Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Research process
  • How to Write a Research Proposal | Examples & Templates

How to Write a Research Proposal | Examples & Templates

Published on 30 October 2022 by Shona McCombes and Tegan George. Revised on 13 June 2023.

Structure of a research proposal

A research proposal describes what you will investigate, why it’s important, and how you will conduct your research.

The format of a research proposal varies between fields, but most proposals will contain at least these elements:

Introduction

Literature review.

  • Research design

Reference list

While the sections may vary, the overall objective is always the same. A research proposal serves as a blueprint and guide for your research plan, helping you get organised and feel confident in the path forward you choose to take.

Table of contents

Research proposal purpose, research proposal examples, research design and methods, contribution to knowledge, research schedule, frequently asked questions.

Academics often have to write research proposals to get funding for their projects. As a student, you might have to write a research proposal as part of a grad school application , or prior to starting your thesis or dissertation .

In addition to helping you figure out what your research can look like, a proposal can also serve to demonstrate why your project is worth pursuing to a funder, educational institution, or supervisor.

Research proposal length

The length of a research proposal can vary quite a bit. A bachelor’s or master’s thesis proposal can be just a few pages, while proposals for PhD dissertations or research funding are usually much longer and more detailed. Your supervisor can help you determine the best length for your work.

One trick to get started is to think of your proposal’s structure as a shorter version of your thesis or dissertation , only without the results , conclusion and discussion sections.

Download our research proposal template

Prevent plagiarism, run a free check.

Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We’ve included a few for you below.

  • Example research proposal #1: ‘A Conceptual Framework for Scheduling Constraint Management’
  • Example research proposal #2: ‘ Medical Students as Mediators of Change in Tobacco Use’

Like your dissertation or thesis, the proposal will usually have a title page that includes:

  • The proposed title of your project
  • Your supervisor’s name
  • Your institution and department

The first part of your proposal is the initial pitch for your project. Make sure it succinctly explains what you want to do and why.

Your introduction should:

  • Introduce your topic
  • Give necessary background and context
  • Outline your  problem statement  and research questions

To guide your introduction , include information about:

  • Who could have an interest in the topic (e.g., scientists, policymakers)
  • How much is already known about the topic
  • What is missing from this current knowledge
  • What new insights your research will contribute
  • Why you believe this research is worth doing

As you get started, it’s important to demonstrate that you’re familiar with the most important research on your topic. A strong literature review  shows your reader that your project has a solid foundation in existing knowledge or theory. It also shows that you’re not simply repeating what other people have already done or said, but rather using existing research as a jumping-off point for your own.

In this section, share exactly how your project will contribute to ongoing conversations in the field by:

  • Comparing and contrasting the main theories, methods, and debates
  • Examining the strengths and weaknesses of different approaches
  • Explaining how will you build on, challenge, or synthesise prior scholarship

Following the literature review, restate your main  objectives . This brings the focus back to your own project. Next, your research design or methodology section will describe your overall approach, and the practical steps you will take to answer your research questions.

To finish your proposal on a strong note, explore the potential implications of your research for your field. Emphasise again what you aim to contribute and why it matters.

For example, your results might have implications for:

  • Improving best practices
  • Informing policymaking decisions
  • Strengthening a theory or model
  • Challenging popular or scientific beliefs
  • Creating a basis for future research

Last but not least, your research proposal must include correct citations for every source you have used, compiled in a reference list . To create citations quickly and easily, you can use our free APA citation generator .

Some institutions or funders require a detailed timeline of the project, asking you to forecast what you will do at each stage and how long it may take. While not always required, be sure to check the requirements of your project.

Here’s an example schedule to help you get started. You can also download a template at the button below.

Download our research schedule template

If you are applying for research funding, chances are you will have to include a detailed budget. This shows your estimates of how much each part of your project will cost.

Make sure to check what type of costs the funding body will agree to cover. For each item, include:

  • Cost : exactly how much money do you need?
  • Justification : why is this cost necessary to complete the research?
  • Source : how did you calculate the amount?

To determine your budget, think about:

  • Travel costs : do you need to go somewhere to collect your data? How will you get there, and how much time will you need? What will you do there (e.g., interviews, archival research)?
  • Materials : do you need access to any tools or technologies?
  • Help : do you need to hire any research assistants for the project? What will they do, and how much will you pay them?

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement.

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement , before your research objectives.

Research objectives are more specific than your research aim. They indicate the specific ways you’ll address the overarching aim.

A PhD, which is short for philosophiae doctor (doctor of philosophy in Latin), is the highest university degree that can be obtained. In a PhD, students spend 3–5 years writing a dissertation , which aims to make a significant, original contribution to current knowledge.

A PhD is intended to prepare students for a career as a researcher, whether that be in academia, the public sector, or the private sector.

A master’s is a 1- or 2-year graduate degree that can prepare you for a variety of careers.

All master’s involve graduate-level coursework. Some are research-intensive and intend to prepare students for further study in a PhD; these usually require their students to write a master’s thesis . Others focus on professional training for a specific career.

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. & George, T. (2023, June 13). How to Write a Research Proposal | Examples & Templates. Scribbr. Retrieved 1 April 2024, from https://www.scribbr.co.uk/the-research-process/research-proposal-explained/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a research methodology | steps & tips, what is a literature review | guide, template, & examples, how to write a results section | tips & examples.

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

The goal of a research proposal is twofold: to present and justify the need to study a research problem and to present the practical ways in which the proposed study should be conducted. The design elements and procedures for conducting research are governed by standards of the predominant discipline in which the problem resides, therefore, the guidelines for research proposals are more exacting and less formal than a general project proposal. Research proposals contain extensive literature reviews. They must provide persuasive evidence that a need exists for the proposed study. In addition to providing a rationale, a proposal describes detailed methodology for conducting the research consistent with requirements of the professional or academic field and a statement on anticipated outcomes and benefits derived from the study's completion.

Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005.

How to Approach Writing a Research Proposal

Your professor may assign the task of writing a research proposal for the following reasons:

  • Develop your skills in thinking about and designing a comprehensive research study;
  • Learn how to conduct a comprehensive review of the literature to determine that the research problem has not been adequately addressed or has been answered ineffectively and, in so doing, become better at locating pertinent scholarship related to your topic;
  • Improve your general research and writing skills;
  • Practice identifying the logical steps that must be taken to accomplish one's research goals;
  • Critically review, examine, and consider the use of different methods for gathering and analyzing data related to the research problem; and,
  • Nurture a sense of inquisitiveness within yourself and to help see yourself as an active participant in the process of conducting scholarly research.

A proposal should contain all the key elements involved in designing a completed research study, with sufficient information that allows readers to assess the validity and usefulness of your proposed study. The only elements missing from a research proposal are the findings of the study and your analysis of those findings. Finally, an effective proposal is judged on the quality of your writing and, therefore, it is important that your proposal is coherent, clear, and compelling.

Regardless of the research problem you are investigating and the methodology you choose, all research proposals must address the following questions:

  • What do you plan to accomplish? Be clear and succinct in defining the research problem and what it is you are proposing to investigate.
  • Why do you want to do the research? In addition to detailing your research design, you also must conduct a thorough review of the literature and provide convincing evidence that it is a topic worthy of in-depth study. A successful research proposal must answer the "So What?" question.
  • How are you going to conduct the research? Be sure that what you propose is doable. If you're having difficulty formulating a research problem to propose investigating, go here for strategies in developing a problem to study.

Common Mistakes to Avoid

  • Failure to be concise . A research proposal must be focused and not be "all over the map" or diverge into unrelated tangents without a clear sense of purpose.
  • Failure to cite landmark works in your literature review . Proposals should be grounded in foundational research that lays a foundation for understanding the development and scope of the the topic and its relevance.
  • Failure to delimit the contextual scope of your research [e.g., time, place, people, etc.]. As with any research paper, your proposed study must inform the reader how and in what ways the study will frame the problem.
  • Failure to develop a coherent and persuasive argument for the proposed research . This is critical. In many workplace settings, the research proposal is a formal document intended to argue for why a study should be funded.
  • Sloppy or imprecise writing, or poor grammar . Although a research proposal does not represent a completed research study, there is still an expectation that it is well-written and follows the style and rules of good academic writing.
  • Too much detail on minor issues, but not enough detail on major issues . Your proposal should focus on only a few key research questions in order to support the argument that the research needs to be conducted. Minor issues, even if valid, can be mentioned but they should not dominate the overall narrative.

Procter, Margaret. The Academic Proposal.  The Lab Report. University College Writing Centre. University of Toronto; Sanford, Keith. Information for Students: Writing a Research Proposal. Baylor University; Wong, Paul T. P. How to Write a Research Proposal. International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences, Articles, and Books. The Writing Lab and The OWL. Purdue University; Writing a Research Proposal. University Library. University of Illinois at Urbana-Champaign.

Structure and Writing Style

Beginning the Proposal Process

As with writing most college-level academic papers, research proposals are generally organized the same way throughout most social science disciplines. The text of proposals generally vary in length between ten and thirty-five pages, followed by the list of references. However, before you begin, read the assignment carefully and, if anything seems unclear, ask your professor whether there are any specific requirements for organizing and writing the proposal.

A good place to begin is to ask yourself a series of questions:

  • What do I want to study?
  • Why is the topic important?
  • How is it significant within the subject areas covered in my class?
  • What problems will it help solve?
  • How does it build upon [and hopefully go beyond] research already conducted on the topic?
  • What exactly should I plan to do, and can I get it done in the time available?

In general, a compelling research proposal should document your knowledge of the topic and demonstrate your enthusiasm for conducting the study. Approach it with the intention of leaving your readers feeling like, "Wow, that's an exciting idea and I can’t wait to see how it turns out!"

Most proposals should include the following sections:

I.  Introduction

In the real world of higher education, a research proposal is most often written by scholars seeking grant funding for a research project or it's the first step in getting approval to write a doctoral dissertation. Even if this is just a course assignment, treat your introduction as the initial pitch of an idea based on a thorough examination of the significance of a research problem. After reading the introduction, your readers should not only have an understanding of what you want to do, but they should also be able to gain a sense of your passion for the topic and to be excited about the study's possible outcomes. Note that most proposals do not include an abstract [summary] before the introduction.

Think about your introduction as a narrative written in two to four paragraphs that succinctly answers the following four questions :

  • What is the central research problem?
  • What is the topic of study related to that research problem?
  • What methods should be used to analyze the research problem?
  • Answer the "So What?" question by explaining why this is important research, what is its significance, and why should someone reading the proposal care about the outcomes of the proposed study?

II.  Background and Significance

This is where you explain the scope and context of your proposal and describe in detail why it's important. It can be melded into your introduction or you can create a separate section to help with the organization and narrative flow of your proposal. Approach writing this section with the thought that you can’t assume your readers will know as much about the research problem as you do. Note that this section is not an essay going over everything you have learned about the topic; instead, you must choose what is most relevant in explaining the aims of your research.

To that end, while there are no prescribed rules for establishing the significance of your proposed study, you should attempt to address some or all of the following:

  • State the research problem and give a more detailed explanation about the purpose of the study than what you stated in the introduction. This is particularly important if the problem is complex or multifaceted .
  • Present the rationale of your proposed study and clearly indicate why it is worth doing; be sure to answer the "So What? question [i.e., why should anyone care?].
  • Describe the major issues or problems examined by your research. This can be in the form of questions to be addressed. Be sure to note how your proposed study builds on previous assumptions about the research problem.
  • Explain the methods you plan to use for conducting your research. Clearly identify the key sources you intend to use and explain how they will contribute to your analysis of the topic.
  • Describe the boundaries of your proposed research in order to provide a clear focus. Where appropriate, state not only what you plan to study, but what aspects of the research problem will be excluded from the study.
  • If necessary, provide definitions of key concepts, theories, or terms.

III.  Literature Review

Connected to the background and significance of your study is a section of your proposal devoted to a more deliberate review and synthesis of prior studies related to the research problem under investigation . The purpose here is to place your project within the larger whole of what is currently being explored, while at the same time, demonstrating to your readers that your work is original and innovative. Think about what questions other researchers have asked, what methodological approaches they have used, and what is your understanding of their findings and, when stated, their recommendations. Also pay attention to any suggestions for further research.

Since a literature review is information dense, it is crucial that this section is intelligently structured to enable a reader to grasp the key arguments underpinning your proposed study in relation to the arguments put forth by other researchers. A good strategy is to break the literature into "conceptual categories" [themes] rather than systematically or chronologically describing groups of materials one at a time. Note that conceptual categories generally reveal themselves after you have read most of the pertinent literature on your topic so adding new categories is an on-going process of discovery as you review more studies. How do you know you've covered the key conceptual categories underlying the research literature? Generally, you can have confidence that all of the significant conceptual categories have been identified if you start to see repetition in the conclusions or recommendations that are being made.

NOTE: Do not shy away from challenging the conclusions made in prior research as a basis for supporting the need for your proposal. Assess what you believe is missing and state how previous research has failed to adequately examine the issue that your study addresses. Highlighting the problematic conclusions strengthens your proposal. For more information on writing literature reviews, GO HERE .

To help frame your proposal's review of prior research, consider the "five C’s" of writing a literature review:

  • Cite , so as to keep the primary focus on the literature pertinent to your research problem.
  • Compare the various arguments, theories, methodologies, and findings expressed in the literature: what do the authors agree on? Who applies similar approaches to analyzing the research problem?
  • Contrast the various arguments, themes, methodologies, approaches, and controversies expressed in the literature: describe what are the major areas of disagreement, controversy, or debate among scholars?
  • Critique the literature: Which arguments are more persuasive, and why? Which approaches, findings, and methodologies seem most reliable, valid, or appropriate, and why? Pay attention to the verbs you use to describe what an author says/does [e.g., asserts, demonstrates, argues, etc.].
  • Connect the literature to your own area of research and investigation: how does your own work draw upon, depart from, synthesize, or add a new perspective to what has been said in the literature?

IV.  Research Design and Methods

This section must be well-written and logically organized because you are not actually doing the research, yet, your reader must have confidence that you have a plan worth pursuing . The reader will never have a study outcome from which to evaluate whether your methodological choices were the correct ones. Thus, the objective here is to convince the reader that your overall research design and proposed methods of analysis will correctly address the problem and that the methods will provide the means to effectively interpret the potential results. Your design and methods should be unmistakably tied to the specific aims of your study.

Describe the overall research design by building upon and drawing examples from your review of the literature. Consider not only methods that other researchers have used, but methods of data gathering that have not been used but perhaps could be. Be specific about the methodological approaches you plan to undertake to obtain information, the techniques you would use to analyze the data, and the tests of external validity to which you commit yourself [i.e., the trustworthiness by which you can generalize from your study to other people, places, events, and/or periods of time].

When describing the methods you will use, be sure to cover the following:

  • Specify the research process you will undertake and the way you will interpret the results obtained in relation to the research problem. Don't just describe what you intend to achieve from applying the methods you choose, but state how you will spend your time while applying these methods [e.g., coding text from interviews to find statements about the need to change school curriculum; running a regression to determine if there is a relationship between campaign advertising on social media sites and election outcomes in Europe ].
  • Keep in mind that the methodology is not just a list of tasks; it is a deliberate argument as to why techniques for gathering information add up to the best way to investigate the research problem. This is an important point because the mere listing of tasks to be performed does not demonstrate that, collectively, they effectively address the research problem. Be sure you clearly explain this.
  • Anticipate and acknowledge any potential barriers and pitfalls in carrying out your research design and explain how you plan to address them. No method applied to research in the social and behavioral sciences is perfect, so you need to describe where you believe challenges may exist in obtaining data or accessing information. It's always better to acknowledge this than to have it brought up by your professor!

V.  Preliminary Suppositions and Implications

Just because you don't have to actually conduct the study and analyze the results, doesn't mean you can skip talking about the analytical process and potential implications . The purpose of this section is to argue how and in what ways you believe your research will refine, revise, or extend existing knowledge in the subject area under investigation. Depending on the aims and objectives of your study, describe how the anticipated results will impact future scholarly research, theory, practice, forms of interventions, or policy making. Note that such discussions may have either substantive [a potential new policy], theoretical [a potential new understanding], or methodological [a potential new way of analyzing] significance.   When thinking about the potential implications of your study, ask the following questions:

  • What might the results mean in regards to challenging the theoretical framework and underlying assumptions that support the study?
  • What suggestions for subsequent research could arise from the potential outcomes of the study?
  • What will the results mean to practitioners in the natural settings of their workplace, organization, or community?
  • Will the results influence programs, methods, and/or forms of intervention?
  • How might the results contribute to the solution of social, economic, or other types of problems?
  • Will the results influence policy decisions?
  • In what way do individuals or groups benefit should your study be pursued?
  • What will be improved or changed as a result of the proposed research?
  • How will the results of the study be implemented and what innovations or transformative insights could emerge from the process of implementation?

NOTE:   This section should not delve into idle speculation, opinion, or be formulated on the basis of unclear evidence . The purpose is to reflect upon gaps or understudied areas of the current literature and describe how your proposed research contributes to a new understanding of the research problem should the study be implemented as designed.

ANOTHER NOTE : This section is also where you describe any potential limitations to your proposed study. While it is impossible to highlight all potential limitations because the study has yet to be conducted, you still must tell the reader where and in what form impediments may arise and how you plan to address them.

VI.  Conclusion

The conclusion reiterates the importance or significance of your proposal and provides a brief summary of the entire study . This section should be only one or two paragraphs long, emphasizing why the research problem is worth investigating, why your research study is unique, and how it should advance existing knowledge.

Someone reading this section should come away with an understanding of:

  • Why the study should be done;
  • The specific purpose of the study and the research questions it attempts to answer;
  • The decision for why the research design and methods used where chosen over other options;
  • The potential implications emerging from your proposed study of the research problem; and
  • A sense of how your study fits within the broader scholarship about the research problem.

VII.  Citations

As with any scholarly research paper, you must cite the sources you used . In a standard research proposal, this section can take two forms, so consult with your professor about which one is preferred.

  • References -- a list of only the sources you actually used in creating your proposal.
  • Bibliography -- a list of everything you used in creating your proposal, along with additional citations to any key sources relevant to understanding the research problem.

In either case, this section should testify to the fact that you did enough preparatory work to ensure the project will complement and not just duplicate the efforts of other researchers. It demonstrates to the reader that you have a thorough understanding of prior research on the topic.

Most proposal formats have you start a new page and use the heading "References" or "Bibliography" centered at the top of the page. Cited works should always use a standard format that follows the writing style advised by the discipline of your course [e.g., education=APA; history=Chicago] or that is preferred by your professor. This section normally does not count towards the total page length of your research proposal.

Develop a Research Proposal: Writing the Proposal. Office of Library Information Services. Baltimore County Public Schools; Heath, M. Teresa Pereira and Caroline Tynan. “Crafting a Research Proposal.” The Marketing Review 10 (Summer 2010): 147-168; Jones, Mark. “Writing a Research Proposal.” In MasterClass in Geography Education: Transforming Teaching and Learning . Graham Butt, editor. (New York: Bloomsbury Academic, 2015), pp. 113-127; Juni, Muhamad Hanafiah. “Writing a Research Proposal.” International Journal of Public Health and Clinical Sciences 1 (September/October 2014): 229-240; Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005; Procter, Margaret. The Academic Proposal. The Lab Report. University College Writing Centre. University of Toronto; Punch, Keith and Wayne McGowan. "Developing and Writing a Research Proposal." In From Postgraduate to Social Scientist: A Guide to Key Skills . Nigel Gilbert, ed. (Thousand Oaks, CA: Sage, 2006), 59-81; Wong, Paul T. P. How to Write a Research Proposal. International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences , Articles, and Books. The Writing Lab and The OWL. Purdue University; Writing a Research Proposal. University Library. University of Illinois at Urbana-Champaign.

  • << Previous: Writing a Reflective Paper
  • Next: Generative AI and Writing >>
  • Last Updated: Mar 6, 2024 1:00 PM
  • URL: https://libguides.usc.edu/writingguide/assignments

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

11.2 Steps in Developing a Research Proposal

Learning objectives.

  • Identify the steps in developing a research proposal.
  • Choose a topic and formulate a research question and working thesis.
  • Develop a research proposal.

Writing a good research paper takes time, thought, and effort. Although this assignment is challenging, it is manageable. Focusing on one step at a time will help you develop a thoughtful, informative, well-supported research paper.

Your first step is to choose a topic and then to develop research questions, a working thesis, and a written research proposal. Set aside adequate time for this part of the process. Fully exploring ideas will help you build a solid foundation for your paper.

Choosing a Topic

When you choose a topic for a research paper, you are making a major commitment. Your choice will help determine whether you enjoy the lengthy process of research and writing—and whether your final paper fulfills the assignment requirements. If you choose your topic hastily, you may later find it difficult to work with your topic. By taking your time and choosing carefully, you can ensure that this assignment is not only challenging but also rewarding.

Writers understand the importance of choosing a topic that fulfills the assignment requirements and fits the assignment’s purpose and audience. (For more information about purpose and audience, see Chapter 6 “Writing Paragraphs: Separating Ideas and Shaping Content” .) Choosing a topic that interests you is also crucial. You instructor may provide a list of suggested topics or ask that you develop a topic on your own. In either case, try to identify topics that genuinely interest you.

After identifying potential topic ideas, you will need to evaluate your ideas and choose one topic to pursue. Will you be able to find enough information about the topic? Can you develop a paper about this topic that presents and supports your original ideas? Is the topic too broad or too narrow for the scope of the assignment? If so, can you modify it so it is more manageable? You will ask these questions during this preliminary phase of the research process.

Identifying Potential Topics

Sometimes, your instructor may provide a list of suggested topics. If so, you may benefit from identifying several possibilities before committing to one idea. It is important to know how to narrow down your ideas into a concise, manageable thesis. You may also use the list as a starting point to help you identify additional, related topics. Discussing your ideas with your instructor will help ensure that you choose a manageable topic that fits the requirements of the assignment.

In this chapter, you will follow a writer named Jorge, who is studying health care administration, as he prepares a research paper. You will also plan, research, and draft your own research paper.

Jorge was assigned to write a research paper on health and the media for an introductory course in health care. Although a general topic was selected for the students, Jorge had to decide which specific issues interested him. He brainstormed a list of possibilities.

If you are writing a research paper for a specialized course, look back through your notes and course activities. Identify reading assignments and class discussions that especially engaged you. Doing so can help you identify topics to pursue.

