Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

  • Open access
  • Published: 07 January 2020

Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities

  • Charles Rajesh Kumar. J   ORCID: orcid.org/0000-0003-2354-6463 1 &
  • M. A. Majid 1  

Energy, Sustainability and Society volume  10 , Article number:  2 ( 2020 ) Cite this article

413k Accesses

248 Citations

83 Altmetric

Metrics details

The primary objective for deploying renewable energy in India is to advance economic development, improve energy security, improve access to energy, and mitigate climate change. Sustainable development is possible by use of sustainable energy and by ensuring access to affordable, reliable, sustainable, and modern energy for citizens. Strong government support and the increasingly opportune economic situation have pushed India to be one of the top leaders in the world’s most attractive renewable energy markets. The government has designed policies, programs, and a liberal environment to attract foreign investments to ramp up the country in the renewable energy market at a rapid rate. It is anticipated that the renewable energy sector can create a large number of domestic jobs over the following years. This paper aims to present significant achievements, prospects, projections, generation of electricity, as well as challenges and investment and employment opportunities due to the development of renewable energy in India. In this review, we have identified the various obstacles faced by the renewable sector. The recommendations based on the review outcomes will provide useful information for policymakers, innovators, project developers, investors, industries, associated stakeholders and departments, researchers, and scientists.

Introduction

The sources of electricity production such as coal, oil, and natural gas have contributed to one-third of global greenhouse gas emissions. It is essential to raise the standard of living by providing cleaner and more reliable electricity [ 1 ]. India has an increasing energy demand to fulfill the economic development plans that are being implemented. The provision of increasing quanta of energy is a vital pre-requisite for the economic growth of a country [ 2 ]. The National Electricity Plan [NEP] [ 3 ] framed by the Ministry of Power (MoP) has developed a 10-year detailed action plan with the objective to provide electricity across the country, and has prepared a further plan to ensure that power is supplied to the citizens efficiently and at a reasonable cost. According to the World Resource Institute Report 2017 [ 4 , 5 ], India is responsible for nearly 6.65% of total global carbon emissions, ranked fourth next to China (26.83%), the USA (14.36%), and the EU (9.66%). Climate change might also change the ecological balance in the world. Intended Nationally Determined Contributions (INDCs) have been submitted to the United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement. The latter has hoped to achieve the goal of limiting the rise in global temperature to well below 2 °C [ 6 , 7 ]. According to a World Energy Council [ 8 ] prediction, global electricity demand will peak in 2030. India is one of the largest coal consumers in the world and imports costly fossil fuel [ 8 ]. Close to 74% of the energy demand is supplied by coal and oil. According to a report from the Center for monitoring Indian economy, the country imported 171 million tons of coal in 2013–2014, 215 million tons in 2014–2015, 207 million tons in 2015–2016, 195 million tons in 2016–2017, and 213 million tons in 2017–2018 [ 9 ]. Therefore, there is an urgent need to find alternate sources for generating electricity.

In this way, the country will have a rapid and global transition to renewable energy technologies to achieve sustainable growth and avoid catastrophic climate change. Renewable energy sources play a vital role in securing sustainable energy with lower emissions [ 10 ]. It is already accepted that renewable energy technologies might significantly cover the electricity demand and reduce emissions. In recent years, the country has developed a sustainable path for its energy supply. Awareness of saving energy has been promoted among citizens to increase the use of solar, wind, biomass, waste, and hydropower energies. It is evident that clean energy is less harmful and often cheaper. India is aiming to attain 175 GW of renewable energy which would consist of 100 GW from solar energy, 10 GW from bio-power, 60 GW from wind power, and 5 GW from small hydropower plants by the year 2022 [ 11 ]. Investors have promised to achieve more than 270 GW, which is significantly above the ambitious targets. The promises are as follows: 58 GW by foreign companies, 191 GW by private companies, 18 GW by private sectors, and 5 GW by the Indian Railways [ 12 ]. Recent estimates show that in 2047, solar potential will be more than 750 GW and wind potential will be 410 GW [ 13 , 14 ]. To reach the ambitious targets of generating 175 GW of renewable energy by 2022, it is essential that the government creates 330,000 new jobs and livelihood opportunities [ 15 , 16 ].

A mixture of push policies and pull mechanisms, accompanied by particular strategies should promote the development of renewable energy technologies. Advancement in technology, proper regulatory policies [ 17 ], tax deduction, and attempts in efficiency enhancement due to research and development (R&D) [ 18 ] are some of the pathways to conservation of energy and environment that should guarantee that renewable resource bases are used in a cost-effective and quick manner. Hence, strategies to promote investment opportunities in the renewable energy sector along with jobs for the unskilled workers, technicians, and contractors are discussed. This article also manifests technological and financial initiatives [ 19 ], policy and regulatory framework, as well as training and educational initiatives [ 20 , 21 ] launched by the government for the growth and development of renewable energy sources. The development of renewable technology has encountered explicit obstacles, and thus, there is a need to discuss these barriers. Additionally, it is also vital to discover possible solutions to overcome these barriers, and hence, proper recommendations have been suggested for the steady growth of renewable power [ 22 , 23 , 24 ]. Given the enormous potential of renewables in the country, coherent policy measures and an investor-friendly administration might be the key drivers for India to become a global leader in clean and green energy.

Projection of global primary energy consumption

An energy source is a necessary element of socio-economic development. The increasing economic growth of developing nations in the last decades has caused an accelerated increase in energy consumption. This trend is anticipated to grow [ 25 ]. A prediction of future power consumption is essential for the investigation of adequate environmental and economic policies [ 26 ]. Likewise, an outlook to future power consumption helps to determine future investments in renewable energy. Energy supply and security have not only increased the essential issues for the development of human society but also for their global political and economic patterns [ 27 ]. Hence, international comparisons are helpful to identify past, present, and future power consumption.

Table 1 shows the primary energy consumption of the world, based on the BP Energy Outlook 2018 reports. In 2016, India’s overall energy consumption was 724 million tons of oil equivalent (Mtoe) and is expected to rise to 1921 Mtoe by 2040 with an average growth rate of 4.2% per annum. Energy consumption of various major countries comprises commercially traded fuels and modern renewables used to produce power. In 2016, India was the fourth largest energy consumer in the world after China, the USA, and the Organization for economic co-operation and development (OECD) in Europe [ 29 ].

The projected estimation of global energy consumption demonstrates that energy consumption in India is continuously increasing and retains its position even in 2035/2040 [ 28 ]. The increase in India’s energy consumption will push the country’s share of global energy demand to 11% by 2040 from 5% in 2016. Emerging economies such as China, India, or Brazil have experienced a process of rapid industrialization, have increased their share in the global economy, and are exporting enormous volumes of manufactured products to developed countries. This shift of economic activities among nations has also had consequences concerning the country’s energy use [ 30 ].

Projected primary energy consumption in India

The size and growth of a country’s population significantly affects the demand for energy. With 1.368 billion citizens, India is ranked second, of the most populous countries as of January 2019 [ 31 ]. The yearly growth rate is 1.18% and represents almost 17.74% of the world’s population. The country is expected to have more than 1.383 billion, 1.512 billion, 1.605 billion, 1.658 billion people by the end of 2020, 2030, 2040, and 2050, respectively. Each year, India adds a higher number of people to the world than any other nation and the specific population of some of the states in India is equal to the population of many countries.

The growth of India’s energy consumption will be the fastest among all significant economies by 2040, with coal meeting most of this demand followed by renewable energy. Renewables became the second most significant source of domestic power production, overtaking gas and then oil, by 2020. The demand for renewables in India will have a tremendous growth of 256 Mtoe in 2040 from 17 Mtoe in 2016, with an annual increase of 12%, as shown in Table 2 .

Table 3 shows the primary energy consumption of renewables for the BRIC countries (Brazil, Russia, India, and China) from 2016 to 2040. India consumed around 17 Mtoe of renewable energy in 2016, and this will be 256 Mtoe in 2040. It is probable that India’s energy consumption will grow fastest among all major economies by 2040, with coal contributing most in meeting this demand followed by renewables. The percentage share of renewable consumption in 2016 was 2% and is predicted to increase by 13% by 2040.

How renewable energy sources contribute to the energy demand in India

Even though India has achieved a fast and remarkable economic growth, energy is still scarce. Strong economic growth in India is escalating the demand for energy, and more energy sources are required to cover this demand. At the same time, due to the increasing population and environmental deterioration, the country faces the challenge of sustainable development. The gap between demand and supply of power is expected to rise in the future [ 32 ]. Table 4 presents the power supply status of the country from 2009–2010 to 2018–2019 (until October 2018). In 2018, the energy demand was 1,212,134 GWh, and the availability was 1,203,567 GWh, i.e., a deficit of − 0.7% [ 33 ].

According to the Load generation and Balance Report (2016–2017) of the Central Electricity Authority of India (CEA), the electrical energy demand for 2021–2022 is anticipated to be at least 1915 terawatt hours (TWh), with a peak electric demand of 298 GW [ 34 ]. Increasing urbanization and rising income levels are responsible for an increased demand for electrical appliances, i.e., an increased demand for electricity in the residential sector. The increased demand in materials for buildings, transportation, capital goods, and infrastructure is driving the industrial demand for electricity. An increased mechanization and the shift to groundwater irrigation across the country is pushing the pumping and tractor demand in the agriculture sector, and hence the large diesel and electricity demand. The penetration of electric vehicles and the fuel switch to electric and induction cook stoves will drive the electricity demand in the other sectors shown in Table 5 .

According to the International Renewable Energy Agency (IRENA), a quarter of India’s energy demand can be met with renewable energy. The country could potentially increase its share of renewable power generation to over one-third by 2030 [ 35 ].

Table 6 presents the estimated contribution of renewable energy sources to the total energy demand. MoP along with CEA in its draft national electricity plan for 2016 anticipated that with 175 GW of installed capacity of renewable power by 2022, the expected electricity generation would be 327 billion units (BUs), which would contribute to 1611 BU energy requirements. This indicates that 20.3% of the energy requirements would be fulfilled by renewable energy by 2022 and 24.2% by 2027 [ 36 ]. Figure 1 shows the ambitious new target for the share of renewable energy in India’s electricity consumption set by MoP. As per the order of revised RPO (Renewable Purchase Obligations, legal act of June 2018), the country has a target of a 21% share of renewable energy in its total electricity consumption by March 2022. In 2014, the same goal was at 15% and increased to 21% by 2018. It is India’s goal to reach 40% renewable sources by 2030.

figure 1

Target share of renewable energy in India’s power consumption

Estimated renewable energy potential in India

The estimated potential of wind power in the country during 1995 [ 37 ] was found to be 20,000 MW (20 GW), solar energy was 5 × 10 15 kWh/pa, bioenergy was 17,000 MW, bagasse cogeneration was 8000 MW, and small hydropower was 10,000 MW. For 2006, the renewable potential was estimated as 85,000 MW with wind 4500 MW, solar 35 MW, biomass/bioenergy 25,000 MW, and small hydropower of 15,000 MW [ 38 ]. According to the annual report of the Ministry of New and Renewable Energy (MNRE) for 2017–2018, the estimated potential of wind power was 302.251 GW (at 100-m mast height), of small hydropower 19.749 GW, biomass power 17.536 GW, bagasse cogeneration 5 GW, waste to energy (WTE) 2.554 GW, and solar 748.990 GW. The estimated total renewable potential amounted to 1096.080 GW [ 39 ] assuming 3% wasteland, which is shown in Table 7 . India is a tropical country and receives significant radiation, and hence the solar potential is very high [ 40 , 41 , 42 ].

Gross installed capacity of renewable energy in India

As of June 2018 reports, the country intends to reach 225 GW of renewable power capacity by 2022 exceeding the target of 175 GW pledged during the Paris Agreement. The sector is the fourth most attractive renewable energy market in the world. As in October 2018, India ranked fifth in installed renewable energy capacity [ 43 ].

Gross installed capacity of renewable energy—according to region

Table 8 lists the cumulative installed capacity of both conventional and renewable energy sources. The cumulative installed capacity of renewable sources as on the 31 st of December 2018 was 74081.66 MW. Renewable energy (small hydropower, wind, biomass, WTE, solar) accounted for an approximate 21% share of the cumulative installed power capacity, and the remaining 78.791% originated from other conventional sources (coal, gas diesel, nuclear, and large hydropower) [ 44 ]. The best regions for renewable energy are the southern states that have the highest solar irradiance and wind in the country. When renewable energy alone is considered for analysis, the Southern region covers 49.121% of the cumulative installed renewable capacity, followed by the Western region (29.742%), the Northern region (18.890%), the Eastern region (1.836%), the North-Easter region 0.394%, and the Islands (0.017%). As far as conventional energy is concerned, the Western region with 33.452% ranks first and is followed by the Northern region with 28.484%, the Southern region (24.967%), the Eastern region (11.716%), the Northern-Eastern (1.366%), and the Islands (0.015%).

