 ), “ Ensuring supply chain resilience: development of a conceptual framework ”, Journal of Business Logistics , Vol. 31 No. 1 , pp. 1 - 21 .

Pimm , S.L. ( 1984 ), “ The complexity and stability of ecosystems ”, Nature , Vol. 307 No. 5949 , pp. 321 - 326 .

Ponis , S.T. and Koronis , E. ( 2012 ), “ Supply chain resilience: definition of concept and its formative elements ”, Journal of Applied Business Research (JABR) , Vol. 28 No. 5 , pp. 921 .

Ponomarov , S.Y. and Holcomb , M.C. ( 2009 ), “ Understanding the concept of supply chain resilience ”, The International Journal of Logistics Management , Vol. 20 No. 1 , pp. 124 - 143 .

Popkin , B.M. ( 1999 ), “ Urbanization, lifestyle changes and the nutrition transition ”, World Development , Vol. 27 No. 11 , pp. 1905 - 1916 .

Ratick , S. , Meacham , B. and Aoyama , Y. ( 2008 ), “ Locating backup facilities to enhance supply chain disaster resilience ”, Growth and Change , Vol. 39 No. 4 , pp. 642 - 666 .

Redman , C. ( 2014 ), “ Should sustainability and resilience be combined or remain distinct pursuits ”, Ecology and Society , Vol. 19 No. 2 , pp. 37 .

Ritchie , B. and Brindley , C. ( 2007 ), “ Supply chain risk management and performance: a guiding framework for future development ”, International Journal of Operations & Production Management , Vol. 27 No. 3 , pp. 303 - 322 .

Rodriguez-Nikl , T. ( 2015 ), “ Linking disaster resilience and sustainability ”, Civil Engineering and Environmental Systems , Vol. 32 Nos 1/2 , pp. 157 - 169 .

Rose , A. ( 2011 ), “ Resilience and sustainability in the face of disasters ”, Environmental Innovation and Societal Transitions , Vol. 1 No. 1 , pp. 96 - 100 .

Rousseau , D.M. , Manning , J. and Denyer , D. ( 2008 ), “ Evidence in management and organizational science: assembling the field’s full weight of scientific knowledge through syntheses ”, The Academy of Management Annals , Vol. 2 No. 1 , pp. 475 - 515 .

Schmitt , A.J. and Singh , M. ( 2012 ), “ A quantitative analysis of disruption risk in a multi-echelon supply chain ”, International Journal of Production Economics , Vol. 139 No. 1 , pp. 22 - 32 .

Scholten , K. and Schilder , S. ( 2015 ), “ The role of collaboration in supply chain resilience ”, Supply Chain Management: An International Journal , Vol. 20 No. 4 , pp. 471 - 484 .

Scholten , K. , Scott , P. and Fynes , B. ( 2014 ), “ Mitigation processes–antecedents for building supply chain resilience ”, Supply Chain Management: An International Journal , Vol. 19 No. 2 , pp. 211 - 228 .

Sharifi , H. and Zhang , Z. ( 1999 ), “ A methodology for achieving agility in manufacturing organisations: an introduction ”, International journal of production economics , Vol. 62 No. 1 , pp. 7 - 22 .

Sheffi , Y. ( 2001 ), “ Supply chain management under the threat of international terrorism ”, The International Journal of Logistics Management , Vol. 12 No. 2 , pp. 1 - 11 .

Sheffi , Y. and Rice , J.R. ( 2005 ), “ A supply chain view of the resilient enterprise ”, MIT Sloan Management Review , Vol. 47 No. 1 , pp. 44 .

Sinclair , K. , Curtis , A. , Mendham , E. and Mitchell , M. ( 2014 ), “ Can resilience thinking provide useful insights for those examining efforts to transform contemporary agriculture? ”, Agriculture and Human Values , Vol. 31 No. 3 , pp. 371 - 384 .

Skipper , J.B. and Hanna , J.B. ( 2009 ), “ Minimizing supply chain disruption risk through enhanced flexibility ”, International Journal of Physical Distribution & Logistics Management , Vol. 39 No. 5 , pp. 404 - 427 .

Smith , K. , Lawrence , G. , MacMahon , A. , Muller , J. and Brady , M. ( 2016 ), “ The resilience of long and short food chains: a case study of flooding in Queensland, Australia ”, Agriculture and Human Values , Vol. 33 No. 1 , pp. 45 - 60 .

Soni , U. , Jain , V. and Kumar , S. ( 2014 ), “ Measuring supply chain resilience using a deterministic modeling approach ”, Computers & Industrial Engineering , Vol. 74 , pp. 11 - 25 .

Spiegler , V.L. , Naim , M.M. and Wikner , J. ( 2012 ), “ A control engineering approach to the assessment of supply chain resilience ”, International Journal of Production Research , Vol. 50 No. 21 , pp. 6162 - 6187 .

Stecke , K.E. and Kumar , S. ( 2009 ), “ Sources of supply chain disruptions, factors that breed vulnerability, and mitigating strategies ”, Journal of Marketing Channels , Vol. 16 No. 3 , pp. 193 - 226 .

Stevenson , M. and Spring , M. ( 2007 ), “ Flexibility from a supply chain perspective: definition and review ”, International Journal of Operations & Production Management , Vol. 27 No. 7 , pp. 685 - 713 .

Suweis , S. , Carr , S. , Maritan , A. , Rinaldoc , A. and D’Odorico , P. ( 2015 ), “ Resilience and reactivity of global food security ”, Proceedings of the National Academy of Sciences of Sciences , Vol. 112 No 34 , pp. 4811 .

Swafford , P.M. , Ghosh , S. and Murthy , N. ( 2006 ), “ The antecedents of supply chain agility of a firm: scale development and model testing ”, Journal of Operations Management , Vol. 24 No. 2 , pp. 170 - 188 .

Tang , C.S. ( 2006 ), “ Robust strategies for mitigating supply chain disruptions ”, International Journal of Logistics Research and Applications , Vol. 9 No. 1 , pp. 33 - 45 .

Tang , O. and Musa , S.N. ( 2011 ), “ Identifying risk issues and research advancements in supply chain risk management ”, International Journal of Production Economics , Vol. 133 No. 1 , pp. 25 - 34 .

Taylor , D.H. and Fearne , A. ( 2006 ), “ Towards a framework for improvement in the management of demand in Agri-food supply chains ”, Supply Chain Management: An International Journal , Vol. 11 No. 5 , pp. 379 - 384 .

Tendall , D.M. , Joerin , J. , Kopainsky , B. , Edwards , P. , Shreck , A. , Le , Q.B. , Kruetli , P. , Grant , M. and Six , J. ( 2015 ), “ Food system resilience: defining the concept ”, Global Food Security , Vol. 6 , pp. 17 - 23 .

Thun , J.H. and Hoenig , D. ( 2011 ), “ An empirical analysis of supply chain risk management in the German automotive industry ”, International Journal of Production Economics , Vol. 131 No. 1 , pp. 242 - 249 .

Todo , Y. , Nakajima , K. and Matous , P. ( 2015 ), “ How do supply chain networks affect the resilience of firms to natural disasters? Evidence from the great east Japan earthquake ”, Journal of Regional Science , Vol. 55 No. 2 , pp. 209 - 229 .

Tomlin , B. ( 2006 ), “ On the value of mitigation and contingency strategies for managing supply chain disruption risks ”, Management Science , Vol. 52 No. 5 , pp. 639 - 657 .

Tranfield , D. , Denyer , D. and Smart , P. ( 2003 ), “ Towards a methodology for developing evidence-informed management knowledge by means of systematic review ”, British Journal of Management , Vol. 14 No. 3 , pp. 207 - 222 .

Trkman , P. and McCormack , K. ( 2009 ), “ Supply chain risk in turbulent environments – a conceptual model for managing supply chain network risk ”, International Journal of Production Economics , Vol. 119 No. 2 , pp. 247 - 258 .

Tukamuhabwa , B.R. , Stevenson , M. , Busby , J. and Zorzini , M. ( 2015 ), “ Supply chain resilience: definition, review and theoretical foundations for further study ”, International Journal of Production Research , Vol. 53 No. 18 , pp. 5592 - 5623 .

United Nations, Department of Economic and Social Affairs, Population Division ( 2015 ), “ World population prospects: the 2015 revision, key findings and advance tables , Working Paper No. ESA/P/WP.241 .

Van der Vorst , J.G. and Beulens , A.J. ( 2002 ), “ Identifying sources of uncertainty to generate supply chain redesign strategies ”, International Journal of Physical Distribution & Logistics Management , Vol. 32 No. 6 , pp. 409 - 430 .

Vlajic , J.V. , van der Vorst , J.G. and Haijema , R. ( 2012 ), “ A framework for designing robust food supply chains ”, International Journal of Production Economics , Vol. 137 No. 1 , pp. 176 - 189 .

Vlajic , J.V. , van Lokven , S.W. , Haijema , R. and van der Vorst , J.G. ( 2013 ), “ Using vulnerability performance indicators to attain food supply chain robustness ”, Production Planning & Control , Vol. 24 Nos 8/9 , pp. 785 - 799 .

Wagner , S.M. and Bode , C. ( 2008 ), “ An empirical examination of supply chain performance along several dimensions of risk ”, Journal of Business Logistics , Vol. 29 No. 1 , pp. 307 - 325 .

Wagner , S.M. and Neshat , N. ( 2010 ), “ Assessing the vulnerability of supply chains using graph theory ”, International Journal of Production Economics , Vol. 126 No. 1 , pp. 121 - 129 .

Wagner , S.M. and Neshat , N. ( 2012 ), “ A comparison of supply chain vulnerability indices for different categories of firms ”, International Journal of Production Research , Vol. 50 No. 11 , pp. 2877 - 2891 .