  • Health Maintenance Organizations (HMOs) in the news
  • Sexual education programs
  • Hollywood and eating disorders
  • Americans’ access to public health information
  • Media portrayal of health care reform bill
  • Depictions of drugs on television
  • The effect of the Internet on mental health
  • Popularized diets (such as low-carbohydrate diets)
  • Fear of pandemics (bird flu, HINI, SARS)
  • Electronic entertainment and obesity
  • Advertisements for prescription drugs
  • Public education and disease prevention

Set a timer for five minutes. Use brainstorming or idea mapping to create a list of topics you would be interested in researching for a paper about the influence of the Internet on social networking. Do you closely follow the media coverage of a particular website, such as Twitter? Would you like to learn more about a certain industry, such as online dating? Which social networking sites do you and your friends use? List as many ideas related to this topic as you can.

Narrowing Your Topic

Once you have a list of potential topics, you will need to choose one as the focus of your essay. You will also need to narrow your topic. Most writers find that the topics they listed during brainstorming or idea mapping are broad—too broad for the scope of the assignment. Working with an overly broad topic, such as sexual education programs or popularized diets, can be frustrating and overwhelming. Each topic has so many facets that it would be impossible to cover them all in a college research paper. However, more specific choices, such as the pros and cons of sexual education in kids’ television programs or the physical effects of the South Beach diet, are specific enough to write about without being too narrow to sustain an entire research paper.

A good research paper provides focused, in-depth information and analysis. If your topic is too broad, you will find it difficult to do more than skim the surface when you research it and write about it. Narrowing your focus is essential to making your topic manageable. To narrow your focus, explore your topic in writing, conduct preliminary research, and discuss both the topic and the research with others.

Exploring Your Topic in Writing

“How am I supposed to narrow my topic when I haven’t even begun researching yet?” In fact, you may already know more than you realize. Review your list and identify your top two or three topics. Set aside some time to explore each one through freewriting. (For more information about freewriting, see Chapter 8 “The Writing Process: How Do I Begin?” .) Simply taking the time to focus on your topic may yield fresh angles.

Jorge knew that he was especially interested in the topic of diet fads, but he also knew that it was much too broad for his assignment. He used freewriting to explore his thoughts so he could narrow his topic. Read Jorge’s ideas.

Conducting Preliminary Research

Another way writers may focus a topic is to conduct preliminary research . Like freewriting, exploratory reading can help you identify interesting angles. Surfing the web and browsing through newspaper and magazine articles are good ways to start. Find out what people are saying about your topic on blogs and online discussion groups. Discussing your topic with others can also inspire you. Talk about your ideas with your classmates, your friends, or your instructor.

Jorge’s freewriting exercise helped him realize that the assigned topic of health and the media intersected with a few of his interests—diet, nutrition, and obesity. Preliminary online research and discussions with his classmates strengthened his impression that many people are confused or misled by media coverage of these subjects.

Jorge decided to focus his paper on a topic that had garnered a great deal of media attention—low-carbohydrate diets. He wanted to find out whether low-carbohydrate diets were as effective as their proponents claimed.

Writing at Work

At work, you may need to research a topic quickly to find general information. This information can be useful in understanding trends in a given industry or generating competition. For example, a company may research a competitor’s prices and use the information when pricing their own product. You may find it useful to skim a variety of reliable sources and take notes on your findings.

The reliability of online sources varies greatly. In this exploratory phase of your research, you do not need to evaluate sources as closely as you will later. However, use common sense as you refine your paper topic. If you read a fascinating blog comment that gives you a new idea for your paper, be sure to check out other, more reliable sources as well to make sure the idea is worth pursuing.

Review the list of topics you created in Note 11.18 “Exercise 1” and identify two or three topics you would like to explore further. For each of these topics, spend five to ten minutes writing about the topic without stopping. Then review your writing to identify possible areas of focus.

Set aside time to conduct preliminary research about your potential topics. Then choose a topic to pursue for your research paper.

Collaboration

Please share your topic list with a classmate. Select one or two topics on his or her list that you would like to learn more about and return it to him or her. Discuss why you found the topics interesting, and learn which of your topics your classmate selected and why.

A Plan for Research

Your freewriting and preliminary research have helped you choose a focused, manageable topic for your research paper. To work with your topic successfully, you will need to determine what exactly you want to learn about it—and later, what you want to say about it. Before you begin conducting in-depth research, you will further define your focus by developing a research question , a working thesis, and a research proposal.

Formulating a Research Question

In forming a research question, you are setting a goal for your research. Your main research question should be substantial enough to form the guiding principle of your paper—but focused enough to guide your research. A strong research question requires you not only to find information but also to put together different pieces of information, interpret and analyze them, and figure out what you think. As you consider potential research questions, ask yourself whether they would be too hard or too easy to answer.

To determine your research question, review the freewriting you completed earlier. Skim through books, articles, and websites and list the questions you have. (You may wish to use the 5WH strategy to help you formulate questions. See Chapter 8 “The Writing Process: How Do I Begin?” for more information about 5WH questions.) Include simple, factual questions and more complex questions that would require analysis and interpretation. Determine your main question—the primary focus of your paper—and several subquestions that you will need to research to answer your main question.

Here are the research questions Jorge will use to focus his research. Notice that his main research question has no obvious, straightforward answer. Jorge will need to research his subquestions, which address narrower topics, to answer his main question.

Using the topic you selected in Note 11.24 “Exercise 2” , write your main research question and at least four to five subquestions. Check that your main research question is appropriately complex for your assignment.

Constructing a Working ThesIs

A working thesis concisely states a writer’s initial answer to the main research question. It does not merely state a fact or present a subjective opinion. Instead, it expresses a debatable idea or claim that you hope to prove through additional research. Your working thesis is called a working thesis for a reason—it is subject to change. As you learn more about your topic, you may change your thinking in light of your research findings. Let your working thesis serve as a guide to your research, but do not be afraid to modify it based on what you learn.

Jorge began his research with a strong point of view based on his preliminary writing and research. Read his working thesis statement, which presents the point he will argue. Notice how it states Jorge’s tentative answer to his research question.

One way to determine your working thesis is to consider how you would complete sentences such as I believe or My opinion is . However, keep in mind that academic writing generally does not use first-person pronouns. These statements are useful starting points, but formal research papers use an objective voice.

Write a working thesis statement that presents your preliminary answer to the research question you wrote in Note 11.27 “Exercise 3” . Check that your working thesis statement presents an idea or claim that could be supported or refuted by evidence from research.

Creating a Research Proposal

A research proposal is a brief document—no more than one typed page—that summarizes the preliminary work you have completed. Your purpose in writing it is to formalize your plan for research and present it to your instructor for feedback. In your research proposal, you will present your main research question, related subquestions, and working thesis. You will also briefly discuss the value of researching this topic and indicate how you plan to gather information.

When Jorge began drafting his research proposal, he realized that he had already created most of the pieces he needed. However, he knew he also had to explain how his research would be relevant to other future health care professionals. In addition, he wanted to form a general plan for doing the research and identifying potentially useful sources. Read Jorge’s research proposal.

Read Jorge's research proposal

Before you begin a new project at work, you may have to develop a project summary document that states the purpose of the project, explains why it would be a wise use of company resources, and briefly outlines the steps involved in completing the project. This type of document is similar to a research proposal. Both documents define and limit a project, explain its value, discuss how to proceed, and identify what resources you will use.

Writing Your Own Research Proposal

Now you may write your own research proposal, if you have not done so already. Follow the guidelines provided in this lesson.

Key Takeaways

  • Developing a research proposal involves the following preliminary steps: identifying potential ideas, choosing ideas to explore further, choosing and narrowing a topic, formulating a research question, and developing a working thesis.
  • A good topic for a research paper interests the writer and fulfills the requirements of the assignment.
  • Defining and narrowing a topic helps writers conduct focused, in-depth research.
  • Writers conduct preliminary research to identify possible topics and research questions and to develop a working thesis.
  • A good research question interests readers, is neither too broad nor too narrow, and has no obvious answer.
  • A good working thesis expresses a debatable idea or claim that can be supported with evidence from research.
  • Writers create a research proposal to present their topic, main research question, subquestions, and working thesis to an instructor for approval or feedback.

Writing for Success Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Proposal – Types, Template and Example

Research Proposal – Types, Template and Example

Table of Contents

Research Proposal

Research Proposal

Research proposal is a document that outlines a proposed research project . It is typically written by researchers, scholars, or students who intend to conduct research to address a specific research question or problem.

Types of Research Proposal

Research proposals can vary depending on the nature of the research project and the specific requirements of the funding agency, academic institution, or research program. Here are some common types of research proposals:

Academic Research Proposal

This is the most common type of research proposal, which is prepared by students, scholars, or researchers to seek approval and funding for an academic research project. It includes all the essential components mentioned earlier, such as the introduction, literature review , methodology , and expected outcomes.

Grant Proposal

A grant proposal is specifically designed to secure funding from external sources, such as government agencies, foundations, or private organizations. It typically includes additional sections, such as a detailed budget, project timeline, evaluation plan, and a description of the project’s alignment with the funding agency’s priorities and objectives.

Dissertation or Thesis Proposal

Students pursuing a master’s or doctoral degree often need to submit a proposal outlining their intended research for their dissertation or thesis. These proposals are usually more extensive and comprehensive, including an in-depth literature review, theoretical framework, research questions or hypotheses, and a detailed methodology.

Research Project Proposal

This type of proposal is often prepared by researchers or research teams within an organization or institution. It outlines a specific research project that aims to address a particular problem, explore a specific area of interest, or provide insights for decision-making. Research project proposals may include sections on project management, collaboration, and dissemination of results.

Research Fellowship Proposal

Researchers or scholars applying for research fellowships may be required to submit a proposal outlining their proposed research project. These proposals often emphasize the novelty and significance of the research and its alignment with the goals and objectives of the fellowship program.

Collaborative Research Proposal

In cases where researchers from multiple institutions or disciplines collaborate on a research project, a collaborative research proposal is prepared. This proposal highlights the objectives, responsibilities, and contributions of each collaborator, as well as the overall research plan and coordination mechanisms.

Research Proposal Outline

A research proposal typically follows a standard outline that helps structure the document and ensure all essential components are included. While the specific headings and subheadings may vary slightly depending on the requirements of your institution or funding agency, the following outline provides a general structure for a research proposal:

  • Title of the research proposal
  • Name of the researcher(s) or principal investigator(s)
  • Affiliation or institution
  • Date of submission
  • A concise summary of the research proposal, typically limited to 200-300 words.
  • Briefly introduce the research problem or question, state the objectives, summarize the methodology, and highlight the expected outcomes or significance of the research.
  • Provide an overview of the subject area and the specific research problem or question.
  • Present relevant background information, theories, or concepts to establish the need for the research.
  • Clearly state the research objectives or research questions that the study aims to address.
  • Indicate the significance or potential contributions of the research.
  • Summarize and analyze relevant studies, theories, or scholarly works.
  • Identify research gaps or unresolved issues that your study intends to address.
  • Highlight the novelty or uniqueness of your research.
  • Describe the overall approach or research design that will be used (e.g., experimental, qualitative, quantitative).
  • Justify the chosen approach based on the research objectives and question.
  • Explain how data will be collected (e.g., surveys, interviews, experiments).
  • Describe the sampling strategy and sample size, if applicable.
  • Address any ethical considerations related to data collection.
  • Outline the data analysis techniques or statistical methods that will be applied.
  • Explain how the data will be interpreted and analyzed to answer the research question(s).
  • Provide a detailed schedule or timeline that outlines the various stages of the research project.
  • Specify the estimated duration for each stage, including data collection, analysis, and report writing.
  • State the potential outcomes or results of the research.
  • Discuss the potential significance or contributions of the study to the field.
  • Address any potential limitations or challenges that may be encountered.
  • Identify the resources required to conduct the research, such as funding, equipment, or access to data.
  • Specify any collaborations or partnerships necessary for the successful completion of the study.
  • Include a list of cited references in the appropriate citation style (e.g., APA, MLA).

———————————————————————————————–

Research Proposal Example Template

Here’s an example of a research proposal to give you an idea of how it can be structured:

Title: The Impact of Social Media on Adolescent Well-being: A Mixed-Methods Study

This research proposal aims to investigate the impact of social media on the well-being of adolescents. The study will employ a mixed-methods approach, combining quantitative surveys and qualitative interviews to gather comprehensive data. The research objectives include examining the relationship between social media use and mental health, exploring the role of peer influence in shaping online behaviors, and identifying strategies for promoting healthy social media use among adolescents. The findings of this study will contribute to the understanding of the effects of social media on adolescent well-being and inform the development of targeted interventions.

1. Introduction

1.1 Background and Context:

Adolescents today are immersed in social media platforms, which have become integral to their daily lives. However, concerns have been raised about the potential negative impact of social media on their well-being, including increased rates of depression, anxiety, and body dissatisfaction. It is crucial to investigate this phenomenon further and understand the underlying mechanisms to develop effective strategies for promoting healthy social media use among adolescents.

1.2 Research Objectives:

The main objectives of this study are:

  • To examine the association between social media use and mental health outcomes among adolescents.
  • To explore the influence of peer relationships and social comparison on online behaviors.
  • To identify strategies and interventions to foster positive social media use and enhance adolescent well-being.

2. Literature Review

Extensive research has been conducted on the impact of social media on adolescents. Existing literature suggests that excessive social media use can contribute to negative outcomes, such as low self-esteem, cyberbullying, and addictive behaviors. However, some studies have also highlighted the positive aspects of social media, such as providing opportunities for self-expression and social support. This study will build upon this literature by incorporating both quantitative and qualitative approaches to gain a more nuanced understanding of the relationship between social media and adolescent well-being.

3. Methodology

3.1 Research Design:

This study will adopt a mixed-methods approach, combining quantitative surveys and qualitative interviews. The quantitative phase will involve administering standardized questionnaires to a representative sample of adolescents to assess their social media use, mental health indicators, and perceived social support. The qualitative phase will include in-depth interviews with a subset of participants to explore their experiences, motivations, and perceptions related to social media use.

3.2 Data Collection Methods:

Quantitative data will be collected through an online survey distributed to schools in the target region. The survey will include validated scales to measure social media use, mental health outcomes, and perceived social support. Qualitative data will be collected through semi-structured interviews with a purposive sample of participants. The interviews will be audio-recorded and transcribed for thematic analysis.

3.3 Data Analysis:

Quantitative data will be analyzed using descriptive statistics and regression analysis to examine the relationships between variables. Qualitative data will be analyzed thematically to identify common themes and patterns within participants’ narratives. Integration of quantitative and qualitative findings will provide a comprehensive understanding of the research questions.

4. Timeline

The research project will be conducted over a period of 12 months, divided into specific phases, including literature review, study design, data collection, analysis, and report writing. A detailed timeline outlining the key milestones and activities is provided in Appendix A.

5. Expected Outcomes and Significance

This study aims to contribute to the existing literature on the impact of social media on adolescent well-being by employing a mixed-methods approach. The findings will inform the development of evidence-based interventions and guidelines to promote healthy social media use among adolescents. This research has the potential to benefit adolescents, parents, educators, and policymakers by providing insights into the complex relationship between social media and well-being and offering strategies for fostering positive online experiences.

6. Resources

The resources required for this research include access to a representative sample of adolescents, research assistants for data collection, statistical software for data analysis, and funding to cover survey administration and participant incentives. Ethical considerations will be taken into account, ensuring participant confidentiality and obtaining informed consent.

7. References

Research Proposal Writing Guide

Writing a research proposal can be a complex task, but with proper guidance and organization, you can create a compelling and well-structured proposal. Here’s a step-by-step guide to help you through the process:

  • Understand the requirements: Familiarize yourself with the guidelines and requirements provided by your institution, funding agency, or program. Pay attention to formatting, page limits, specific sections or headings, and any other instructions.
  • Identify your research topic: Choose a research topic that aligns with your interests, expertise, and the goals of your program or funding opportunity. Ensure that your topic is specific, focused, and relevant to the field of study.
  • Conduct a literature review : Review existing literature and research relevant to your topic. Identify key theories, concepts, methodologies, and findings related to your research question. This will help you establish the context, identify research gaps, and demonstrate the significance of your proposed study.
  • Define your research objectives and research question(s): Clearly state the objectives you aim to achieve with your research. Formulate research questions that address the gaps identified in the literature review. Your research objectives and questions should be specific, measurable, achievable, relevant, and time-bound (SMART).
  • Develop a research methodology: Determine the most appropriate research design and methodology for your study. Consider whether quantitative, qualitative, or mixed-methods approaches will best address your research question(s). Describe the data collection methods, sampling strategy, data analysis techniques, and any ethical considerations associated with your research.
  • Create a research plan and timeline: Outline the various stages of your research project, including tasks, milestones, and deadlines. Develop a realistic timeline that considers factors such as data collection, analysis, and report writing. This plan will help you stay organized and manage your time effectively throughout the research process.
  • A. Introduction: Provide background information on the research problem, highlight its significance, and introduce your research objectives and questions.
  • B. Literature review: Summarize relevant literature, identify gaps, and justify the need for your proposed research.
  • C . Methodology: Describe your research design, data collection methods, sampling strategy, data analysis techniques, and any ethical considerations.
  • D . Expected outcomes and significance: Explain the potential outcomes, contributions, and implications of your research.
  • E. Resources: Identify the resources required to conduct your research, such as funding, equipment, or access to data.
  • F . References: Include a list of cited references in the appropriate citation style.
  • Revise and proofread: Review your proposal for clarity, coherence, and logical flow. Check for grammar and spelling errors. Seek feedback from mentors, colleagues, or advisors to refine and improve your proposal.
  • Finalize and submit: Make any necessary revisions based on feedback and finalize your research proposal. Ensure that you have met all the requirements and formatting guidelines. Submit your proposal within the specified deadline.

Research Proposal Length

The length of a research proposal can vary depending on the specific guidelines provided by your institution or funding agency. However, research proposals typically range from 1,500 to 3,000 words, excluding references and any additional supporting documents.

Purpose of Research Proposal

The purpose of a research proposal is to outline and communicate your research project to others, such as academic institutions, funding agencies, or potential collaborators. It serves several important purposes:

  • Demonstrate the significance of the research: A research proposal explains the importance and relevance of your research project. It outlines the research problem or question, highlights the gaps in existing knowledge, and explains how your study will contribute to the field. By clearly articulating the significance of your research, you can convince others of its value and potential impact.
  • Provide a clear research plan: A research proposal outlines the methodology, design, and approach you will use to conduct your study. It describes the research objectives, data collection methods, data analysis techniques, and potential outcomes. By presenting a clear research plan, you demonstrate that your study is well-thought-out, feasible, and likely to produce meaningful results.
  • Secure funding or support: For researchers seeking funding or support for their projects, a research proposal is essential. It allows you to make a persuasive case for why your research is deserving of financial resources or institutional backing. The proposal explains the budgetary requirements, resources needed, and potential benefits of the research, helping you secure the necessary funding or support.
  • Seek feedback and guidance: Presenting a research proposal provides an opportunity to receive feedback and guidance from experts in your field. It allows you to engage in discussions and receive suggestions for refining your research plan, improving the methodology, or addressing any potential limitations. This feedback can enhance the quality of your study and increase its chances of success.
  • Establish ethical considerations: A research proposal also addresses ethical considerations associated with your study. It outlines how you will ensure participant confidentiality, obtain informed consent, and adhere to ethical guidelines and regulations. By demonstrating your awareness and commitment to ethical research practices, you build trust and credibility in your proposed study.

Importance of Research Proposal

The research proposal holds significant importance in the research process. Here are some key reasons why research proposals are important:

  • Planning and organization: A research proposal requires careful planning and organization of your research project. It forces you to think through the research objectives, research questions, methodology, and potential outcomes before embarking on the actual study. This planning phase helps you establish a clear direction and framework for your research, ensuring that your efforts are focused and purposeful.
  • Demonstrating the significance of the research: A research proposal allows you to articulate the significance and relevance of your study. By providing a thorough literature review and clearly defining the research problem or question, you can showcase the gaps in existing knowledge that your research aims to address. This demonstrates to others, such as funding agencies or academic institutions, why your research is important and deserving of support.
  • Obtaining funding and resources: Research proposals are often required to secure funding for your research project. Funding agencies and organizations need to evaluate the feasibility and potential impact of the proposed research before allocating resources. A well-crafted research proposal helps convince funders of the value of your research and increases the likelihood of securing financial support, grants, or scholarships.
  • Receiving feedback and guidance: Presenting a research proposal provides an opportunity to seek feedback and guidance from experts in your field. By sharing your research plan and objectives with others, you can benefit from their insights and suggestions. This feedback can help refine your research design, strengthen your methodology, and ensure that your study is rigorous and well-informed.
  • Ethical considerations: A research proposal addresses ethical considerations associated with your study. It outlines how you will protect the rights and welfare of participants, maintain confidentiality, obtain informed consent, and adhere to ethical guidelines and regulations. This emphasis on ethical practices ensures that your research is conducted responsibly and with integrity.
  • Enhancing collaboration and partnerships: A research proposal can facilitate collaborations and partnerships with other researchers, institutions, or organizations. When presenting your research plan, you may attract the interest of potential collaborators who share similar research interests or possess complementary expertise. Collaborative partnerships can enrich your study, expand your resources, and foster knowledge exchange.
  • Establishing a research trajectory: A research proposal serves as a foundation for your research project. Once approved, it becomes a roadmap that guides your study’s implementation, data collection, analysis, and reporting. It helps maintain focus and ensures that your research stays on track and aligned with the initial objectives.

When to Write Research Proposal

The timing of when to write a research proposal can vary depending on the specific requirements and circumstances. However, here are a few common situations when it is appropriate to write a research proposal:

  • Academic research: If you are a student pursuing a research degree, such as a Ph.D. or Master’s by research, you will typically be required to write a research proposal as part of the application process. This is usually done before starting the research program to outline your proposed study and seek approval from the academic institution.
  • Funding applications: When applying for research grants, scholarships, or funding from organizations or institutions, you will often need to submit a research proposal. Funding agencies require a detailed description of your research project, including its objectives, methodology, and expected outcomes. Writing a research proposal in this context is necessary to secure financial support for your study.
  • Research collaborations: When collaborating with other researchers, institutions, or organizations on a research project, it is common to prepare a research proposal. This helps outline the research objectives, roles and responsibilities, and expected contributions from each party. Writing a research proposal in this case allows all collaborators to align their efforts and ensure a shared understanding of the project.
  • Research project within an organization: If you are conducting research within an organization, such as a company or government agency, you may be required to write a research proposal to gain approval and support for your study. This proposal outlines the research objectives, methodology, resources needed, and expected outcomes, ensuring that the project aligns with the organization’s goals and objectives.
  • Independent research projects: Even if you are not required to write a research proposal, it can still be beneficial to develop one for your independent research projects. Writing a research proposal helps you plan and structure your study, clarify your research objectives, and anticipate potential challenges or limitations. It also allows you to communicate your research plans effectively to supervisors, mentors, or collaborators.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

How To Write A Proposal

How To Write A Proposal – Step By Step Guide...