Gross installed capacity of renewable energy—according to ownership

State government, central government, and private players drive the Indian energy sector. The private sector leads the way in renewable energy investment. Table 9 shows the installed gross renewable energy and conventional energy capacity (percentage)—ownership wise. It is evident from Fig. 2 that 95% of the installed renewable capacity derives from private companies, 2% from the central government, and 3% from the state government. The top private companies in the field of non-conventional energy generation are Tata Power Solar, Suzlon, and ReNew Power. Tata Power Solar System Limited are the most significant integrated solar power players in the country, Suzlon realizes wind energy projects, and ReNew Power Ventures operate with solar and wind power.

figure 2

Gross renewable energy installed capacity (percentage)—Ownership wise as per the 31.12.2018 [ 43 ]

Gross installed capacity of renewable energy—state wise

Table 10 shows the installed capacity of cumulative renewable energy (state wise), out of the total installed capacity of 74,081.66 MW, where Karnataka ranks first with 12,953.24 MW (17.485%), Tamilnadu second with 11,934.38 MW (16%), Maharashtra third with 9283.78 MW (12.532%), Gujarat fourth with 10.641 MW (10.641%), and Rajasthan fifth with 7573.86 MW (10.224%). These five states cover almost 66.991% of the installed capacity of total renewable. Other prominent states are Andhra Pradesh (9.829%), Madhya Pradesh (5.819%), Telangana (5.137%), and Uttar Pradesh (3.879%). These nine states cover almost 91.655%.

Gross installed capacity of renewable energy—according to source

Under union budget of India 2018–2019, INR 3762 crore (USD 581.09 million), was allotted for grid-interactive renewable power schemes and projects. As per the 31.12.2018, the installed capacity of total renewable power (excluding large hydropower) in the country amounted to 74.08166 GW. Around 9.363 GW of solar energy, 1.766 GW of wind, 0.105 GW of small hydropower (SHP), and biomass power of 8.7 GW capacity were added in 2017–2018. Table 11 shows the installed capacity of renewable energy over the last 10 years until the 31.12.2018. Wind energy continues to dominate the countries renewable energy industry, accounting for over 47% of cumulative installed renewable capacity (35,138.15 MW), followed by solar power of 34% (25,212.26 MW), biomass power/cogeneration of 12% (9075.5 MW), and small hydropower of 6% (4517.45 MW). In the renewable energy country attractiveness index (RECAI) of 2018, India ranked in fourth position. The installed renewable energy production capacity has grown at an accelerated pace over the preceding few years, posting a CAGR of 19.78% between 2014 and 2018 [ 45 ] .

Estimation of the installed capacity of renewable energy

Table 12 gives the share of installed cumulative renewable energy capacity, in comparison with the installed conventional energy capacity. In 2022 and 2032, the installed renewable energy capacity will account for 32% and 35%, respectively [ 46 , 47 ]. The most significant renewable capacity expansion program in the world is being taken up by India. The government is preparing to boost the percentage of clean energy through a tremendous push in renewables, as discussed in the subsequent sections.

Gross electricity generation from renewable energy in India

The overall generation (including the generation from grid-connected renewable sources) in the country has grown exponentially. Between 2014–2015 and 2015–2016, it achieved 1110.458 BU and 1173.603 BU, respectively. The same was recorded with 1241.689 BU and 1306.614 BU during 2015–2016 and 1306.614 BU from 2016–2017 and 2017–2018, respectively. Figure 3 indicates that the annual renewable power production increased faster than the conventional power production. The rise accounted for 6.47% in 2015–2016 and 24.88% in 2017–2018, respectively. Table 13 compares the energy generation from traditional sources with that from renewable sources. Remarkably, the energy generation from conventional sources reached 811.143 BU and from renewable sources 9.860 BU in 2010 compared to 1.206.306 BU and 88.945 BU in 2017, respectively [ 48 ]. It is observed that the price of electricity production using renewable technologies is higher than that for conventional generation technologies, but is likely to fall with increasing experience in the techniques involved [ 49 ].

figure 3

The annual growth in power generation as per the 30th of November 2018

Gross electricity generation from renewable energy—according to regions

Table 14 shows the gross electricity generation from renewable energy-region wise. It is noted that the highest renewable energy generation derives from the southern region, followed by the western part. As of November 2018, 50.33% of energy generation was obtained from the southern area and 29.37%, 18.05%, 2%, and 0.24% from Western, Northern, North-Eastern Areas, and the Island, respectively.

Gross electricity generation from renewable energy—according to states

Table 15 shows the gross electricity generation from renewable energy—region-wise. It is observed that the highest renewable energy generation was achieved from Karnataka (16.57%), Tamilnadu (15.82%), Andhra Pradesh (11.92%), and Gujarat (10.87%) as per November 2018. While adding four years from 2015–2016 to 2018–2019 Tamilnadu [ 50 ] remains in the first position followed by Karnataka, Maharashtra, Gujarat and Andhra Pradesh.

Gross electricity generation from renewable energy—according to sources

Table 16 shows the gross electricity generation from renewable energy—source-wise. It can be concluded from the table that the wind-based energy generation as per 2017–2018 is most prominent with 51.71%, followed by solar energy (25.40%), Bagasse (11.63%), small hydropower (7.55%), biomass (3.34%), and WTE (0.35%). There has been a constant increase in the generation of all renewable sources from 2014–2015 to date. Wind energy, as always, was the highest contributor to the total renewable power production. The percentage of solar energy produced in the overall renewable power production comes next to wind and is typically reduced during the monsoon months. The definite improvement in wind energy production can be associated with a “good” monsoon. Cyclonic action during these months also facilitates high-speed winds. Monsoon winds play a significant part in the uptick in wind power production, especially in the southern states of the country.

Estimation of gross electricity generation from renewable energy

Table 17 shows an estimation of gross electricity generation from renewable energy based on the 2015 report of the National Institution for Transforming India (NITI Aayog) [ 51 ]. It is predicted that the share of renewable power will be 10.2% by 2022, but renewable power technologies contributed a record of 13.4% to the cumulative power production in India as of the 31st of August 2018. The power ministry report shows that India generated 122.10 TWh and out of the total electricity produced, renewables generated 16.30 TWh as on the 31st of August 2018. According to the India Brand Equity Foundation report, it is anticipated that by the year 2040, around 49% of total electricity will be produced using renewable energy.

Current achievements in renewable energy 2017–2018

India cares for the planet and has taken a groundbreaking journey in renewable energy through the last 4 years [ 52 , 53 ]. A dedicated ministry along with financial and technical institutions have helped India in the promotion of renewable energy and diversification of its energy mix. The country is engaged in expanding the use of clean energy sources and has already undertaken several large-scale sustainable energy projects to ensure a massive growth of green energy.

1. India doubled its renewable power capacity in the last 4 years. The cumulative renewable power capacity in 2013–2014 reached 35,500 MW and rose to 70,000 MW in 2017–2018.

2. India stands in the fourth and sixth position regarding the cumulative installed capacity in the wind and solar sector, respectively. Furthermore, its cumulative installed renewable capacity stands in fifth position globally as of the 31st of December 2018.

3. As said above, the cumulative renewable energy capacity target for 2022 is given as 175 GW. For 2017–2018, the cumulative installed capacity amounted to 70 GW, the capacity under implementation is 15 GW and the tendered capacity was 25 GW. The target, the installed capacity, the capacity under implementation, and the tendered capacity are shown in Fig. 4 .

4. There is tremendous growth in solar power. The cumulative installed solar capacity increased by more than eight times in the last 4 years from 2.630 GW (2013–2014) to 22 GW (2017–2018). As of the 31st of December 2018, the installed capacity amounted to 25.2122 GW.

5. The renewable electricity generated in 2017–2018 was 101839 BUs.

6. The country published competitive bidding guidelines for the production of renewable power. It also discovered the lowest tariff and transparent bidding method and resulted in a notable decrease in per unit cost of renewable energy.

7. In 21 states, there are 41 solar parks with a cumulative capacity of more than 26,144 MW that have already been approved by the MNRE. The Kurnool solar park was set up with 1000 MW; and with 2000 MW the largest solar park of Pavagada (Karnataka) is currently under installation.

8. The target for solar power (ground mounted) for 2018–2019 is given as 10 GW, and solar power (Rooftop) as 1 GW.

9. MNRE doubled the target for solar parks (projects of 500 MW or more) from 20 to 40 GW.

10. The cumulative installed capacity of wind power increased by 1.6 times in the last 4 years. In 2013–2014, it amounted to 21 GW, from 2017 to 2018 it amounted to 34 GW, and as of 31st of December 2018, it reached 35.138 GW. This shows that achievements were completed in wind power use.

11. An offshore wind policy was announced. Thirty-four companies (most significant global and domestic wind power players) competed in the “expression of interest” (EoI) floated on the plan to set up India’s first mega offshore wind farm with a capacity of 1 GW.

12. 682 MW small hydropower projects were installed during the last 4 years along with 600 watermills (mechanical applications) and 132 projects still under development.

13. MNRE is implementing green energy corridors to expand the transmission system. 9400 km of green energy corridors are completed or under implementation. The cost spent on it was INR 10141 crore (101,410 Million INR = 1425.01 USD). Furthermore, the total capacity of 19,000 MVA substations is now planned to be complete by March 2020.

14. MNRE is setting up solar pumps (off-grid application), where 90% of pumps have been set up as of today and between 2014–2015 and 2017–2018. Solar street lights were more than doubled. Solar home lighting systems have been improved by around 1.5 times. More than 2,575,000 solar lamps have been distributed to students. The details are illustrated in Fig. 5 .

15. From 2014–2015 to 2017–2018, more than 2.5 lakh (0.25 million) biogas plants were set up for cooking in rural homes to enable families by providing them access to clean fuel.

16. New policy initiatives revised the tariff policy mandating purchase and generation obligations (RPO and RGO). Four wind and solar inter-state transmission were waived; charges were planned, the RPO trajectory for 2022 and renewable energy policy was finalized.

17. Expressions of interest (EoI) were invited for installing solar photovoltaic manufacturing capacities associated with the guaranteed off-take of 20 GW. EoI indicated 10 GW floating solar energy plants.

18. Policy for the solar-wind hybrid was announced. Tender for setting up 2 GW solar-wind hybrid systems in existing projects was invited.

19. To facilitate R&D in renewable power technology, a National lab policy on testing, standardization, and certification was announced by the MNRE.

20. The Surya Mitra program was conducted to train college graduates in the installation, commissioning, operations, and management of solar panels. The International Solar Alliance (ISA) headquarters in India (Gurgaon) will be a new commencement for solar energy improvement in India.

21. The renewable sector has become considerably more attractive for foreign and domestic investors, and the country expects to attract up to USD 80 billion in the next 4 years from 2018–2019 to 2021–2022.

22. The solar power capacity expanded by more than eight times from 2.63 GW in 2013–2014 to 22 GW in 2017–2018.

23. A bidding for 115 GW renewable energy projects up to March 2020 was announced.

24. The Bureau of Indian Standards (BIS) acting for system/components of solar PV was established.

25. To recognize and encourage innovative ideas in renewable energy sectors, the Government provides prizes and awards. Creative ideas/concepts should lead to prototype development. The Name of the award is “Abhinav Soch-Nayi Sambhawanaye,” which means Innovative ideas—New possibilities.

figure 4

Renewable energy target, installed capacity, under implementation and tendered [ 52 ]

figure 5

Off-grid solar applications [ 52 ]

Solar energy

Under the National Solar Mission, the MNRE has updated the objective of grid-connected solar power projects from 20 GW by the year 2021–2022 to 100 GW by the year 2021–2022. In 2008–2009, it reached just 6 MW. The “Made in India” initiative to promote domestic manufacturing supported this great height in solar installation capacity. Currently, India has the fifth highest solar installed capacity worldwide. By the 31st of December 2018, solar energy had achieved 25,212.26 MW against the target of 2022, and a further 22.8 GW of capacity has been tendered out or is under current implementation. MNRE is preparing to bid out the remaining solar energy capacity every year for the periods 2018–2019 and 2019–2020 so that bidding may contribute with 100 GW capacity additions by March 2020. In this way, 2 years for the completion of projects would remain. Tariffs will be determined through the competitive bidding process (reverse e-auction) to bring down tariffs significantly. The lowest solar tariff was identified to be INR 2.44 per kWh in July 2018. In 2010, solar tariffs amounted to INR 18 per kWh. Over 100,000 lakh (10,000 million) acres of land had been classified for several planned solar parks, out of which over 75,000 acres had been obtained. As of November 2018, 47 solar parks of a total capacity of 26,694 MW were established. The aggregate capacity of 4195 MW of solar projects has been commissioned inside various solar parks (floating solar power). Table 18 shows the capacity addition compared to the target. It indicates that capacity addition increased exponentially.