Walker , B. , Gunderson , L. , Kinzig , A. , Folke , C. , Carpenter , S. and Schultz , L.A. ( 2006 ), “ A handful of heuristics and some propositions for understanding resilience in social-ecological systems ”, Ecology and Society , Vol. 11 No. 1 .

Wang , Y. , Chen , C. , Wang , J. and Baldick , R. ( 2016 ), “ Research on resilience of power systems under natural disasters–A review ”, IEEE Transactions on Power Systems , Vol. 31 No. 2 , pp. 1604 - 1613 .

Wieland , A. and Wallenburg , C.M. ( 2013 ), “ The influence of relational competencies on supply chain resilience: a relational view ”, International Journal of Physical Distribution & Logistics Management , Vol. 43 No. 4 , pp. 300 - 320 .

World Commission on Environment and Development (WCED) ( 1987 ), Our Common Future , Oxford University Press , New York, NY .

Wu , T. , Huang , S. , Blackhurst , J. , Zhang , X. and Wang , S. ( 2013 ), “ Supply chain risk management: an agent-based simulation to study the impact of retail stockouts ”, IEEE Transactions on Engineering Management , Vol. 60 No. 4 , pp. 676 - 686 .

Yang , Y. and Xu , X. ( 2015 ), “ Post-disaster grain supply chain resilience with government aid ”, Transportation Research Part E: Logistics and transportation review , Vol. 76 , pp. 139 - 159 .

Zacharia , Z.G. , Nix , N.W. and Lusch , R.F. ( 2009 ), “ An analysis of supply chain collaborations and their effect on performance outcomes ”, Journal of Business Logistics , Vol. 30 No. 2 , pp. 101 - 123 .

Zsidisin , G.A. and Wagner , S.M. ( 2010 ), “ Do perceptions become reality? The moderating role of supply chain resiliency on disruption occurrence ”, Journal of Business Logistics , Vol. 31 No. 2 , pp. 1 - 20 .

Further reading

Barroso , A.P. and Machado , V.H. ( 2011 ), “ Supply chain resilience using the mapping approach ”, Supply Chain Management , pp. 161 - 181 .

Acknowledgements

The authors would like to thank the editor and two anonymous reviewers for their support and constructive comments. The authors would also like to acknowledge that this work was funded by the Engineering and Physical Sciences Research Council (EPSRC), as part of Grant Number EP/K030957/1.PI: Shahin Rahimifard. All data used are presented in full in this paper and, thus, are not located in a separate repository.

Corresponding author

About the authors.

Jamie Stone holds a BSc in Medical Microbiology and Virology from The University of Warwick (2010) and an MSc in Food Security also from The University of Warwick (2012). Jamie has experience in the field of sustainable development in a UK setting with Localise West Midlands (2012) and in an international development context with APT Action on Poverty (2013). He joined Loughborough University in 2014 as a Doctoral Research Student with the Centre for Sustainable Manufacturing and Recycling Technologies. His research explores factors which reduce vulnerability and thus increase resilience of food supply chains to external volatility, with a particular focus on food manufacturing in the UK. This work is carried out within the EPSRC Centre for Innovative Manufacturing in Food against the broader context of sustainable manufacturing of food and global food security.

Shahin Rahimifard holds a BSc in Computing and Mathematics from Brighton University, an MSc in Computer Integrated Manufacturing and a PhD in Operational Planning of Manufacturing Systems both from Loughborough University. He has over 20 years of experience in managing R&D projects within the field of sustainable manufacturing at Loughborough University. As a Founder and a Director of the Centre for Sustainable Manufacturing and Recycling Technologies (SMART) in Loughborough, he has been involved in over 25 national and European research projects. His research interests are sustainable product design, low carbon manufacturing, environmentally focussed production planning and supply chain management and product recovery, reuse and recycling technologies. He has over 90 publications associated with his work. Prof. Rahimifard has been the Editor-in-Chief of the International Journal of Sustainable Engineering since 2008, and he is the book review editor for three other international journals. He is also a member of the Technical Committee for four international conferences.

Related articles

We’re listening — tell us what you think, something didn’t work….

Report bugs here

All feedback is valuable

Please share your general feedback

Join us on our journey

Platform update page.

Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

Questions & More Information

Answers to the most commonly asked questions here

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Agri-food Supply Chain Management: Literature Review

Profile image of Ganeshkumar .C

2017, Intelligent Information Management

Related Papers

International Journal of Management, Accounting and Economics

Dr Md Abu Issa Gazi

Agro business, supply chain management (SCM) means reach agro products to the market in time. The future economic prosperity of Bangladesh depends largely on the prosperity of agriculture. And the success of agriculture depends on ensuring proper supply of agricultural products to the appropriate market. The study found that about 75% of the population of Bangladesh is engaged in agriculture as their source of income. The primary purpose of this study is to analyze the overall logistics support for agro products in context of supply chain management in Bangladesh. This research are used secondary method for analyzing data and information. The author critically reviewed the supply chain management system of PRAN Agro Business Limited which is the largest agro products producer in Bangladesh. The result reveals from the study that the agro products marketing in Bangladesh scrappy supply chain system, lack of transportation facilities, higher transaction cost, multiple market intermediaries, lack of awareness and several other socioeconomic problems facing agro products supply chain management in Bangladesh. Effective supply chain management helps to secure better position in the competitive environment and improve the efficiency of the agribusiness organization. Therefore, current research suggests that marketing facilities should be improved for agricultural products, especially in rural areas.

agri food supply chain management literature review

Nitu Bhattacharya

International Food and Agribusiness Management Review

Dr Ravi Nandi

High-value agriculture in India is witnessing a transformation, specifically in fresh fruits and vegetables (FFV). Supply chain stakeholders, mainly small and marginal farmers, receive a very minimal share in consumer rupee due to market uncertainty, high post-harvest losses, information asymmetry, lack of processing facilities and the erratic demand-supply situation. The current study draws from an extensive review to propose a competitive, inclusive, sustainable and scalable supply chain model of primary processing centers connecting farmers directly and efficiently with consumers. The proposed model will connect producers with the rest of the supply chain and streamline the supply chain process to reduce post-harvest losses as much as possible. The integration of a market information system will ensure transparency to help in better decision-making, reduced intermediaries and information asymmetry for producers, as well as the systematic disposal of the produce. The model will in...

Neeraj Anand

As Indian economy is based on agriculture, development of cold chain infrastructure will play a crucial role in reducing the losses and wastages, increasing the farmer income, generating employment opportunities for the local people, and improving the livelihood of the farmers which leads to developing the economy and helping India to emerge as a global leader in the food sector. The present study undertakes a thorough review of basic and contemporary literature available to explain the present status of and challenges to cold chain pertaining to the Fruits and Vegetables (F&V) sector in India. The study is an attempt to draw the attention of the stakeholders towards an urgent need to develop intelligent cold chain infrastructure which is the major impediment and a weak link in the supply chain of F&V sector in India. Cold chain infrastructure facilities include grading, sorting, packing, storage, processing and transportation facilities in the supply chain network.

Bipin Bihari Mishra

Aman Khanna

Agricultural Economics …

Surabhi Mittal

Pawanexh Kohli

Continuation of NCCD Newsletter, edition 12, February 2015. Articles include Cold chain Insights-IX, Value Chain and Strategy, Post Harvest Cooling, etc.

American International Journal of Agricultural Studies

chukwuma ume

This paper seeks to explore and assess literature on Supply chain management. The overarching aim is to derive institutional and policy lessons for the agribusiness sector, especially among the least developed economies. The focus is to better understand the range of supply chain initiatives prevalent in literature and how they fit into the developing nations contexts. Unpacking what supply chain initiatives exist in scholarly publications is relevant since scholarly ideas often shape institutional and policy directions and negotiations in the agricultural sector interventions. Using subjective criteria, sourcing, screening and selection of documents, and conducting qualitative analysis and validation were done. In exploring this discourse, we observe the emergence of a variety of overarching initiatives – development of short food supply chains, supply chain partnership, and supply chain integration. Findings from the study suggest that there is a need for some level of coordinatio...

André Devaux

In the coming decades, feeding the expanded global population nutritiously and sustainably will require substantial improvements to the global food system worldwide. The main challenge will be how to produce more food with the same or fewer resources and waste less. Food security has four dimenespecially the case in Africa wheresions: food availability, food access, food use and quality, and food stability. Among several other food sources, the potato crop is one that can help match all these constraints worldwide due to its highly diverse distribution pattern, and its current cultivation and demand, particularly in developing countries with high levels of poverty, hunger, and malnutrition. After an overview of the current situation of global hunger, food security, and agricultural growth, followed by a review of the importance of the potato in the current global food system and its role played as a food security crop, this paper analyses and discusses how potato research and innova...

RELATED PAPERS

Cora van Oosten

International Journal of Research Culture Society (IJRCS)

Aneesh K Anirudh

Kabila Jonathan Obbo

Kabila J O N A T H A N Obbo

Sazzad Parwez

Dr. Somashekhar I C

Gautam Kakaty

jan verhagen , Marianne Van Dorp , Jan van der Lee , Cora van Oosten , Michiel van Dijk , Jolanda van den Berg , Drs. Thom Achterbosch

Muhammad Asif

Journal of Rural Studies

Pradeep Mishra

naik ouffee , Dr. Fozia Jan

ORYZA-An International Journal on Rice

JAIPRAKASH BISEN

OF BY AND FOR YOU PUBLICATION

Subathra Durai , Dr.SUBATHRA CHELLADURAI

Dr. Bindu Agrawal

Samuel Taffesse

Proceedings of the 2nd International Forum on Agri-Food Logistics “Logistics Facing Challenges of Food Security and Environmental Protection”; 21-23 June, 2017; Poznan, Poland. Poznan University of Life Sciences. pp. 32-36

Hamid Bilali

Bhaskar Goswami , Isita Mukherjee

Food Security

Shalander Kumar

Journal of Agricultural Science

Wilhemina Quaye

southasia.ox.ac.uk

Olle Frödin

sangeeta agasty

Debdatta Saha

Asta-Ja Occasional Book Series

Ambika P . Adhikari

Academic Journals, Lagos

Geofrey Thobias

Dr. SRINIVASA REDDY MANDALA

dinesh jain

Industrial Management & Data Systems

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Accessibility Links

  • Skip to content
  • Skip to search IOPscience
  • Skip to Journals list
  • Accessibility help
  • Accessibility Help

Click here to close this panel.

Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.

Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.

We are proudly declaring that science is our only shareholder.

Identifying research advancements in supply chain risk management for Agri-food Industries: Literature review

W Septiani 1 and P Astuti 1

Published under licence by IOP Publishing Ltd IOP Conference Series: Materials Science and Engineering , Volume 277 , 10th International Seminar on Industrial Engineering and Management "Sustainable Development In Industry and Management" 7-9 November 2017, Tanjung Pandan - Belitung, Indonesia Citation W Septiani and P Astuti 2017 IOP Conf. Ser.: Mater. Sci. Eng. 277 012064 DOI 10.1088/1757-899X/277/1/012064

Article metrics

2369 Total downloads

Share this article

Author e-mails.

[email protected]

[email protected]

Author affiliations

1 Magister of Industrial Engineering, Faculty of Industrial Technology, Trisakti University, Jakarta, 11440, Indonesia

Buy this article in print

Agri-food supply chain has different characteristics related to the raw materials it uses. Food supply chain has a high risk of damage, thus drawing a lot of attention from researchers in supply chain management. This research aimed to investigate the development of supply chain risk management research on agri-food industries. These reviews were arranged in steps systematically, ranging from searching related to the review of SCRM paper, reviewing the general framework of SCRM and the framework of agri-food SCRM. Selection of literature review papers in the period 2005-2017, and obtained 45 papers. The results of the identification research were illustrated in a supply chain risk management framework model. This provided insight toward future research directions and needs.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Blockchain technology in the agri-food supply chain: a systematic literature review of opportunities and challenges

  • Published: 08 January 2024

Cite this article

  • Priyanka Vern   ORCID: orcid.org/0000-0003-2067-8874 1 ,
  • Anupama Panghal   ORCID: orcid.org/0000-0001-9954-8444 1 ,
  • Rahul S Mor   ORCID: orcid.org/0000-0002-3481-5430 1 , 2 &
  • Sachin S. Kamble 3  

404 Accesses

1 Altmetric

Explore all metrics

Blockchain technology (BCT) has emerged as a promising disruptive technology with significant applications in the agri-food supply chain (AFSC). This paper reviews the BCT’s research trends, benefits, challenges, and applications in AFSC through systematic literature network analysis (SLNA). A total of 187 articles were selected through a systematic literature review of different reputed databases, and citation network analysis was carried out using “ VoSviewer ” software. The information related to annual scientific production, country-specific production, type of article, subject area and the most relevant sources was analysed using “ Biblioshinny ” software. The outcomes reveal prominent benefits, including traceability and transparency, immutability, trust, and decentralization. On the other hand, policy and regulations, scalability issues, less skilled human resources, high investment, and interoperability hinder blockchain implementation. Smart contracts, cybersecurity, food safety, and public distribution systems are some of the identified applications of blockchain technology, thus enhancing agri-food supply chains. Various blockchain-based frameworks in AFSC are also discussed in this review. This review offers insights into how findings may guide practitioners and researchers in developing appropriate BCT systems for AFSC. It also provides practical implications and future research directions on the theme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

agri food supply chain management literature review

Similar content being viewed by others

agri food supply chain management literature review

Sustainability trends and gaps in the textile, apparel and fashion industries

Stefano Abbate, Piera Centobelli, … Emanuela Riccio

agri food supply chain management literature review

A systematic literature review on greenwashing and its relationship to stakeholders: state of art and future research agenda

Célia Santos, Arnaldo Coelho & Alzira Marques

agri food supply chain management literature review

The Potato of the Future: Opportunities and Challenges in Sustainable Agri-food Systems

André Devaux, Jean-Pierre Goffart, … Guy Hareau

Data availability

This manuscript has no associated data.

Adeeb A, Ronald R, Khuntia J (2020) Blockchain for supply chain management: practice-based view. In: 26th Americas conference on information systems, 6. https://aisel.aisnet.org/amcis2020/sig_green/sig_green/6 .

Afrianto I, Djatna T, Arkeman Y, Sukaesih Sitanggang I, Hermadi I (2020) Disrupting agro-industry supply chain in indonesia with blockchain technology: current and future challenges. In: 8th ICITSM. https://doi.org/10.1109/CITSM50537.2020.9268872

Ahmed S, Islam ME, Hosen MT, Hasan MH (2020) BlockChain based fertilizer distribution system: Bangladesh perspective. ACM Int Conf Proc Series Doi 10(1145/3377049):3377116

Google Scholar  

Aich S, Chakraborty S, Sain M, Lee H-I, Kim H-C (2019) A review on benefits of iot integrated blockchain based supply chain management implementations across different sectors with case study. In: International conference on advanced communication technology, ICACT, February 2019, pp 138–141. https://doi.org/10.23919/ICACT.2019.8701910

Aldrighetti A, Canavari M, Hingley MK (2021) A Delphi study on blockchain application to food traceability. Int J Food Syst Dyn 12(1):6–18

Ali MH, Chung L, Kumar A, Zailani S, Tan KH (2021) A sustainable Blockchain framework for the halal food supply chain: lessons from Malaysia. Technol Forecast Soc Change. https://doi.org/10.1016/j.techfore.2021.120870

Article   Google Scholar  

Amin MR, Khan MY, Zuhairi MF (2021) Review of FSCM with blockchain and big data integration. Indian J Comput Sci Eng 12(1):193–201

Andrian HR, Kurniawan NB, Suhardi (2018) Blockchain technology and implementation: a systematic literature review. In: 2018 international conference on information technology systems and innovation. https://doi.org/10.1109/ICITSI.2018.8695939

Anguiano TD, Parte L (2023) The state of art, opportunities and challenges of blockchain in the insurance industry: a systematic literature review. Manag Rev Quart. https://doi.org/10.1007/s11301-023-00328-6

Arena A, Bianchini A, Perazzo P, Vallati C, Dini G (2019) BRUSCHETTA: An IoT blockchain-based framework for certifying extra virgin olive oil supply chain. IEEE Smart Comput. https://doi.org/10.1109/SMARTCOMP.2019.00049

Arruda H, Silva ÉR, Lessa M, Júnior DP, Bartholo R (2022) VOSViewer and Bibliometrix. J Med Libr Assoc 110(3):392–395. https://doi.org/10.5195/jmla.2022.1434

Aria M, Cuccurullo C (2017) bibliometrix: An R-tool for comprehensive science mapping analysis. J Informet 11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007

Awan SH, Nawaz A, Ahmed S, Khattak HA, Zaman K, Najam Z (2020) Blockchain based smart model for agricultural food supply chain. In: 2020 international conference on UK-China emerging technology https://doi.org/10.1109/UCET51115.2020.9205477

Bai Y, Fan K, Zhang K, Cheng X, Li H, Yang Y (2021) Blockchain-based trust management for agricultural green supply: a game theoretic approach. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.127407

Balakin MD, Ashmarina TI, Pulyaev NN (2021) Use of innovative technological solutions in the development of the fish products market. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/650/1/012020

Balamurugan S, Ayyasamy A, Joseph KS (2021) IoT-Blockchain driven traceability techniques for improved safety measures in food supply chain. Int J Inf Technol 14(2):1087–1098. https://doi.org/10.1007/s41870-020-00581-y

Baralla G, Pinna A, Corrias G (2019) Ensure traceability in European food supply chain by using a blockchain system. In: IEEE/ACM 2nd international workshop on emerging trends in software engineering for blockchain, 40–47. https://doi.org/10.1109/WETSEB.2019.00012

Baralla G, Pinna A, Tonelli R, Marchesi M, Ibba S (2021) Ensuring transparency and traceability of food local products: a blockchain application to a Smart Tourism Region. Practice and Experience, Concurrency and Computation. https://doi.org/10.1002/cpe.5857

Book   Google Scholar  

Basnayake BMAL, Rajapakse C (2019) A Blockchain-based decentralized system to ensure the transparency of organic food supply chain. IEEE Int Res Conf SCSE https://doi.org/10.23919/SCSE.2019.8842690

Behnke K, Janssen MFWHA (2020) Boundary conditions for traceability in food supply chains using blockchain technology. Int J Inf Manag. https://doi.org/10.1016/j.ijinfomgt.2019.05.025

Bermeo-Almeida O, Cardenas-Rodriguez M, Samaniego-Cobo T, Ferruzola-Gómez E, Cabezas-Cabezas R, Bazán-Vera W (2018) Blockchain in agriculture: a systematic literature review. In: Valencia-García R, Alcaraz-Mármol G, Del Cioppo-Morstadt J, Vera-Lucio N, Bucaram-Leverone M (eds) Communications in computer and information science, vol 883. Springer, Cham. https://doi.org/10.1007/978-3-030-00940-3_4

Chapter   Google Scholar  

Bhat SA, Huang NF, Sofi IB, Sultan M (2022) Agriculture-food supply chain management based on blockchain and IoT: a narrative on enterprise blockchain interoperability. Agriculture 12(1):40. https://doi.org/10.3390/agriculture12010040

Biscotti A, Giannelli C, Keyi CFN, Lazzarini R, Sardone A, Stefanelli C, Virgilli G (2020) Internet of things and blockchain technologies for food safety systems. IEEE ICSC 2020:440–445. https://doi.org/10.1109/SMARTCOMP50058.2020.00091

Botelho A, Silva IR, Ribeiro L, Lopes MS, Au-Yong-Oliveira M (2020) Improving food transparency through innovation and blockchain technology. In: European conference on innovation and entrepreneurship, 128–136. https://doi.org/10.34190/EIE.20.034