Grant Proposal

Grant Proposal – Example, Template and Guide

How To Write A Business Proposal

How To Write A Business Proposal – Step-by-Step...

Business Proposal

Business Proposal – Templates, Examples and Guide

How To Write a Research Proposal

How To Write A Research Proposal – Step-by-Step...

Proposal

Proposal – Types, Examples, and Writing Guide

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager
  • Infographics
  • Daily Infographics
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Training and Development
  • Beginner Guides

Blog Education

How to Write a Research Proposal: A Step-by-Step

By Danesh Ramuthi , Nov 29, 2023

How to Write a Research Proposal

A research proposal is a structured outline for a planned study on a specific topic. It serves as a roadmap, guiding researchers through the process of converting their research idea into a feasible project. 

The aim of a research proposal is multifold: it articulates the research problem, establishes a theoretical framework, outlines the research methodology and highlights the potential significance of the study. Importantly, it’s a critical tool for scholars seeking grant funding or approval for their research projects.

Crafting a good research proposal requires not only understanding your research topic and methodological approaches but also the ability to present your ideas clearly and persuasively. Explore Venngage’s Proposal Maker and Research Proposals Templates to begin your journey in writing a compelling research proposal.

What to include in a research proposal?

In a research proposal, include a clear statement of your research question or problem, along with an explanation of its significance. This should be followed by a literature review that situates your proposed study within the context of existing research. 

Your proposal should also outline the research methodology, detailing how you plan to conduct your study, including data collection and analysis methods.

Additionally, include a theoretical framework that guides your research approach, a timeline or research schedule, and a budget if applicable. It’s important to also address the anticipated outcomes and potential implications of your study. A well-structured research proposal will clearly communicate your research objectives, methods and significance to the readers.

Light Blue Shape Semiotic Analysis Research Proposal

How to format a research proposal?

Formatting a research proposal involves adhering to a structured outline to ensure clarity and coherence. While specific requirements may vary, a standard research proposal typically includes the following elements:

  • Title Page: Must include the title of your research proposal, your name and affiliations. The title should be concise and descriptive of your proposed research.
  • Abstract: A brief summary of your proposal, usually not exceeding 250 words. It should highlight the research question, methodology and the potential impact of the study.
  • Introduction: Introduces your research question or problem, explains its significance, and states the objectives of your study.
  • Literature review: Here, you contextualize your research within existing scholarship, demonstrating your knowledge of the field and how your research will contribute to it.
  • Methodology: Outline your research methods, including how you will collect and analyze data. This section should be detailed enough to show the feasibility and thoughtfulness of your approach.
  • Timeline: Provide an estimated schedule for your research, breaking down the process into stages with a realistic timeline for each.
  • Budget (if applicable): If your research requires funding, include a detailed budget outlining expected cost.
  • References/Bibliography: List all sources referenced in your proposal in a consistent citation style.

Green And Orange Modern Research Proposal

How to write a research proposal in 11 steps?

Writing a research proposal in structured steps ensures a comprehensive and coherent presentation of your research project. Let’s look at the explanation for each of the steps here:  

Step 1: Title and Abstract Step 2: Introduction Step 3: Research objectives Step 4: Literature review Step 5: Methodology Step 6: Timeline Step 7: Resources Step 8: Ethical considerations Step 9: Expected outcomes and significance Step 10: References Step 11: Appendices

Step 1: title and abstract.

Select a concise, descriptive title and write an abstract summarizing your research question, objectives, methodology and expected outcomes​​. The abstract should include your research question, the objectives you aim to achieve, the methodology you plan to employ and the anticipated outcomes. 

Step 2: Introduction

In this section, introduce the topic of your research, emphasizing its significance and relevance to the field. Articulate the research problem or question in clear terms and provide background context, which should include an overview of previous research in the field.

Step 3: Research objectives

Here, you’ll need to outline specific, clear and achievable objectives that align with your research problem. These objectives should be well-defined, focused and measurable, serving as the guiding pillars for your study. They help in establishing what you intend to accomplish through your research and provide a clear direction for your investigation.

Step 4: Literature review

In this part, conduct a thorough review of existing literature related to your research topic. This involves a detailed summary of key findings and major contributions from previous research. Identify existing gaps in the literature and articulate how your research aims to fill these gaps. The literature review not only shows your grasp of the subject matter but also how your research will contribute new insights or perspectives to the field.

Step 5: Methodology

Describe the design of your research and the methodologies you will employ. This should include detailed information on data collection methods, instruments to be used and analysis techniques. Justify the appropriateness of these methods for your research​​.

Step 6: Timeline

Construct a detailed timeline that maps out the major milestones and activities of your research project. Break the entire research process into smaller, manageable tasks and assign realistic time frames to each. This timeline should cover everything from the initial research phase to the final submission, including periods for data collection, analysis and report writing. 

It helps in ensuring your project stays on track and demonstrates to reviewers that you have a well-thought-out plan for completing your research efficiently.

Step 7: Resources

Identify all the resources that will be required for your research, such as specific databases, laboratory equipment, software or funding. Provide details on how these resources will be accessed or acquired. 

If your research requires funding, explain how it will be utilized effectively to support various aspects of the project. 

Step 8: Ethical considerations

Address any ethical issues that may arise during your research. This is particularly important for research involving human subjects. Describe the measures you will take to ensure ethical standards are maintained, such as obtaining informed consent, ensuring participant privacy, and adhering to data protection regulations. 

Here, in this section you should reassure reviewers that you are committed to conducting your research responsibly and ethically.

Step 9: Expected outcomes and significance

Articulate the expected outcomes or results of your research. Explain the potential impact and significance of these outcomes, whether in advancing academic knowledge, influencing policy or addressing specific societal or practical issues. 

Step 10: References

Compile a comprehensive list of all the references cited in your proposal. Adhere to a consistent citation style (like APA or MLA) throughout your document. The reference section not only gives credit to the original authors of your sourced information but also strengthens the credibility of your proposal.

Step 11: Appendices

Include additional supporting materials that are pertinent to your research proposal. This can be survey questionnaires, interview guides, detailed data analysis plans or any supplementary information that supports the main text. 

Appendices provide further depth to your proposal, showcasing the thoroughness of your preparation.

Beige And Dark Green Minimalist Research Proposal

Research proposal FAQs

1. how long should a research proposal be.

The length of a research proposal can vary depending on the requirements of the academic institution, funding body or specific guidelines provided. Generally, research proposals range from 500 to 1500 words or about one to a few pages long. It’s important to provide enough detail to clearly convey your research idea, objectives and methodology, while being concise. Always check

2. Why is the research plan pivotal to a research project?

The research plan is pivotal to a research project because it acts as a blueprint, guiding every phase of the study. It outlines the objectives, methodology, timeline and expected outcomes, providing a structured approach and ensuring that the research is systematically conducted. 

A well-crafted plan helps in identifying potential challenges, allocating resources efficiently and maintaining focus on the research goals. It is also essential for communicating the project’s feasibility and importance to stakeholders, such as funding bodies or academic supervisors.

Simple Minimalist White Research Proposal

Mastering how to write a research proposal is an essential skill for any scholar, whether in social and behavioral sciences, academic writing or any field requiring scholarly research. From this article, you have learned key components, from the literature review to the research design, helping you develop a persuasive and well-structured proposal.

Remember, a good research proposal not only highlights your proposed research and methodology but also demonstrates its relevance and potential impact.

For additional support, consider utilizing Venngage’s Proposal Maker and Research Proposals Templates , valuable tools in crafting a compelling proposal that stands out.

Whether it’s for grant funding, a research paper or a dissertation proposal, these resources can assist in transforming your research idea into a successful submission.

  • Locations and Hours
  • UCLA Library
  • Research Guides
  • Research Tips and Tools

Advanced Research Methods

  • Writing a Research Proposal
  • What Is Research?
  • Library Research

What Is a Research Proposal?

Reference books.

  • Writing the Research Paper
  • Presenting the Research Paper

When applying for a research grant or scholarship, or, just before you start a major research project, you may be asked to write a preliminary document that includes basic information about your future research. This is the information that is usually needed in your proposal:

  • The topic and goal of the research project.
  • The kind of result expected from the research.
  • The theory or framework in which the research will be done and presented.
  • What kind of methods will be used (statistical, empirical, etc.).
  • Short reference on the preliminary scholarship and why your research project is needed; how will it continue/justify/disprove the previous scholarship.
  • How much will the research project cost; how will it be budgeted (what for the money will be spent).
  • Why is it you who can do this research and not somebody else.

Most agencies that offer scholarships or grants provide information about the required format of the proposal. It may include filling out templates, types of information they need, suggested/maximum length of the proposal, etc.

Research proposal formats vary depending on the size of the planned research, the number of participants, the discipline, the characteristics of the research, etc. The following outline assumes an individual researcher. This is just a SAMPLE; several other ways are equally good and can be successful. If possible, discuss your research proposal with an expert in writing, a professor, your colleague, another student who already wrote successful proposals, etc.

Author, author's affiliation

Introduction:

  • Explain the topic and why you chose it. If possible explain your goal/outcome of the research . How much time you need to complete the research?

Previous scholarship:

  • Give a brief summary of previous scholarship and explain why your topic and goals are important.
  • Relate your planned research to previous scholarship. What will your research add to our knowledge of the topic.

Specific issues to be investigated:

  • Break down the main topic into smaller research questions. List them one by one and explain why these questions need to be investigated. Relate them to previous scholarship.
  • Include your hypothesis into the descriptions of the detailed research issues if you have one. Explain why it is important to justify your hypothesis.

Methodology:

  • This part depends of the methods conducted in the research process. List the methods; explain how the results will be presented; how they will be assessed.
  • Explain what kind of results will justify or  disprove your hypothesis. 
  • Explain how much money you need.
  • Explain the details of the budget (how much you want to spend for what).

Conclusion:

  • Describe why your research is important.

References:

  • List the sources you have used for writing the research proposal, including a few main citations of the preliminary scholarship.

research and research proposal

  • << Previous: Library Research
  • Next: Writing the Research Paper >>
  • Last Updated: Jan 4, 2024 12:24 PM
  • URL: https://guides.library.ucla.edu/research-methods

SOC W 505/506 Foundations of Social Welfare Research

  • What is a Research Proposal?
  • Qualitative Research
  • Quantitative Research
  • General Research Methods
  • IRB's and Research Ethics
  • Data Management and Analysis

Information on Writing a Research Proposal

From the Sage Encyclopedia of Educational Research, Measurement and Evaluation:

Research proposals are written to propose a research project and oftentimes request funding, or sponsorship, for that research. The research proposal is used to assess the originality and quality of ideas and the feasibility of a proposed project. The goal of the research proposal is to convince others that the investigator has (a) an important idea; (b) the skills, knowledge, and resources to carry out the project; and (c) a plan to implement the project on time and within budget. This entry discusses the process of developing a research proposal and the elements of an effective proposal.

For a graduate student, a research proposal may be required to begin the dissertation process. This serves to communicate the research focus to others, such as members of the student’s dissertation committee. It also indicates the investigator’s plan of action, including a level of thoroughness and sufficient detail to replicate the study. The research proposal could also be considered as a contract, once members of the committee agree to the execution of the project.

Requirements may include:  an abstract, introduction, literature review, method section, and conclusion.  A research proposal has to clearly and concisely identify the proposed research and its importance. The background literature should support the need for the research and the potential impact of the findings.

The method section proposes a comprehensive explanation of the research design, including subjects, timeline, and data analysis. Research questions should be identified as well as measurement instruments and methods to answer the research questions. Proposals for research involving human subjects identify how the investigators will protect participants throughout their research project. 

Proposals often require engaging in an external review either by an external evaluator or advisory  board consisting of expert consultants in the field. References are included to provide documentation about the supporting literature identified in the proposal. Appendixes and supplemental materials may also be included, following the sponsoring organization’s guidelines. As a general rule, educational research proposals follow the American Psychological Association formatting guidelines and publishing standards. If funding is being requested, it is important for the proposal to identify how the research will benefit the sponsoring organization and its constituents.

The success of a research proposal depends on both the quality of the project and its presentation. A proposal may have specific goals, but if they are neither realistic nor desirable, the probability of obtaining funding is reduced. Similar to manuscripts being considered for journal articles, reviewers evaluate each research proposal to identify strengths and criticisms based on a general framework and scoring rubric determined by the sponsoring organization. Research proposals that meet the scoring criteria are considered for funding opportunities. If a proposal does not meet the scoring criteria, revisions may be necessary before resubmitting the proposal to the same or a different sponsoring organization.

Common mistakes and pitfalls can often be avoided in research proposal writing through awareness and careful planning. In an effective research proposal, the research idea is clearly stated as a problem and there is an explanation of how the proposed research addresses a demonstrable gap in the current literature. In addition, an effective proposal is well structured, frames the research question(s) within sufficient context supported by the literature, and has a timeline that is appropriate to address the focus and scope of the research project. All requirements of the sponsoring organization, including required project elements and document formatting, need to be met within the research proposal. Finally, an effective proposal is engaging and demonstrates the researcher’s passion and commitment to the research addressed.

  • << Previous: Databases
  • Next: Qualitative Research >>
  • Last Updated: Aug 11, 2023 2:12 PM
  • URL: https://guides.lib.uw.edu/hsl/sw505

Be boundless

1959 NE Pacific Street | T334 Health Sciences Building | Box 357155 | Seattle, WA 98195-7155 | 206-543-3390

© 2024 University of Washington | Seattle, WA

CC BY-NC 4.0

helpful professor logo

17 Research Proposal Examples

research proposal example sections definition and purpose, explained below

A research proposal systematically and transparently outlines a proposed research project.

The purpose of a research proposal is to demonstrate a project’s viability and the researcher’s preparedness to conduct an academic study. It serves as a roadmap for the researcher.

The process holds value both externally (for accountability purposes and often as a requirement for a grant application) and intrinsic value (for helping the researcher to clarify the mechanics, purpose, and potential signficance of the study).

Key sections of a research proposal include: the title, abstract, introduction, literature review, research design and methods, timeline, budget, outcomes and implications, references, and appendix. Each is briefly explained below.

Watch my Guide: How to Write a Research Proposal

Get your Template for Writing your Research Proposal Here (With AI Prompts!)

Research Proposal Sample Structure

Title: The title should present a concise and descriptive statement that clearly conveys the core idea of the research projects. Make it as specific as possible. The reader should immediately be able to grasp the core idea of the intended research project. Often, the title is left too vague and does not help give an understanding of what exactly the study looks at.

Abstract: Abstracts are usually around 250-300 words and provide an overview of what is to follow – including the research problem , objectives, methods, expected outcomes, and significance of the study. Use it as a roadmap and ensure that, if the abstract is the only thing someone reads, they’ll get a good fly-by of what will be discussed in the peice.

Introduction: Introductions are all about contextualization. They often set the background information with a statement of the problem. At the end of the introduction, the reader should understand what the rationale for the study truly is. I like to see the research questions or hypotheses included in the introduction and I like to get a good understanding of what the significance of the research will be. It’s often easiest to write the introduction last

Literature Review: The literature review dives deep into the existing literature on the topic, demosntrating your thorough understanding of the existing literature including themes, strengths, weaknesses, and gaps in the literature. It serves both to demonstrate your knowledge of the field and, to demonstrate how the proposed study will fit alongside the literature on the topic. A good literature review concludes by clearly demonstrating how your research will contribute something new and innovative to the conversation in the literature.

Research Design and Methods: This section needs to clearly demonstrate how the data will be gathered and analyzed in a systematic and academically sound manner. Here, you need to demonstrate that the conclusions of your research will be both valid and reliable. Common points discussed in the research design and methods section include highlighting the research paradigm, methodologies, intended population or sample to be studied, data collection techniques, and data analysis procedures . Toward the end of this section, you are encouraged to also address ethical considerations and limitations of the research process , but also to explain why you chose your research design and how you are mitigating the identified risks and limitations.

Timeline: Provide an outline of the anticipated timeline for the study. Break it down into its various stages (including data collection, data analysis, and report writing). The goal of this section is firstly to establish a reasonable breakdown of steps for you to follow and secondly to demonstrate to the assessors that your project is practicable and feasible.

Budget: Estimate the costs associated with the research project and include evidence for your estimations. Typical costs include staffing costs, equipment, travel, and data collection tools. When applying for a scholarship, the budget should demonstrate that you are being responsible with your expensive and that your funding application is reasonable.

Expected Outcomes and Implications: A discussion of the anticipated findings or results of the research, as well as the potential contributions to the existing knowledge, theory, or practice in the field. This section should also address the potential impact of the research on relevant stakeholders and any broader implications for policy or practice.

References: A complete list of all the sources cited in the research proposal, formatted according to the required citation style. This demonstrates the researcher’s familiarity with the relevant literature and ensures proper attribution of ideas and information.

Appendices (if applicable): Any additional materials, such as questionnaires, interview guides, or consent forms, that provide further information or support for the research proposal. These materials should be included as appendices at the end of the document.

Research Proposal Examples

Research proposals often extend anywhere between 2,000 and 15,000 words in length. The following snippets are samples designed to briefly demonstrate what might be discussed in each section.

1. Education Studies Research Proposals

See some real sample pieces:

  • Assessment of the perceptions of teachers towards a new grading system
  • Does ICT use in secondary classrooms help or hinder student learning?
  • Digital technologies in focus project
  • Urban Middle School Teachers’ Experiences of the Implementation of
  • Restorative Justice Practices
  • Experiences of students of color in service learning

Consider this hypothetical education research proposal:

The Impact of Game-Based Learning on Student Engagement and Academic Performance in Middle School Mathematics

Abstract: The proposed study will explore multiplayer game-based learning techniques in middle school mathematics curricula and their effects on student engagement. The study aims to contribute to the current literature on game-based learning by examining the effects of multiplayer gaming in learning.

Introduction: Digital game-based learning has long been shunned within mathematics education for fears that it may distract students or lower the academic integrity of the classrooms. However, there is emerging evidence that digital games in math have emerging benefits not only for engagement but also academic skill development. Contributing to this discourse, this study seeks to explore the potential benefits of multiplayer digital game-based learning by examining its impact on middle school students’ engagement and academic performance in a mathematics class.

Literature Review: The literature review has identified gaps in the current knowledge, namely, while game-based learning has been extensively explored, the role of multiplayer games in supporting learning has not been studied.

Research Design and Methods: This study will employ a mixed-methods research design based upon action research in the classroom. A quasi-experimental pre-test/post-test control group design will first be used to compare the academic performance and engagement of middle school students exposed to game-based learning techniques with those in a control group receiving instruction without the aid of technology. Students will also be observed and interviewed in regard to the effect of communication and collaboration during gameplay on their learning.

Timeline: The study will take place across the second term of the school year with a pre-test taking place on the first day of the term and the post-test taking place on Wednesday in Week 10.

Budget: The key budgetary requirements will be the technologies required, including the subscription cost for the identified games and computers.

Expected Outcomes and Implications: It is expected that the findings will contribute to the current literature on game-based learning and inform educational practices, providing educators and policymakers with insights into how to better support student achievement in mathematics.

2. Psychology Research Proposals

See some real examples:

  • A situational analysis of shared leadership in a self-managing team
  • The effect of musical preference on running performance
  • Relationship between self-esteem and disordered eating amongst adolescent females

Consider this hypothetical psychology research proposal:

The Effects of Mindfulness-Based Interventions on Stress Reduction in College Students

Abstract: This research proposal examines the impact of mindfulness-based interventions on stress reduction among college students, using a pre-test/post-test experimental design with both quantitative and qualitative data collection methods .

Introduction: College students face heightened stress levels during exam weeks. This can affect both mental health and test performance. This study explores the potential benefits of mindfulness-based interventions such as meditation as a way to mediate stress levels in the weeks leading up to exam time.

Literature Review: Existing research on mindfulness-based meditation has shown the ability for mindfulness to increase metacognition, decrease anxiety levels, and decrease stress. Existing literature has looked at workplace, high school and general college-level applications. This study will contribute to the corpus of literature by exploring the effects of mindfulness directly in the context of exam weeks.

Research Design and Methods: Participants ( n= 234 ) will be randomly assigned to either an experimental group, receiving 5 days per week of 10-minute mindfulness-based interventions, or a control group, receiving no intervention. Data will be collected through self-report questionnaires, measuring stress levels, semi-structured interviews exploring participants’ experiences, and students’ test scores.

Timeline: The study will begin three weeks before the students’ exam week and conclude after each student’s final exam. Data collection will occur at the beginning (pre-test of self-reported stress levels) and end (post-test) of the three weeks.

Expected Outcomes and Implications: The study aims to provide evidence supporting the effectiveness of mindfulness-based interventions in reducing stress among college students in the lead up to exams, with potential implications for mental health support and stress management programs on college campuses.

3. Sociology Research Proposals

  • Understanding emerging social movements: A case study of ‘Jersey in Transition’
  • The interaction of health, education and employment in Western China
  • Can we preserve lower-income affordable neighbourhoods in the face of rising costs?

Consider this hypothetical sociology research proposal:

The Impact of Social Media Usage on Interpersonal Relationships among Young Adults

Abstract: This research proposal investigates the effects of social media usage on interpersonal relationships among young adults, using a longitudinal mixed-methods approach with ongoing semi-structured interviews to collect qualitative data.

Introduction: Social media platforms have become a key medium for the development of interpersonal relationships, particularly for young adults. This study examines the potential positive and negative effects of social media usage on young adults’ relationships and development over time.

Literature Review: A preliminary review of relevant literature has demonstrated that social media usage is central to development of a personal identity and relationships with others with similar subcultural interests. However, it has also been accompanied by data on mental health deline and deteriorating off-screen relationships. The literature is to-date lacking important longitudinal data on these topics.