Wind energy

As of the 31st of December 2018, the total installed capacity of India amounted to 35,138.15 MW compared to a target of 60 GW by 2022. India is currently in fourth position in the world for installed capacity of wind power. Moreover, around 9.4 GW capacity has been tendered out or is under current implementation. The MNRE is preparing to bid out for A 10 GW wind energy capacity every year for 2018–2019 and 2019–2020, so that bidding will allow for 60 GW capacity additions by March 2020, giving the remaining two years for the accomplishment of the projects. The gross wind energy potential of the country now reaches 302 GW at a 100 m above-ground level. The tariff administration has been changed from feed-in-tariff (FiT) to the bidding method for capacity addition. On the 8th of December 2017, the ministry published guidelines for a tariff-based competitive bidding rule for the acquisition of energy from grid-connected wind energy projects. The developed transparent process of bidding lowered the tariff for wind power to its lowest level ever. The development of the wind industry has risen in a robust ecosystem ensuring project execution abilities and a manufacturing base. State-of-the-art technologies are now available for the production of wind turbines. All the major global players in wind power have their presence in India. More than 12 different companies manufacture more than 24 various models of wind turbines in India. India exports wind turbines and components to the USA, Europe, Australia, Brazil, and other Asian countries. Around 70–80% of the domestic production has been accomplished with strong domestic manufacturing companies. Table 19 lists the capacity addition compared to the target for the capacity addition. Furthermore, electricity generation from the wind-based capacity has improved, even though there was a slowdown of new capacity in the first half of 2018–2019 and 2017–2018.

The national energy storage mission—2018

The country is working toward a National Energy Storage Mission. A draft of the National Energy Storage Mission was proposed in February 2018 and initiated to develop a comprehensive policy and regulatory framework. During the last 4 years, projects included in R&D worth INR 115.8 million (USD 1.66 million) in the domain of energy storage have been launched, and a corpus of INR 48.2 million (USD 0.7 million) has been issued. India’s energy storage mission will provide an opportunity for globally competitive battery manufacturing. By increasing the battery manufacturing expertise and scaling up its national production capacity, the country can make a substantial economic contribution in this crucial sector. The mission aims to identify the cumulative battery requirements, total market size, imports, and domestic manufacturing. Table 20 presents the economic opportunity from battery manufacturing given by the National Institution for Transforming India, also called NITI Aayog, which provides relevant technical advice to central and state governments while designing strategic and long-term policies and programs for the Indian government.

Small hydropower—3-year action agenda—2017

Hydro projects are classified as large hydro, small hydro (2 to 25 MW), micro-hydro (up to 100 kW), and mini-hydropower (100 kW to 2 MW) projects. Whereas the estimated potential of SHP is 20 GW, the 2022 target for India in SHP is 5 GW. As of the 31st of December 2018, the country has achieved 4.5 GW and this production is constantly increasing. The objective, which was planned to be accomplished through infrastructure project grants and tariff support, was included in the NITI Aayog’s 3-year action agenda (2017–2018 to 2019–2020), which was published on the 1st of August 2017. MNRE is providing central financial assistance (CFA) to set up small/micro hydro projects both in the public and private sector. For the identification of new potential locations, surveys and comprehensive project reports are elaborated, and financial support for the renovation and modernization of old projects is provided. The Ministry has established a dedicated completely automatic supervisory control and data acquisition (SCADA)—based on a hydraulic turbine R&D laboratory at the Alternate Hydro Energy Center (AHEC) at IIT Roorkee. The establishment cost for the lab was INR 40 crore (400 million INR, 95.62 Million USD), and the laboratory will serve as a design and validation facility. It investigates hydro turbines and other hydro-mechanical devices adhering to national and international standards [ 54 , 55 ]. Table 21 shows the target and achievements from 2007–2008 to 2018–2019.

National policy regarding biofuels—2018

Modernization has generated an opportunity for a stable change in the use of bioenergy in India. MNRE amended the current policy for biomass in May 2018. The policy presents CFA for projects using biomass such as agriculture-based industrial residues, wood produced through energy plantations, bagasse, crop residues, wood waste generated from industrial operations, and weeds. Under the policy, CFA will be provided to the projects at the rate of INR 2.5 million (USD 35,477.7) per MW for bagasse cogeneration and INR 5 million (USD 70,955.5) per MW for non-bagasse cogeneration. The MNRE also announced a memorandum in November 2018 considering the continuation of the concessional customs duty certificate (CCDC) to set up projects for the production of energy using non-conventional materials such as bio-waste, agricultural, forestry, poultry litter, agro-industrial, industrial, municipal, and urban wastes. The government recently established the National policy on biofuels in August 2018. The MNRE invited an expression of interest (EOI) to estimate the potential of biomass energy and bagasse cogeneration in the country. A program to encourage the promotion of biomass-based cogeneration in sugar mills and other industries was also launched in May 2018. Table 22 shows how the biomass power target and achievements are expected to reach 10 GW of the target of 2022 before the end of 2019.

The new national biogas and organic manure program (NNBOMP)—2018

The National biogas and manure management programme (NBMMP) was launched in 2012–2013. The primary objective was to provide clean gaseous fuel for cooking, where the remaining slurry was organic bio-manure which is rich in nitrogen, phosphorus, and potassium. Further, 47.5 lakh (4.75 million) cumulative biogas plants were completed in 2014, and increased to 49.8 lakh (4.98 million). During 2017–2018, the target was to establish 1.10 lakh biogas plants (1.10 million), but resulted in 0.15 lakh (0.015 million). In this way, the cost of refilling the gas cylinders with liquefied petroleum gas (LPG) was greatly reduced. Likewise, tons of wood/trees were protected from being axed, as wood is traditionally used as a fuel in rural and semi-urban households. Biogas is a viable alternative to traditional cooking fuels. The scheme generated employment for almost 300 skilled laborers for setting up the biogas plants. By 30th of May 2018, the Ministry had issued guidelines for the implementation of the NNBOMP during the period 2017–2018 to 2019–2020 [ 56 ].

The off-grid and decentralized solar photovoltaic application program—2018

The program deals with the energy demand through the deployment of solar lanterns, solar streetlights, solar home lights, and solar pumps. The plan intended to reach 118 MWp of off-grid PV capacity by 2020. The sanctioning target proposed outlay was 50 MWp by 2017–2018 and 68 MWp by 2019–2020. The total estimated cost amounted to INR 1895 crore (18950 Million INR, 265.547 million USD), and the ministry wanted to support 637 crores (6370 million INR, 89.263 million USD) by its central finance assistance. Solar power plants with a 25 KWp size were promoted in those areas where grid power does not reach households or is not reliable. Public service institutions, schools, panchayats, hostels, as well as police stations will benefit from this scheme. Solar study lamps were also included as a component in the program. Thirty percent of financial assistance was provided to solar power plants. Every student should bear 15% of the lamp cost, and the ministry wanted to support the remaining 85%. As of October 2018, lantern and lamps of more than 40 Lakhs (4 million), home lights of 16.72 lakhs (1.672 million) number, street lights of 6.40 lakhs (0.64 million), solar pumps of 1.96 lakhs (0.196 million), and 187.99 MWp stand-alone devices had been installed [ 57 , 58 ].

Major government initiatives for renewable energy

Technological initiatives.

The Technology Development and Innovation Policy (TDIP) released on the 6th of October 2017 was endeavored to promote research, development, and demonstration (RD&D) in the renewable energy sector [ 59 ]. RD&D intended to evaluate resources, progress in technology, commercialization, and the presentation of renewable energy technologies across the country. It aimed to produce renewable power devices and systems domestically. The evaluation of standards and resources, processes, materials, components, products, services, and sub-systems was carried out through RD&D. A development of the market, efficiency improvements, cost reductions, and a promotion of commercialization (scalability and bankability) were achieved through RD&D. Likewise, the percentage of renewable energy in the total electricity mix made it self-sustainable, industrially competitive, and profitable through RD&D. RD&D also supported technology development and demonstration in wind, solar, wind-solar hybrid, biofuel, biogas, hydrogen fuel cells, and geothermal energies. RD&D supported the R&D units of educational institutions, industries, and non-government organizations (NGOs). Sharing expertise, information, as well as institutional mechanisms for collaboration was realized by use of the technology development program (TDP). The various people involved in this program were policymakers, industrial innovators, associated stakeholders and departments, researchers, and scientists. Renowned R&D centers in India are the National Institute of Solar Energy (NISE), Gurgaon, the National Institute of Bio-Energy (NIBE), Kapurthala, and the National Institute of Wind Energy (NIWE), Chennai. The TDP strategy encouraged the exploration of innovative approaches and possibilities to obtain long-term targets. Likewise, it efficiently supported the transformation of knowledge into technology through a well-established monitoring system for the development of renewable technology that meets the electricity needs of India. The research center of excellence approved the TDI projects, which were funded to strengthen R&D. Funds were provided for conducting training and workshops. The MNRE is now preparing a database of R&D accomplishments in the renewable energy sector.

The Impacting Research Innovation and Technology (IMPRINT) program seeks to develop engineering and technology (prototype/process development) on a national scale. IMPRINT is steered by the Indian Institute of Technologies (IITs) and Indian Institute of science (IISCs). The expansion covers all areas of engineering and technology including renewable technology. The ministry of human resource development (MHRD) finances up to 50% of the total cost of the project. The remaining costs of the project are financed by the ministry (MNRE) via the RD&D program for renewable projects. Currently (2018–2019), five projects are under implementation in the area of solar thermal systems, storage for SPV, biofuel, and hydrogen and fuel cells which are funded by the MNRE (36.9 million INR, 0.518426 Million USD) and IMPRINT. Development of domestic technology and quality control are promoted through lab policies that were published on the 7th of December 2017. Lab policies were implemented to test, standardize, and certify renewable energy products and projects. They supported the improvement of the reliability and quality of the projects. Furthermore, Indian test labs are strengthened in line with international standards and practices through well-established lab policies. From 2015, the MNRE has provided “The New and Renewable Energy Young Scientist’s Award” to researchers/scientists who demonstrate exceptional accomplishments in renewable R&D.

Financial initiatives

One hundred percent financial assistance is granted by the MNRE to the government and NGOs and 50% financial support to the industry. The policy framework was developed to guide the identification of the project, the formulation, monitoring appraisal, approval, and financing. Between 2012 and 2017, a 4467.8 million INR, 62.52 Million USD) support was granted by the MNRE. The MNRE wanted to double the budget for technology development efforts in renewable energy for the current three-year plan period. Table 23 shows that the government is spending more and more for the development of the renewable energy sector. Financial support was provided to R&D projects. Exceptional consideration was given to projects that worked under extreme and hazardous conditions. Furthermore, financial support was applied to organizing awareness programs, demonstrations, training, workshops, surveys, assessment studies, etc. Innovative approaches will be rewarded with cash prizes. The winners will be presented with a support mechanism for transforming their ideas and prototypes into marketable commodities such as start-ups for entrepreneur development. Innovative projects will be financed via start-up support mechanisms, which will include an investment contract with investors. The MNRE provides funds to proposals for investigating policies and performance analyses related to renewable energy.

Technology validation and demonstration projects and other innovative projects with regard to renewables received a financial assistance of 50% of the project cost. The CFA applied to partnerships with industry and private institutions including engineering colleges. Private academic institutions, accredited by a government accreditation body, were also eligible to receive a 50% support. The concerned industries and institutions should meet the remaining 50% expenditure. The MNRE allocated an INR 3762.50 crore (INR 37625 million, 528.634 million USD) for the grid interactive renewable sources and an INR 1036.50 crore (INR 10365 million, 145.629 million USD) for off-grid/distributed and decentralized renewable power for the year 2018–2019 [ 60 ]. The MNRE asked the Reserve Bank of India (RBI), attempting to build renewable power projects under “priority sector lending” (priority lending should be done for renewable energy projects and without any limit) and to eliminate the obstacles in the financing of renewable energy projects. In July 2018, the Ministry of Finance announced that it would impose a 25% safeguard duty on solar panels and modules imported from China and Malaysia for 1 year. The quantum of tax might be reduced to 20% for the next 6 months, and 15% for the following 6 months.

Policy and regulatory framework initiatives

The regulatory interventions for the development of renewable energy sources are (a) tariff determination, (b) defining RPO, (c) promoting grid connectivity, and (d) promoting the expansion of the market.

Tariff policy amendments—2018

On the 30th of May 2018, the MoP released draft amendments to the tariff policy. The objective of these policies was to promote electricity generation from renewables. MoP in consultation with MNRE announced the long-term trajectory for RPO, which is represented in Table 24 . The State Electricity Regulatory Commission (SERC) achieved a favorable and neutral/off-putting effect in the growth of the renewable power sector through their RPO regulations in consultation with the MNRE. On the 25th of May 2018, the MNRE created an RPO compliance cell to reach India’s solar and wind power goals. Due to the absence of implementation of RPO regulations, several states in India did not meet their specified RPO objectives. The cell will operate along with the Central Electricity Regulatory Commission (CERC) and SERCs to obtain monthly statements on RPO compliance. It will also take up non-compliance associated concerns with the relevant officials.