Bumblauskas D, Mann A, Dugan B, Rittmer J (2020) A blockchain use case in food distribution: do you know where your food has been? Int J Inf Manag. https://doi.org/10.1016/j.ijinfomgt.2019.09.004

Caro MP, Ali MS, Vecchio M, Giaffreda R (2018) Blockchain-based traceability in Agri-Food supply chain management: a practical implementation. IoT Vert Top Summit Agric 2018:1–4. https://doi.org/10.1109/IOT-TUSCANY.2018.8373021

Casino F, Kanakaris V, Dasaklis TK, Moschuris S, Rachaniotis NP (2019) Modeling food supply chain traceability based on blockchain technology. IFAC-PapersOnLine 52(13):2728–2733. https://doi.org/10.1016/j.ifacol.2019.11.620

Casino F, Kanakaris V, Dasaklis TK, Moschuris S, Stachtiaris S, Pagoni M, Rachaniotis NP (2020) Blockchain-based food supply chain traceability: a case study in the dairy sector. Int J Prod Res. https://doi.org/10.1080/00207543.2020.1789238

Chan KY, Abdullah J, Khan AS (2019) A framework for traceable and transparent supply chain management for agri-food sector in malaysia using blockchain technology. Int J Adv Comput Sci Appl 10(11):149–156. https://doi.org/10.14569/IJACSA.2019.0101120

Chandra GR, Liaqat IA, Sharma B (2019) Blockchain redefining: the halal food sector. AICAI 2019:349–354. https://doi.org/10.1109/AICAI.2019.8701321

Chen H, Chen Z, Lin F, Zhuang P (2021a) Effective management for blockchain-based agri-food supply chains using deep reinforcement learning. IEEE Access 9:36008–36018. https://doi.org/10.1109/ACCESS.2021.3062410

Chen S, Liu X, Yan J, Hu G, Shi Y (2021) Processes, benefits, and challenges for adoption of blockchain technologies in food supply chains: a thematic analysis. Info Syst E-Bus Manag. https://doi.org/10.1007/s10257-020-00467-3

Chen Y, Li Y, Li C (2020) Electronic agriculture, blockchain and digital agricultural democratization: origin, theory and application. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122071

Choi D, Chung CY, Seyha T, Young J (2020) Factors affecting organizations’ resistance to the adoption of blockchain technology in supply networks. Sustainability 12(21):8882. https://doi.org/10.3390/su12218882

Chopra A (2020) Blockchain technology in food industry ecosystem. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/872/1/012005

Cocco L, Mannaro K, Tonelli R, Mariani L, Lodi MB, Melis A, Simone M, Fanti A (2021) A blockchain-based traceability system in agri-food SME: case study of a traditional bakery. IEEE Access 9:62899–62915. https://doi.org/10.1109/ACCESS.2021.3074874

Collart AJ, Canales E (2022) How might broad adoption of blockchain-based traceability impact the US fresh produce supply chain? Appl Econ Perspect Policy 44(1):219–236. https://doi.org/10.1002/aepp.13134

Cong An A, Thi Xuan Diem P, Thi Thu Lan L, Van Toi T, Duong Quoc Binh L (2019) Building a product origins tracking system based on blockchain and PoA consensus protocol. In: Proceedings - 2019. International conference on advanced computing and applications, ACOMP 2019, pp 27–33. https://doi.org/10.1109/ACOMP.2019.00012

Creydt M, Fischer M (2019) Blockchain and more - algorithm driven food traceability. Food Control 105:45–51. https://doi.org/10.1016/j.foodcont.2019.05.019

Cui Y, Idota H, Ota M (2020) Rebuilding Food Supply Chain with Introducing Decentralized Credit Mechanism. In: Proceedings of the 7th multidisciplinary in international social networks conference and the 3rd international conference on economics, management and technology (MISNC2020&IEMT2020). Association for Computing Machinery, New York, NY, USA, Article 7. pp 1–5. https://doi.org/10.1145/3429395.3429401

Danese P, Mocellin R, Romano P (2021) Designing blockchain systems to prevent counterfeiting in wine supply chains: a multiple-case study. Int J Oper Prod Manag 41(13):1–33. https://doi.org/10.1108/IJOPM-12-2019-0781

Demestichas K, Peppes N, Alexakis T, Adamopoulou E (2020) Blockchain in agriculture traceability systems: a review. Appl Sci 10(12):1–22. https://doi.org/10.3390/APP10124113

Dey S, Saha S, Singh AK, McDonald-Maier K (2021) FoodSQRBlock: digitizing food production and the supply chain with blockchain and QR code in the cloud. Sustainability. https://doi.org/10.3390/su13063486

Dinesh Kumar K, Kumar M, Anandh R (2020) Blockchain technology in food supply chain security. Int J Sci Technol Res 9(1):3446–3450

Dong Z, Ma C, Wang Y, Liu Z (2020) Food information traceability system based on fabric. In: ACM international conference on proceeding series, 563–570. https://doi.org/10.1145/3434581.3434685

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. https://doi.org/10.1016/j.jbusres.2021.04.070

Duan J, Zhang C, Gong Y, Brown S, Li Z (2020) A content-analysis based literature review in blockchain adoption within food supply chain. Int J Environ Res Public Health 17(5):1784. https://doi.org/10.3390/ijerph17051784

Duan L, Sun Y, Zhang K, Ding Y (2022) Multiple-Layer security threats on the Ethereum blockchain and their countermeasures. Secur Commun Networks 2022:1–11. https://doi.org/10.1155/2022/5307697

Durugbo C, Al-Balushi Z (2022) Supply chain management in times of crisis: a systematic review. Manag Rev Quart. https://doi.org/10.1007/s11301-022-00272-x

Dutta P, Choi T-M, Somani S, Butala R (2020) Blockchain technology in supply chain operations: applications, challenges and research opportunities. Transp Res Part E. https://doi.org/10.1016/j.tre.2020.102067

Ekawati R, Arkeman Y, Suprihatin S, Sunarti TC (2021) Proposed design of white sugar industrial supply chain system based on blockchain technology. Int J Adv Comput Sci Appl 12(4):459–465

Enescu FM, Manuel Ionescu V (2020) Using blockchain in the agri-food sector following SARS-CoV-2 pandemic. In: 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania. pp 1–6. https://doi.org/10.1109/ECAI50035.2020.9223161

Erol I, Ar IM, Ozdemir AI, Peker I, Asgary A, Medeni IT, Medeni T (2021) Assessing the feasibility of blockchain technology in industries: evidence from Turkey. J Enterp Inf Manag 34(3):746–769. https://doi.org/10.1108/JEIM-09-2019-0309

Elnadi M, Abdallah YO (2023) Industry 40: critical investigations and synthesis of key findings. Manag Rev Quart. https://doi.org/10.1007/s11301-022-00314-4

Espinoza-Mejía M, Saquicela V, Abril-Ulloa V (2021) Ensuring traceability and orchestration in the food supply chain. In: Botto-Tobar M, Cruz H, Díaz Cadena A (eds) Artificial intelligence, computer and software engineering advances. CIT 2020. Advances in intelligent systems and computing, vol 1326. Springer, Cham. https://doi.org/10.1007/978-3-030-68080-0_10

Fakkhong K, Rangsaritvorakarn N, Tantitecha C (2022) Using Blockchain Technology for a sustainable agri-food supply chain in Thailand. In: 2022 international conference on decision aid sciences and applications. https://doi.org/10.1109/dasa54658.2022.9764968

Fan ZP, Wu XY, Cao BB (2022) Considering the traceability awareness of consumers: should the supply chain adopt the blockchain technology? Ann Oper Res 309(2):837–860. https://doi.org/10.1007/s10479-020-03729-y

Felippe AD, Demanboro AC (2021) Smart contracts and blockchain: an application model for traceability in the beef supply chain. In: Iano Y, Arthur R, Saotome O, Kemper G, Padilha França R (eds) Proceedings of the 5th Brazilian Technology Symposium. BTSym 2019. Smart Innovation, Systems and Technologies, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-030-57548-9_47

Feng H, Wang X, Duan Y, Zhang J, Zhang X (2020) Applying blockchain technology to improve agri-food traceability: a review of development methods, benefits and challenges. J Clean Prod 260:121031. https://doi.org/10.1016/j.jclepro.2020.121031

Fu H, Zhao C, Cheng C, Ma H (2020) Blockchain-based agri-food supply chain management: case study in China. Int Food Agribus Manag Rev 23(5):667–679

Galvez JF, Mejuto JC, Simal-Gandara J (2018) Future challenges on the use of blockchain for food traceability analysis. Trends Anal Chem 107:222–232. https://doi.org/10.1016/j.trac.2018.08.011

Gao K, Liu Y, Xu H, Han T (2020) Hyper-FTT: a food supply-chain trading and traceability system based on hyperledger fabric. Commun Comput Inf Sci. https://doi.org/10.1007/978-981-15-2777-7_53

Garaus M, Treiblmaier H (2021) The influence of blockchain-based food traceability on retailer choice: the mediating role of trust. Food Control. https://doi.org/10.1016/j.foodcont.2021.108082

George RV, Harsh HO, Ray P, Babu AK (2019) Food quality traceability prototype for restaurants using blockchain and food quality data index. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.118021

González-Puetate I, Marín Tello CL, Reyes Pineda H (2022) Agri-food safety optimized by blockchain technology: review. Revista Facultad Nacional de Agronomía Medellín https://doi.org/10.15446/rfnam.v75n1.95760

Gopi K, Mazumder D, Sammut J, Saintilan N (2019) Determining the provenance and authenticity of seafood: a review of current methodologies. Trends Food Sci Technol 91:294–304. https://doi.org/10.1016/j.tifs.2019.07.010