Research Design and Methods: Participants ( n = 454 ) will be young adults aged 18-24. Ongoing self-report surveys will assess participants’ social media usage, relationship satisfaction, and communication patterns. A subset of participants will be selected for longitudinal in-depth interviews starting at age 18 and continuing for 5 years.

Timeline: The study will be conducted over a period of five years, including recruitment, data collection, analysis, and report writing.

Expected Outcomes and Implications: This study aims to provide insights into the complex relationship between social media usage and interpersonal relationships among young adults, potentially informing social policies and mental health support related to social media use.

4. Nursing Research Proposals

  • Does Orthopaedic Pre-assessment clinic prepare the patient for admission to hospital?
  • Nurses’ perceptions and experiences of providing psychological care to burns patients
  • Registered psychiatric nurse’s practice with mentally ill parents and their children

Consider this hypothetical nursing research proposal:

The Influence of Nurse-Patient Communication on Patient Satisfaction and Health Outcomes following Emergency Cesarians

Abstract: This research will examines the impact of effective nurse-patient communication on patient satisfaction and health outcomes for women following c-sections, utilizing a mixed-methods approach with patient surveys and semi-structured interviews.

Introduction: It has long been known that effective communication between nurses and patients is crucial for quality care. However, additional complications arise following emergency c-sections due to the interaction between new mother’s changing roles and recovery from surgery.

Literature Review: A review of the literature demonstrates the importance of nurse-patient communication, its impact on patient satisfaction, and potential links to health outcomes. However, communication between nurses and new mothers is less examined, and the specific experiences of those who have given birth via emergency c-section are to date unexamined.

Research Design and Methods: Participants will be patients in a hospital setting who have recently had an emergency c-section. A self-report survey will assess their satisfaction with nurse-patient communication and perceived health outcomes. A subset of participants will be selected for in-depth interviews to explore their experiences and perceptions of the communication with their nurses.

Timeline: The study will be conducted over a period of six months, including rolling recruitment, data collection, analysis, and report writing within the hospital.

Expected Outcomes and Implications: This study aims to provide evidence for the significance of nurse-patient communication in supporting new mothers who have had an emergency c-section. Recommendations will be presented for supporting nurses and midwives in improving outcomes for new mothers who had complications during birth.

5. Social Work Research Proposals

  • Experiences of negotiating employment and caring responsibilities of fathers post-divorce
  • Exploring kinship care in the north region of British Columbia

Consider this hypothetical social work research proposal:

The Role of a Family-Centered Intervention in Preventing Homelessness Among At-Risk Youthin a working-class town in Northern England

Abstract: This research proposal investigates the effectiveness of a family-centered intervention provided by a local council area in preventing homelessness among at-risk youth. This case study will use a mixed-methods approach with program evaluation data and semi-structured interviews to collect quantitative and qualitative data .

Introduction: Homelessness among youth remains a significant social issue. This study aims to assess the effectiveness of family-centered interventions in addressing this problem and identify factors that contribute to successful prevention strategies.

Literature Review: A review of the literature has demonstrated several key factors contributing to youth homelessness including lack of parental support, lack of social support, and low levels of family involvement. It also demonstrates the important role of family-centered interventions in addressing this issue. Drawing on current evidence, this study explores the effectiveness of one such intervention in preventing homelessness among at-risk youth in a working-class town in Northern England.

Research Design and Methods: The study will evaluate a new family-centered intervention program targeting at-risk youth and their families. Quantitative data on program outcomes, including housing stability and family functioning, will be collected through program records and evaluation reports. Semi-structured interviews with program staff, participants, and relevant stakeholders will provide qualitative insights into the factors contributing to program success or failure.

Timeline: The study will be conducted over a period of six months, including recruitment, data collection, analysis, and report writing.

Budget: Expenses include access to program evaluation data, interview materials, data analysis software, and any related travel costs for in-person interviews.

Expected Outcomes and Implications: This study aims to provide evidence for the effectiveness of family-centered interventions in preventing youth homelessness, potentially informing the expansion of or necessary changes to social work practices in Northern England.

Research Proposal Template

Get your Detailed Template for Writing your Research Proposal Here (With AI Prompts!)

This is a template for a 2500-word research proposal. You may find it difficult to squeeze everything into this wordcount, but it’s a common wordcount for Honors and MA-level dissertations.

Your research proposal is where you really get going with your study. I’d strongly recommend working closely with your teacher in developing a research proposal that’s consistent with the requirements and culture of your institution, as in my experience it varies considerably. The above template is from my own courses that walk students through research proposals in a British School of Education.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

8 thoughts on “17 Research Proposal Examples”

' src=

Very excellent research proposals

' src=

very helpful

' src=

Very helpful

' src=

Dear Sir, I need some help to write an educational research proposal. Thank you.

' src=

Hi Levi, use the site search bar to ask a question and I’ll likely have a guide already written for your specific question. Thanks for reading!

' src=

very good research proposal

' src=

Thank you so much sir! ❤️

' src=

Very helpful 👌

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.23(2); 2008 Apr

Logo of omanmedj

How to prepare a Research Proposal

Health research, medical education and clinical practice form the three pillars of modern day medical practice. As one authority rightly put it: ‘Health research is not a luxury, but an essential need that no nation can afford to ignore’. Health research can and should be pursued by a broad range of people. Even if they do not conduct research themselves, they need to grasp the principles of the scientific method to understand the value and limitations of science and to be able to assess and evaluate results of research before applying them. This review paper aims to highlight the essential concepts to the students and beginning researchers and sensitize and motivate the readers to access the vast literature available on research methodologies.

Most students and beginning researchers do not fully understand what a research proposal means, nor do they understand its importance. 1 A research proposal is a detailed description of a proposed study designed to investigate a given problem. 2

A research proposal is intended to convince others that you have a worthwhile research project and that you have the competence and the work-plan to complete it. Broadly the research proposal must address the following questions regardless of your research area and the methodology you choose: What you plan to accomplish, why do you want to do it and how are you going to do it. 1 The aim of this article is to highlight the essential concepts and not to provide extensive details about this topic.

The elements of a research proposal are highlighted below:

1. Title: It should be concise and descriptive. It must be informative and catchy. An effective title not only prick’s the readers interest, but also predisposes him/her favorably towards the proposal. Often titles are stated in terms of a functional relationship, because such titles clearly indicate the independent and dependent variables. 1 The title may need to be revised after completion of writing of the protocol to reflect more closely the sense of the study. 3

2. Abstract: It is a brief summary of approximately 300 words. It should include the main research question, the rationale for the study, the hypothesis (if any) and the method. Descriptions of the method may include the design, procedures, the sample and any instruments that will be used. 1 It should stand on its own, and not refer the reader to points in the project description. 3

3. Introduction: The introduction provides the readers with the background information. Its purpose is to establish a framework for the research, so that readers can understand how it relates to other research. 4 It should answer the question of why the research needs to be done and what will be its relevance. It puts the proposal in context. 3

The introduction typically begins with a statement of the research problem in precise and clear terms. 1

The importance of the statement of the research problem 5 : The statement of the problem is the essential basis for the construction of a research proposal (research objectives, hypotheses, methodology, work plan and budget etc). It is an integral part of selecting a research topic. It will guide and put into sharper focus the research design being considered for solving the problem. It allows the investigator to describe the problem systematically, to reflect on its importance, its priority in the country and region and to point out why the proposed research on the problem should be undertaken. It also facilitates peer review of the research proposal by the funding agencies.

Then it is necessary to provide the context and set the stage for the research question in such a way as to show its necessity and importance. 1 This step is necessary for the investigators to familiarize themselves with existing knowledge about the research problem and to find out whether or not others have investigated the same or similar problems. This step is accomplished by a thorough and critical review of the literature and by personal communication with experts. 5 It helps further understanding of the problem proposed for research and may lead to refining the statement of the problem, to identify the study variables and conceptualize their relationships, and in formulation and selection of a research hypothesis. 5 It ensures that you are not "re-inventing the wheel" and demonstrates your understanding of the research problem. It gives due credit to those who have laid the groundwork for your proposed research. 1 In a proposal, the literature review is generally brief and to the point. The literature selected should be pertinent and relevant. 6

Against this background, you then present the rationale of the proposed study and clearly indicate why it is worth doing.

4. Objectives: Research objectives are the goals to be achieved by conducting the research. 5 They may be stated as ‘general’ and ‘specific’.

The general objective of the research is what is to be accomplished by the research project, for example, to determine whether or not a new vaccine should be incorporated in a public health program.

The specific objectives relate to the specific research questions the investigator wants to answer through the proposed study and may be presented as primary and secondary objectives, for example, primary: To determine the degree of protection that is attributable to the new vaccine in a study population by comparing the vaccinated and unvaccinated groups. 5 Secondary: To study the cost-effectiveness of this programme.

Young investigators are advised to resist the temptation to put too many objectives or over-ambitious objectives that cannot be adequately achieved by the implementation of the protocol. 3

5. Variables: During the planning stage, it is necessary to identify the key variables of the study and their method of measurement and unit of measurement must be clearly indicated. Four types of variables are important in research 5 :

a. Independent variables: variables that are manipulated or treated in a study in order to see what effect differences in them will have on those variables proposed as being dependent on them. The different synonyms for the term ‘independent variable’ which are used in literature are: cause, input, predisposing factor, risk factor, determinant, antecedent, characteristic and attribute.

b. Dependent variables: variables in which changes are results of the level or amount of the independent variable or variables.

Synonyms: effect, outcome, consequence, result, condition, disease.

c. Confounding or intervening variables: variables that should be studied because they may influence or ‘mix’ the effect of the independent variables. For instance, in a study of the effect of measles (independent variable) on child mortality (dependent variable), the nutritional status of the child may play an intervening (confounding) role.

d. Background variables: variables that are so often of relevance in investigations of groups or populations that they should be considered for possible inclusion in the study. For example sex, age, ethnic origin, education, marital status, social status etc.

The objective of research is usually to determine the effect of changes in one or more independent variables on one or more dependent variables. For example, a study may ask "Will alcohol intake (independent variable) have an effect on development of gastric ulcer (dependent variable)?"

Certain variables may not be easy to identify. The characteristics that define these variables must be clearly identified for the purpose of the study.

6. Questions and/ or hypotheses: If you as a researcher know enough to make prediction concerning what you are studying, then the hypothesis may be formulated. A hypothesis can be defined as a tentative prediction or explanation of the relationship between two or more variables. In other words, the hypothesis translates the problem statement into a precise, unambiguous prediction of expected outcomes. Hypotheses are not meant to be haphazard guesses, but should reflect the depth of knowledge, imagination and experience of the investigator. 5 In the process of formulating the hypotheses, all variables relevant to the study must be identified. For example: "Health education involving active participation by mothers will produce more positive changes in child feeding than health education based on lectures". Here the independent variable is types of health education and the dependent variable is changes in child feeding.

A research question poses a relationship between two or more variables but phrases the relationship as a question; a hypothesis represents a declarative statement of the relations between two or more variables. 7

For exploratory or phenomenological research, you may not have any hypothesis (please do not confuse the hypothesis with the statistical null hypothesis). 1 Questions are relevant to normative or census type research (How many of them are there? Is there a relationship between them?). Deciding whether to use questions or hypotheses depends on factors such as the purpose of the study, the nature of the design and methodology, and the audience of the research (at times even the outlook and preference of the committee members, particularly the Chair). 6

7. Methodology: The method section is very important because it tells your research Committee how you plan to tackle your research problem. The guiding principle for writing the Methods section is that it should contain sufficient information for the reader to determine whether the methodology is sound. Some even argue that a good proposal should contain sufficient details for another qualified researcher to implement the study. 1 Indicate the methodological steps you will take to answer every question or to test every hypothesis illustrated in the Questions/hypotheses section. 6 It is vital that you consult a biostatistician during the planning stage of your study, 8 to resolve the methodological issues before submitting the proposal.

This section should include:

Research design: The selection of the research strategy is the core of research design and is probably the single most important decision the investigator has to make. The choice of the strategy, whether descriptive, analytical, experimental, operational or a combination of these depend on a number of considerations, 5 but this choice must be explained in relation to the study objectives. 3

Research subjects or participants: Depending on the type of your study, the following questions should be answered 3 , 5

  • - What are the criteria for inclusion or selection?
  • - What are the criteria for exclusion?
  • - What is the sampling procedure you will use so as to ensure representativeness and reliability of the sample and to minimize sampling errors? The key reason for being concerned with sampling is the issue of validity-both internal and external of the study results. 9
  • - Will there be use of controls in your study? Controls or comparison groups are used in scientific research in order to increase the validity of the conclusions. Control groups are necessary in all analytical epidemiological studies, in experimental studies of drug trials, in research on effects of intervention programmes and disease control measures and in many other investigations. Some descriptive studies (studies of existing data, surveys) may not require control groups.
  • - What are the criteria for discontinuation?

Sample size: The proposal should provide information and justification (basis on which the sample size is calculated) about sample size in the methodology section. 3 A larger sample size than needed to test the research hypothesis increases the cost and duration of the study and will be unethical if it exposes human subjects to any potential unnecessary risk without additional benefit. A smaller sample size than needed can also be unethical as it exposes human subjects to risk with no benefit to scientific knowledge. Calculation of sample size has been made easy by computer software programmes, but the principles underlying the estimation should be well understood.

Interventions: If an intervention is introduced, a description must be given of the drugs or devices (proprietary names, manufacturer, chemical composition, dose, frequency of administration) if they are already commercially available. If they are in phases of experimentation or are already commercially available but used for other indications, information must be provided on available pre-clinical investigations in animals and/or results of studies already conducted in humans (in such cases, approval of the drug regulatory agency in the country is needed before the study). 3

Ethical issues 3 : Ethical considerations apply to all types of health research. Before the proposal is submitted to the Ethics Committee for approval, two important documents mentioned below (where appropriate) must be appended to the proposal. In additions, there is another vital issue of Conflict of Interest, wherein the researchers should furnish a statement regarding the same.

The Informed consent form (informed decision-making): A consent form, where appropriate, must be developed and attached to the proposal. It should be written in the prospective subjects’ mother tongue and in simple language which can be easily understood by the subject. The use of medical terminology should be avoided as far as possible. Special care is needed when subjects are illiterate. It should explain why the study is being done and why the subject has been asked to participate. It should describe, in sequence, what will happen in the course of the study, giving enough detail for the subject to gain a clear idea of what to expect. It should clarify whether or not the study procedures offer any benefits to the subject or to others, and explain the nature, likelihood and treatment of anticipated discomfort or adverse effects, including psychological and social risks, if any. Where relevant, a comparison with risks posed by standard drugs or treatment must be included. If the risks are unknown or a comparative risk cannot be given it should be so stated. It should indicate that the subject has the right to withdraw from the study at any time without, in any way, affecting his/her further medical care. It should assure the participant of confidentiality of the findings.

Ethics checklist: The proposal must describe the measures that will be undertaken to ensure that the proposed research is carried out in accordance with the World Medical Association Declaration of Helsinki on Ethical Principles for Medical research involving Human Subjects. 10 It must answer the following questions:

  • • Is the research design adequate to provide answers to the research question? It is unethical to expose subjects to research that will have no value.
  • • Is the method of selection of research subjects justified? The use of vulnerable subjects as research participants needs special justification. Vulnerable subjects include those in prison, minors and persons with mental disability. In international research it is important to mention that the population in which the study is conducted will benefit from any potential outcome of the research and the research is not being conducted solely for the benefit of some other population. Justification is needed for any inducement, financial or otherwise, for the participants to be enrolled in the study.
  • • Are the interventions justified, in terms of risk/benefit ratio? Risks are not limited to physical harm. Psychological and social risks must also be considered.
  • • For observations made, have measures been taken to ensure confidentiality?

Research setting 5 : The research setting includes all the pertinent facets of the study, such as the population to be studied (sampling frame), the place and time of study.

Study instruments 3 , 5 : Instruments are the tools by which the data are collected. For validated questionnaires/interview schedules, reference to published work should be given and the instrument appended to the proposal. For new a questionnaire which is being designed specifically for your study the details about preparing, precoding and pretesting of questionnaire should be furnished and the document appended to the proposal. Descriptions of other methods of observations like medical examination, laboratory tests and screening procedures is necessary- for established procedures, reference of published work cited but for new or modified procedure, an adequate description is necessary with justification for the same.

Collection of data: A short description of the protocol of data collection. For example, in a study on blood pressure measurement: time of participant arrival, rest for 5p. 10 minutes, which apparatus (standard calibrated) to be used, in which room to take measurement, measurement in sitting or lying down position, how many measurements, measurement in which arm first (whether this is going to be randomized), details of cuff and its placement, who will take the measurement. This minimizes the possibility of confusion, delays and errors.

Data analysis: The description should include the design of the analysis form, plans for processing and coding the data and the choice of the statistical method to be applied to each data. What will be the procedures for accounting for missing, unused or spurious data?

Monitoring, supervision and quality control: Detailed statement about the all logistical issues to satisfy the requirements of Good Clinical Practices (GCP), protocol procedures, responsibilities of each member of the research team, training of study investigators, steps taken to assure quality control (laboratory procedures, equipment calibration etc)

Gantt chart: A Gantt chart is an overview of tasks/proposed activities and a time frame for the same. You put weeks, days or months at one side, and the tasks at the other. You draw fat lines to indicate the period the task will be performed to give a timeline for your research study (take help of tutorial on youtube). 11

Significance of the study: Indicate how your research will refine, revise or extend existing knowledge in the area under investigation. How will it benefit the concerned stakeholders? What could be the larger implications of your research study?

Dissemination of the study results: How do you propose to share the findings of your study with professional peers, practitioners, participants and the funding agency?

Budget: A proposal budget with item wise/activity wise breakdown and justification for the same. Indicate how will the study be financed.

References: The proposal should end with relevant references on the subject. For web based search include the date of access for the cited website, for example: add the sentence "accessed on June 10, 2008".

Appendixes: Include the appropriate appendixes in the proposal. For example: Interview protocols, sample of informed consent forms, cover letters sent to appropriate stakeholders, official letters for permission to conduct research. Regarding original scales or questionnaires, if the instrument is copyrighted then permission in writing to reproduce the instrument from the copyright holder or proof of purchase of the instrument must be submitted.

Organizing Your Social Sciences Research Paper: Writing a Research Proposal

  • Purpose of Guide
  • Writing a Research Proposal
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • The Research Problem/Question
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Evaluating Sources
  • Reading Research Effectively
  • Primary Sources
  • Secondary Sources
  • What Is Scholarly vs. Popular?
  • Is it Peer-Reviewed?
  • Qualitative Methods
  • Quantitative Methods
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism [linked guide]
  • Annotated Bibliography
  • Grading Someone Else's Paper

The goal of a research proposal is to present and justify the need to study a research problem and to present the practical ways in which the proposed study should be conducted. The design elements and procedures for conducting the research are governed by standards within the predominant discipline in which the problem resides, so guidelines for research proposals are more exacting and less formal than a general project proposal. Research proposals contain extensive literature reviews. They must provide persuasive evidence that a need exists for the proposed study. In addition to providing a rationale, a proposal describes detailed methodology for conducting the research consistent with requirements of the professional or academic field and a statement on anticipated outcomes and/or benefits derived from the study's completion.

Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005.

How to Approach Writing a Research Proposal

Your professor may assign the task of writing a research proposal for the following reasons:

  • Develop your skills in thinking about and designing a comprehensive research study;
  • Learn how to conduct a comprehensive review of the literature to ensure a research problem has not already been answered [or you may determine the problem has been answered ineffectively] and, in so doing, become better at locating scholarship related to your topic;
  • Improve your general research and writing skills;
  • Practice identifying the logical steps that must be taken to accomplish one's research goals;
  • Critically review, examine, and consider the use of different methods for gathering and analyzing data related to the research problem; and,
  • Nurture a sense of inquisitiveness within yourself and to help see yourself as an active participant in the process of doing scholarly research.

A proposal should contain all the key elements involved in designing a completed research study, with sufficient information that allows readers to assess the validity and usefulness of your proposed study. The only elements missing from a research proposal are the findings of the study and your analysis of those results. Finally, an effective proposal is judged on the quality of your writing and, therefore, it is important that your writing is coherent, clear, and compelling.

Regardless of the research problem you are investigating and the methodology you choose, all research proposals must address the following questions:

  • What do you plan to accomplish? Be clear and succinct in defining the research problem and what it is you are proposing to research.
  • Why do you want to do it? In addition to detailing your research design, you also must conduct a thorough review of the literature and provide convincing evidence that it is a topic worthy of study. Be sure to answer the "So What?" question.
  • How are you going to do it? Be sure that what you propose is doable. If you're having trouble formulating a research problem to propose investigating, go here .

Common Mistakes to Avoid

  • Failure to be concise; being "all over the map" without a clear sense of purpose.
  • Failure to cite landmark works in your literature review.
  • Failure to delimit the contextual boundaries of your research [e.g., time, place, people, etc.].
  • Failure to develop a coherent and persuasive argument for the proposed research.
  • Failure to stay focused on the research problem; going off on unrelated tangents.
  • Sloppy or imprecise writing, or poor grammar.
  • Too much detail on minor issues, but not enough detail on major issues.

Procter, Margaret. The Academic Proposal .  The Lab Report. University College Writing Centre. University of Toronto; Sanford, Keith. Information for Students: Writing a Research Proposal . Baylor University; Wong, Paul T. P. How to Write a Research Proposal . International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences, Articles, and Books . The Writing Lab and The OWL. Purdue University; Writing a Research Proposal . University Library. University of Illinois at Urbana-Champaign.

Structure and Writing Style

Beginning the Proposal Process

As with writing a regular academic paper, research proposals are generally organized the same way throughout most social science disciplines. Proposals vary between ten and twenty-five pages in length. However, before you begin, read the assignment carefully and, if anything seems unclear, ask your professor whether there are any specific requirements for organizing and writing the proposal.

A good place to begin is to ask yourself a series of questions:

  • What do I want to study?
  • Why is the topic important?
  • How is it significant within the subject areas covered in my class?
  • What problems will it help solve?
  • How does it build upon [and hopefully go beyond] research already conducted on the topic?
  • What exactly should I plan to do, and can I get it done in the time available?

In general, a compelling research proposal should document your knowledge of the topic and demonstrate your enthusiasm for conducting the study. Approach it with the intention of leaving your readers feeling like--"Wow, that's an exciting idea and I can’t wait to see how it turns out!"