Repowering policy—2016

On the 09th of August 2016, India announced a “repowering policy” for wind energy projects. An about 27 GW turnaround was possible according to the policy. This policy supports the replacing of aging wind turbines with more modern and powerful units (fewer, larger, taller) to raise the level of electricity generation. This policy seeks to create a simplified framework and to promote an optimized use of wind power resources. It is mandatory because the up to the year 2000 installed wind turbines were below 500 kW in sites where high wind potential might be achieved. It will be possible to obtain 3000 MW from the same location once replacements are in place. The policy was initially applied for the one MW installed capacity of wind turbines, and the MNRE will extend the repowering policy to other projects in the future based on experience. Repowering projects were implemented by the respective state nodal agencies/organizations that were involved in wind energy promotion in their states. The policy provided an exception from the Power Purchase Agreement (PPA) for wind farms/turbines undergoing repowering because they could not fulfill the requirements according to the PPA during repowering. The repowering projects may avail accelerated depreciation (AD) benefit or generation-based incentive (GBI) due to the conditions appropriate to new wind energy projects [ 61 ].

The wind-solar hybrid policy—2018

On the 14th of May 2018, the MNRE announced a national wind-solar hybrid policy. This policy supported new projects (large grid-connected wind-solar photovoltaic hybrid systems) and the hybridization of the already available projects. These projects tried to achieve an optimal and efficient use of transmission infrastructure and land. Better grid stability was achieved and the variability in renewable power generation was reduced. The best part of the policy intervention was that which supported the hybridization of existing plants. The tariff-based transparent bidding process was included in the policy. Regulatory authorities should formulate the necessary standards and regulations for hybrid systems. The policy also highlighted a battery storage in hybrid projects for output optimization and variability reduction [ 62 ].

The national offshore wind energy policy—2015

The National Offshore Wind Policy was released in October 2015. On the 19th of June 2018, the MNRE announced a medium-term target of 5 GW by 2022 and a long-term target of 30 GW by 2030. The MNRE called expressions of Interest (EoI) for the first 1 GW of offshore wind (the last date was 08.06.2018). The EoI site is located in Pipavav port at the Gulf of Khambhat at a distance of 23 km facilitating offshore wind (FOWIND) where the consortium deployed light detection and ranging (LiDAR) in November 2017). Pipavav port is situated off the coast of Gujarat. The MNRE had planned to install more such equipment in the states of Tamil Nadu and Gujarat. On the 14 th of December 2018, the MNRE, through the National Institute of Wind Energy (NIWE), called tender for offshore environmental impact assessment studies at intended LIDAR points at the Gulf of Mannar, off the coast of Tamil Nadu for offshore wind measurement. The timeline for initiatives was to firstly add 500 MW by 2022, 2 to 2.5 GW by 2027, and eventually reaching 5 GW between 2028 and 2032. Even though the installation of large wind power turbines in open seas is a challenging task, the government has endeavored to promote this offshore sector. Offshore wind energy would add its contribution to the already existing renewable energy mix for India [ 63 ] .

The feed-in tariff policy—2018

On the 28th of January 2016, the revised tariff policy was notified following the Electricity Act. On the 30th May 2018, the amendment in tariff policy was released. The intentions of this tariff policy are (a) an inexpensive and competitive electricity rate for the consumers; (b) to attract investment and financial viability; (c) to ensure that the perceptions of regulatory risks decrease through predictability, consistency, and transparency of policy measures; (d) development in quality of supply, increased operational efficiency, and improved competition; (e) increase the production of electricity from wind, solar, biomass, and small hydro; (f) peaking reserves that are acceptable in quantity or consistently good in quality or performance of grid operation where variable renewable energy source integration is provided through the promotion of hydroelectric power generation, including pumped storage projects (PSP); (g) to achieve better consumer services through efficient and reliable electricity infrastructure; (h) to supply sufficient and uninterrupted electricity to every level of consumers; and (i) to create adequate capacity, reserves in the production, transmission, and distribution that is sufficient for the reliability of supply of power to customers [ 64 ].

Training and educational initiatives

The MHRD has developed strong renewable energy education and training systems. The National Council for Vocational Training (NCVT) develops course modules, and a Modular Employable Skilling program (MES) in its regular 2-year syllabus to include SPV lighting systems, solar thermal systems, SHP, and provides the certificate for seven trades after the completion of a 2-year course. The seven trades are plumber, fitter, carpenter, welder, machinist, and electrician. The Ministry of Skill Development and Entrepreneurship (MSDE) worked out a national skill development policy in 2015. They provide regular training programs to create various job roles in renewable energy along with the MNRE support through a skill council for green jobs (SCGJ), the National Occupational Standards (NOS), and the Qualification Pack (QP). The SCGJ is promoted by the Confederation of Indian Industry (CII) and the MNRE. The industry partner for the SCGJ is ReNew Power [ 65 , 66 ].

The global status of India in renewable energy

Table 25 shows the RECAI (Renewable Energy Country Attractiveness Index) report of 40 countries. This report is based on the attractiveness of renewable energy investment and deployment opportunities. RECAI is based on macro vitals such as economic stability, investment climate, energy imperatives such as security and supply, clean energy gap, and affordability. It also includes policy enablement such as political stability and support for renewables. Its emphasis lies on project delivery parameters such as energy market access, infrastructure, and distributed generation, finance, cost and availability, and transaction liquidity. Technology potentials such as natural resources, power take-off attractiveness, potential support, technology maturity, and forecast growth are taken into consideration for ranking. India has moved to the fourth position of the RECAI-2018. Indian solar installations (new large-scale and rooftop solar capacities) in the calendar year 2017 increased exponentially with the addition of 9629 MW, whereas in 2016 it was 4313 MW. The warning of solar import tariffs and conflicts between developers and distribution firms are growing investor concerns [ 67 ]. Figure 6 shows the details of the installed capacity of global renewable energy in 2016 and 2017. Globally, 2017 GW renewable energy was installed in 2016, and in 2017, it increased to 2195 GW. Table 26 shows the total capacity addition of top countries until 2017. The country ranked fifth in renewable power capacity (including hydro energy), renewable power capacity (not including hydro energy) in fourth position, concentrating solar thermal power (CSP) and wind power were also in fourth position [ 68 ].

figure 6

Globally installed capacity of renewable energy in 2017—Global 2018 status report with regard to renewables [ 68 ]

The investment opportunities in renewable energy in India

The investments into renewable energy in India increased by 22% in the first half of 2018 compared to 2017, while the investments in China dropped by 15% during the same period, according to a statement by the Bloomberg New Energy Finance (BNEF), which is shown in Table 27 [ 69 , 70 ]. At this rate, India is expected to overtake China and become the most significant growth market for renewable energy by the end of 2020. The country is eyeing pole position for transformation in renewable energy by reaching 175 GW by 2020. To achieve this target, it is quickly ramping up investments in this sector. The country added more renewable capacity than conventional capacity in 2018 when compared to 2017. India hosted the ISA first official summit on the 11.03.2018 for 121 countries. This will provide a standard platform to work toward the ambitious targets for renewable energy. The summit will emphasize India’s dedication to meet global engagements in a time-bound method. The country is also constructing many sizeable solar power parks comparable to, but larger than, those in China. Half of the earth’s ten biggest solar parks under development are in India.

In 2014, the world largest solar park was the Topaz solar farm in California with a 550 MW facility. In 2015, another operator in California, Solar Star, edged its capacity up to 579 MW. By 2016, India’s Kamuthi Solar Power Project in Tamil Nadu was on top with 648 MW of capacity (set up by the Adani Green Energy, part of the Adani Group, in Tamil Nadu). As of February 2017, the Longyangxia Dam Solar Park in China was the new leader, with 850 MW of capacity [ 71 ]. Currently, there are 600 MW operating units and 1400 MW units under construction. The Shakti Sthala solar park was inaugurated on 01.03.2018 in Pavagada (Karnataka, India) which is expected to become the globe’s most significant solar park when it accomplishes its full potential of 2 GW. Another large solar park with 1.5 GW is scheduled to be built in the Kadappa region [ 72 ]. The progress in solar power is remarkable and demonstrates real clean energy development on the ground.

The Kurnool ultra-mega solar park generated 800 million units (MU) of energy in October 2018 and saved over 700,000 tons of CO 2 . Rainwater was harvested using a reservoir that helps in cleaning solar panels and supplying water. The country is making remarkable progress in solar energy. The Kamuthi solar farm is cleaned each day by a robotic system. As the Indian economy expands, electricity consumption is forecasted to reach 15,280 TWh in 2040. With the government’s intent, green energy objectives, i.e., the renewable sector, grow considerably in an attractive manner with both foreign and domestic investors. It is anticipated to attract investments of up to USD 80 billion in the subsequent 4 years. The government of India has raised its 175 GW target to 225 GW of renewable energy capacity by 2022. The competitive benefit is that the country has sun exposure possible throughout the year and has an enormous hydropower potential. India was also listed fourth in the EY renewable energy country attractive index 2018. Sixty solar cities will be built in India as a section of MNRE’s “Solar cities” program.

In a regular auction, reduction in tariffs cost of the projects are the competitive benefits in the country. India accounts for about 4% of the total global electricity generation capacity and has the fourth highest installed capacity of wind energy and the third highest installed capacity of CSP. The solar installation in India erected during 2015–2016, 2016–2017, 2017–2018, and 2018–2019 was 3.01 GW, 5.52 GW, 9.36 GW, and 6.53 GW, respectively. The country aims to add 8.5 GW during 2019–2020. Due to its advantageous location in the solar belt (400 South to 400 North), the country is one of the largest beneficiaries of solar energy with relatively ample availability. An increase in the installed capacity of solar power is anticipated to exceed the installed capacity of wind energy, approaching 100 GW by 2022 from its current levels of 25.21226 GW as of December 2018. Fast falling prices have made Solar PV the biggest market for new investments. Under the Union Budget 2018–2019, a zero import tax on parts used in manufacturing solar panels was launched to provide an advantage to domestic solar panel companies [ 73 ].

Foreign direct investment (FDI) inflows in the renewable energy sector of India between April 2000 and June 2018 amounted to USD 6.84 billion according to the report of the department of industrial policy and promotion (DIPP). The DIPP was renamed (gazette notification 27.01.2019) the Department for the Promotion of Industry and Internal Trade (DPIIT). It is responsible for the development of domestic trade, retail trade, trader’s welfare including their employees as well as concerns associated with activities in facilitating and supporting business and startups. Since 2014, more than 42 billion USD have been invested in India’s renewable power sector. India reached US$ 7.4 billion in investments in the first half of 2018. Between April 2015 and June 2018, the country received USD 3.2 billion FDI in the renewable sector. The year-wise inflows expanded from USD 776 million in 2015–2016 to USD 783 million in 2016–2017 and USD 1204 million in 2017–2018. Between January to March of 2018, the INR 452 crore (4520 Million INR, 63.3389 million USD) of the FDI had already come in. The country is contributing with financial and promotional incentives that include a capital subsidy, accelerated depreciation (AD), waiver of inter-state transmission charges and losses, viability gap funding (VGF), and FDI up to 100% under the automated track.

The DIPP/DPIIT compiles and manages the data of the FDI equity inflow received in India [ 74 ]. The FDI equity inflow between April 2015 and June 2018 in the renewable sector is illustrated in Fig. 7 . It shows that the 2018–2019 3 months’ FDI equity inflow is half of that of the entire one of 2017–2018. It is evident from the figure that India has well-established FDI equity inflows. The significant FDI investments in the renewable energy sectors are shown in Table 28 . The collaboration between the Asian development bank and Renew Power Ventures private limited with 44.69 million USD ranked first followed by AIRRO Singapore with Diligent power with FDI equity inflow of 44.69 USD million.

figure 7

The FDI equity inflow received between April 2015 and June 2018 in the renewable energy sector [ 73 ]

Strategies to promote investments

Strategies to promote investments (including FDI) by investors in the renewable sector:

Decrease constraints on FDI; provide open, transparent, and dependable conditions for foreign and domestic firms; and include ease of doing business, access to imports, comparatively flexible labor markets, and safeguard of intellectual property rights.

Establish an investment promotion agency (IPA) that targets suitable foreign investors and connects them as a catalyst with the domestic economy. Assist the IPA to present top-notch infrastructure and immediate access to skilled workers, technicians, engineers, and managers that might be needed to attract such investors. Furthermore, it should involve an after-investment care, recognizing the demonstration effects from satisfied investors, the potential for reinvestments, and the potential for cluster-development due to follow-up investments.

It is essential to consider the targeted sector (wind, solar, SPH or biomass, respectively) for which investments are required.

Establish the infrastructure needed for a quality investor, including adequate close-by transport facilities (airport, ports), a sufficient and steady supply of energy, a provision of a sufficiently skilled workforce, the facilities for the vocational training of specialized operators, ideally designed in collaboration with the investor.