Grecuccio J, Giusto E, Fiori F, Rebaudengo M (2020) Combining blockchain and iot: food-chain traceability and beyond. Energies. https://doi.org/10.3390/en13153820

Guo M, Liu XJ, Zhang W (2018) Using blockchain technology in human food chain provenance. WIT Trans Built Environ 179:391–396. https://doi.org/10.2495/UG180361

Haroon A, Basharat M, Khattak AM, Ejaz W (2019) Internet of Things platform for transparency and traceability of food supply chain. In: 2019 IEEE 10th annual information technology, electronics and mobile communication conference, IEMCON 2019, pp 13–19. https://doi.org/10.1109/IEMCON.2019.8936158

Hegde B, Ravishankar B, Appaiah M (2020) Agricultural supply chain management using blockchain technology. In: 2020 international conference on mainstreaming block chain implementation. In: 2020 International conference on mainstreaming block chain implementation (ICOMBI), Bengaluru, India. pp 1–4. https://doi.org/10.23919/ICOMBI48604.2020.9203259

Hew J-J, Wong L-W, Tan GW-H, Ooi K-B, Lin B (2020) The blockchain-based Halal traceability systems: a hype or reality? Supply Chain Manag 25(6):863–879. https://doi.org/10.1108/SCM-01-2020-0044

Hong W, Mao J, Wu L, Pu X (2021) Public cognition of the application of blockchain in food safety management—Data from China’s Zhihu platform. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.127044

Hu S, Huang S, Huang J, Su J (2021) Blockchain and edge computing technology enabling organic agricultural supply chain: a framework solution to trust crisis. Comput Ind Eng. https://doi.org/10.1016/j.cie.2020.107079

Huang L-Y, Cai J-F, Lee T-C, Weng M-H (2020) A study on the development trends of the energy system with blockchain technology using patent analysis. Sustainability. https://doi.org/10.3390/su12052005

Iftekhar A, Cui X, Hassan M, Afzal W (2020) Application of blockchain and internet of things to ensure tamper-proof data availability for food safety. J Food Qual. https://doi.org/10.1155/2020/5385207

Jaiyen J, Pongnumkul S, Chaovalit P (2020) A proof-of-concept of farmer-to-consumer food traceability on blockchain for local communities. In: 2020 international conference on computer science and its application in agriculture, ICOSICA 2020. https://doi.org/10.1109/ICOSICA49951.2020.9243172

Ji L, Guo J, Ma Z (2020) An online cold-chain monitoring system powered by miniature smart tag and blockchain. In: 5th international conference on universal village. https://doi.org/10.1109/UV50937.2020.9426190

Johng H, Kim D, Park G, Hong JE, Hill T, Chung L (2020) Enhancing business processes with trustworthiness using blockchain: a goal-oriented approach. In: ACM symposium on applied computing, 61–68. https://doi.org/10.1145/3341105.3374022

Kamble SS, Gunasekaran A, Sharma R (2020) Modeling the blockchain enabled traceability in agriculture supply chain. Int J Inf Manag. https://doi.org/10.1016/j.ijinfomgt.2019.05.023

Kamilaris A, Fonts A, Prenafeta-Boldύ FX (2019) The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci Technol 91:640–652. https://doi.org/10.1016/j.tifs.2019.07.034

Karunanayaka C, Vidanagamachchi K, Wickramarachchi R (2020) Transforming agriculture supply chain with technology adoption: a critical review of literature. In: Proceedings of the IEOM, 1163–1170.

Katsikouli P, Wilde AS, Dragoni N, Høgh-Jensen H (2021) On the benefits and challenges of blockchains for managing food supply chains. J Sci Food Agric 101(6):2175–2181. https://doi.org/10.1002/jsfa.10883

Kirby A (2023) Exploratory bibliometrics: using VOSViewer as a preliminary research tool. Publications 11(1):10. https://doi.org/10.3390/publications11010010

Köhler S, Pizzol M (2020) Technology assessment of blockchain-based technologies in the food supply chain. J Clean Prod 269:122193. https://doi.org/10.1016/j.jclepro.2020.122193

Kouhizadeh M, Saberi S, Sarkis J (2021) Blockchain technology and the sustainable supply chain: theoretically exploring adoption barriers. Int J Prod Econ. https://doi.org/10.1016/j.ijpe.2020.107831

Kramer MP, Bitsch L, Hanf J (2021) Blockchain and its impacts on agri-food supply chain network management. Sustainability 13(4):1–22. https://doi.org/10.3390/su13042168

Kshetri N (2019) Blockchain and the economics of food safety. IT Professional 21(3):63–66. https://doi.org/10.1109/MITP.2019.2906761

Kshetri N, Defranco J (2020) The economics behind food supply blockchains. Computer 53(12):106–110. https://doi.org/10.1109/MC.2020.3021549

Kumar A, Ghode DJ, Jain R (2022) An adoption of blockchain technology in agri food supply chain: an overview. Lect Notes Mech Eng. https://doi.org/10.1007/978-981-16-7059-6_15

Kumar A, Srivastava SK, Singh S (2022b) How blockchain technology can be a sustainable infrastructure for the agrifood supply chain in developing countries. J Glob Oper Strategic Sourc. https://doi.org/10.1108/jgoss-08-2021-0058

Kumar A (2021) Improvement of public distribution system efficiency applying blockchain technology during pandemic outbreak COVID-19. J Hum Logist Supply Chain Manage 11(1):1–28

Kumar A, Liu R, Shan Z (2020) Is blockchain a silver bullet for supply chain management? Technical challenges and research opportunities. Decis Sci 51(1):8–37. https://doi.org/10.1111/deci.12396

Kumarathunga M (2020). Improving farmers’ participation in agri supply chains with blockchain and smart contracts. In: 2020 7th international conference on software defined systems , 139–144. https://doi.org/10.1109/SDS49854.2020.9143913

Kushwah S, Dhir A, Sagar M, Gupta B (2019) Determinants of organic food consumption. A systematic literature review on motives and barriers. Appetite 143:104402. https://doi.org/10.1016/j.appet.2019.104402

Lara Gracia MA (2020) Blockchain technology applied to food and feed safety recalls. In: 24th world multi-conference on systemics, cybernetics and informatics , 1 , 132–137.

Lezoche M, Panetto H, Kacprzyk J, Hernandez JE, Alemany Díaz MME (2020) Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput Ind. https://doi.org/10.1016/j.compind.2020.103187

Li Y, Chu X, Tian D, Feng J, Mu W (2020) A traceability architecture for the fresh food supply chain based on blockchain technology in China. Commun Comput Info Sci. https://doi.org/10.1007/978-981-15-8083-3_31

Li K, Lee J, Gharehgozli A (2021) Blockchain in food supply chains: a literature review and synthesis analysis of platforms, benefits and challenges. Int J Prod Res. https://doi.org/10.1080/00207543.2021.1970849

Lin Q, Wang H, Pei X, Wang J (2019) Food safety traceability system based on blockchain and EPCIS. IEEE Access 7:20698–20707. https://doi.org/10.1109/ACCESS.2019.2897792

Lin W, Huang X, Fang H, Wang V, Hua Y, Wang J, Yin H, Yi D, Yau L (2020) Blockchain technology in current agricultural systems: From techniques to applications. IEEE Access 8:143920–143937. https://doi.org/10.1109/access.2020.3014522

Lin W, Ortega DL, Ufer D, Caputo V, Awokuse T (2022) Blockchain-based traceability and demand for US beef in China. Appl Econ Perspect Policy 44(1):253–272

Liu P, Long Y, Song H-C, He Y-D (2020) Investment decision and coordination of green agri-food supply chain considering information service based on blockchain and big data. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.123646

Liu Y, Ma X, Shu L, Hancke GP, Abu-Mahfouz AM (2021) From industry 4.0 to Agriculture 40: current status, enabling technologies, and research challenges. IEEE Trans Ind Inform 17(6):4322–4334. https://doi.org/10.1109/TII.2020.3003910

Liu W, Shao X, Wu C, Qiao P (2021b) A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development. J Clean Prod 298:126763. https://doi.org/10.1016/j.jclepro.2021.126763

Longo F, Nicoletti L, Padovano A (2020) Estimating the impact of blockchain adoption in the food processing industry and supply chain. Int J Food Eng 16:5–6. https://doi.org/10.1515/ijfe-2019-0109

Madumidha S, Siva Ranjani P, Vandhana U, Venmuhilan B (2019) A theoretical implementation: agriculture-food supply chain management using blockchain technology. ICMICPWN 2019:174–178. https://doi.org/10.1109/IMICPW.2019.8933270

Makarov EI, Polyansky KK, Makarov ME, Nikolaeva YR, Shubina EA (2019) Conceptual approaches to the quality system of dairy products based on the blockchain technology. Stud Comput Intell. https://doi.org/10.1007/978-3-030-13397-9_109

Malik S, Kanhere SS, Jurdak R (2018) ProductChain: scalable blockchain framework to support provenance in supply chains. In: IEEE 17th international symposium on network computing and applications (NCA), Cambridge, MA, USA, 1–10. https://doi.org/10.1109/nca.2018.8548322

Mangla SK, Kazancoglu Y, Ekinci E, Liu M, Özbiltekin M, Sezer MD (2021) Using system dynamics to analyze the societal impacts of blockchain technology in milk supply chains refer. Transp Res Part E https://doi.org/10.1016/j.tre.2021.102289

Mao D, Wang F, Hao Z, Li H (2018) Credit evaluation system based on blockchain for multiple stakeholders in the food supply chain. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15081627

Marchese A, Tomarchio O (2022) A blockchain-based system for agri-food supply chain traceability management. SN Comput Sci. https://doi.org/10.1007/s42979-022-01148-3

Marchesi L, Mannaro K, Marchesi M, Tonelli R (2022) Automatic generation of ethereum-based smart contracts for agri-food traceability system. IEEE Access 10:50363–50383. https://doi.org/10.1109/access.2022.3171045