In general your proposal should include the following sections:

I.  Introduction

In the real world of higher education, a research proposal is most often written by scholars seeking grant funding for a research project or it's the first step in getting approval to write a doctoral dissertation. Even if this is just a course assignment, treat your introduction as the initial pitch of an idea or a thorough examination of the significance of a research problem. After reading the introduction, your readers should not only have an understanding of what you want to do, but they should also be able to gain a sense of your passion for the topic and be excited about the study's possible outcomes. Note that most proposals do not include an abstract [summary] before the introduction.

Think about your introduction as a narrative written in one to three paragraphs that succinctly answers the following four questions :

  • What is the central research problem?
  • What is the topic of study related to that problem?
  • What methods should be used to analyze the research problem?
  • Why is this important research, what is its significance, and why should someone reading the proposal care about the outcomes of the proposed study?

II.  Background and Significance

This section can be melded into your introduction or you can create a separate section to help with the organization and narrative flow of your proposal. This is where you explain the context of your proposal and describe in detail why it's important. Approach writing this section with the thought that you can’t assume your readers will know as much about the research problem as you do. Note that this section is not an essay going over everything you have learned about the topic; instead, you must choose what is relevant to help explain the goals for your study.

To that end, while there are no hard and fast rules, you should attempt to address some or all of the following key points:

  • State the research problem and give a more detailed explanation about the purpose of the study than what you stated in the introduction. This is particularly important if the problem is complex or multifaceted .
  • Present the rationale of your proposed study and clearly indicate why it is worth doing. Answer the "So What? question [i.e., why should anyone care].
  • Describe the major issues or problems to be addressed by your research. Be sure to note how your proposed study builds on previous assumptions about the research problem.
  • Explain how you plan to go about conducting your research. Clearly identify the key sources you intend to use and explain how they will contribute to your analysis of the topic.
  • Set the boundaries of your proposed research in order to provide a clear focus. Where appropriate, state not only what you will study, but what is excluded from the study.
  • If necessary, provide definitions of key concepts or terms.

III.  Literature Review

Connected to the background and significance of your study is a section of your proposal devoted to a more deliberate review and synthesis of prior studies related to the research problem under investigation . The purpose here is to place your project within the larger whole of what is currently being explored, while demonstrating to your readers that your work is original and innovative. Think about what questions other researchers have asked, what methods they have used, and what is your understanding of their findings and, where stated, their recommendations. Do not be afraid to challenge the conclusions of prior research. Assess what you believe is missing and state how previous research has failed to adequately examine the issue that your study addresses. For more information on writing literature reviews, GO HERE .

Since a literature review is information dense, it is crucial that this section is intelligently structured to enable a reader to grasp the key arguments underpinning your study in relation to that of other researchers. A good strategy is to break the literature into "conceptual categories" [themes] rather than systematically describing groups of materials one at a time. Note that conceptual categories generally reveal themselves after you have read most of the pertinent literature on your topic so adding new categories is an on-going process of discovery as you read more studies. How do you know you've covered the key conceptual categories underlying the research literature? Generally, you can have confidence that all of the significant conceptual categories have been identified if you start to see repetition in the conclusions or recommendations that are being made.

To help frame your proposal's literature review, here are the "five C’s" of writing a literature review:

  • Cite , so as to keep the primary focus on the literature pertinent to your research problem.
  • Compare the various arguments, theories, methodologies, and findings expressed in the literature: what do the authors agree on? Who applies similar approaches to analyzing the research problem?
  • Contrast the various arguments, themes, methodologies, approaches, and controversies expressed in the literature: what are the major areas of disagreement, controversy, or debate?
  • Critique the literature: Which arguments are more persuasive, and why? Which approaches, findings, methodologies seem most reliable, valid, or appropriate, and why? Pay attention to the verbs you use to describe what an author says/does [e.g., asserts, demonstrates, argues, etc.] .
  • Connect the literature to your own area of research and investigation: how does your own work draw upon, depart from, synthesize, or add a new perspective to what has been said in the literature?

IV.  Research Design and Methods

This section must be well-written and logically organized because you are not actually doing the research, yet, your reader must have confidence that it is worth pursuing . The reader will never have a study outcome from which to evaluate whether your methodological choices were the correct ones. Thus, the objective here is to convince the reader that your overall research design and methods of analysis will correctly address the problem and that the methods will provide the means to effectively interpret the potential results. Your design and methods should be unmistakably tied to the specific aims of your study.

Describe the overall research design by building upon and drawing examples from your review of the literature. Consider not only methods that other researchers have used but methods of data gathering that have not been used but perhaps could be. Be specific about the methodological approaches you plan to undertake to obtain information, the techniques you would use to analyze the data, and the tests of external validity to which you commit yourself [i.e., the trustworthiness by which you can generalize from your study to other people, places, events, and/or periods of time].

When describing the methods you will use, be sure to cover the following:

  • Specify the research operations you will undertake and the way you will interpret the results of these operations in relation to the research problem. Don't just describe what you intend to achieve from applying the methods you choose, but state how you will spend your time while applying these methods [e.g., coding text from interviews to find statements about the need to change school curriculum; running a regression to determine if there is a relationship between campaign advertising on social media sites and election outcomes in Europe ].
  • Keep in mind that a methodology is not just a list of tasks; it is an argument as to why these tasks add up to the best way to investigate the research problem. This is an important point because the mere listing of tasks to be performed does not demonstrate that, collectively, they effectively address the research problem. Be sure you explain this.
  • Anticipate and acknowledge any potential barriers and pitfalls in carrying out your research design and explain how you plan to address them. No method is perfect so you need to describe where you believe challenges may exist in obtaining data or accessing information. It's always better to acknowledge this than to have it brought up by your reader.

Develop a Research Proposal: Writing the Proposal . Office of Library Information Services. Baltimore County Public Schools; Heath, M. Teresa Pereira and Caroline Tynan. “Crafting a Research Proposal.” The Marketing Review 10 (Summer 2010): 147-168; Jones, Mark. “Writing a Research Proposal.” In MasterClass in Geography Education: Transforming Teaching and Learning . Graham Butt, editor. (New York: Bloomsbury Academic, 2015), pp. 113-127; Juni, Muhamad Hanafiah. “Writing a Research Proposal.” International Journal of Public Health and Clinical Sciences 1 (September/October 2014): 229-240; Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005; Procter, Margaret. The Academic Proposal . The Lab Report. University College Writing Centre. University of Toronto; Punch, Keith and Wayne McGowan. "Developing and Writing a Research Proposal." In From Postgraduate to Social Scientist: A Guide to Key Skills . Nigel Gilbert, ed. (Thousand Oaks, CA: Sage, 2006), 59-81; Wong, Paul T. P. How to Write a Research Proposal . International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences, Articles, and Books . The Writing Lab and The OWL. Purdue University; Writing a Research Proposal . University Library. University of Illinois at Urbana-Champaign.

  • << Previous: Purpose of Guide
  • Next: Types of Research Designs >>
  • Last Updated: Sep 8, 2023 12:19 PM
  • URL: https://guides.library.txstate.edu/socialscienceresearch

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research and research proposal

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved April 1, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

New program expands research proposal support

By IU Today

March 27, 2024

  • Share via Twitter
  • Share via Facebook
  • Share via Email

A new pilot program led by the Indiana University Center for Evaluation, Policy and Research expands support for IU faculty and researchers as they develop proposals for external research funding.

Evaluation Consulting for Proposals provides high-quality evaluation and/or research plans to give applicants a decisive edge when competing for external funding. The services are provided at no cost to participants and align with the IU 2030 strategic plan pillar to accelerate sponsored research.

The center’s full-time, Ph.D.-level research faculty support the development of thorough and thoughtful evaluation and research plans tailored to the project and the requirements. They have extensive experience partnering on successful grant applications to federal agencies such as the National Institutes of Health, Department of Defense, Department of Education and private foundations. 

Gustavo Arrizabalaga, professor and assistant dean for faculty affairs and professional development with the IU School of Medicine, has worked with the center during proposal development. 

“The expertise and responsiveness enabled us to submit a thoroughly researched and well-crafted NIH R01 application,” he said. “The Center for Evaluation, Policy and Research’s professionalism and knowledge instilled confidence that our proposal can strongly compete for NIH funding.”

Federal agencies, foundations and other funders increasingly note that successful grant proposals require strong evaluation plans. Even when not required, strong research and evaluation plans greatly strengthen the competitiveness of proposals.

“We cannot overstate how invaluable the center’s guidance and support were at every stage of drafting and refining our ideas,” Arrizabalaga said. “The team made the process of preparing our R01 proposal seamless.”

The Center for Evaluation, Policy and Research meets the definition of an independent, third-party evaluator as suggested by the National Science Foundation, U.S. Department of Agriculture and other funding agencies.

To learn more or request support, visit the Evaluation Consulting for Proposals program website, email center directors Anne-Maree Ruddy at [email protected] or Patricia Muller at [email protected] , or email [email protected] .

Social media

  • Facebook for IU
  • Linkedin for IU
  • Twitter for IU
  • Instagram for IU
  • Youtube for IU

Additional resources

Indiana university.

  • Outlook Web Access
  • Gmail at IU
  • People Directory
  • Non-discrimination Notice
  • Announcements
  • In The News

Monday, April 01, 2024

Research faculty invited to ‘Writing a Winning NSF CAREER Proposal’

Research event logo graphic for West Virginia University.

The Research Office invites faculty to join some of the WVU 2024 National Science Foundation CAREER awardees and learn more about writing a competitive proposal.

The event will take place during Research Week from 2:30-4 p.m. tomorrow (April 2) in the Mineral Resources Building, Room 301.

The agenda includes a survey of the tools and resources offered by the Research Office to assist you in finding funding, drafting a white paper, writing a full proposal and getting external feedback before submission.

The session will then segue into a panel featuring the career awardees who will provide their personal tips and suggestions on how to navigate this specific NSF program.

This session will provide ample opportunities for questions and discussion.

RSVP to attend.

Opinion | Biden administration proposal threatens…

Share this:.

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to print (Opens in new window)
  • Opinion Columns
  • Guest Commentary
  • Letters to the Editor
  • Editorial Board
  • Endorsements

Opinion | Biden administration proposal threatens innovative research at universities across the country

research and research proposal

UCLA just purchased a 700,000-square-foot property in Westwood that it’s planning to remodel into a state-of-the-art research park for quantum science, immunology, immunotherapy, and other high-tech fields. UCLA has billed the park as the “future home of discoveries that will change the world.”

Despite such visionary local leadership, however, policymakers in Washington are poised to scuttle innovation at universities across the country. The Biden administration plans to reinterpret a decades-old law, the Bayh-Dole Act, that is at the heart of university-based research and development.

The proposal would affect patents on any invention arising from federally funded research. It asserts the federal government’s supposed authority to “march in” and effectively seize patents when officials think a product’s price is too high.

In essence, the federal government wants to control the price of university-based innovations. Doing so would blow up the “technology transfer” system that turns breakthrough discoveries into real solutions. Products on the chopping block include life-saving therapies and quantum computers.

This would set us back to before 1980, when the government maintained control over all patents associated with federal funding. Because Washington had neither the capacity nor incentive to commercialize these inventions, and universities cannot make and sell products on their own, publicly funded breakthroughs rarely yielded tangible benefits.

Bayh-Dole solved this problem by allowing universities and other federally funded research institutions to retain patent rights for their discoveries. That enabled them to partner with private businesses that bring their inventions to market. In turn, universities collect royalties that support more students and more research, creating a continuous cycle of innovation.

Bayh-Dole unlocked the vast innovation potential of America’s universities. Before Bayh-Dole, federally funded research had produced roughly 30,000 patents, but the government had licensed fewer than 1,500 for commercialization. In comparison, 2022 alone saw nearly 17,000 patent applications filed for federally funded discoveries and almost 10,000 licenses executed. The Act supports millions of jobs, has helped launch over 17,000 start-ups, and has contributed around $2 trillion to U.S. output.

UCLA’s new research park helps illustrate Bayh-Dole’s influence. Google, which supported UCLA’s acquisition of the site, was founded to commercialize a patented search engine algorithm from Stanford University. Meanwhile, it was a revolutionary drug developed by UCLA faculty that sparked the launch of the field of cancer immunotherapy, a primary focus of the new park.

Private sector partners are critical for bringing such university innovations to market, and they rely on patents to justify their investment. If the government casts doubt on the reliability of these patents, firms will hesitate to license and develop early-stage research. Unfortunately, the new patent seizure plan will do just that.

The administration maintains it will only exercise this newfound authority when prices are “unreasonable,” whatever that means. But if the government can decide the level of profitability, especially based on such arbitrary, unpredictable standards, the private sector will avoid all promising inventions generated from federal funds. In the end, they will not reach the public.

Not only is the proposal bad policy, it is also illegal. The Bayh-Dole Act does not give the administration price-control authority. In fact, the law’s bipartisan architects, Senators Birch Bayh and Bob Dole, explicitly cautioned against it. And every single presidential administration, from both parties, has consistently declined to use the law to regulate prices.

UCLA envisions the new research park as “bring[ing] scholars from different higher education institutions, corporate partners, government agencies and startups together to…achieve breakthroughs that will serve our global society.” This type of cooperation has become the norm under Bayh-Dole. It will end abruptly if the Biden administration rewrites the rules of the game.

Fortunately, there are better approaches to improving access to drugs and other technologies. UCLA, for example, recently partnered with the UN’s Medicines Patent Pool and the student-led UAEM (Universities Allied for Essential Medicines) to require that licenses include an Affordable Access Plan for low- and middle-income countries. Leaving the crafting of such plans to private-public partnerships makes more sense than Washington big-footing it.

UCLA is investing $500 million in developing the new research park. The private sector will add much more. But for these investments to ultimately benefit the public, the Biden administration must lay off Bayh-Dole.

Amir Naiberg serves as associate vice chancellor and president & CEO of UCLA Technology Development Corporation. Andrei Iancu served as the undersecretary of Commerce for intellectual property and director of the U.S. Patent and Trademark Office from 2018 to 2021 and serves as board co-chair of the Council for Innovation Promotion.

  • Newsroom Guidelines
  • Report an Error

More in Opinion

RFK, Jr. is a poor fit for the Libertarian Party's objectives, and the party really doesn't have as much to offer him as the Politico article implies.

Opinion | Robert F. Kennedy Jr. isn’t a libertarian. He has no business seeking the Libertarian Party nomination.

Hollywood could not produce a better horror movie than California elections. 

Opinion | California leads the nation in election chaos and confusion. Huntington Beach shows a way forward.

In the middle of this housing crunch, legislators should be laser-focused on making housing as accessible as possible, encouraging policies that make it easier to buy and easier to rent.

Opinion | More housing is the solution for homeowners and renters alike

Congress should also pass legislation requiring any new spending to be offset by cuts in other federal spending and forbidding the Federal Reserve from purchasing federal debt instruments.

Opinion | Senate calls out-of-control spending a national security threat, keeps spending anyway

Grad Coach

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

research and research proposal

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

research and research proposal

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Narrative analysis explainer

37 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Active funding opportunity

Nsf 24-562: centers of research excellence in science and technology - research infrastructure for science and engineering, program solicitation, document information, document history.

  • Posted: March 25, 2024
  • Replaces: NSF 23-565

Program Solicitation NSF 24-562

Full Proposal Deadline(s) (due by 5 p.m. submitting organization’s local time):

     August 02, 2024

     First Friday in August, Annually Thereafter

Important Information And Revision Notes

This solicitation replaces NSF 23-565 CREST HBCU-RISE. This is a new solicitation and proposers should read it in its entirety. All Minority Serving Institutions (MSIs) that offer master’s or research doctoral degrees in NSF-supported STEM fields that, at the time of proposal submission, have enrollments of 50% or more U.S. resident students (non-international) who are members of minority groups underrepresented in STEM and are Emerging Research Institutions may submit proposals. See Section IV. Eligibility Information for complete details. Recipients are required to use the NSF Education and Training Application (ETAP) to manage participants supported by CREST-RISE.

Any proposal submitted in response to this solicitation should be submitted in accordance with the NSF Proposal & Award Policies & Procedures Guide (PAPPG) that is in effect for the relevant due date to which the proposal is being submitted. The NSF PAPPG is regularly revised and it is the responsibility of the proposer to ensure that the proposal meets the requirements specified in this solicitation and the applicable version of the PAPPG. Submitting a proposal prior to a specified deadline does not negate this requirement.

Summary Of Program Requirements

General information.

Program Title:

Centers of Research Excellence in Science and Technology - Research Infrastructure for Science and Engineering (CREST-RISE) Referred to in this solicitation as CREST-RISE
The Centers of Research Excellence in Science and Technology (CREST) program provides support to enhance the research capabilities of minority-serving institutions (MSIs) as defined in this solicitation’s Eligibility section, through effective integration of education and research. The CREST program, composed of the CREST Centers, the CREST Postdoctoral Research Program, and the projects supported by this CREST-RISE solicitation, promotes the development of new knowledge, enhancements of the research productivity of individual faculty and postdoctoral scholars, and an expanded presence of research doctoral students in science, technology, engineering, and mathematics (STEM) disciplines, especially those from underrepresented groups. CREST-RISE is the component of the CREST program that supports the expansion of institutional research capacity by increasing the strength of institutional graduate programs and the successful production of research doctoral students, especially those from groups underrepresented in STEM. The CREST-RISE component supports STEM research doctoral programs in all NSF supported areas and encourages proposals in areas of national interest, such as artificial intelligence, data science and analytics; advanced materials, manufacturing, robotics; cybersecurity; plant genetics/agricultural technologies; quantum information sciences; nanotechnology, semiconductors/microelectronics technologies; climate change and clean energy. CREST-RISE projects must have a direct connection to the long-term plans of the host department(s) and the institution’s strategic plan and mission. Project plans should emphasize activities designed to increase the production of research doctoral students, especially those underrepresented in STEM as well as expand institutional research capacity. The goals of CREST-RISE are to increase: (1 the number of STEM research doctoral programs at MSIs (as defined in the Eligibility section), 2) the number of STEM research doctoral students graduating from MSIs, especially those from groups underrepresented in STEM, and 3) institutional research capacity to increase doctoral students’ graduation rates. To achieve these goals, the CREST-RISE program includes three tracks as follows: CREST-RISE STEM Doctoral Programs Support Initiative (CREST-RISE DPSI) CREST-RISE Research Advancement and Development (CREST-RISE RAD) CREST-RISE Equipment & Instrumentation (CREST-RISE E&I)

Cognizant Program Officer(s):

Please note that the following information is current at the time of publishing. See program website for any updates to the points of contact.

Sonal Dekhane, Program Director, telephone: (703)405-8977, email: [email protected]

Luis A. Cubano, Lead Program Director, telephone: (703) 292-7941, email: [email protected]

Nicole E. Gass, Program Specialist, telephone: (703) 292-8378, email: [email protected]

  • 47.076 --- STEM Education

Award Information

Anticipated Type of Award: Standard Grant or Continuing Grant

Estimated Number of Awards: 2 to 9

Anticipated Type of Award:

CREST-RISE DPSI: Continuing Grant

CREST-RISE RAD: Continuing Grant

CREST-RISE E&I: Standard Grant

Estimated Number of Awards:

Up to 3 awards CREST-RISE DPSI

Up to 2 awards CREST-RISE RAD

Up to 4 awards CREST-RISE E&I

The number of awards made annually is contingent on the availability of funds and the submission of meritorious proposals.

Anticipated Funding Amount:

CREST-RISE DPSI:

DPSI awards will not exceed $2,000,000 during a five-year period. DPSI awards will be managed as Continuing Grants.

CREST-RISE RAD:

RAD awards will not exceed $1,000,000 during a five-year period. RAD awards will be managed as Continuing Grants.

CREST-RISE E&I:

E&I awards will not exceed $500,000 during the one-year award period. E&I awards will be managed as Standard Grants.

Anticipated Funding Amount: $6,000,000

Eligibility Information

Who May Submit Proposals:

Proposals may only be submitted by the following: Minority Serving Institutions (see definition below) that are Emerging Research Institutions (ERIs) and offer master’s or research doctoral degrees in NSF-supported STEM fields are eligible to submit. Emerging Research Institutions are those that have less than $50,000,000 in research expenditures per year as reported at https://ncsesdata.nsf.gov/profiles/site?method=rankingBySource&ds=herd in three of the last five years. For this solicitation, MSIs are defined as institutions, at the time of proposal submission, that have enrollments of 50% or more U.S. resident students (non-international) (based on total student enrollment) who are members of minority groups underrepresented among those holding advanced degrees in science and engineering fields. Proposals are also invited from institutions of higher education that meet the 50% enrollment criterion and primarily serve populations of students with disabilities. Eligibility may be determined by reference to the Integrated Postsecondary Education Data System (IPEDS) of the US Department of Education National Center for Education Statistics ( http://nces.ed.gov/ipeds/ ).

Who May Serve as PI:

CREST-RISE DPSI The Principal Investigator (PI) must hold a full-time faculty appointment in an NSF-supported STEM discipline at the institution submitting the proposal. CREST-RISE RAD The PI must meet all the following eligibility requirements at the time of submission: Be a full-time faculty member with the DPSI institution, Have earned a doctoral degree no more than 10 years prior to the proposal submission date, Be engaged in research in a STEM area supported by NSF and in alignment with the institution’s active DPSI project, Mentor or commit to mentor research doctoral students in the DPSI subject area, Hold a position as an assistant professor (or equivalent), Be untenured and on a tenure-track or tenure-track equivalent position, and Have not previously received a RAD award. Tenure-Track Equivalency – For a position to be considered a tenure-track-equivalent position, it must meet the following requirement: the employee has a continuing appointment that is expected to last the five years of a RAD award For tenure-track equivalent faculty, a Departmental Letter must affirm that the investigator’s appointment is at an early-career level equivalent to pre-tenure status. Further, the Departmental Letter must clearly and convincingly demonstrate how the faculty member’s appointment satisfies all the above requirements of tenure-track equivalency. Faculty members who are associate professors, full professors, or have equivalent appointments with or without tenure/tenure-equivalency, are not eligible to serve as PI for a RAD award. Faculty members who hold Adjunct Faculty or equivalent appointments are not eligible to serve as PI for the RAD award. Co-PIs are not permitted for a RAD proposal. CREST-RISE E&I The PI must be a full-time faculty member at the requesting institution and must be mentoring DPSI supported research doctoral students from the institution’s active DPSI award.