Policy and other support mechanisms such as Power Purchase Agreements (PPA) play an influential role in underpinning returns and restricting uncertainties for project developers, indirectly supporting the availability of investment. Investors in renewable energy projects have historically relied on government policies to give them confidence about the costs necessary for electricity produced—and therefore for project revenues. Reassurance of future power costs for project developers is secured by signing a PPA with either a utility or an essential corporate buyer of electricity.

FiT have been the most conventional approach around the globe over the last decade to stimulate investments in renewable power projects. Set by the government concerned, they lay down an electricity tariff that developers of qualifying new projects might anticipate to receive for the resulting electricity over a long interval (15–20 years). These present investors in the tax equity of renewable power projects with a credit that they can manage to offset the tax burden outside in their businesses.

Table 29 presents the 2018 renewable energy investment report, source-wise, by the significant players in renewables according to the report of the Bloomberg New Energy Finance Report 2018. As per this report, global investment in renewable energy was USD of 279.8 billion in 2017. The top ten in the total global investments are China (126.1 $BN), the USA (40.5 $BN), Japan (13.4 $BN), India (10.9 $BN), Germany (10.4 $BN), Australia (8.5 $BN), UK (7.6 $BN), Brazil (6.0 $BN), Mexico (6.0 $BN), and Sweden (3.7 $BN) [ 75 ]. This achievement was possible since those countries have well-established strategies for promoting investments [ 76 , 77 ].

The appropriate objectives for renewable power expansion and investments are closely related to the Nationally Determined Contributions (NDCs) objectives, the implementation of the NDC, on the road to achieving Paris promises, policy competence, policy reliability, market absorption capacity, and nationwide investment circumstances that are the real purposes for renewable power expansion, which is a significant factor for the investment strategies, as is shown in Table 30 .

The demand for investments for building a Paris-compatible and climate-resilient energy support remains high, particularly in emerging nations. Future investments in energy grids and energy flexibility are of particular significance. The strategies and the comparison chart between China, India, and the USA are presented in Table 31 .

Table 32 shows France in the first place due to overall favorable conditions for renewables, heading the G20 in investment attractiveness of renewables. Germany drops back one spot due to a decline in the quality of the global policy environment for renewables and some insufficiencies in the policy design, as does the UK. Overall, with four European countries on top of the list, Europe, however, directs the way in providing attractive conditions for investing in renewables. Despite high scores for various nations, no single government is yet close to growing a role model. All countries still have significant room for increasing investment demands to deploy renewables at the scale required to reach the Paris objectives. The table shown is based on the Paris compatible long-term vision, the policy environment for renewable energy, the conditions for system integration, the market absorption capacity, and general investment conditions. India moved from the 11th position to the 9th position in overall investments between 2017 and 2018.

A Paris compatible long-term vision includes a de-carbonization plan for the power system, the renewable power ambition, the coal and oil decrease, and the reliability of renewables policies. Direct support policies include medium-term certainty of policy signals, streamlined administrative procedures, ensuring project realization, facilitating the use of produced electricity. Conditions for system integration include system integration-grid codes, system integration-storage promotion, and demand-side management policies. A market absorption capacity includes a prior experience with renewable technologies, a current activity with renewable installations, and a presence of major renewable energy companies. General investment conditions include non-financial determinants, depth of the financial sector as well, as an inflation forecast.

Employment opportunities for citizens in renewable energy in India

Global employment scenario.

According to the 2018 Annual review of the IRENA [ 78 ], global renewable energy employment touched 10.3 million jobs in 2017, an improvement of 5.3% compared with the quantity published in 2016. Many socio-economic advantages derive from renewable power, but employment continues to be exceptionally centralized in a handful of countries, with China, Brazil, the USA, India, Germany, and Japan in the lead. In solar PV employment (3.4 million jobs), China is the leader (65% of PV Jobs) which is followed by Japan, USA, India, Bangladesh, Malaysia, Germany, Philippines, and Turkey. In biofuels employment (1.9 million jobs), Brazil is the leader (41% of PV Jobs) followed by the USA, Colombia, Indonesia, Thailand, Malaysia, China, and India. In wind employment (1.1 million jobs), China is the leader (44% of PV Jobs) followed by Germany, USA, India, UK, Brazil, Denmark, Netherlands, France, and Spain.

Table 33 shows global renewable energy employment in the corresponding technology branches. As in past years, China maintained the most notable number of people employed (3880 million jobs) estimating for 43% of the globe’s total which is shown in Fig. 8 . In India, new solar installations touched a record of 9.6 GW in 2017, efficiently increasing the total installed capacity. The employment in solar PV improved by 36% and reached 164,400 jobs, of which 92,400 represented on-grid use. IRENA determines that the building and installation covered 46% of these jobs, with operations and maintenance (O&M) representing 35% and 19%, individually. India does not produce solar PV because it could be imported from China, which is inexpensive. The market share of domestic companies (Indian supplier to renewable projects) declined from 13% in 2014–2015 to 7% in 2017–2018. If India starts the manufacturing base, more citizens will get jobs in the manufacturing field. India had the world’s fifth most significant additions of 4.1 GW to wind capacity in 2017 and the fourth largest cumulative capacity in 2018. IRENA predicts that jobs in the wind sector stood at 60,500.

figure 8

Renewable energy employment in selected countries [ 79 ]

The jobs in renewables are categorized into technological development, installation/de-installation, operation, and maintenance. Tables 34 , 35 , 36 , and 37 show the wind industry, solar energy, biomass, and small hydro-related jobs in project development, component manufacturing, construction, operations, and education, training, and research. As technology quickly evolves, workers in all areas need to update their skills through continuing training/education or job training, and in several cases could benefit from professional certification. The advantages of moving to renewable energy are evident, and for this reason, the governments are responding positively toward the transformation to clean energy. Renewable energy can be described as the country’s next employment boom. Renewable energy job opportunities can transform rural economy [ 79 , 80 ]. The renewable energy sector might help to reduce poverty by creating better employment. For example, wind power is looking for specialists in manufacturing, project development, and construction and turbine installation as well as financial services, transportation and logistics, and maintenance and operations.

The government is building more renewable energy power plants that will require a workforce. The increasing investments in the renewable energy sector have the potential to provide more jobs than any other fossil fuel industry. Local businesses and renewable sectors will benefit from this change, as income will increase significantly. Many jobs in this sector will contribute to fixed salaries, healthcare benefits, and skill-building opportunities for unskilled and semi-skilled workers. A range of skilled and unskilled jobs are included in all renewable energy technologies, even though most of the positions in the renewable energy industry demand a skilled workforce. The renewable sector employs semi-skilled and unskilled labor in the construction, operations, and maintenance after proper training. Unskilled labor is employed as truck drivers, guards, cleaning, and maintenance. Semi-skilled labor is used to take regular readings from displays. A lack of consistent data on the potential employment impact of renewables expansion makes it particularly hard to assess the quantity of skilled, semi-skilled, and unskilled personnel that might be needed.

Key findings in renewable energy employment

The findings comprise (a) that the majority of employment in the renewable sector is contract based, and that employees do not benefit from permanent jobs or security. (b) Continuous work in the industry has the potential to decrease poverty. (c) Most poor citizens encounter obstacles to entry-level training and the employment market due to lack of awareness about the jobs and the requirements. (d) Few renewable programs incorporate developing ownership opportunities for the citizens and the incorporation of women in the sector. (e) The inadequacy of data makes it challenging to build relationships between employment in renewable energy and poverty mitigation.

Recommendations for renewable energy employment

When building the capacity, focus on poor people and individuals to empower them with training in operation and maintenance.

Develop and offer training programs for citizens with minimal education and training, who do not fit current programs, which restrict them from working in renewable areas.

Include women in the renewable workforce by providing localized training.

Establish connections between training institutes and renewable power companies to guarantee that (a) trained workers are placed in appropriate positions during and after the completion of the training program and (b) training programs match the requirements of the renewable sector.

Poverty impact assessments might be embedded in program design to know how programs motivate poverty reduction, whether and how they influence the community.

Allow people to have a sense of ownership in renewable projects because this could contribute to the growth of the sector.

The details of the job being offered (part time, full time, contract-based), the levels of required skills for the job (skilled, semi-skilled and unskilled), the socio-economic status of the employee data need to be collected for further analysis.

Conduct investigations, assisted by field surveys, to learn about the influence of renewable energy jobs on poverty mitigation and differences in the standard of living.

Challenges faced by renewable energy in India

The MNRE has been taking dedicated measures for improving the renewable sector, and its efforts have been satisfactory in recognizing various obstacles.

Policy and regulatory obstacles

A comprehensive policy statement (regulatory framework) is not available in the renewable sector. When there is a requirement to promote the growth of particular renewable energy technologies, policies might be declared that do not match with the plans for the development of renewable energy.

The regulatory framework and procedures are different for every state because they define the respective RPOs (Renewable Purchase Obligations) and this creates a higher risk of investments in this sector. Additionally, the policies are applicable for just 5 years, and the generated risk for investments in this sector is apparent. The biomass sector does not have an established framework.

Incentive accelerated depreciation (AD) is provided to wind developers and is evident in developing India’s wind-producing capacity. Wind projects installed more than 10 years ago show that they are not optimally maintained. Many owners of the asset have built with little motivation for tax benefits only. The policy framework does not require the maintenance of the wind projects after the tax advantages have been claimed. There is no control over the equipment suppliers because they undertake all wind power plant development activities such as commissioning, operation, and maintenance. Suppliers make the buyers pay a premium and increase the equipment cost, which brings burden to the buyer.

Furthermore, ready-made projects are sold to buyers. The buyers are susceptible to this trap to save income tax. Foreign investors hesitate to invest because they are exempted from the income tax.

Every state has different regulatory policy and framework definitions of an RPO. The RPO percentage specified in the regulatory framework for various renewable sources is not precise.

RPO allows the SERCs and certain private firms to procure only a part of their power demands from renewable sources.

RPO is not imposed on open access (OA) and captive consumers in all states except three.

RPO targets and obligations are not clear, and the RPO compliance cell has just started on 22.05.2018 to collect the monthly reports on compliance and deal with non-compliance issues with appropriate authorities.

Penalty mechanisms are not specified and only two states in India (Maharashtra and Rajasthan) have some form of penalty mechanisms.

The parameter to determine the tariff is not transparent in the regulatory framework and many SRECs have established a tariff for limited periods. The FiT is valid for only 5 years, and this affects the bankability of the project.

Many SERCs have not decided on adopting the CERC tariff that is mentioned in CERCs regulations that deal with terms and conditions for tariff determinations. The SERCs have considered the plant load factor (PLF) because it varies across regions and locations as well as particular technology. The current framework does not fit to these issues.

Third party sale (TPS) is not allowed because renewable generators are not allowed to sell power to commercial consumers. They have to sell only to industrial consumers. The industrial consumers have a low tariff and commercial consumers have a high tariff, and SRCS do not allow OA. This stops the profit for the developers and investors.

Institutional obstacles

Institutes, agencies stakeholders who work under the conditions of the MNRE show poor inter-institutional coordination. The progress in renewable energy development is limited by this lack of cooperation, coordination, and delays. The delay in implementing policies due to poor coordination, decrease the interest of investors to invest in this sector.

The single window project approval and clearance system is not very useful and not stable because it delays the receiving of clearances for the projects ends in the levy of a penalty on the project developer.

Pre-feasibility reports prepared by concerned states have some deficiency, and this may affect the small developers, i.e., the local developers, who are willing to execute renewable projects.

The workforce in institutes, agencies, and ministries is not sufficient in numbers.

Proper or well-established research centers are not available for the development of renewable infrastructure.

Customer care centers to guide developers regarding renewable projects are not available.

Standards and quality control orders have been issued recently in 2018 and 2019 only, and there are insufficient institutions and laboratories to give standards/certification and validate the quality and suitability of using renewable technology.

Financial and fiscal obstacles

There are a few budgetary constraints such as fund allocation, and budgets that are not released on time to fulfill the requirement of developing the renewable sector.

The initial unit capital costs of renewable projects are very high compared to fossil fuels, and this leads to financing challenges and initial burden.

There are uncertainties related to the assessment of resources, lack of technology awareness, and high-risk perceptions which lead to financial barriers for the developers.

The subsidies and incentives are not transparent, and the ministry might reconsider subsidies for renewable energy because there was a sharp fall in tariffs in 2018.

Power purchase agreements (PPA) signed between the power purchaser and power generators on pre-determined fixed tariffs are higher than the current bids (Economic survey 2017–2018 and union budget on the 01.02.2019). For example, solar power tariff dropped to 2.44 INR (0. 04 USD) per unit in May 2017, wind power INR 3.46 per unit in February 2017, and 2.64 INR per unit in October 2017.

Investors feel that there is a risk in the renewable sector as this sector has lower gross returns even though these returns are relatively high within the market standards.