Mavilia R, Pisani R (2021) Blockchain for agricultural sector: the case of South Africa. Afr J Sci Technol Innov Dev 14(3):845–851. https://doi.org/10.1080/20421338.2021.1908660

Meidayanti K, Arkeman Y, Sugiarto. (2019) Analysis and design of beef supply chain traceability system based on blockchain technology. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/335/1/012012

Mezquita Y, González-Briones A, Casado-Vara R, Chamoso P, Prieto J, Corchado JM (2020) Blockchain-based architecture: a MAS proposal for efficient agri-food supply chains. In: Advances in intelligent systems and computing, vol 1006. https://doi.org/10.1007/978-3-030-24097-4_11

Mirabelli G, Solina V (2020) Blockchain and agricultural supply chains traceability: research trends and future challenges. Procedia Manuf 42:414–421. https://doi.org/10.1016/j.promfg.2020.02.054

Mondal S, Wijewardena KP, Karuppuswami S, Kriti N, Kumar D, Chahal P (2019) Blockchain inspired RFID-based information architecture for food supply chain. IEEE Internet Things J 6(3):5803–5813. https://doi.org/10.1109/JIOT.2019.2907658

Mor RS, Bhardwaj A, Singh S (2018) A structured-literature-review of the supply chain practices in Dairy industry. J Oper Supply Chain Manag 11(1):14–25

Moral-Munoz JA, Liu X, Santisteban-Espejo A, Cobo MJ (2020) Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional De La Informacion. https://doi.org/10.3145/epi.2020.ene.03

Moudoud H, Cherkaoui S, Khoukhi L (2019) An IoT blockchain architecture using oracles and smart contracts: the use-case of a food supply chain. In: IEEE interantional symposium on personal, indoor and mobile radio communications . https://doi.org/10.1109/PIMRC.2019.8904404

Mukherjee P, Pradhan C (2021) Blockchain 1.0 to blockchain 4.0—the evolutionary transformation of blockchain technology. In: Panda SK, Jena AK, Swain SK, Satapathy SC (eds) Blockchain technology: applications and challenges. Intelligent systems reference library, vol 203. Springer, Cham, pp 29–49. https://doi.org/10.1007/978-3-030-69395-4_3

Mukherjee AA, Singh RK, Mishra R, Bag S (2021) Application of blockchain technology for sustainability development in agricultural supply chain: justification framework. Oper Manag Res. https://doi.org/10.1007/s12063-021-00180-5

Musah S, Medeni TD, Soylu D (2019) Assessment of role of innovative technology through blockchain technology in Ghana’s cocoa beans food supply chains. In: 3rd international symposium on multidisciplinary studies and innovation technology. https://doi.org/10.1109/ISMSIT.2019.8932936

Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf . Accessed on august 16, 2021

Niknejad N, Ismail W, Bahari M, Hendradi R, Salleh AZ (2021) Mapping the research trends on blockchain technology in food and agriculture industry: a bibliometric analysis. Environ Technol Innov 21:101272. https://doi.org/10.1016/j.eti.2020.101272

Ofulue J, Benyoucef M (2022) Data monetization: insights from a technology-enabled literature review and research agenda. Manag Rev Quart. https://doi.org/10.1007/s11301-022-00309-1

Oguntegbe KF, di Paola N, Vona R (2022) Behavioural antecedents to blockchain implementation in agrifood supply chain management: A thematic analysis. Technol Soc 68:101927. https://doi.org/10.1016/j.techsoc.2022.101927

Orjuela KG, Gaona-García PA, Marin CEM (2021) Towards an agriculture solution for product supply chain using blockchain: case study Agro-chain with BigchainDB. Acta Agric Scand Sect B 71(1):1–16. https://doi.org/10.1080/09064710.2020.1840618

Park A, Li H (2021) The effect of blockchain technology on supply chain sustainability performances. Sustainability 13(4):1–18. https://doi.org/10.3390/su13041726

Patel N, Shukla A, Tanwar S, Singh D (2021) KRanTi: Blockchain-based farmer’s credit scheme for agriculture-food supply chain. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.4286

Patelli N, Mandrioli M (2020) Blockchain technology and traceability in the agrifood industry. J Food Sci 85(11):3670–3678. https://doi.org/10.1111/1750-3841.15477

Pawar MK, Patil P, Hiremath PS, Hegde VS, Agarwal S, Naveenkumar PB (2021) Scalable blockchain framework for a food supply chain. Lect Notes Electr Eng. https://doi.org/10.1007/978-981-33-6977-1_35

Pearson S, May D, Leontidis G, Swainson M, Brewer S, Bidaut L, Frey JG, Parr G, Maull R, Zisman A (2019) Are distributed ledger technologies the panacea for food traceability? Glob Food Sec 20:145–149. https://doi.org/10.1016/j.gfs.2019.02.002

Peña M, Llivisaca J, Siguenza-Guzman L (2020) Blockchain and its potential applications in food supply chain management in ecuador. In: Advances in intelligent systems and computing (Vol. 1066). https://doi.org/10.1007/978-3-030-32022-5_10

Pooja S, Meeradevi, Mundada MR (2020) Analysis of agricultural supply chain management for traceability of food products using blockchain-ethereum technology. In: 2020 IEEE international conference on distributed computing, VLSI, Electrical circuits and robotics, DISCOVER 2020 - Proceedings, pp 127–132. https://doi.org/10.1109/DISCOVER50404.2020.9278029

Pranto TH, Noman AA, Mahmud A, Haque AB (2021) Blockchain and smart contract for IoT enabled smart agriculture. PeerJ Comput Sci 7:1–29. https://doi.org/10.7717/PEERJ-CS.407

Prashar D, Jha N, Jha S, Lee Y, Joshi GP (2020) Blockchain-based traceability and visibility for agricultural products: a decentralized way of ensuring food safety in India. Sustainability. https://doi.org/10.3390/SU12083497

Putri AN, Hariadi M, Wibawa AD (2020) Smart agriculture using supply chain management based on hyperledger blockchain. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/466/1/012007

Qian J, Dai B, Wang B, Zha Y, Song Q (2022) Traceability in food processing: problems, methods, and performance evaluations- a review. Crit Rev Food Sci Nutr 62(3):679–692. https://doi.org/10.1080/10408398.2020.1825925

Quayson M, Bai C, Sarkis J (2021) Technology for social good foundations: a perspective from the smallholder farmer in sustainable supply chains. IEEE Trans Eng Manage 68(3):894–898. https://doi.org/10.1109/TEM.2020.2996003

Queiroz MM, Telles R, Bonilla SH (2020) Blockchain and supply chain management integration: a systematic review of the literature. Supply Chain Manag. https://doi.org/10.1108/SCM-03-2018-0143

Rana RL, Tricase C, De Cesare L (2021) Blockchain technology for a sustainable agri-food supply chain. British Food J. https://doi.org/10.1108/BFJ-09-2020-0832

Rejeb A, Rejeb K, Abdollahi A, Zailani S, Iranmanesh M, Ghobakhloo M (2022) Digitalization in food supply chains: a bibliometric review and key-route main path analysis. Sustainability 14(1):83. https://doi.org/10.3390/su14010083

Rejeb A, Keogh JG, Zailani S, Treiblmaier H, Rejeb K (2020) Blockchain technology in the food industry: a review of potentials. Challenges Fut Res Direct Logist 4(4):27. https://doi.org/10.3390/logistics4040027

Remondino M, Zanin A (2022) Logistics and agri-food: digitization to increase competitive advantage and sustainability literature review and the case of Italy. Sustainability 14(2):787

Rijanto A (2020) Business financing and blockchain technology adoption in agroindustry. J Sci Technol Policy Manag 12(2):215–235. https://doi.org/10.1108/JSTPM-03-2020-0065

Rocha GDSR, de Oliveira L, Talamini E (2021) Blockchain applications in agribusiness: a systematic review. Fut Internet. https://doi.org/10.3390/fi13040095

Rogerson M, Parry GC (2020) Blockchain: case studies in food supply chain visibility. Supply Chain Mgmt 25(5):601–614. https://doi.org/10.1108/SCM-08-2019-0300

Ronaghi MH (2020) A blockchain maturity model in agricultural supply chain. Inf Proc Agric. https://doi.org/10.1016/j.inpa.2020.10.004

Schäfer N (2022) Making transparency transparent: a systematic literature review to define and frame supply chain transparency in the context of sustainability. Manag Rev Quart 73(2):579–604. https://doi.org/10.1007/s11301-021-00252-7

Saji AC, Vijayan A, Sundar AJ, Baby Syla L (2020) Permissioned blockchain-based agriculture network in rootnet protocol. Adv Intell Syst Comput. https://doi.org/10.1007/978-981-15-0324-5_23

Salah K, Nizamuddin N, Jayaraman R, Omar M (2019) Blockchain-based soybean traceability in agricultural supply chain. IEEE Access 7:73295–73305. https://doi.org/10.1109/ACCESS.2019.2918000

Samal A, Pradhan BB (2019) Boundary traceability conditions in food supply chains using block chain technology. Int J Psychosoc Rehabil 23(6):121–126

Sander F, Semeijn J, Mahr D (2018) The acceptance of blockchain technology in meat traceability and transparency. British Food J 120(9):2066–2079. https://doi.org/10.1108/BFJ-07-2017-0365

Santhi AR, Muthuswamy P (2022) Influence of blockchain technology in manufacturing supply chain and logistics. Logistics 6(1):15. https://doi.org/10.3390/logistics6010015

Sathya D, Nithyaroopa S, Jagadeesan D, Jacob IJ (2021) Block-chain technology for food supply chains. In: 3rd ICICTVMN, 212–219. https://doi.org/10.1109/ICICV50876.2021.9388478

Saurabh S, Dey K (2021) Blockchain technology adoption, architecture, and sustainable agri-food supply chains. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124731

Shahbazi Z, Byun Y-C (2021) A procedure for tracing supply chains for perishable food based on blockchain, machine learning and fuzzy logic. Electronics 10(1):1–21. https://doi.org/10.3390/electronics10010041

Shahid A, Almogren A, Javaid N, Al-Zahrani FA, Zuair M, Alam M (2020) Blockchain-based agri-food supply chain: a complete solution. IEEE Access 8:69230–69243. https://doi.org/10.1109/ACCESS.2020.2986257

Shahzad A, Zhang K (2021) An integrated IoT-blockchain implementation for end-to-end supply chain. Adv Intell Syst Comput. https://doi.org/10.1007/978-3-030-63089-8_65

Shaikh S, Butala M, Butala R, Creado M (2019) AgroVita using Blockchain. In: 2019 IEEE 5th ICCT. https://doi.org/10.1109/I2CT45611.2019.9033705

Shakhbulatov D, Arora A, Dong Z, Rojas-Cessa R (2019) Blockchain implementation for analysis of carbon footprint across food supply chain. In: 2019 IEEE international conference on blockchain (Blockchain), Atlanta, GA, USA, 2019, pp. 546–551, https://doi.org/10.1109/Blockchain.2019.00079 .