Limit on Number of Proposals per Organization:

CREST-RISE DPSI: 1 CREST-RISE RAD: 2 CREST-RISE E&I: 1 CREST-RISE DPSI Institutions can propose to create a research doctoral program or strengthen an existing research doctoral program. Proposals to create a research doctoral program will be funded only once per institution per disciplinary area. An institution may have only one active DPSI/HBCU-RISE award, irrespective of focus area. Therefore, institutions with an active DPSI/HBCU-RISE award are not eligible to submit a proposal in response to this solicitation unless the active award ends prior to the proposed start date specified in the proposal. The institution is responsible for verifying whether they hold a current active DPSI/HBCU-RISE award. Institutions that have completed a CREST-RISE or HBCU-RISE award in a disciplinary area may re-compete in other STEM disciplinary areas supported by NSF that are significantly different from those of the previous research doctoral program award(s) held in the last five years. To be significantly different, the new project must be associated with a different four-digit Classification of Instructional Programs (CIP) code, and name new PIs, new co-PIs, and new faculty investigators who have not received a CREST-RISE or HBCU-RISE award in the last five years. Only one DPSI proposal may be submitted per eligible institution. After 10 years of CREST-RISE support, an institution must wait five years before submitting another proposal to the DPSI program. CREST-RISE RAD An institution must have an active DPSI award to be eligible for RAD. An institution may receive a maximum of four RAD awards and one active RAD award per individual PI during the five-year DPSI project. RAD proposals must be submitted after the first year and before the end of the third year from the DPSI award start date. Up to two RAD proposals may be submitted per eligible institution per deadline date. CREST-RISE E&I An institution must have an active DPSI award to be eligible for E&I. An institution may receive a maximum of two E&I awards during the five-year DPSI project. E&I proposals must be submitted after the first year and before the end of the third year from the DPSI award start date. Only one E&I proposal may be submitted per eligible institution per deadline date.

Limit on Number of Proposals per PI or co-PI:

CREST-RISE DPSI: 1 CREST-RISE RAD: 1 CREST-RISE E&I: 1

Proposal Preparation and Submission Instructions

A. proposal preparation instructions.

  • Letters of Intent: Not required
  • Preliminary Proposal Submission: Not required

Full Proposals:

  • Full Proposals submitted via Research.gov: NSF Proposal and Award Policies and Procedures Guide (PAPPG) guidelines apply. The complete text of the PAPPG is available electronically on the NSF website at: https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg .
  • Full Proposals submitted via Grants.gov: NSF Grants.gov Application Guide: A Guide for the Preparation and Submission of NSF Applications via Grants.gov guidelines apply (Note: The NSF Grants.gov Application Guide is available on the Grants.gov website and on the NSF website at: https://www.nsf.gov/publications/pub_summ.jsp?ods_key=grantsgovguide ).

B. Budgetary Information

Cost Sharing Requirements:

Inclusion of voluntary committed cost sharing is prohibited.

Indirect Cost (F&A) Limitations:

Not Applicable

Other Budgetary Limitations:

Other budgetary limitations apply. Please see the full text of this solicitation for further information.

C. Due Dates

Proposal review information criteria.

Merit Review Criteria:

National Science Board approved criteria. Additional merit review criteria apply. Please see the full text of this solicitation for further information.

Award Administration Information

Award Conditions:

Additional award conditions apply. Please see the full text of this solicitation for further information.

Reporting Requirements:

Additional reporting requirements apply. Please see the full text of this solicitation for further information.

I. Introduction

The CREST program’s overall goal is to build the STEM research and education capacity of minority serving institutions (MSIs) with strong records of producing STEM graduates, especially those who are members of groups underrepresented in STEM fields.

CREST-RISE is one strand of the larger CREST program whose specific goals are to increase: 1) the number of STEM research doctoral programs at MSIs (as defined in the Eligibility section), 2) the number of STEM research doctoral students graduating from MSIs, especially those from groups underrepresented in STEM, and 3) institutional research capacity to increase doctoral students’ graduation rates. It is expected that awards made under this solicitation will catalyze institutional transformation through the strengthening of research capabilities commensurate with an institution's mission and long-term goals, and support the development of STEM scholars, especially those from groups underrepresented in STEM.

As with all CREST projects, CREST-RISE projects should be designed to promote synergy between education and research. CREST-RISE supported research doctoral students should be engaged in the process of discovery and innovation and guided by the faculty. Evidence-based recruitment and retention strategies should be employed to increase the number of STEM research doctoral students and graduates, especially those who are members of groups underrepresented in STEM. Partnerships with other MSIs, especially those that are primarily undergraduate institutions, are encouraged. Awarded institutions are required to evaluate the impact of the award in influencing institutional transformation as part of their project evaluation.

Projects should employ cutting-edge and relevant curricula to support students’ academic success and should provide relevant professional and research-related experiences that support their transition into STEM careers. Students should be exposed to opportunities that foster their significant participation in the broader community of scholarship in their respective fields.

An important project design consideration is the inclusion of activities that leverage award funds to secure additional support from federal, state, and local agencies, and to develop industry and academic partnerships to sustain the work initiated by the CREST-RISE award.

II. Program Description

The CREST-RISE program includes three tracks as follows:

  • CREST-RISE STEM Doctoral Programs Support Initiative (CREST-RISE DPSI)
  • CREST-RISE Research Advancement and Development (CREST-RISE RAD)
  • CREST-RISE Equipment & Instrumentation (CREST-RISE E&I)

A. CREST-RISE DPSI:

DPSI awards support the production of STEM research doctoral graduates to include those from groups underrepresented in STEM and the development of research capacity in STEM disciplines at MSIs. Proposals should include a component that outlines strategies for connecting with other NSF-funded awards held by the institution and related to the proposed project's goals and scope. Proposals should also include authentic partnerships with other MSIs, especially those that are primarily undergraduate institutions, that contribute to project goals, benefit all partners, and increase the transition of undergraduate students from underrepresented groups to doctoral programs in STEM.

DPSI Award Characteristics:

Proposed projects must be designed to 1 increase the production of research doctoral students, including those who are members of groups underrepresented in STEM, and 2) expand institutional research capacity. Research doctoral students must be U.S. citizens, nationals, or permanent residents, as stated in the Eligibility section of this solicitation. Proposed projects should also have a direct and synergistic connection to the long-term plans of the host department and the institution’s mission.

DPSI proposals must address an NSF-supported discipline(s). NSF especially welcomes proposals in areas of strong national interest, such as artificial intelligence, data science and analytics; advanced materials, manufacturing, robotics; cybersecurity; plant genetics/agricultural technologies; quantum information sciences; nanotechnology, semiconductors/microelectronics technologies; climate change and clean energy. In addition, for this solicitation, the areas outlined in the resources below are of great interest:

  • CHIPS and Science Act of 2022 www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact- sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/)
  • Industries of the Future ( https://www.whitehouse.gov/ostp/news-updates/2022/04/30/the-final-industries-of-the-future-report-to-congress/ OSTP_IOTF_Report.pdf)
  • Understanding the Brain ( https://www.nsf.gov/news/special_reports/brain/)
  • DOE Earthshots ( https://www.energy.gov/policy/energy-earthshots-initiative)

DPSI proposals must offer significant enhancements to an institution's capacity to carry out doctoral level research, more than is afforded by traditional single- or multi-investigator research proposals. DPSI support should not replace other active or available federal, state, or institutional resources, but rather should add significant value to the existing institutional strategic plan. Reviewers will be asked to consider the unique goals of the DPSI application in developing research doctoral program capacity, in addition to supporting research activities.

A key feature of proposed projects should be comprehensive strategies to diversify talent regarding recruitment, mentoring, retention, and graduation of research doctoral students (U.S. citizens, nationals, and permanent residents) in NSF-supported STEM fields, which includes members of groups underrepresented in STEM. NSF's 2022-2026 Strategic Plan calls for the broadening of opportunities and expanding participation of groups, institutions, and geographic regions to include those who are underserved and/or underrepresented in STEM disciplines, which is essential to the health and vitality of science and engineering.

Career development opportunities, provision for developing professional skills, instruction in ethics and the responsible conduct of research, and training in the communication of the substance and importance of research to non-scientist audiences are strongly encouraged as proposed activities.

Each DPSI proposal should describe an evaluation plan to formatively monitor progress towards its goals and objectives and to provide information for optimizing project design. A final project-level evaluation is required to synthesize lessons learned. In addition, each awarded project will be required to participate in a CREST program-level evaluation to assess the CREST program's contributions to advancing the science and engineering research and education capabilities of MSIs.

DPSI awards are not required to convene meetings of an external advisory group or committee. However, each proposal shall identify an internal steering committee to include the PI, co-PIs, and other applicable stakeholders to review the results of the evaluation process, to ensure that progress is consistent with departmental and institutional goals, and to discuss potential project modifications to realize those goals more effectively.

Supportable DPSI award activities may include but are not limited to hiring faculty in the identified NSF-supported research areas, student attendance at professional meetings and seminars, education activities directed toward the development of a diverse, internationally competitive, and globally engaged workforce of scientists and engineers well-prepared for a broad set of career paths, student recruitment and retention activities, professional skills training, and graduate research activities. Postdoctoral support is not allowed.

NSF is committed to a culture and climate of research that results in an inclusive and diverse workforce. For this reason, NSF strongly encourages the inclusion of individuals from groups underrepresented in STEM, women, veterans, and/or persons with disabilities in its programs and project leadership teams. In identifying the members of the DPSI research team, the proposing institution should strongly encourage participation of the full spectrum of diverse talent that society has to offer, including those who are underrepresented or underserved.

DPSI Commitment and Sustainability

Organizational commitment from administrators and leaders to the proposed project activities is vital for successful projects and for the financial and organizational sustainability of promising activities. Letters of support from the provost or equivalent university officials with supervisory authority related to faculty, research, facilities, equipment, and education are required and should be submitted as supplementary documents.

Proposals should discuss the commitment of institutional leadership to revisions to current practices and policies that will enhance the institution’s research capabilities and increase its production of doctoral graduates and diverse talent. Proposals should discuss how the successful components developed under the project will be sustained. Awards are expected to lead to long-term organizational change in how the institution supports faculty to increase their research productivity as well as how it recruits, supports, retains, and graduates doctoral students in STEM. Therefore, proposed projects are expected to consider the financial and organizational sustainability and institutionalization of the project activities from the project’s inception.

B. CREST-RISE RAD

The CREST-RISE RAD awards provide funds for junior faculty to develop their research agenda, to collect preliminary data for inclusion in new proposals for extramural funding, and to support the training of research doctoral students. Junior faculty at institutions that have active DPSI awards are eligible to serve as PI on a RAD proposal. PIs must be mentoring or seeking to mentor research doctoral students. PIs should refer to the eligibility section for detailed eligibility criteria. Co-PIs are not permitted for a RAD proposal. RAD funds can be requested after the first year and before the end of the third year from the start date of the DPSI award. Award duration can be up to 5 years and a maximum of $1,000,000 can be requested through RAD. RAD awards cannot be transferred to non-eligible institutions.

RAD proposals must show clear alignment with the goals of the active DPSI award and must clearly describe how it contributes to the DPSI at the institution. Mentoring (or commitment to mentoring) of research doctoral students, including those from underrepresented groups in STEM is required. Proposed research projects should build a foundation for the PI’s long-term research scholarship and help advance the PI’s professional goals. Proposals should include a clear research plan, a solid plan for integrating research and educational activities, and a research doctoral student mentoring plan.

C. CREST-RISE E&I

The CREST-RISE E&I awards provide funds for the acquisition of equipment and instrumentation to support the training and production of research doctoral graduates including students from groups that are underrepresented in STEM. Institutions with active DPSI awards are eligible to request E&I funds for needs that align with and contribute to the DPSI project goals. Proposals must show clear alignment with goals of the institution’s active DPSI award and must include activities that support research doctoral student training. Proposals must clearly describe how equipment expenditures contribute to the DPSI project goals at the institution.

The PI must be affiliated with an active DPSI project and must be actively mentoring research doctoral students. Funds can be requested after the first year and before the end of the third year from the start date of the active DPSI award.

Award duration is 12 months. Up to $100,000 can be requested for equipment to be used by individual faculty members at the DPSI institution and their research students.

Up to $500,000 can be requested for equipment that can be shared among multiple faculty members at the DPSI institution and their research doctoral students. Equipment can also be used by faculty and students from other institutions for activities that contribute to the DPSI project goals. Individual equipment may be transferred to another institution. Shared equipment cannot be transferred to other institutions. E&I proposals should be submitted as an Equipment Proposal as described in the PAPPG.

III. Award Information

Continuing or Standard Grant

CREST-RISE STEM Doctoral Programs Support Initiative (CREST-RISE DPSI):

CREST-RISE Research Advancement and Development (CREST-RISE RAD):

CREST-RISE Equipment & Instrumentation (CREST-RISE E&I):

IV. Eligibility Information

Additional Eligibility Info:

Institutions that do not meet the criteria identified in this solicitation to act as a lead institution can be named as subawardees in a proposal. Submission of a collaborative proposal from multiple institutions is not allowed. Funding of partnering institutions , if any, must be requested via subawards in the full proposal; separately submitted collaborative proposals will not be accepted. Institutions can propose to create a research doctoral program or strengthen an existing research doctoral program in an NSF supported STEM area. Proposals to create a research doctoral program will be funded only once per institution per disciplinary area. Institutions that have completed a CREST-RISE or HBCU-RISE award in a disciplinary area may re-compete in other disciplinary areas that are significantly different from those of the previous research doctoral program award(s) received in the last five years. To be significantly different, the new project must be associated with a different 4-digit Classification of Instructional Programs (CIP) code, have new PIs, new co-PIs, and new faculty investigators who have not received a CREST-RISE or HBCU-RISE award in the last five years.

V. Proposal Preparation And Submission Instructions

Full Proposal Preparation Instructions : Proposers may opt to submit proposals in response to this Program Solicitation via Research.gov or Grants.gov.

  • Full Proposals submitted via Research.gov: Proposals submitted in response to this program solicitation should be prepared and submitted in accordance with the general guidelines contained in the NSF Proposal and Award Policies and Procedures Guide (PAPPG). The complete text of the PAPPG is available electronically on the NSF website at: https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg . Paper copies of the PAPPG may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-8134 or by e-mail from [email protected] . The Prepare New Proposal setup will prompt you for the program solicitation number.
  • Full proposals submitted via Grants.gov: Proposals submitted in response to this program solicitation via Grants.gov should be prepared and submitted in accordance with the NSF Grants.gov Application Guide: A Guide for the Preparation and Submission of NSF Applications via Grants.gov . The complete text of the NSF Grants.gov Application Guide is available on the Grants.gov website and on the NSF website at: ( https://www.nsf.gov/publications/pub_summ.jsp?ods_key=grantsgovguide ). To obtain copies of the Application Guide and Application Forms Package, click on the Apply tab on the Grants.gov site, then click on the Apply Step 1: Download a Grant Application Package and Application Instructions link and enter the funding opportunity number, (the program solicitation number without the NSF prefix) and press the Download Package button. Paper copies of the Grants.gov Application Guide also may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-8134 or by e-mail from [email protected] .

See PAPPG Chapter II.D.2 for guidance on the required sections of a full research proposal submitted to NSF. Please note that the proposal preparation instructions provided in this program solicitation may deviate from the PAPPG instructions.

Submission of a collaborative proposal from multiple institutions is not allowed. Funding of partnering institutions, if any, must be requested via subawards in the full proposal; separately submitted collaborative proposals will not be accepted. Eligible parties intending to submit a proposal are encouraged to participate in webinars that will be webcast after the release of this solicitation. See CREST webpage for dates.

DPSI Proposal Contents

Proposals must include all of the following items. In cases where requirements given in this document differ from those given in the PAPPG or Grants.gov Application Guide, this solicitation takes precedence. Proposals will be returned without review if they do not meet the requirements stipulated in the solicitation.

1. Cover Sheet

  • Start date: For planning purposes, February 1 of the award year should be indicated as the award start date.
  • PI: The proposal must show the proposed Project Director as the Principal Investigator.
  • Title of the Proposed Project must begin with: "CREST-DPSI (C):" or “CREST-DPSI (S):". C for creation of a new STEM research doctoral program and S for strengthening of an existing STEM research doctoral program.
  • The title must be informative and descriptive of the project, concise (20 words or less), and use Title Case. The title must not include the institution name, any acronyms ("STEM" excepted), or quotation marks.

2. Project Summary (1 page)

Provide an overview of the CREST DPSI project.

  • The summary should be informative to people working in the same or related fields, and understandable to a broad audience within the scientific domain.
  • The summary should provide a clear and concise description of the project including mission and vision, and significance of the proposed work.
  • The summary should clearly describe the scientific area focus of the STEM Doctoral Program(s) and goals for education and broadening participation.
  • Both NSF merit review criteria (intellectual merit and broader impacts) must be addressed in separate statements in the project summary (see the PAPPG for additional instructions).
  • The summary must include as a separate sentence at the bottom of the page the 4-digit Classification of Instructional Programs (CIP) code that most closely matches with the project. CIP codes are available at https://nces.ed.gov/ipeds/cipcode/browse.aspx?y=55 . Example: 26.02

3. Project Description (15 pages)

The Project Description must contain only Sections 3.a through 3.h described below and cannot exceed 15 pages including tables and illustrations.

  • Importantly, the project description should contain specific, measurable, and obtainable objectives that will be used to measure the progress of the award, if funded.
  • The broader impacts resulting from the proposed project must be addressed and described in a separate section of the narrative.

3.a Problem Description and Rationale for Selected Approach

Describe the challenges that the project will address. Include timeliness of addressing the challenges.

  • This section indicates how the project is aligned with the mission of the institution and long-term goals of the department(s) in increasing the number of doctoral students in STEM and building the research capacity.
  • The goals and objectives of the project must be clearly stated, measurable, aligned with the strategic plans of the institution and achievable within the proposed time frame. This section includes baseline data.
  • The proposal must address institutional support for, and financial and organizational sustainability of the project. The proposal should include a component that outlines a strategy for the creative integration of NSF-funded awards at the institution as well as the integration of the research and educational activities.

3.b Description of the STEM Doctoral Programs Capacity Building Objectives

State the overall vision and long-range STEM Doctoral Programs capacity building goals. Describe how STEM Doctoral Programs capacity building will lead to increased doctoral graduates and research productivity. Provide a timeline for the activities.

  • This section should provide a STEM Doctoral Programs capacity building plan with sufficient detail to allow assessment of the project’s merit.
  • Indicate in the plan the specific role of each participant.
  • Indicate in the plan the potential impact or expected significance the plan will have in the production of doctoral graduates from the full spectrum of talent that society has to offer, including those who are underrepresented in STEM.

3.c Description of the Education and Human Resource Development Objectives

Describe how the DPSI proposal will provide professional development and other appropriate opportunities to faculty members and doctoral students to assist them in setting up a research agenda and progressing in their careers.

  • This section describes how research and education will be integrated. Education programs and activities should be evidence-based practices developed in the context of current education research and be monitored through a formal project-specific evaluation effort led by independent evaluators as described in 3.g.
  • This section describes plans for retention and graduation of doctoral students, and the mentoring and professional development of doctoral students and faculty members. Use of evidence-based strategies to mentor, retain and graduate members from groups underrepresented in STEM is expected.
  • Partnership plans if any, with other minority-serving institutions, especially those that are primarily undergraduate institutions, should be described here.
  • Describe all proposed activities in sufficient detail to allow assessment of their intrinsic merit and potential effectiveness.

3.d Recruitment Plan

Describe how the DPSI proposal will contribute to the production of all doctoral students including those who are underrepresented or underserved in STEM through its recruitment activities.

  • This section describes a comprehensive plan for the recruitment of doctoral students into the doctoral program and research activities that attracts students from all backgrounds including those from groups underrepresented in STEM.
  • Partnership plans with other minority-serving institutions, especially those that are primarily undergraduate institutions if any, should be described here.
  • An evaluation of recruitment activities should be included in the project’s evaluation plan.

3.e Broader Impacts

Describe the broader impacts objectives and outline strategies for achieving them.

  • Describe plans for increasing diversity through the inclusion of individuals who are underrepresented in STEM or underserved.
  • Describe the contribution/role of students and faculty and how they will be integrated into activities.
  • Explain how mentoring will be used to provide a supportive environment for all project participants.
  • Explain how progress will be measured and how strategies will be adapted, as appropriate.
  • Describe the proposed activities in sufficient detail to allow assessment of their intrinsic merit and potential effectiveness.

3.f Description of the Management Plan

Describe the management of the DPSI project to ensure optimal performance.

  • Present a management plan including a diagram to explain the organizational relationships and reporting structure among the key areas of responsibility.
  • The management plan identifies key members of the Management Team and explains their specific roles and areas of responsibility.
  • The management plan explains the role of each key participant/component.
  • The management plan describes the processes to be used to prioritize activities; to allocate funds across activities; and to select a replacement PI, if needed.
  • The management plan must identify members of the Internal Steering Committee and the evaluator.
  • The management plan should address alignment with DPSI’s commitment to include URMs, women, veterans, or persons with disabilities in the leadership of DPSI proposals.

3.g Evaluation Plan

All proposals must include an evaluation section that describes how the project evaluator/evaluation team will gauge the accomplishment of project goals and the impacts of the project. The budget must include adequate resources for project evaluation. This section must:

  • Include a logic model with short-term, and intermediate term expected outcomes. Include a description of the evaluation design and methods that will be used.
  • The evaluation plan should include formative aspects that will provide information to inform evidence-based decisions about changes in its activities, and summative aspects that will provide evidence of overall impacts of the project. Include an evaluation design based on benchmarks, indicators, or expected outcomes related to project goals, objectives, and activities.
  • Identify the person(s) who will lead the evaluation and briefly describe their academic training and professional experience that qualifies them to serve as an evaluator. Evaluator(s) may be internal or external to DPSI institutions but must be external to the project itself and positioned to carry out the evaluation plan independently.

3.h Results from Prior NSF Support

Results from Prior NSF Support (up to 5 pages) in accordance with the guidance in the PAPPG.

This section must also include results from any current or prior DPSI/HBCU-RISE support received by the institution including the number of research doctoral students supported, number of research doctoral students currently enrolled, and number of research doctoral students that completed graduation requirements.