There are not many developers who are interested in renewable projects. While newly established developers (small and local developers) do not have much of an institutional track record or financial input, which are needed to develop the project (high capital cost). Even moneylenders consider it risky and are not ready to provide funding. Moneylenders look exclusively for contractors who have much experience in construction, well-established suppliers with proven equipment and operators who have more experience.

If the performance of renewable projects, which show low-performance, faces financial obstacles, they risks the lack of funding of renewable projects.

Financial institutions such as government banks or private banks do not have much understanding or expertise in renewable energy projects, and this imposes financial barriers to the projects.

Delay in payment by the SERCs to the developers imposes debt burden on the small and local developers because moneylenders always work with credit enhancement mechanisms or guarantee bonds signed between moneylenders and the developers.

Market obstacles

Subsidies are adequately provided to conventional fossil fuels, sending the wrong impression that power from conventional fuels is of a higher priority than that from renewables (unfair structure of subsidies)

There are four renewable markets in India, the government market (providing budgetary support to projects and purchase the output of the project), the government-driven market (provide budgetary support or fiscal incentives to promote renewable energy), the loan market (taking loan to finance renewable based applications), and the cash market (buying renewable-based applications to meet personal energy needs by individuals). There is an inadequacy in promoting the loan market and cash market in India.

The biomass market is facing a demand-supply gap which results in a continuous and dramatic increase in biomass prices because the biomass supply is unreliable (and, as there is no organized market for fuel), and the price fluctuations are very high. The type of biomass is not the same in all the states of India, and therefore demand and price elasticity is high for biomass.

Renewable power was calculated based on cost-plus methods (adding direct material cost, direct labor cost, and product overhead cost). This does not include environmental cost and shields the ecological benefits of clean and green energy.

There is an inadequate evacuation infrastructure and insufficient integration of the grid, which affects the renewable projects. SERCs are not able to use all generated power to meet the needs because of the non-availability of a proper evacuation infrastructure. This has an impact on the project, and the SERCs are forced to buy expensive power from neighbor states to fulfill needs.

Extending transmission lines is not possible/not economical for small size projects, and the seasonality of generation from such projects affect the market.

There are few limitations in overall transmission plans, distribution CapEx plans, and distribution licenses for renewable power. Power evacuation infrastructure for renewable energy is not included in the plans.

Even though there is an increase in capacity for the commercially deployed renewable energy technology, there is no decline in capital cost. This cost of power also remains high. The capital cost quoted by the developers and providers of equipment is too high due to exports of machinery, inadequate built up capacity, and cartelization of equipment suppliers (suppliers join together to control prices and limit competition).

There is no adequate supply of land, for wind, solar, and solar thermal power plants, which lead to poor capacity addition in many states.

Technological obstacles

Every installation of a renewable project contributes to complex risk challenges from environmental uncertainties, natural disasters, planning, equipment failure, and profit loss.

MNRE issued the standardization of renewable energy projects policy on the 11th of December 2017 (testing, standardization, and certification). They are still at an elementary level as compared to international practices. Quality assurance processes are still under starting conditions. Each success in renewable energy is based on concrete action plans for standards, testing and certification of performance.

The quality and reliability of manufactured components, imported equipment, and subsystems is essential, and hence quality infrastructure should be established. There is no clear document related to testing laboratories, referral institutes, review mechanism, inspection, and monitoring.

There are not many R&D centers for renewables. Methods to reduce the subsidies and invest in R&D lagging; manufacturing facilities are just replicating the already available technologies. The country is dependent on international suppliers for equipment and technology. Spare parts are not manufactured locally and hence they are scarce.

Awareness, education, and training obstacles

There is an unavailability of appropriately skilled human resources in the renewable energy sector. Furthermore, it faces an acute workforce shortage.

After installation of renewable project/applications by the suppliers, there is no proper follow-up or assistance for the workers in the project to perform maintenance. Likewise, there are not enough trained and skilled persons for demonstrating, training, operation, and maintenance of the plant.

There is inadequate knowledge in renewables, and no awareness programs are available to the general public. The lack of awareness about the technologies is a significant obstacle in acquiring vast land for constructing the renewable plant. Moreover, people using agriculture lands are not prepared to give their land to construct power plants because most Indians cultivate plants.

The renewable sector depends on the climate, and this varying climate also imposes less popularity of renewables among the people.

The per capita income is low, and the people consider that the cost of renewables might be high and they might not be able to use renewables.

The storage system increases the cost of renewables, and people believe it too costly and are not ready to use them.

The environmental benefits of renewable technologies are not clearly understood by the people and negative perceptions are making renewable technologies less prevalent among them.

Environmental obstacles

A single wind turbine does not occupy much space, but many turbines are placed five to ten rotor diameters from each other, and this occupies more area, which include roads and transmission lines.

In the field of offshore wind, the turbines and blades are bigger than onshore wind turbines, and they require a substantial amount of space. Offshore installations affect ocean activities (fishing, sand extraction, gravel extraction, oil extraction, gas extraction, aquaculture, and navigation). Furthermore, they affect fish and other marine wildlife.

Wind turbines influence wildlife (birds and bats) because of the collisions with them and due to air pressure changes caused by wind turbines and habitat disruption. Making wind turbines motionless during times of low wind can protect birds and bats but is not practiced.

Sound (aerodynamic, mechanical) and visual impacts are associated with wind turbines. There is poor practice by the wind turbine developers regarding public concerns. Furthermore, there are imperfections in surfaces and sound—absorbent material which decrease the noise from turbines. The shadow flicker effect is not taken as severe environmental impact by the developers.

Sometimes wind turbine material production, transportation of materials, on-site construction, assembling, operation, maintenance, dismantlement, and decommissioning may be associated with global warming, and there is a lag in this consideration.

Large utility-scale solar plants require vast lands that increase the risk of land degradation and loss of habitat.

The PV cell manufacturing process includes hazardous chemicals such as 1-1-1 Trichloroethene, HCL, H 2 SO 4 , N 2 , NF, and acetone. Workers face risks resulting from inhaling silicon dust. The manufacturing wastes are not disposed of properly. Proper precautions during usage of thin-film PV cells, which contain cadmium—telluride, gallium arsenide, and copper-indium-gallium-diselenide are missing. These materials create severe public health threats and environmental threats.

Hydroelectric power turbine blades kill aquatic ecosystems (fish and other organisms). Moreover, algae and other aquatic weeds are not controlled through manual harvesting or by introducing fish that can eat these plants.

Discussion and recommendations based on the research

Policy and regulation advancements.

The MNRE should provide a comprehensive action plan or policy for the promotion of the renewable sector in its regulatory framework for renewables energy. The action plan can be prepared in consultation with SERCs of the country within a fixed timeframe and execution of the policy/action plan.

The central and state government should include a “Must run status” in their policy and follow it strictly to make use of renewable power.

A national merit order list for renewable electricity generation will reduce power cost for the consumers. Such a merit order list will help in ranking sources of renewable energy in an ascending order of price and will provide power at a lower cost to each distribution company (DISCOM). The MNRE should include that principle in its framework and ensure that SERCs includes it in their regulatory framework as well.

SERCs might be allowed to remove policies and regulatory uncertainty surrounding renewable energy. SERCs might be allowed to identify the thrust areas of their renewable energy development.

There should be strong initiatives from municipality (local level) approvals for renewable energy-based projects.

Higher market penetration is conceivable only if their suitable codes and standards are adopted and implemented. MNRE should guide minimum performance standards, which incorporate reliability, durability, and performance.

A well-established renewable energy certificates (REC) policy might contribute to an efficient funding mechanism for renewable energy projects. It is necessary for the government to look at developing the REC ecosystem.

The regulatory administration around the RPO needs to be upgraded with a more efficient “carrot and stick” mechanism for obligated entities. A regulatory mechanism that both remunerations compliance and penalizes for non-compliance may likely produce better results.

RECs in India should only be traded on exchange. Over-the-counter (OTC) or off-exchange trading will potentially allow greater participation in the market. A REC forward curve will provide further price determination to the market participants.

The policymakers should look at developing and building the REC market.

Most states have defined RPO targets. Still, due to the absence of implemented RPO regulations and the inadequacy of penalties when obligations are not satisfied, several of the state DISCOMs are not complying completely with their RPO targets. It is necessary that all states adhere to the RPO targets set by respective SERCs.

The government should address the issues such as DISCOM financials, must-run status, problems of transmission and evacuation, on-time payments and payment guarantees, and deemed generation benefits.

Proper incentives should be devised to support utilities to obtain power over and above the RPO mandated by the SERC.

The tariff orders/FiTs must be consistent and not restricted for a few years.

Transmission requirements

The developers are worried that transmission facilities are not keeping pace with the power generation. Bays at the nearest substations are occupied, and transmission lines are already carrying their full capacity. This is due to the lack of coordination between MNRE and the Power Grid Corporation of India (PGCIL) and CEA. Solar Corporation of India (SECI) is holding auctions for both wind and solar projects without making sure that enough evacuation facilities are available. There is an urgent need to make evacuation plans.

The solution is to develop numerous substations and transmission lines, but the process will take considerably longer time than the currently under-construction projects take to get finished.

In 2017–2018, transmission lines were installed under the green energy corridor project by the PGCIL, with 1900 circuit km targeted in 2018–2019. The implementation of the green energy corridor project explicitly meant to connect renewable energy plants to the national grid. The budget allocation of INR 6 billion for 2018–2019 should be increased to higher values.

The mismatch between MNRE and PGCIL, which are responsible for inter-state transmission, should be rectified.

State transmission units (STUs) are responsible for the transmission inside the states, and their fund requirements to cover the evacuation and transmission infrastructure for renewable energy should be fulfilled. Moreover, STUs should be penalized if they fail to fulfill their responsibilities.

The coordination and consultation between the developers (the nodal agency responsible for the development of renewable energy) and STUs should be healthy.

Financing the renewable sector

The government should provide enough budget for the clean energy sector. China’s annual budget for renewables is 128 times higher than India’s. In 2017, China spent USD 126.6 billion (INR 9 lakh crore) compared to India’s USD 10.9 billion (INR 75500 crore). In 2018, budget allocations for grid interactive wind and solar have increased but it is not sufficient to meet the renewable target.

The government should concentrate on R&D and provide a surplus fund for R&D. In 2017, the budget allotted was an INR 445 crore, which was reduced to an INR 272.85 crore in 2016. In 2017–2018, the initial allocation was an INR 144 crore that was reduced to an INR 81 crore during the revised estimates. Even the reduced amounts could not be fully used, there is an urgent demand for regular monitoring of R&D and the budget allocation.

The Goods and Service Tax (GST) that was introduced in 2017 worsened the industry performance and has led to an increase in costs and poses a threat to the viability of the ongoing projects, ultimately hampering the target achievement. These GST issues need to be addressed.

Including the renewable sector as a priority sector would increase the availability of credit and lead to a more substantial participation by commercial banks.

Mandating the provident funds and insurance companies to invest the fixed percentage of their portfolio into the renewable energy sector.

Banks should allow an interest rebate on housing loans if the owner is installing renewable applications such as solar lights, solar water heaters, and PV panels in his house. This will encourage people to use renewable energy. Furthermore, income tax rebates also can be given to individuals if they are implementing renewable energy applications.

Improvement in manufacturing/technology

The country should move to domestic manufacturing. It imports 90% of its solar cell and module requirements from Malaysia, China, and Taiwan, so it is essential to build a robust domestic manufacturing basis.

India will provide “safeguard duty” for merely 2 years, and this is not adequate to build a strong manufacturing basis that can compete with the global market. Moreover, safeguard duty would work only if India had a larger existing domestic manufacturing base.

The government should reconsider the safeguard duty. Many foreign companies desiring to set up joint ventures in India provide only a lukewarm response because the given order in its current form presents inadequate safeguards.

There are incremental developments in technology at regular periods, which need capital, and the country should discover a way to handle these factors.

To make use of the vast estimated renewable potential in India, the R&D capability should be upgraded to solve critical problems in the clean energy sector.

A comprehensive policy for manufacturing should be established. This would support capital cost reduction and be marketed on a global scale.

The country should initiate an industry-academia partnership, which might promote innovative R&D and support leading-edge clean power solutions to protect the globe for future generations.

Encourage the transfer of ideas between industry, academia, and policymakers from around the world to develop accelerated adoption of renewable power.

Awareness about renewables

Social recognition of renewable energy is still not very promising in urban India. Awareness is the crucial factor for the uniform and broad use of renewable energy. Information about renewable technology and their environmental benefits should reach society.

The government should regularly organize awareness programs throughout the country, especially in villages and remote locations such as the islands.

The government should open more educational/research organizations, which will help in spreading knowledge of renewable technology in society.

People should regularly be trained with regard to new techniques that would be beneficial for the community.

Sufficient agencies should be available to sell renewable products and serve for technical support during installation and maintenance.

Development of the capabilities of unskilled and semiskilled workers and policy interventions are required related to employment opportunities.

An increase in the number of qualified/trained personnel might immediately support the process of installations of renewables.