Shew AM, Snell HA, Nayga RM, Lacity MC (2022) Consumer valuation of blockchain traceability for beef in the United States. Appl Econ Perspect Policy 44(1):299–323. https://doi.org/10.1002/aepp.13157

Shih D-H, Lu K-C, Shih Y-T, Shih P-Y (2019) A simulated organic vegetable production and marketing environment by using Ethereum. Electronics. https://doi.org/10.3390/electronics8111341

Shivendra CK, Tripathi MK, Maktedar DD (2021) Block chain technology in agriculture product supply chain. In: International conference on AISS , 1325–1329. https://doi.org/10.1109/ICAIS50930.2021.9395886

Shwetha AN, Prabodh CP (2021) A comprehensive review of blockchain based solutions in food supply chain management. In: 5th international conference on CMC , 519–525. https://doi.org/10.1109/ICCMC51019.2021.9418305

Singh V, Sharma SK (2022) Application of blockchain technology in shaping the future of food industry based on transparency and consumer trust. J Food Sci Technol. https://doi.org/10.1007/s13197-022-05360-0

Song L, Wang X, Merveille N (2020) Research on blockchain for sustainable E-agriculture. In: 2020 IEEE technology and engineering management conference. https://doi.org/10.1109/TEMSCON47658.2020.9140121

Spadoni R, Nanetti M, Bondanese A, Rivaroli S (2019) Innovative solutions for the wine sector: the role of startups. Wine Econ Policy 8(2):165–170. https://doi.org/10.1016/j.wep.2019.08.001

Stranieri S, Riccardi F, Meuwissen MPM, Soregaroli C (2021) Exploring the impact of blockchain on the performance of agri-food supply chains. Food Control. https://doi.org/10.1016/j.foodcont.2020.107495

Sudha V, Kalaiselvi R, Shanmughasundaram P (2021) Blockchain based solution to improve the Supply Chain Management in Indian agriculture. In: International conference on AISS, 1289–1292. https://doi.org/10.1109/ICAIS50930.2021.9395867

Tan A, Gligor D, Ngah A (2022) Applying blockchain for Halal food traceability. Int J Log Res Appl 25(6):947–964. https://doi.org/10.1080/13675567.2020.1825653

Tao Q, Chen Q, Ding H, Adnan I, Huang X, Cui X (2021) Cross-department secures data sharing in food industry via blockchain-cloud fusion scheme. Secur Commun Netw. https://doi.org/10.1155/2021/6668339

Tayal A, Solanki A, Kondal R, Nayyar A, Tanwar S, Kumar N (2021) Blockchain-based efficient communication for food supply chain industry: Transparency and traceability analysis for sustainable business. Int J Commun Syst 34(4):e4696. https://doi.org/10.1002/dac.4696

Terzi S, Zacharaki A, Nizamis A, Votis K, Ioannidis D, Tzovaras D, Stamelos I (2019) Transforming the supply-chain management and industry logistics with blockchain smart contracts. ACM Int Conf Proc Ser 10(1145/3368640):3368655

Thakare P, Dighore N, Chopkar A, Chauhan A, Bhagat D, Tote M (2021) Implementation of block chain technology in public distribution system. Adv Intell Syst Comput. https://doi.org/10.1007/978-3-030-49336-3_21

Thejaswini S, Ranjitha KR (2020) Blockchain in agriculture by using decentralized peer to peer networks. In: Proceedings of 4th ICISC, 600–606. https://doi.org/10.1109/ICISC47916.2020.9171083

Torky M, Hassanein AE (2020) Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Comput Electron Agric. https://doi.org/10.1016/j.compag.2020.105476

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British J Manag. https://doi.org/10.1111/1467-8551.00375

Tsang YP, Choy KL, Wu CH, Ho GTS, Lam HY (2019) Blockchain-driven IoT for food traceability with an integrated consensus mechanism. IEEE Access 7:129000–129017. https://doi.org/10.1109/ACCESS.2019.2940227

Varavallo G, Caragnano G, Bertone F, Vernetti-Prot L, Terzo O (2022) Traceability platform based on green blockchain: an application case study in dairy supply chain. Sustainability 14(6):3321. https://doi.org/10.3390/su14063321

Vern P, Miftah N, Panghal A (2022) Digital technology: implementation challenges and strategies in agri-food supply chain. Agri-Food 4:17–30. https://doi.org/10.1108/s1877-636120220000027002

Vern P, Panghal A, Mor RS, Kamble SS, Islam MS, Khan S, a. R. (2023) Influential barriers to blockchain technology implementation in agri-food supply chain. Oper Manag Res. https://doi.org/10.1007/s12063-023-00388-7

Vincent H, Jack B, Gagneja KK (2020) Food network system secured with blockchain. Proc IEEE Southeastcon. https://doi.org/10.1109/SoutheastCon44009.2020.9249738

Violino S, Pallottino F, Sperandio G, Figorilli S, Antonucci F, Ioannoni V, Fappiano D, Costa C (2019) Are the innovative electronic labels for extra virgin olive oil sustainable, traceable, and accepted by consumers? Foods. https://doi.org/10.3390/foods8110529

Vivaldini M (2021) Blockchain in operations for food service distribution: steps before implementation. Int J Logist Manag 32(3):995–1029. https://doi.org/10.1108/IJLM-07-2020-0299

Vu N, Ghadge A, Bourlakis M (2021) Blockchain adoption in food supply chains: a review and implementation framework. Prod Plann Control. https://doi.org/10.1080/09537287.2021.1939902

Wallace CA, Manning L (2020) Food provenance: assuring product integrity and identity. CAB Rev: Perspect Agric Vet Sci Nutr Nat Resour 15(32). https://doi.org/10.1079/PAVSNNR202015032

Wang L, Xu L, Zheng Z, Liu S, Li X, Cao L, Li J, Sun C (2021) Smart contract-based agricultural food supply chain traceability. IEEE Access 9:9296–9307. https://doi.org/10.1109/ACCESS.2021.3050112

Wang Y, Chen K, Hao M, Yang B (2020) Food safety traceability method based on blockchain technology. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1634/1/012025

Wu X-Y, Fan Z-P, Cao B-B (2021) An analysis of strategies for adopting blockchain technology in the fresh product supply chain. Int J Prod Res. https://doi.org/10.1080/00207543.2021.1894497

Wünsche JF, Fernqvist F (2022) The potential of blockchain technology in the transition towards sustainable food systems. Sustainability 14(13):7739. https://doi.org/10.3390/su14137739

Xie J, Wan C, Tolón Becerra A, Li M (2022) Streamlining traceability data generation in apple production using integral management with machine-to-machine connections. Agronomy 12(4):921. https://doi.org/10.3390/agronomy12040921

Xiong H, Dalhaus T, Wang P, Huang J (2020) Blockchain technology for agriculture: applications and rationale. Front Blockchain. https://doi.org/10.3389/fbloc.2020.00007

Xu S, Zhao X, Liu Z (2020) The impact of blockchain technology on the cost of food traceability supply chain. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/615/1/012003

Yadav VS, Singh AR, Raut RD, Govindarajan UH (2020) Blockchain technology adoption barriers in the Indian agricultural supply chain: an integrated approach. Resourc, Conserv Recycl. https://doi.org/10.1016/j.resconrec.2020.104877

Yadav VS, Singh A, Raut RD, Mangla SK, Luthra S, Kumar A (2022) Exploring the application of Industry 40 technologies in the agricultural food supply chain: a systematic literature review. Comput Ind Eng 169:108304. https://doi.org/10.1016/j.cie.2022.108304

Yang C, Sun Z (2020). Data management system based on blockchain technology for agricultural supply chain. In: IEEE ICDMW, 907–911. https://doi.org/10.1109/ICDMW51313.2020.00130

Yang J, Sun X, Shi T, Zhang Y (2021) Research on the trust relationship of Jilin province agricultural products supply chain enterprises based on the theory of green environmental protection block chain. IOP Conf Ser: Earth Environ Sci 714(2):022034. https://doi.org/10.1088/1755-1315/714/2/022034

Yogarajan L, Masukujjaman M, Ali MH, Khalid N, Osman LH, Alam SS (2023) Exploring the hype of blockchain adoption in agri-food supply chain: a systematic literature review. Agriculture 13(6):1173. https://doi.org/10.3390/agriculture13061173

Zhang X, Sun P, Xu J, Wang X, Yu J, Zhao Z, Dong Y (2020) Blockchain-based safety management system for the grain supply chain. IEEE Access 8:36398–36410. https://doi.org/10.1109/ACCESS.2020.2975415

Zhao G, Liu S, Lopez C, Lu H, Elgueta S, Chen H, Boshkoska BM (2019) Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput Ind 109:83–99. https://doi.org/10.1016/j.compind.2019.04.002

Zhou X, Zheng F, Zhou X, Chan KC, Gururajan R, Wu Z, Zhou E (2020) From traceability to provenance of agricultural products through blockchain. Web Intell 18(3):179–180. https://doi.org/10.3233/WEB-200440

Zouari D, Ruel S, Viale L (2021) Does digitalising the supply chain contribute to its resilience? Int J Phys Distrib Logist Manag 51(2):149–180. https://doi.org/10.1108/IJPDLM-01-2020-0038

Download references

Acknowledgements

The authors are thankful to the National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli, Sonepat (Haryana), India, and the Ministry of Food Processing Industries (Govt. of India) for providing essential support and funding to conduct this research. Grant Number: Q-11/13/2021-R&D.