4. Facilities, Equipment and Other Resources (1 page limit)

Provide a synopsis of institutional resources that will be available (dedicated space, access to facilities and instrumentation, faculty and staff positions, including plans to make cluster hires if appropriate, access to programs that assist with curriculum development or broadening participation, or other institutional programs that could provide support). Note that inclusion of voluntary committed cost sharing is prohibited. The description must be narrative in nature and must not include any quantifiable financial information.

5. Budget and Budget Justification

Provide a budget for each year. A cumulative budget will be generated automatically. The proposed budget should be consistent with the needs and complexity of the proposed activity. Funds must also be included for attendance to the CREST Program annual PI meeting. See Section V.B. Budgetary Information for budgetary restrictions.

Submit a budget justification.

6. References Cited (5-page limit, separate from the 15-page limit for the Project Description)

7. Special Information and Supplementary Documents

The proposal should include applicable supplementary documents as instructed in the PAPPG. The following items must be provided as additional supplementary documents.

7.a Ethics Plan (1-page limit)

Provide a clear statement of the proposed policies on ethics training, responsible conduct of research, and intellectual property rights. A program of training in ethics and responsible conduct of research for all faculty, postdoctoral researchers, and students is required. Training topics should include the nature of the research, methodologies used, ownership of research and ideas, and roles and responsibilities regarding intellectual property, and civil treatment of colleagues.

7.b Doctoral Student Mentoring Plan (1-page limit)

Each proposal that requests funding for doctoral students must include, as a supplementary document, a description of the mentoring activities that will be provided for such individuals. Proposers are advised that this plan is separate and distinct from the Postdoctoral Researcher Mentoring Plan that is conditionally required by the PAPPG. The doctoral students mentoring plan may not be used to circumvent the Project Description page limitation.

7.c Letter of Support (2-page limit) (Required) and Partnership Letters (Optional) (2-page limit each)

A letter of support from the provost or equivalent university official with authority related to faculty, research, facilities and/or equipment, and education must be submitted, which describes the support for and commitment to the project (including space). The institution must commit to implementing systemic changes to increase STEM doctoral programs and research productivity. The letter of support must express awareness of, support for, and specific commitments to the project.

The letter of support may include information related to financial and organizational sustainability and commitment of the provost or equivalent university official to the project. A letter of support that merely endorses the project or offers nonspecific support for the project activities must not be included and the proposal may be returned without review if general support letters are included. Note that organizational commitment can also be demonstrated through commitment to a project’s financial and organizational sustainability. For guidance on voluntary uncommitted cost sharing please review the NSF Proposal and Award Policies and Procedures Guide (PAPPG).

Partnership letters (if any partnerships are proposed) must be provided for partnership arrangements of significance to the proposal. The letters must describe the support that will be provided and the commitment to the project and do not need to be limited to the recommended language in the NSF PAPPG.

Proposals submitted without a Letter of Support may be returned without review.

8. Information to be submitted to NSF via the Single Copy Documents Section

8.a Optional

List of suggested reviewers and contact information or reviewers not to include.

CREST-RISE RAD Proposal Contents

Proposals must include all the following items. In cases where requirements given in this document differ from those given in the PAPPG or Grants.gov Application Guide, this solicitation takes precedence. Proposals will be returned without review if they do not meet the requirements stipulated in the solicitation.

  • Start date: For planning purposes, February 1 of the award year should be shown as the start date.
  • PI: The proposal must show the proposed project Director as the Principal Investigator.
  • No co-PIs are permitted.
  • The title of the proposed project must begin with: "CREST-RISE RAD:".
  • The title must be informative and descriptive of the project, concise (20 words or less), and uses Title Case. The title must not include the institution name, any acronyms ("STEM" excepted), or quotation marks.

Provide an overview of the CREST-RISE RAD project.

  • The summary should clearly describe the scientific area focus of the PI’s research and goals for broadening participation.
  • At the bottom of the page add the 4-digit Classification of Instructional Programs (CIP) code that is most closely associated with the project. CIP codes are available at https://nces.ed.gov/ipeds/cipcode/browse.aspx?y=55 . Example: 26.02

The Project Description section should contain a well-argued and specific proposal for activities that will, over a 5-year period, build a firm foundation for a lifetime of contributions to research. The proposed project should aim to advance the PI’s research goals.

The Project Description should include:

  • a description of the proposed research project, including preliminary supporting data where appropriate, specific objectives, methods, and procedures to be used, and expected significance of the results,
  • a description of the alignment of the research with the DPSI project at the institution,
  • a description of how DPSI doctoral students will be involved in the research,
  • the broader impacts resulting from the proposed project must be addressed and described in a separate section of the narrative labeled "Broader Impacts", and
  • results of prior NSF support, if applicable.

4. Letter of Support (2-page limit) (Required) (a proposal submitted without this Letter will be returned without review) and Letters of Collaboration (2-page limit each)

To demonstrate the institution’s support of the research development plan of the PI, the proposal must include one (and only one) letter of support. The letter must be from the PI's department head (or equivalent organizational official) and the DPSI PI. In the case of joint appointments, the letter must be signed by both department heads and the DPSI PI.

The Letter of Support must be no more than 2 pages in length and include the department head's and DPSI PI name and title below the signature. The letter must contain the following elements:

  • A statement to the effect that the PI is eligible for the CREST-RISE RAD track. For tenure-track equivalent faculty, the Letter of Support must affirm that the investigator's appointment is at an early-career level equivalent to pre-tenure status, pursuant to the eligibility criteria specified above. Further, for tenure-track equivalent faculty, the Letter of Support must clearly and convincingly demonstrate how the faculty member satisfies all the requirements of tenure-track equivalency as defined in the eligibility criteria specified in this solicitation.
  • An indication that the PI's proposed research is aligned with the institution’s DPSI project goals, and that the department is committed to the support and professional development of the PI; and
  • A description of the ways in which the department head (or equivalent) and DPSI PI will ensure the appropriate mentoring of the PI.

Letters of Collaboration – If the project involves collaborative arrangements of significance, these arrangements must be documented through letters of collaboration.

The letters must describe the support that will be provided and the commitment to the project. The letters of collaboration do not need to be limited to the recommended language in the NSF PAPPG.

Please note that letters of recommendation for the PI or other letters of support for the project are not permitted.

CREST-RISE E&I Proposal Contents

The following instructions supplement the guidelines in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) and NSF Grants.gov Application Guide for the specified sections. Proposals will be returned without review if they do not meet the requirements stipulated in the solicitation.

Follow NSF PAPPG Equipment Proposal instructions with the following exception:

  • The title of the proposed project must begin with: "CREST-RISE E&I:"

2. Letter of Support (2-page limit) (Required) (a proposal submitted without this Letter will be returned without review) and Letters of Collaboration (2-page limit each)

To demonstrate the institution’s support for the equipment, the proposal must include one (and only one) letter of support. The letter must be from the PI's department head (or equivalent organizational official) and the DPSI PI. In the case of joint appointments, the letter must be signed by both department heads and the DPSI PI.

  • An indication that the equipment is aligned with the institution’s DPSI project goals, and that the institution is committed to the support of the equipment; and
  • A description of the ways in which the department head (or equivalent) and DPSI PI will ensure the appropriate use of the equipment and the access of DPSI students to the equipment.

The letters must describe the support that will be provided and the commitment to the project.

The letters of collaboration do not need to be limited to the recommended language in the NSF PAPPG.

Cost Sharing:

CREST-RISE DPSI

DPSI awards will not exceed $2,000,000 during a five-year period.

Submission of a collaborative proposal from multiple organizations is not allowed. Proposals involving partnering organizations must use subawards made by the lead organization to partnering organizations. The total amount of funding to subawardee institutions must reflect the institution’s effort. The total amount of funding to all subawardee institutions may not exceed 10% of the cumulative budget going to the primary institution, for example $200,000 for a $2,000,000 budget.

Funds cannot be used to support postdoctoral scientists.

Research doctoral students may be supported by program creation proposals after the program has started admitting students. Financial support may only be provided to doctoral students that are U.S. citizens, nationals, or permanent residents. Student support must be included on the "stipends" line under the "Participant Support Costs" section of the budget. Stipends to students must not replace other need-based grants and scholarships already awarded to the students.

Funds may be used for supplies for research doctoral students, research doctoral student travel, research doctoral student professional development activities, hire faculty, curriculum development, mentoring training, seminar speakers, among other expenses to ensure the success of students. Current faculty, except for the PI, are not supported as mentoring research doctoral students is part of the faculty responsibilities.

Funds may not be used to support postdoctoral scientists or for the purchase of equipment, laboratory renovations, or other infrastructure.

The CREST Program encourages hiring faculty from groups underrepresented in STEM who are U.S. citizens, nationals, or permanent residents.

CREST-RISE supported personnel are expected to participate in principal investigator meetings and must include travel funds to attend these annual meetings in their budget.

CREST-RISE RAD

RAD awards will not exceed $1,000,000 during a five-year period.

Research doctoral students may be supported after the institution starts admitting doctoral students.

Funds will not be used for the purchase of equipment, laboratory renovations, or other infrastructure.

CREST-RISE E&I

E&I awards will not exceed $500,000 during the one-year award period.

Funds cannot be used to support postdoctoral scientists or students.

D. Research.gov/Grants.gov Requirements

For Proposals Submitted Via Research.gov:

To prepare and submit a proposal via Research.gov, see detailed technical instructions available at: https://www.research.gov/research-portal/appmanager/base/desktop?_nfpb=true&_pageLabel=research_node_display&_nodePath=/researchGov/Service/Desktop/ProposalPreparationandSubmission.html . For Research.gov user support, call the Research.gov Help Desk at 1-800-381-1532 or e-mail [email protected] . The Research.gov Help Desk answers general technical questions related to the use of the Research.gov system. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this funding opportunity.

For Proposals Submitted Via Grants.gov:

Before using Grants.gov for the first time, each organization must register to create an institutional profile. Once registered, the applicant's organization can then apply for any federal grant on the Grants.gov website. Comprehensive information about using Grants.gov is available on the Grants.gov Applicant Resources webpage: https://www.grants.gov/web/grants/applicants.html . In addition, the NSF Grants.gov Application Guide (see link in Section V.A) provides instructions regarding the technical preparation of proposals via Grants.gov. For Grants.gov user support, contact the Grants.gov Contact Center at 1-800-518-4726 or by email: [email protected] . The Grants.gov Contact Center answers general technical questions related to the use of Grants.gov. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this solicitation.

Submitting the Proposal: Once all documents have been completed, the Authorized Organizational Representative (AOR) must submit the application to Grants.gov and verify the desired funding opportunity and agency to which the application is submitted. The AOR must then sign and submit the application to Grants.gov. The completed application will be transferred to Research.gov for further processing.

The NSF Grants.gov Proposal Processing in Research.gov informational page provides submission guidance to applicants and links to helpful resources including the NSF Grants.gov Application Guide , Grants.gov Proposal Processing in Research.gov how-to guide , and Grants.gov Submitted Proposals Frequently Asked Questions . Grants.gov proposals must pass all NSF pre-check and post-check validations in order to be accepted by Research.gov at NSF.

When submitting via Grants.gov, NSF strongly recommends applicants initiate proposal submission at least five business days in advance of a deadline to allow adequate time to address NSF compliance errors and resubmissions by 5:00 p.m. submitting organization's local time on the deadline. Please note that some errors cannot be corrected in Grants.gov. Once a proposal passes pre-checks but fails any post-check, an applicant can only correct and submit the in-progress proposal in Research.gov.

Proposers that submitted via Research.gov may use Research.gov to verify the status of their submission to NSF. For proposers that submitted via Grants.gov, until an application has been received and validated by NSF, the Authorized Organizational Representative may check the status of an application on Grants.gov. After proposers have received an e-mail notification from NSF, Research.gov should be used to check the status of an application.

VI. NSF Proposal Processing And Review Procedures

Proposals received by NSF are assigned to the appropriate NSF program for acknowledgement and, if they meet NSF requirements, for review. All proposals are carefully reviewed by a scientist, engineer, or educator serving as an NSF Program Officer, and usually by three to ten other persons outside NSF either as ad hoc reviewers, panelists, or both, who are experts in the particular fields represented by the proposal. These reviewers are selected by Program Officers charged with oversight of the review process. Proposers are invited to suggest names of persons they believe are especially well qualified to review the proposal and/or persons they would prefer not review the proposal. These suggestions may serve as one source in the reviewer selection process at the Program Officer's discretion. Submission of such names, however, is optional. Care is taken to ensure that reviewers have no conflicts of interest with the proposal. In addition, Program Officers may obtain comments from site visits before recommending final action on proposals. Senior NSF staff further review recommendations for awards. A flowchart that depicts the entire NSF proposal and award process (and associated timeline) is included in PAPPG Exhibit III-1.

A comprehensive description of the Foundation's merit review process is available on the NSF website at: https://www.nsf.gov/bfa/dias/policy/merit_review/ .

Proposers should also be aware of core strategies that are essential to the fulfillment of NSF's mission, as articulated in Leading the World in Discovery and Innovation, STEM Talent Development and the Delivery of Benefits from Research - NSF Strategic Plan for Fiscal Years (FY) 2022 - 2026 . These strategies are integrated in the program planning and implementation process, of which proposal review is one part. NSF's mission is particularly well-implemented through the integration of research and education and broadening participation in NSF programs, projects, and activities.

One of the strategic objectives in support of NSF's mission is to foster integration of research and education through the programs, projects, and activities it supports at academic and research institutions. These institutions must recruit, train, and prepare a diverse STEM workforce to advance the frontiers of science and participate in the U.S. technology-based economy. NSF's contribution to the national innovation ecosystem is to provide cutting-edge research under the guidance of the Nation's most creative scientists and engineers. NSF also supports development of a strong science, technology, engineering, and mathematics (STEM) workforce by investing in building the knowledge that informs improvements in STEM teaching and learning.

NSF's mission calls for the broadening of opportunities and expanding participation of groups, institutions, and geographic regions that are underrepresented in STEM disciplines, which is essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF's mission "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes." NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:

  • All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.
  • NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These "Broader Impacts" may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.
  • Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of these activities may best be done at a higher, more aggregated, level than the individual project.

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board approved merit review criteria. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. Both criteria are to be given full consideration during the review and decision-making processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both criteria. (PAPPG Chapter II.D.2.d(i). contains additional information for use by proposers in development of the Project Description section of the proposal). Reviewers are strongly encouraged to review the criteria, including PAPPG Chapter II.D.2.d(i), prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end, reviewers will be asked to evaluate all proposals against two criteria:

  • Intellectual Merit: The Intellectual Merit criterion encompasses the potential to advance knowledge; and
  • Broader Impacts: The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

  • Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
  • Benefit society or advance desired societal outcomes (Broader Impacts)?
  • To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
  • Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
  • How well qualified is the individual, team, or organization to conduct the proposed activities?
  • Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?

Broader impacts may be accomplished through the research itself, through the activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. NSF values the advancement of scientific knowledge and activities that contribute to achievement of societally relevant outcomes. Such outcomes include, but are not limited to: full participation of women, persons with disabilities, and other underrepresented groups in science, technology, engineering, and mathematics (STEM); improved STEM education and educator development at any level; increased public scientific literacy and public engagement with science and technology; improved well-being of individuals in society; development of a diverse, globally competitive STEM workforce; increased partnerships between academia, industry, and others; improved national security; increased economic competitiveness of the United States; and enhanced infrastructure for research and education.

Proposers are reminded that reviewers will also be asked to review the Data Management and Sharing Plan and the Mentoring Plan, as appropriate.

Additional Solicitation Specific Review Criteria

Reviewers will be asked to consider the following:

For CREST-RISE DPSI

  • Does the proposal present comprehensive plans for the recruitment, retention, and graduation of all doctoral students including those from groups underrepresented in STEM who are U.S. citizens, nationals, or permanent residents?
  • Is the institutional support for and financial and organizational sustainability of the project adequate?

For CREST-RISE RAD

  • What is the PI’s mentoring experience?
  • What is the potential of the PI to mentor graduate research doctorate students?

For CREST-RISE E&I

  • Is the institutional financial and sustainability support for the equipment adequate?

B. Review and Selection Process

Proposals submitted in response to this program solicitation will be reviewed by Ad hoc Review and/or Panel Review.

Reviewers will be asked to evaluate proposals using two National Science Board approved merit review criteria and, if applicable, additional program specific criteria. A summary rating and accompanying narrative will generally be completed and submitted by each reviewer and/or panel. The Program Officer assigned to manage the proposal's review will consider the advice of reviewers and will formulate a recommendation.

After scientific, technical and programmatic review and consideration of appropriate factors, the NSF Program Officer recommends to the cognizant Division Director whether the proposal should be declined or recommended for award. NSF strives to be able to tell proposers whether their proposals have been declined or recommended for funding within six months. Large or particularly complex proposals or proposals from new recipients may require additional review and processing time. The time interval begins on the deadline or target date, or receipt date, whichever is later. The interval ends when the Division Director acts upon the Program Officer's recommendation.

After programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants and Agreements or the Division of Acquisition and Cooperative Support for review of business, financial, and policy implications. After an administrative review has occurred, Grants and Agreements Officers perform the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants and Agreements Officer may make commitments, obligations or awards on behalf of NSF or authorize the expenditure of funds. No commitment on the part of NSF should be inferred from technical or budgetary discussions with a NSF Program Officer. A Principal Investigator or organization that makes financial or personnel commitments in the absence of a grant or cooperative agreement signed by the NSF Grants and Agreements Officer does so at their own risk.

Once an award or declination decision has been made, Principal Investigators are provided feedback about their proposals. In all cases, reviews are treated as confidential documents. Verbatim copies of reviews, excluding the names of the reviewers or any reviewer-identifying information, are sent to the Principal Investigator/Project Director by the Program Officer. In addition, the proposer will receive an explanation of the decision to award or decline funding.

VII. Award Administration Information

A. notification of the award.

Notification of the award is made to the submitting organization by an NSF Grants and Agreements Officer. Organizations whose proposals are declined will be advised as promptly as possible by the cognizant NSF Program administering the program. Verbatim copies of reviews, not including the identity of the reviewer, will be provided automatically to the Principal Investigator. (See Section VI.B. for additional information on the review process.)

B. Award Conditions

An NSF award consists of: (1) the award notice, which includes any special provisions applicable to the award and any numbered amendments thereto; (2) the budget, which indicates the amounts, by categories of expense, on which NSF has based its support (or otherwise communicates any specific approvals or disapprovals of proposed expenditures); (3) the proposal referenced in the award notice; (4) the applicable award conditions, such as Grant General Conditions (GC-1)*; or Research Terms and Conditions* and (5) any announcement or other NSF issuance that may be incorporated by reference in the award notice. Cooperative agreements also are administered in accordance with NSF Cooperative Agreement Financial and Administrative Terms and Conditions (CA-FATC) and the applicable Programmatic Terms and Conditions. NSF awards are electronically signed by an NSF Grants and Agreements Officer and transmitted electronically to the organization via e-mail.

*These documents may be accessed electronically on NSF's Website at https://www.nsf.gov/awards/managing/award_conditions.jsp?org=NSF . Paper copies may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-8134 or by e-mail from [email protected] .

More comprehensive information on NSF Award Conditions and other important information on the administration of NSF awards is contained in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) Chapter VII, available electronically on the NSF Website at https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg .

Administrative and National Policy Requirements

Build America, Buy America

As expressed in Executive Order 14005, Ensuring the Future is Made in All of America by All of America’s Workers (86 FR 7475), it is the policy of the executive branch to use terms and conditions of Federal financial assistance awards to maximize, consistent with law, the use of goods, products, and materials produced in, and services offered in, the United States.

Consistent with the requirements of the Build America, Buy America Act (Pub. L. 117-58, Division G, Title IX, Subtitle A, November 15, 2021), no funding made available through this funding opportunity may be obligated for an award unless all iron, steel, manufactured products, and construction materials used in the project are produced in the United States. For additional information, visit NSF’s Build America, Buy America webpage.

Special Award Conditions:

Recipients are required to use the NSF Education and Training Application (ETAP) to manage participants supported by CREST-RISE.

Acknowledgment of Support and Disclaimer

All publications, presentations, and creative works based on activities conducted during the award must acknowledge NSF CREST-RISE support and provide a disclaimer by including the following statement in the Acknowledgements or other appropriate section:

"This material is based upon work supported by the National Science Foundation CREST-RISE under Grant No. (NSF Award number). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

C. Reporting Requirements

For all multi-year grants (including both standard and continuing grants), the Principal Investigator must submit an annual project report to the cognizant Program Officer no later than 90 days prior to the end of the current budget period. (Some programs or awards require submission of more frequent project reports). No later than 120 days following expiration of a grant, the PI also is required to submit a final annual project report, and a project outcomes report for the general public.

Failure to provide the required annual or final annual project reports, or the project outcomes report, will delay NSF review and processing of any future funding increments as well as any pending proposals for all identified PIs and co-PIs on a given award. PIs should examine the formats of the required reports in advance to assure availability of required data.

PIs are required to use NSF's electronic project-reporting system, available through Research.gov, for preparation and submission of annual and final annual project reports. Such reports provide information on accomplishments, project participants (individual and organizational), publications, and other specific products and impacts of the project. Submission of the report via Research.gov constitutes certification by the PI that the contents of the report are accurate and complete. The project outcomes report also must be prepared and submitted using Research.gov. This report serves as a brief summary, prepared specifically for the public, of the nature and outcomes of the project. This report will be posted on the NSF website exactly as it is submitted by the PI.

More comprehensive information on NSF Reporting Requirements and other important information on the administration of NSF awards is contained in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) Chapter VII, available electronically on the NSF Website at https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg .

Additional Reporting Requirements:

PIs are required to include the outcomes summary table located in the CREST Program webpage as a support file in their project reports. No other support files are allowed.

PIs must include their unobligated balance in the Accomplishments section of the annual project report under the heading "What do you plan to do during the next reporting period to accomplish the goals?".

Program Evaluation

The Division of Equity for Excellence in STEM conducts evaluations to provide evidence on the impact of the EES programs on individuals' career progress, as well as professional productivity; and provide an understanding of the program policies in achieving the program goals. Additionally, it is highly desirable to have a structured means of tracking awardees to assess the impact the award has had on their career. Accordingly, support recipients may be contacted for updates on various aspects of their employment history, professional activities and accomplishments, participation in international research collaborations, and other information helpful in evaluating the impact of the program. Support recipients and their institutions agree to cooperate in program-level evaluations conducted by the NSF and/or contracted evaluators.