Renewable energy employers prefer to train employees they recruit because they understand that education institutes fail to give the needed and appropriate skills. The training institutes should rectify this issue. Severe trained human resources shortages should be eliminated.

Upgrading the ability of the existing workforce and training of new professionals is essential to achieve the renewable goal.

Hybrid utilization of renewables

The country should focus on hybrid power projects for an effective use of transmission infrastructure and land.

India should consider battery storage in hybrid projects, which support optimizing the production and the power at competitive prices as well as a decrease of variability.

Formulate mandatory standards and regulations for hybrid systems, which are lagging in the newly announced policies (wind-solar hybrid policy on 14.05.2018).

The hybridization of two or more renewable systems along with the conventional power source battery storage can increase the performance of renewable technologies.

Issues related to sizing and storage capacity should be considered because they are key to the economic viability of the system.

Fiscal and financial incentives available for hybrid projects should be increased.

The renewable sector suffers notable obstacles. Some of them are inherent in every renewable technology; others are the outcome of a skewed regulative structure and marketplace. The absence of comprehensive policies and regulation frameworks prevent the adoption of renewable technologies. The renewable energy market requires explicit policies and legal procedures to enhance the attention of investors. There is a delay in the authorization of private sector projects because of a lack of clear policies. The country should take measures to attract private investors. Inadequate technology and the absence of infrastructure required to establish renewable technologies should be overcome by R&D. The government should allow more funds to support research and innovation activities in this sector. There are insufficiently competent personnel to train, demonstrate, maintain, and operate renewable energy structures and therefore, the institutions should be proactive in preparing the workforce. Imported equipment is costly compared to that of locally manufactured; therefore, generation of renewable energy becomes expensive and even unaffordable. Hence, to decrease the cost of renewable products, the country should become involve in the manufacturing of renewable products. Another significant infrastructural obstacle to the development of renewable energy technologies is unreliable connectivity to the grid. As a consequence, many investors lose their faith in renewable energy technologies and are not ready to invest in them for fear of failing. India should work on transmission and evacuation plans.

Inadequate servicing and maintenance of facilities and low reliability in technology decreases customer trust in some renewable energy technologies and hence prevent their selection. Adequate skills to repair/service the spare parts/equipment are required to avoid equipment failures that halt the supply of energy. Awareness of renewable energy among communities should be fostered, and a significant focus on their socio-cultural practices should be considered. Governments should support investments in the expansion of renewable energy to speed up the commercialization of such technologies. The Indian government should declare a well-established fiscal assistance plan, such as the provision of credit, deduction on loans, and tariffs. The government should improve regulations making obligations under power purchase agreements (PPAs) statutorily binding to guarantee that all power DISCOMs have PPAs to cover a hundred percent of their RPO obligation. To accomplish a reliable system, it is strongly suggested that renewables must be used in a hybrid configuration of two or more resources along with conventional source and storage devices. Regulatory authorities should formulate the necessary standards and regulations for hybrid systems. Making investments economically possible with effective policies and tax incentives will result in social benefits above and beyond the economic advantages.

Availability of data and materials

Not applicable.

Abbreviations

Accelerated depreciation

Billion units

Central Electricity Authority of India

Central electricity regulatory commission

Central financial assistance

Expression of interest

Foreign direct investment

Feed-in-tariff

Ministry of new and renewable energy

Research and development

Renewable purchase obligations

State electricity regulatory

Small hydropower

Terawatt hours

Waste to energy

Chr.Von Zabeltitz (1994) Effective use of renewable energies for greenhouse heating. Renewable Energy 5:479-485.

Article   Google Scholar  

Charles Rajesh Kumar. J, Vinod Kumar.D, M.A. Majid (2019) Wind energy programme in India: emerging energy alternatives for sustainable growth. Energy & Environment 30(7):1135-1189.

National electricity plan (2016), Volume 1, Generation, Central Electricity Authority (CEA),Ministry of Power, GOI . Available at http://www.cea.nic.in/reports/committee/nep/nep_dec.pdf .Accessed 31 Jan 2018.

Canadian environmental sustainability indicators (2017), Global greenhouse gas emissions. Available at http://www.ec.gc.ca/indicateurs-indicators/54C061B5-44F7-4A93-A3EC-5F8B253A7235/GlobalGHGEmissions_EN.pdf . Accessed 27 June.2017.

Pappas D (2017) Energy and Industrial Growth in India: The Next Emissions Superpower? Energy procedia 105:3656–3662

Agreement P (2015) Available at ttps://unfccc.int/sites/default/files/english_paris_agreement.pdf.Accessed 20. Aug 2017

Aggarwal P (2017) 2 °C target, India’s climate action plan and urban transport sector. Travel Behavior and Society 6:110–116

World Energy Scenarios Composing energy futures to 2050 (2013), World energy Council. https://www.worldenergy.org/wp-content/uploads/2013/09/World-Energy-Scenarios_Composing-energy-futures-to-2050_Full-report.pdf .Accessed 01 Jan 2017.

Blondeel M, Van de Graaf T (2018) Toward a global coal mining moratorium? A comparative analysis of coal mining policies in the USA, China, India and Australia. Climatic Change 150(1-2):89–101

Kumar S (2016) CO2 emission reduction potential assessment using renewable energy in India. Energy 97:273–282

Charles Rajesh Kumar. J, Mary Arunsi. B, Jenova. R, M.A.Majid (2019) Sustainable waste management through waste to energy technologies in India—opportunities and environmental impacts .International journal of renewable energy research 9(1): 309-342.

National Institution for Transforming India(2015), Government of India, Report of the Expert group on 175 GW RE by 2022,Available at http://niti.gov.in/writereaddata/files/writereaddata/files/document_publication/report-175-GW-RE.pdf.Accessed 31 Dec 2016.

Sholapurkar RB, Mahajan YS (2015) Review of wind energy development and policy in India. Energy Technology & Policy 2:122–132

India Energy scenarios 2047 (2015), ISGF for planning commission. Available at http://www.indiaenvironmentportal.org.in/files/file/ISGF_IES%202047%20Documentation.pdf.Accessed 01 Jan 2017].

Harrison T, Kostka G (2014) Balancing priorities, aligning interests: developing mitigation capacity in China and India. Comparative Political Studies 47:450-480

Akash KumarShukl (2017) Renewable energy resources in South Asian countries: challenges, policy and recommendations.Resource-Efficient Technologies 3: 342-346.

Schmid G (2012) The development of renewable energy power in India: which policies have been effective? Energy Policy 45:317–326

Vikas Khare, SavitaNema,PrashantBareda (2013) Status of solar wind renewable energy in India, Renewable and Sustainable Energy Reviews. 27: 1-10

Singh R (2015) India's renewable energy targets: How to overcome a $200 billion funding gap. Renewable Energy Focus. 16(4):60–61

T.Blenkinsopp, S.RColes ,K.Kirwan (2013) Renewable energy for rural communities in Maharashtra, India, Energy Policy .60:192-199

Kandp TC, Garg HP (1998) Renewable energy education for technicians/mechanics. Renewable Energy . (14(1–4):393–400

Subhes C,Bhattacharyya , Shaping a sustainable energy future for India: management challenges, Energy Policy .38(8):4173-4185

Swaran Singh, BoparaiK.C.Secretary, India and renewable energy: a future challenge, Renewable Energy . 15(1–4 ): 16-21.

Rehman S, Hussain Z (2017) Renewable energy governance in India: challenges and prospects for achieving the 2022 energy goals Journal of Resources, Energy and Development . 14(1):13–22

K Kaygusuz, S. BilgenEnergy related environmental policies in Turkey Energy Sources Part B, 3 (2008), pp. 396-410.

Y Chang, J Lee, H. Yoon Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook Energy Policy, 50 (2010), pp. 154-160.

Wang W (2014) M Zhang. P. Li Exploring temporal and spatial evolution of global energy production and consumption Renew Sustain Energy Rev 30:943–949

Google Scholar  

BP Energy Outlook country and regional insights-India (2018) https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018-country-insight-india.pdf.Accessed 30 Jun 2018.

EIA Energy outlook 2019 with projections to 2050 (2019), Available at https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf . .

International energy outlook 2018 (IEO2018), EIA Energy outlook 2018(2018), Available at https://www.eia.gov/pressroom/presentations/capuano_07242018.pdf .Accessed 30.07.2018.

World meters (2019).Available at http://www.worldometers.info/world-population/india-population.Accessed 24 Jan 2019.

Inaki Arto (2016) The energy requirements of a developed world", Energy for Sustainable Development.33: 1-13.

Power sector at a glance all India (2019), Ministry of Power, Government of India. Available at https://powermin.nic.in/en/content/power-sector-glance-all-india.Accessed 31 Oct 2018

VikasKhare (2013) Status of solar wind renewable energy in India Renewable and Sustainable Energy Reviews.27:1-10.

REMAP, renewable energy prospects for India (2017), The International renewable energy agency (IRENA). Available at https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/May/IRENA_REmap_India_paper_2017.pdf.Accessed 23 Aug 2017.

Draft national electricity plan, Volume 1, Generation, Central Electricity Authority (CEA), Ministry of Power, GOI Report 2016. http://www.cea.nic.in/reports/committee/nep/nep_dec.pdf .Accessed 26.06.2017.

BSK Naidu,Indian scenario of renewable energy for sustainable development, Energy policy ,Vol 24 ,N0 6,pp 575-581,1996.

Ashwani Kumar,Kapil Kumar, Naresh Kaushik, Satyawati Sharma,Saroj Mishra, Renewable energy in India:Current status and future potentials,Journal of renewable and sustainable energy reviews,14(2010),2434-2442

Bandyopadhyay S (2017) Renewable targets for India. Clean Technologies and Environmental Policy 19(2):293–294

Ministry of New and Renewable Energy (2017),Annual report 2016-17,Available at http://mnre.gov.in/file-manager/annual-report/2016-2017/EN/pdf/1.pdf.Accessed 31 April 2017.

Nimish Kumar, Nitai Pal, The existence of barriers and proposed recommendations for the development of renewable energy in Indian perspective, Environment, Development and Sustainability ,pp1-19.2018.

Yearend review (2017), Government of India, Ministry of New and Renewable Energy. Available at https://mnre.gov.in/file-manager/akshay-urja/april-2018/Images/44-45.pdf.Accessed 27 Jan 2018.

Central Electricity authority of India (2018), Government of India. Available at http://www.cea.nic.in/reports/monthly/executivesummary/2018/exe_summary-12.pdf.Accessed 31 Jan 2018.

The growth of Electricity sector in India from 1947-2017(2017), Central Electricity Authority of India, Government of India. Available at http://www.cea.nic.in/reports/others/planning/pdm/growth_2017.pdf . Accessed 31 June 2017.

Renewable energy, Indian brand equity foundation (2018). Available at https://www.ibef.org/download/renewable-energy-dec-2018.pdf.Accessed 05 Jan 2019.

Prayas energy group (2018) .Available at http://www.prayaspune.org/peg/re-capacity.html.Accessed 31 June 2018.

Subhojit Dawn, Prashant Kumar Tiwari, Arup Kumar Goswami, Ankit Kumar, Singh Rajesh Panda (2019) Wind power: Existing status, achievements and government's initiative towards renewable power dominating India Energy Strategy Reviews.23:178-199.

Generation monthly reports, Central electricity Authority of India (2018) Available at http://www.cea.nic.in/reports/monthly/renewable/2018/overview-11.pdf . .

Ian Partridge (2013) Renewable electricity generation in India—a learning rate analysis Energy Policy.60:906:915.

J. Jeslin Drusila Nesamalar, P. Venkatesh, S. Charles Raja (2017) The drive of renewable energy in Tamilnadu: Status, barriers and future prospect Renewable and Sustainable Energy Reviews.73:115-124.

A Report on Energy Efficiency and Energy Mix in the Indian Energy System (2030) Using India Energy Security Scenarios 2047 (2017), Available at http://niti.gov.in/writereaddata/files/document_publication/Energy_Efficiency.pdf.Accessed 06 April 2017.

Initiatives and achievements, MNRE (2018).Available at https://mnre.gov.in/sites/default/files/uploads/MNRE-4-Year-Achievement-Booklet.pdf . .

Acheievements of ministry of new and renewable energy during 2018. (2019).Available at https://pibindia.wordpress.com/2018/12/11/achievements-of-ministry-of-new-renewable-energy-during-2018/.Accessed 09 Jan 2019.

Standing committee on energy (2017-18), sixteenth lok sabha, MNRE, demands for grands (2018-19), 39th (2018). Available at http://164.100.47.193/lsscommittee/Energy/16_Energy_39.pdf . .

Mukesh KumarMishra, NilayKhare,Alka BaniAgrawa (2015) Small hydro power in India: Current status and future perspectives Renewable and Sustainable Energy Reviews .51:101-115.

Tara Chandra Kandpal, Bharati Joshi , Chandra ShekharSinha (1991) Economics of family sized biogas plants in India Energy Conversion and Management .32:101-113.