Ministry of Food Processing Industries (Govt. of India). Grant Number: Q-11/13/2021-R&D.

Author information

Authors and affiliations.

National Institute of Food Technology Entrepreneurship and Management (NIFTEM-K), Kundli (Sonepat), India

Priyanka Vern, Anupama Panghal & Rahul S Mor

Business Systems and Operations, Faculty of Business and Law, University of Northampton, Northampton, UK

Rahul S Mor

EDHEC Business School, 59100, Roubaix, France

Sachin S. Kamble

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Anupama Panghal or Rahul S Mor .

Ethics declarations

Conflict of interest, additional information, publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Vern, P., Panghal, A., Mor, R.S. et al. Blockchain technology in the agri-food supply chain: a systematic literature review of opportunities and challenges. Manag Rev Q (2024). https://doi.org/10.1007/s11301-023-00390-0

Download citation

Received : 02 February 2023

Accepted : 28 November 2023

Published : 08 January 2024

DOI : https://doi.org/10.1007/s11301-023-00390-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Blockchain technology
  • Agri-food supply chain
  • Systematic literature review
  • Citation network analysis
  • Technological interventions

JEL Classification

  • Find a journal
  • Publish with us
  • Track your research

COMMENTS

  1. A systematic literature review of the agro-food supply chain: Challenges, network design, and performance measurement perspectives

    Furthermore, AFSC is a sophisticated and complex chain due to many intermediaries accounting in various processes. In addition, today's AFSC is expected to be flexible to provide various options for the end consumer, ranging from processed food to fresh produce (Zhu et al., 2018).At the same time, AFSC faces information asymmetry issues, lack of industrialization, and inadequate management ...

  2. (PDF) Agri-food Supply Chain Management: Literature Review

    The research articles and other materials related to the agri-food supply chain management were collected from online data bases like Scopus, EBSCO and Google Scholar for the period of 10 years ...

  3. A systematic literature review of the agro-food supply chain

    To this attempt, this paper introduces a novel Agri-Food Supply Chain digital twin (AFSC-DT) able to virtualize the agricultural, processing, warehousing, and distribution operations holistically from-field-to-consumer and estimate economic, logistic, environmental, safety, and nutritional indicators associated with any food order, assumed as ...

  4. A systematic literature review of food sustainable supply chain

    Selection of publications: Only papers written in English were selected, and the articles were selected in Scopus. This database is commonly used by management science researchers (or in related fields) for bibliometric analyses or systematic literature review methods in SCM (Soni and Kodali, 2011; Fahimnia et al., 2015).The Scopus database has greater coverage than the Web of Science, and it ...

  5. Agri-Food Supply Chain Management: Literature Review

    The purpose of this paper is to present a critical review of prior literature relating to agri-food supply chain management. An in-depth analysis has been carri. Skip to main content ... Pachayappan and Madanmohan, G., Agri-Food Supply Chain Management: Literature Review (December 26, 2017). Intelligent Information Management, 2017, Vol. 9, 68 ...

  6. Agri-Food Supply Chain Management: Bibliometric and Content Analyses

    Agri-food supply chain management (ASCM) research has gained attraction in recent years. This study aims to examine the knowledge structure, trace the evolution of, and propose future research directions for ASCM by a systematic literature review combined with bibliometric and content analyses. A total of 1770 articles were selected from Scopus for bibliometric analyses. We conducted a content ...

  7. Agri-Food Supply Chain Management: Literature Review

    The purpose of this paper is to present a critical review of prior literature relating to agri-food supply chain management. An in-depth analysis has been carried out to identify the influential information from the literature. This paper has identified gaps to be explored about agricultural supply chain management (SCM) practices which may be used by researchers to enrich theory construction ...

  8. Agri-Food Supply Chain Management: Literature Review

    Some other papers and reviews that are closer to the main subject of this paper include those related to food logistics and agri-food supply chain management such as Rajurkar and Jain (2011 ...

  9. Agri-fresh Supply Chain Management: A Systematic Literature Review

    The paper presents a systematic literature review of Agri-fresh supply chain management. This study emphasizes all the supply chain stages in the context of fruits and vegetables. A total of 184 relevant research publications from the year 2000 to mid-2020 were reviewed. The literature is classified based on year, across various countries, and ...

  10. Prospects, Challenges and Sustainability of the Agri-Food Supply Chain

    Taşkıner, T.; Bilgen, B. Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review. Logistics 2021, 5, 52. [Google Scholar] Srivastava, A.; Dashora, K. Application of Blockchain Technology for Agrifood Supply Chain Management: A Systematic Literature Review on Benefits and Challenges.

  11. Review Sustainable agrifood supply chains: Bibliometric, network and

    Finally, 69 studies concern the consumption and disposal phase, including the management of food waste, which refers to any food, and inedible parts of food, removed from the food supply chain needing to be recovered or disposed of (Östergren et al., 2014), as a result of the lack of value attributed to food commodities across all the agrifood ...

  12. Challenges in Food Supply Chain Management: Findings from Literature

    During the analysis of the articles we iteratively identified and refined the categories that allow for classifying the reviewed material. We identified four (input) categories that might be regarded as challenges and therefore as starting points for researchers to address subjects of food and agricultural supply chain management: (1) Food loss and waste (FLW), (2) supply chain disruptions ...

  13. Sustainability risk management in the agri-food supply chain

    Sustainability risk management in the supply chain is the key to a competitive organisation in the long term. The aim of this paper is to review current research on sustainable risk management in the Agri-food industry chain. These reviews were arranged in steps systematically, ranging from searching related to review of supply chain ...

  14. Digitalization and Future Agro-Food Supply Chain Management: A ...

    Achieving transition towards sustainable and resilient food systems is a critical issue on the current societal agenda. This study examined the potential contribution of digitalization of the food system to such transition by reviewing 76 relevant journal articles, indexed on the Scopus database, using the integrative literature review approach and descriptive content analysis with MAXQDA 2020 ...

  15. Supply chain resilience capability factors in agri-food supply chains

    As diseases, natural disasters, and man-made disruptions become more frequent and severe, enhancing the resilience of agri-food supply chain operations poses an increasing challenge.This study aims to identify and analyze the key capabilities and impact factors contributing to agri-food supply chain resilience (AFSCRE). By conducting a comprehensive literature review and engaging in expert ...

  16. Resilience in agri-food supply chains: a critical analysis of the

    Purpose. Resilience in agri-food supply chains (AFSCs) is an area of significant importance due to growing supply chain volatility. While the majority of research exploring supply chain resilience has originated from a supply chain management perspective, many other disciplines (such as environmental systems science and the social sciences) have also explored the topic.

  17. Agriculture Supply Chain Management: A Review (2010-2020)

    The Agricultural Revolution, or Third Agricultural Revolution, is the series of research technology development measures that increased agricultural production globally between 1950 and the late 1960 s, starting most notably in the late 1960 s. [1]. Keith Oliver first invented the word "supply chain management" in 1982.

  18. Collaboration and Sustainable Agri-Food Suply Chain: A Literature Review

    The objective of this paper is to review current research on sustainable supply chain and collaboration model in agri-food industry. Sustainability aspects that consist of economic, environment ...

  19. Agri-food Supply Chain Management: Literature Review

    Agro business, supply chain management (SCM) means reach agro products to the market in time. The future economic prosperity of Bangladesh depends largely on the prosperity of agriculture. And the success of agriculture depends on ensuring proper supply of agricultural products to the appropriate market. The study found that about 75% of the ...

  20. Big data for sustainable agri‐food supply chains: a review and future

    Research on agri-food supply chains (AFSCs) has attracted significant attention in recent years due to the challenges associated with sustainably feeding the global population. The purpose of this study is to review the potentials of big data for sustainable AFSCs. One hundred twenty-eight (128) journal articles were selected to identify how big data can contribute to the sustainable ...

  21. Identifying research advancements in supply chain risk management for

    This research aimed to investigate the development of supply chain risk management research on agri-food industries. These reviews were arranged in steps systematically, ranging from searching related to the review of SCRM paper, reviewing the general framework of SCRM and the framework of agri-food SCRM. Selection of literature review papers ...

  22. (PDF) Agri-food Supply Chain Management: Literature Review

    The research articles and other materials related to the agri-food supply chain management were collected from online data bases like Scopus, EBSCO and Google Scholar for the period of 10 years ...

  23. Sustainability risk management in the agri-food supply chain

    Choirun et al. (2020) review literature on sustainable risk management in the agri-food industry chain and propose a taxonomy comprising five typologies: economic; social; environmental; technical ...

  24. Blockchain technology in the agri-food supply chain: a systematic

    Blockchain technology (BCT) has emerged as a promising disruptive technology with significant applications in the agri-food supply chain (AFSC). This paper reviews the BCT's research trends, benefits, challenges, and applications in AFSC through systematic literature network analysis (SLNA). A total of 187 articles were selected through a systematic literature review of different reputed ...

  25. Blockchain enabled food supply chain management: A systematic

    Design/methodology/approach Considering the most significant aspects of blockchain adoption in the agri-food supply chain, this study attempts to develop an adoption model by using the extended ...