VIII. Agency Contacts

Please note that the program contact information is current at the time of publishing. See program website for any updates to the points of contact.

General inquiries regarding this program should be made to:

For questions related to the use of NSF systems contact:

For questions relating to Grants.gov contact:

  • Grants.gov Contact Center: If the Authorized Organizational Representatives (AOR) has not received a confirmation message from Grants.gov within 48 hours of submission of application, please contact via telephone: 1-800-518-4726; e-mail: [email protected] .

IX. Other Information

The NSF website provides the most comprehensive source of information on NSF Directorates (including contact information), programs and funding opportunities. Use of this website by potential proposers is strongly encouraged. In addition, "NSF Update" is an information-delivery system designed to keep potential proposers and other interested parties apprised of new NSF funding opportunities and publications, important changes in proposal and award policies and procedures, and upcoming NSF Grants Conferences . Subscribers are informed through e-mail or the user's Web browser each time new publications are issued that match their identified interests. "NSF Update" also is available on NSF's website .

Grants.gov provides an additional electronic capability to search for Federal government-wide grant opportunities. NSF funding opportunities may be accessed via this mechanism. Further information on Grants.gov may be obtained at https://www.grants.gov .

About The National Science Foundation

The National Science Foundation (NSF) is an independent Federal agency created by the National Science Foundation Act of 1950, as amended (42 USC 1861-75). The Act states the purpose of the NSF is "to promote the progress of science; [and] to advance the national health, prosperity, and welfare by supporting research and education in all fields of science and engineering."

NSF funds research and education in most fields of science and engineering. It does this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the US. The Foundation accounts for about one-fourth of Federal support to academic institutions for basic research.

NSF receives approximately 55,000 proposals each year for research, education and training projects, of which approximately 11,000 are funded. In addition, the Foundation receives several thousand applications for graduate and postdoctoral fellowships. The agency operates no laboratories itself but does support National Research Centers, user facilities, certain oceanographic vessels and Arctic and Antarctic research stations. The Foundation also supports cooperative research between universities and industry, US participation in international scientific and engineering efforts, and educational activities at every academic level.

Facilitation Awards for Scientists and Engineers with Disabilities (FASED) provide funding for special assistance or equipment to enable persons with disabilities to work on NSF-supported projects. See the NSF Proposal & Award Policies & Procedures Guide Chapter II.F.7 for instructions regarding preparation of these types of proposals.

The National Science Foundation has Telephonic Device for the Deaf (TDD) and Federal Information Relay Service (FIRS) capabilities that enable individuals with hearing impairments to communicate with the Foundation about NSF programs, employment or general information. TDD may be accessed at (703) 292-5090 and (800) 281-8749, FIRS at (800) 877-8339.

The National Science Foundation Information Center may be reached at (703) 292-5111.

Privacy Act And Public Burden Statements

The information requested on proposal forms and project reports is solicited under the authority of the National Science Foundation Act of 1950, as amended. The information on proposal forms will be used in connection with the selection of qualified proposals; and project reports submitted by proposers will be used for program evaluation and reporting within the Executive Branch and to Congress. The information requested may be disclosed to qualified reviewers and staff assistants as part of the proposal review process; to proposer institutions/grantees to provide or obtain data regarding the proposal review process, award decisions, or the administration of awards; to government contractors, experts, volunteers and researchers and educators as necessary to complete assigned work; to other government agencies or other entities needing information regarding proposers or nominees as part of a joint application review process, or in order to coordinate programs or policy; and to another Federal agency, court, or party in a court or Federal administrative proceeding if the government is a party. Information about Principal Investigators may be added to the Reviewer file and used to select potential candidates to serve as peer reviewers or advisory committee members. See System of Record Notices , NSF-50 , "Principal Investigator/Proposal File and Associated Records," and NSF-51 , "Reviewer/Proposal File and Associated Records.” Submission of the information is voluntary. Failure to provide full and complete information, however, may reduce the possibility of receiving an award.

An agency may not conduct or sponsor, and a person is not required to respond to, an information collection unless it displays a valid Office of Management and Budget (OMB) control number. The OMB control number for this collection is 3145-0058. Public reporting burden for this collection of information is estimated to average 120 hours per response, including the time for reviewing instructions. Send comments regarding the burden estimate and any other aspect of this collection of information, including suggestions for reducing this burden, to:

Suzanne H. Plimpton Reports Clearance Officer Policy Office, Division of Institution and Award Support Office of Budget, Finance, and Award Management National Science Foundation Alexandria, VA 22314

National Science Foundation

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Dear Colleague Letter: Catalyzing human-centered solutions through research and innovation in science, the environment and society

March 28, 2024

Dear Colleagues:

The U.S. National Science Foundation (NSF) seeks to build research capacity and infrastructure to address complex and compounding national and global crises whose solutions require a human-centered approach. To help generate effective and long-lasting solutions, NSF is providing this funding opportunity to inform possible future Centers for Research and Innovation in Science, the Environment and Society (CRISES).

The envisioned centers will catalyze new research and research-based innovations to address seemingly intractable problems that confront society. Research is needed to anticipate how to effectively respond to social, political, economic, and environmental change resulting from systemic disruptions to mitigate and minimize negative impacts on humanity.

This funding opportunity for planning proposals is led by NSF's Social, Behavioral and Economic Sciences Directorate (SBE) with support from NSF's directorates for Geosciences (GEO), Biological Sciences (BIO), Engineering (ENG), Technology, Innovation and Partnerships (TIP), and STEM Education (EDU), as well as the Office of International Science and Engineering (OISE) and the Office of Integrative Activities (OIA). By supporting research to understand the social and behavioral aspects of the rapidly changing world and how these challenges are affected by social, political, economic, and natural environments this DCL aims to advance understandings of fundamental and use-inspired research of people, organizations, and society, while revealing emerging opportunities to address challenges affecting individuals and communities to live healthy and productive lives.

This announcement encourages multi-disciplinary teams led by social or behavioral scientists to develop research programs to advance scientific understanding of critical challenges facing social and environmental systems at local, regional, and global scales.

A deeper, more contextualized understanding is needed to address the many crises facing the world today. Threats to well-being, such as workforce disruptions, governance failures, extreme social and systemic inequities, institutional mistrust, genocides, extremism, wars, decreasing availability and/or quality of natural resources, and the impacts of environmental change, require immediate and innovative solutions and interventions. There are many profound challenges that undermine the success and sustainability of society. In all these cases, human beings and their behavior shaped by society and culture play direct roles in causing crises and responding to severe threats to well-being and even existence.

This DCL seeks to catalyze multi-disciplinary and transdisciplinary research led by social science investigations to improve human livelihoods and support healthy ecosystems by driving discoveries and findings from these areas of research addressing any problems associated with community vulnerability, resource depletion, environmental degradation, group and regional conflict, prejudice, poverty, crime, and violence. Teams of researchers representing diverse disciplinary approaches can develop critical advances and scientific innovations and interventions. Multi-disciplinary teams draw from different theoretical perspectives, varied methodological tools, as well as insight from the communities being served/impacted to drive the context and solution development. This will help to improve the understanding of actions by humans and their institutions and their consequences in more comprehensive ways.

This opportunity supports multi-disciplinary teams, led by researchers in the social, behavioral, and economic sciences, who use empirical methods to grapple with crises that impact individuals, families, communities, organizations, regions, nations, and the planet. The CRISES initiative invites planning proposals as a first step toward facilitating the creation of large-scale interdisciplinary research centers that will address today’s crises and ultimately enhance people’s quality of life. Suitable topics for CRISES may focus entirely on social and behavioral dynamics or address intersections among different components such as economic, political, environmental systems, and the built environment.

Proposal and Award Scope

Through this funding opportunity, NSF seeks to invest in ideas that can potentially serve as the basis for a larger, center-scale activity.

NSF supports a variety of centers that contribute to its mission and goals. Centers leverage research opportunities when the complexity of the research program or the resources needed to solve the problem are of great scope, scale, and duration. Centers require unusually large amounts of equipment, research infrastructure, facilities, and/or people. Centers are a principal means by which NSF fosters interdisciplinary research.

In this call, NSF invites planning proposals for up to $100,000 that will bring together experts across disciplines to seed ideas and help inform the possible full-scale implementation of a CRISES center. As described below, teams are to be led by social scientists and the involvement of researchers from diverse disciplinary perspectives outside the social sciences is encouraged.

A planning proposal is used to support initial conceptualization, planning and collaboration activities that aim to formulate new plans for large-scale projects in emerging research areas for future submission to an NSF program. Planning activities can provide teams with the opportunity to envision structures that would ultimately compose a center. This effort can include forming partnerships with stakeholders and engagement with communities directly impacted by the focus area and outcomes of the research, working as a team to refine the scope and vision for a center, and creating a vision for the potential broader impacts of a center, including diversity, workforce development, and education. Building the framework for a center requires time and investment to strengthen relationships and refine a common vision. Planning proposals are intended to support teams in that process.

Proposals must include the following:

  • A lead principal investigator who is a social, behavioral, or economic scientist (with a degree in the SBE sciences or significant publications in SBE journals).
  • A focus on at least one program area currently supported by the SBE directorate.
  • Identification of the problem(s) the center will address along with a statement of the scope and approach.
  • Planned activities that will bring together experts from a range of disciplines to explore the creation of a center to study and develop solutions to one or more pressing societal issues.

Additional principal investigators included in the proposals can be experts in other disciplines. Proposals must demonstrate an interdisciplinary approach beyond that of any single disciplinary program. This DCL encourages the participation of researchers from Minority-Serving Institutions (MSIs), Primarily Undergraduate Institutions (PUIs), eligible institutions in EPSCoR jurisdictions, as well as non-profits and local and state government organizations.

NSF anticipates funding approximately 10-12 awards through this opportunity, subject to the availability of funds and the quality of proposals received.

Proposal Instructions

Planning proposals must be prepared and submitted in accordance with the guidance contained in Chapter II.F.1 of the NSF Proposal & Award Policies & Procedures Guide (PAPPG) . Proposals may be submitted via either Research.gov or Grants.gov.

Prior to submission, potential research teams interested in submitting a planning proposal are required to first send a research concept outline, including project title, team members, institutions involved and a summary of the project concept (up to two pages) by email to [email protected] .

Concept outlines and planning proposals should address the following: (1) Problem Statement, (2) Scientific Approach (e.g., data products and analytical approaches), (3) Planning Activities (e.g. timeline and structure of meetings, workshops, synchronous/asynchronous coordination), and (4) Outcomes and Deliverables (i.e., what would be realized at the completion of the planning endeavor). To ensure proper processing of the Concept Outlines, the subject line of the initial email inquiry should begin with: "Concept Outline: CRISES:" Concept outlines should be submitted by email to [email protected] by May 1, 2024 . NSF program directors will review the concept outlines and will authorize those that fall within the scope of this DCL for submission of a full planning proposal. All PIs will receive notification by May 15, 2024 .

  • Planning proposals may only be submitted with NSF approval of a submitted Concept Outline. The email confirming approval to submit must be uploaded in the "Program Officer Concurrence Email" section of Research.gov or as a supplementary document in Grants.gov.
  • Proposal titles should start with "CRISES:" and be submitted under the CRISES program description, PD 23-265Y . Please note that if submitting via Research.gov, the system will automatically prepend the title with "Planning" when the proposal is created.

The target date for full planning proposal submissions is by 5 p.m. submitting organization’s local time on July 1, 2024 . and planning proposals will only be accepted if accompanied by the email authorization to submit obtained in response to the research concept outline. Planning proposals submitted without written authorization from an NSF program director will be returned without review.

NSF anticipates that awards will be made in the summer of 2024.

POINT OF CONTACT

Questions about this funding opportunity should be directed to [email protected] .

Sylvia Butterfield Acting Assistant Director Directorate for Social, Behavioral and Economic Sciences Alexandra Isern Assistant Director Directorate for Geosciences Susan Marqusee Assistant Director Directorate for Biological Sciences Susan Margulies Assistant Director Directorate for Engineering Erwin Gianchandani Assistant Director Directorate for Technology, Innovation and Partnerships James Moore Assistant Director Directorate for STEM Education Kendra Sharp Office Head Office of International Science and Engineering Alicia Knoedler Office Head Office of Integrative Activities

University of Arizona News | Home

SUBMIT A STORY IDEA

Grant Proposals Accepted for The Peter and Pat Hirschman University-Community Research Partnership Fund, Beginning Jan. 16

For a second year, University of Arizona faculty and community-based organizations working together on social justice issues have a new opportunity to receive funding for their work benefitting Southern Arizona.

The Peter and Pat Hirschman University-Community Research Partnership Fund, housed in the College of Social and Behavioral Sciences, will accept grant applications beginning on January 16, 2024. Grant proposals are due by March 22, 2024.

Faculty from across campus can apply. The project must include at least one representative from a regional community-based organization (may be nonprofit, non-governmental, governmental or quasi-governmental) that is active in Southern Arizona. Applicant teams may include multiple partner organizations and additional University of Arizona researchers including faculty, staff, postdoctoral scholars or graduate students.

We are seeking proposals for projects that address social justice issues in the region, such as immigration and asylum, housing, civil rights, healthcare, criminal justice, voting rights and employment/educational opportunities. The collaborations should hold promise for sustainable and measurable results in the community. 

The amount of funding this cycle is $21,250, which will be split between one and three grantees. Awardees will be announced on May 20, 2024 and funds will be available in August 2024.

Read more about the grant proposal process and selection criteria .

Resources for the Media

IMAGES

  1. How to Write a Successful Research Proposal

    research and research proposal

  2. Research proposal is a concise and coherent summary of your proposed

    research and research proposal

  3. Research Proposal Templates- 21+ Free Samples, Examples, Format Download

    research and research proposal

  4. FREE 12+ Research Proposal Samples in PDF

    research and research proposal

  5. How To Write A Formal Research Proposal

    research and research proposal

  6. 🎉 Example of research paper proposal. How to Write a Research Proposal

    research and research proposal

VIDEO

  1. research proposal and presentation

  2. RESEARCH PROPOSAL

  3. Proposal 101: What Is A Research Topic?

  4. How To Write Your PhD Research Proposal

  5. Research Proposal#research #Research Stream

  6. Introduction To Research Proposal Writing 1

COMMENTS

  1. How to Write a Research Proposal

    Research proposal examples. Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management" Example research proposal #2: "Medical Students as Mediators of ...

  2. What Is A Research Proposal? Examples + Template

    The purpose of the research proposal (its job, so to speak) is to convince your research supervisor, committee or university that your research is suitable (for the requirements of the degree program) and manageable (given the time and resource constraints you will face). The most important word here is "convince" - in other words, your ...

  3. How To Write A Research Proposal

    Research Proposal Format. The format of a research proposal may vary depending on the specific requirements of the institution or funding agency. However, the following is a commonly used format for a research proposal: 1. Title Page: Include the title of your research proposal, your name, your affiliation or institution, and the date. 2. Abstract:

  4. Research Proposal Example (PDF + Template)

    Research Proposal Example/Sample. Detailed Walkthrough + Free Proposal Template. If you're getting started crafting your research proposal and are looking for a few examples of research proposals, you've come to the right place. In this video, we walk you through two successful (approved) research proposals, one for a Master's-level ...

  5. How To Write A Research Proposal (With Examples)

    Make sure you can ask the critical what, who, and how questions of your research before you put pen to paper. Your research proposal should include (at least) 5 essential components : Title - provides the first taste of your research, in broad terms. Introduction - explains what you'll be researching in more detail.

  6. How to Write a Research Proposal

    Research proposal aims. Relevance. Show your reader why your project is interesting, original, and important. Context. Demonstrate your comfort and familiarity with your field. Show that you understand the current state of research on your topic. Approach. Make a case for your methodology. Demonstrate that you have carefully thought about the ...

  7. How to write a research proposal?

    A proposal needs to show how your work fits into what is already known about the topic and what new paradigm will it add to the literature, while specifying the question that the research will answer, establishing its significance, and the implications of the answer. [ 2] The proposal must be capable of convincing the evaluation committee about ...

  8. Writing a Research Proposal

    A research proposal must be focused and not be "all over the map" or diverge into unrelated tangents without a clear sense of purpose. Failure to cite landmark works in your literature review. Proposals should be grounded in foundational research that lays a foundation for understanding the development and scope of the the topic and its relevance.

  9. 11.2 Steps in Developing a Research Proposal

    Key Takeaways. Developing a research proposal involves the following preliminary steps: identifying potential ideas, choosing ideas to explore further, choosing and narrowing a topic, formulating a research question, and developing a working thesis. A good topic for a research paper interests the writer and fulfills the requirements of the ...

  10. Research Proposal

    Academic Research Proposal. This is the most common type of research proposal, which is prepared by students, scholars, or researchers to seek approval and funding for an academic research project. It includes all the essential components mentioned earlier, such as the introduction, literature review, methodology, and expected outcomes.

  11. How to Write a Research Proposal: A Step-by-Step

    Writing a research proposal in structured steps ensures a comprehensive and coherent presentation of your research project. Let's look at the explanation for each of the steps here: Step 1: Title and Abstract. Step 2: Introduction. Step 3: Research objectives. Step 4: Literature review.

  12. How to Write a Research Proposal in 2024: Structure, Examples & Common

    A research proposal is commonly written by scholars seeking grant funding for a research project when enrolling for a research-based postgraduate degree. Graduate and post-graduate students also embark on a university dissertation to obtain a degree or get that Ph.D. Although it is just a course assignment, a student must treat the introduction ...

  13. Writing a Research Proposal

    Research proposal formats vary depending on the size of the planned research, the number of participants, the discipline, the characteristics of the research, etc. The following outline assumes an individual researcher. This is just a SAMPLE; several other ways are equally good and can be successful. If possible, discuss your research proposal ...

  14. What is a Research Proposal?

    The research proposal could also be considered as a contract, once members of the committee agree to the execution of the project. Requirements may include: an abstract, introduction, literature review, method section, and conclusion. A research proposal has to clearly and concisely identify the proposed research and its importance.

  15. How to Write a Research Proposal

    Hannah Skaggs. Hannah, a writer and editor since 2017, specializes in clear and concise academic and business writing. She has mentored countless scholars and companies in writing authoritative and engaging content. Write a research proposal with purpose and accuracy. Learn about the objective, parts, and key elements of a research proposal in ...

  16. 17 Research Proposal Examples (2024)

    Research Proposal Examples. Research proposals often extend anywhere between 2,000 and 15,000 words in length. The following snippets are samples designed to briefly demonstrate what might be discussed in each section. 1. Education Studies Research Proposals.

  17. How to prepare a Research Proposal

    It puts the proposal in context. 3. The introduction typically begins with a statement of the research problem in precise and clear terms. 1. The importance of the statement of the research problem 5: The statement of the problem is the essential basis for the construction of a research proposal (research objectives, hypotheses, methodology ...

  18. Writing a Research Proposal

    Research proposals contain extensive literature reviews. They must provide persuasive evidence that a need exists for the proposed study. In addition to providing a rationale, a proposal describes detailed methodology for conducting the research consistent with requirements of the professional or academic field and a statement on anticipated ...

  19. What Is a Research Proposal? (Plus How To Write One)

    A research proposal is a formal document expressing the details of a research project, which is usually for science or academic purposes, and it's typically four to seven pages long. Research proposals often include a title page, an abstract, an introduction, background information, research questions, a literature review and a bibliography. ...

  20. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  21. (Pdf) Research Proposal

    A r esearch proposal is a document written by a researcher that provides a detailed description of. the pr oposed pr ogram. It is like an outline of the entire research process that gives a reader ...

  22. New program expands research proposal support

    A new pilot program led by the Indiana University Center for Evaluation, Policy and Research expands support for IU faculty and researchers as they develop proposals for external research funding.. Evaluation Consulting for Proposals provides high-quality evaluation and/or research plans to give applicants a decisive edge when competing for external funding.

  23. Research faculty invited to 'Writing a Winning NSF CAREER Proposal'

    The Research Office invites faculty to join some of the WVU 2024 National Science Foundation CAREER awardees and learn more about writing a competitive proposal. The event will take place during Research Week from 2:30-4 p.m. tomorrow (April 2) in the Mineral Resources Building, Room 301.

  24. Biden administration proposal threatens innovative research at

    The Biden administration plans to reinterpret a decades-old law, the Bayh-Dole Act, that is at the heart of university-based research and development. The proposal would affect patents on any ...

  25. The Feds Want More Oversight of Scientific Research. Universities Are

    Research universities and hospitals are pushing back against a federal agency's proposal to boost oversight of investigations related to fraud and plagiarism, even as many face questions over ...

  26. Research Questions, Objectives & Aims (+ Examples)

    The research aims, objectives and research questions (collectively called the "golden thread") are arguably the most important thing you need to get right when you're crafting a research proposal, dissertation or thesis.We receive questions almost every day about this "holy trinity" of research and there's certainly a lot of confusion out there, so we've crafted this post to help ...

  27. Centers of Research Excellence in Science and Technology

    This solicitation replaces NSF 23-565 CREST HBCU-RISE. This is a new solicitation and proposers should read it in its entirety. All Minority Serving Institutions (MSIs) that offer master's or research doctoral degrees in NSF-supported STEM fields that, at the time of proposal submission, have enrollments of 50% or more U.S. resident students (non-international) who are members of minority ...

  28. Dear Colleague Letter: Catalyzing human-centered solutions through

    The target date for full planning proposal submissions is by 5 p.m. submitting organization's local time on July 1, 2024. and planning proposals will only be accepted if accompanied by the email authorization to submit obtained in response to the research concept outline. Planning proposals submitted without written authorization from an NSF ...

  29. PDF CHIEF DIGITAL AND ARTIFICIAL INTELLIGENCE OFFICE (CDAO) DoD 24.4 Small

    DoD 24.4 Small Business Innovation Research (SBIR) Annual BAA Proposal Submission Instructions March 28, 2024: Topic issued for pre-release April 10, 2024: Topic opens; CDAO begins accepting proposals via DSIP May 15, 2024: Deadline for receipt of proposals no later than 12:00 p.m. ET

  30. Grant Proposals Accepted for The Peter and Pat Hirschman University

    The Peter and Pat Hirschman University-Community Research Partnership Fund, housed in the College of Social and Behavioral Sciences, will accept grant applications beginning on January 16, 2024. Grant proposals are due by March 22, 2024. Faculty from across campus can apply.