Sravanthi Choragudi (2013) Off-grid solar lighting systems: a way align India's sustainable and inclusive development goals Renewable and Sustainable Energy Reviews .28:890-899.

Abhigyan Singh,Alex T.Stratin,N.A.Romero Herrera,Debotosh Mahato,David V.Keyson,Hylke W.van Dijk (2018) Exploring peer-to-peer returns in off-grid renewable energy systems in rural India: an anthropological perspective on local energy sharing and trading Energy Research & Social Science .46:194-213.

Draft Technology Development and Innovation Policy (TDIP) for New &Renewable Energy, MNRE (2017). Available at https://mnre.gov.in/file-manager/UserFiles/Draft-TDIP_RE.pdf .Accessed 31 Jan 2018.

Demands for grants (2018-19), MNRE, Standing committee on energy, 16 th lok sabha, 39th Report (2018). Available at http://164.100.47.193/lsscommittee/Energy/16_Energy_39.pdf.Accessed 31 Oct 2018.

Mohit Goyal (2010) Repowering—next big thing in India Renewable and Sustainable Energy Reviews.1 4(5):1400-1409.

B.N.Prashanth,R.Pramod,G.B. VeereshKumar (2018) Design and development of hybrid wind and solar energy system for power generation. 5(5):11415-11422.

Swaminathan mani,Tarun Dhingra (2013) Policies to accelerate the growth of offshore wind energy sector in India Renewable and Sustainable Energy Reviews . 24 : 473-482

Draft amendments to tariff policy, MNRE (2018). Available at https://powermin.nic.in/sites/default/files/webform/notices/Proposed_amendments_in_Tariff_Policy_0.pdf . .

T.C.Kandpal, H.P.Garg (1998) Renewable energy education for technicians/mechanics Renewable Energy . Volume 14(1–4 ): 393-400.

T.Blenkinsopp, S.RColes K.Kirwan (2013) Renewable energy for rural communities in Maharashtra, India Energy policy.60:192-199.

Renewable Energy Country Attractiveness Index (RECAI) (2018), Available at https://www.ey.com/Publication/vwLUAssets/ey-recai-issue-52-index-scores/$File/ey-recai-issue-52-index-scores.pdf . .

Renewables 2018, global status report, Renewable energy policy network for the 21 st century (REN21) (2018). Available at http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf . .

Clean Energy Investment trends, 2Q 2018, BloombergNEF (2018) .Available at https://data.bloomberglp.com/bnef/sites/14/2018/07/BNEF-Clean-Energy-Investment-Trends-1H-2018.pdf .Accessed 12 Dec 2018.

Rolf Wüstenhagen, Emanuela Menichetti (2012) Strategic choices for renewable energy investment: conceptual framework and opportunities for further research Energy Policy.40:1-10.

Longayanxia dam solar park, earth observatory (NASA) (2017). Available at https://earthobservatory.nasa.gov/images/89668/longyangxia-dam-solar-park . .

Dawn, Subhojit Dawn, Prashant Kumar Tiwari,Arup Kumar Goswami, Manash Kumar Mishra. (2016).Recent developments of solar energy in India: perspectives, strategies and future goals. Renewable and Sustainable Energy Reviews.62:215-235.

Press information Bureau, MNRE FDI in renewable energy sector (2018). Available at http://pib.nic.in/newsite/PrintRelease.aspx?relid=186849.Accessed 01 Feb 2019.

Renewable energy, India brand equity foundation, Report August 2018. https://www.ibef.org/download/Renewable-Energy-Report-August-2018.pdf . Accessed 31.12.2018.

Global trends in renewable energy investment 2018, Bloomberg new energy (2018).Available at http://www.iberglobal.com/files/2018/renewable_trends.pdf . .

Deep dive –Allianz climate and energy monitor (2017).Available at https://newclimate.org/wp-content/uploads/2017/04/allianz-climate-and-energy-monitor-deep-dive-2017.pdf . .

Allianz climate and energy monitor (2018), Available at https://www.allianz.com/content/dam/onemarketing/azcom/Allianz_com/sustainability/documents/Allianz_Climate_and_Energy_Monitor_2018.pdf . .

Renewable energy and Jobs –Annual review 2018 (2018). Available at https://irena.org/-/media/Files/IRENA/Agency/Publication/2018/May/IRENA_RE_Jobs_Annual_Review_2018.pdf .Accessed Jan 2019.

A. Bergmann, N. Hanley, R. Wright Valuing the attributes of renewable energy investments .Energy Policy, 34 (9) (2006), pp. 1004-1014

József Benedek, Tihamér-Tibor Sebestyén, BlankaBartók (2018) Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development Renewable and Sustainable Energy Reviews . 90 :516-535.

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Research Consultancy Institute (RCI) and the department of Electrical and Computer Engineering of Effat University, Saudi Arabia.

Author information

Authors and affiliations.

Department of Electrical and Computer Engineering, College of Engineering, Effat University, Box 34689, Jeddah, PO, 21478, Saudi Arabia

Charles Rajesh Kumar. J & M. A. Majid

You can also search for this author in PubMed   Google Scholar

Contributions

CRK conceptualized the research, undertook fieldwork, analyzed the data, and wrote the manuscript. MAM conceptualized the research, wrote the manuscript, and supervised the research. Both authors have read and approved the final manuscript.

Corresponding author

Correspondence to Charles Rajesh Kumar. J .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declared that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Kumar. J, C.R., Majid, M.A. Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energ Sustain Soc 10 , 2 (2020). https://doi.org/10.1186/s13705-019-0232-1

Download citation

Received : 15 September 2018

Accepted : 27 November 2019

Published : 07 January 2020

DOI : https://doi.org/10.1186/s13705-019-0232-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sustainable
  • Renewable energy
  • Achievements
  • Initiatives
  • Recommendations
  • Policymakers

Energy, Sustainability and Society

ISSN: 2192-0567

research paper on renewable energy

  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, long term energy storage in highly renewable systems.

research paper on renewable energy

  • Evolved Energy Research, San Francisco, CA, United States

Increasing penetrations of intermittent renewable energy generation introduce novel balancing and reliability challenges for electricity systems. Mismatches between renewable energy production and electricity demand cause periods of overgeneration and periods of undergeneration. These latter energy deficit periods will result in reliability challenges unless additional balancing solutions are employed. Energy deficits can range from a few hours to days to seasons to years. A least cost energy system will best meet these balancing challenges with diverse investments in energy infrastructure, depending on technology costs, natural resource availability, interconnectedness, and evolving load patterns, including flexible loads. Short-term and long-term storage (LTS) applications may both be part of this portfolio. This study looks at storage in isolation to show the types of tradeoffs present between one storage resource and another in providing balancing services. The best storage technologies to balance the system depend on the duration of deficit events it is designed to mitigate. This paper compares the economics of different storage technology types in providing the range of short-term to long-term storage applications. The results compare quantities of conceptual storage technologies at different price points and quantities of clean gas generation to serve balancing needs as part of a least cost portfolio. We examine the tradeoffs between gas generation with low capital costs but high variable costs when burning clean fuels, and the alternative conceptual storage technologies, showing why clean gas capacity may play a role in least cost resource portfolios in decarbonized electricity systems.

Introduction

Long-term energy storage is an essential component of our current and future energy systems. Today, long-term storage (LTS) is easily accessed: energy sits in the form of hydrocarbons and we “discharge” energy from hydrocarbon reserves but never recharge them – fossil resource consumption that is driving our changing climate. Sustainable energy consumption demands new ways of producing, storing, and consuming energy, underpinned by renewable energy 1 . Novel balancing and reliability challenges of high renewable energy penetrations define the need for LTS in future energy systems.

Renewable energy is clean, plentiful, increasingly affordable, and the cornerstone of cost-effective decarbonized economies of the future. An inconvenient feature of renewables, however, is lack of dispatchability. Assuming a plurality of annual energy is met by wind and solar in the future, system operators will frequently encounter times when renewable generation exceeds electricity load. Setting aside large dispatchable loads 2 , this surplus electricity can be stored for use later, or curtailed. At other times when load exceeds renewable generation, stored energy can be discharged. The mismatch that renewables create between customer electric loads and generation requires operational solutions that fall into three categories:

1. Discharging stored energy – increasing energy supply to meet load. Stored energy can take many forms including electrochemical, hydro, kinetic energy, gas, and liquid fuels.

2. Curtailing or storing energy production – decreasing energy supply to meet load. Renewable energy production can exceed load when solar, wind and hydro are plentiful.

3. Flexible loads – increasing or decreasing loads to match the output of renewable resources.

This familiar challenge is a feature of systems with significant renewable penetrations today. Together with fossil generation, electrochemical storage and hydro have been deployed to solve diurnal balancing challenges at current penetrations, with lithium ion batteries taking the lead among electrochemical options for diurnal use cases, offering energy, capacity, and ancillary services benefits.

However, renewable output also varies over longer time scales. Weather events that last for several days or weeks limit renewable production. Because of trends in weather and insolation differences, renewable output varies seasonally, and even annually, particularly for hydro and wind. Residual “net load 3 ” is currently dealt with through dispatch, or “discharge,” of fossil energy. The availability of fossil energy is set to decline as we enforce stricter carbon emissions limits. In this paper we examine the tradeoffs between different energy storage options available to balance a highly renewable and carbon constrained system over the full range of timescales. The concept of the tradeoff we examine is illustrated through a simple thought experiment with low variable cost storage vs. low capital cost storage in section “Conceptualizing the Relative Strengths of Different Storage Options.” We then examine the tradeoffs using a least cost model of the US electricity grid, showing storage investments made as part of a least cost resource portfolio and how storage cost and efficiency impact the solution.

Storage Duration, Capacity, and Frequency of Use

Balancing challenges on different timescales require different types of response from storage, influencing what types of storage technology will best serve the system. Two important elements of the required response that determine the best technology option include duration and frequency of discharge. With diurnal balancing, the duration of discharge necessary is short because the system energy deficit is, by definition, less than 12 h long. In contrast, an extended weather event that shuts down renewable production for several days may only happen a few times a year, but the cumulative energy deficit could be considerable. Over the course of the year, deficit events across a range of durations will occur, driving the choice of storage solutions.

A third element of responding to balancing challenges is capacity, or the maximum size of discharge. Capacity of a fossil generator with effectively unlimited access to stored energy in the form of fossil fuels can be considered constant, regardless of electricity system conditions. Therefore, planning a reliable system with predominantly fossil generation and no carbon constraints is most concerned with peak load, i.e., determining whether there is enough total capacity to meet even the largest loads.

Maintaining reliability in a highly renewable and carbon constrained system becomes more complicated. Stored energy is finite, based on the total energy storage available and the state of charge of that storage, i.e., how much is left in the tank. A battery with 4 h of discharge duration at maximum capacity cannot contribute its full capacity reliably during an energy deficit period of, say, 8 h. The capacity contribution of storage is limited by the energy it has available to release. A highly renewable and carbon constrained system is therefore energy constrained as well as capacity constrained in meeting system reliability needs. Building a reliable system requires options that can respond in both capacity and energy constrained conditions such that a system’s reliability design criteria are met. In highly renewable and carbon constrained systems, the conditions that drive new infrastructure build may not be peak end-use load as is traditionally the case, but long energy deficit periods, where large amounts of stored energy must be released to maintain reliability.

Storage Technology Characteristics

The most cost-effective portfolio of storage will contain different types of storage technology, selected based on their relative strengths and weaknesses in responding to energy deficit events with different capacity, duration, and frequency. Characteristics of storage technologies that determine their value to the system at a basic level include capital cost per MW, capital cost per MWh, variable operating cost, roundtrip efficiency, lifetime, and carbon emissions.

To illustrate the tradeoffs between different storage options, we use two technologies with fundamentally different characteristics. The first is a stylized high capital cost, but low variable cost storage technology. The second technology is gas generation. Gas is a medium of stored energy, and in a 100% clean electricity system gas generation can take the form of hydrogen, biogas, or synthetic gas combustion. Charging these forms of gas storage would involve electrolysis, biomass processing, or electrolysis and methanation of hydrogen using captured carbon, respectively, or some other form of synthetic gas production process. One key advantage to this pathway is that existing gas capacity may be reused in the future with clean fuels, avoiding some cost.

In the earlier juxtaposition of diurnal balancing vs. weather related longer-duration storage need, the tradeoffs that occur between different storage technologies based on the characteristics above are apparent. Diurnal balancing happens frequently so the storage device is cycled frequently, yet the duration of discharge may only be a few hours. The installed storage infrastructure is therefore highly utilized, favoring technologies that have low operating costs and high efficiencies. Longer duration energy deficits due to weather events happen less frequently, but the duration is much longer. The installed storage infrastructure is infrequently utilized, favoring technologies that have lower capital costs.

Conceptualizing the Relative Strengths of Different Storage Options

To introduce the types of tradeoffs between storage technologies with different characteristics we use a simple thought experiment. Though stylized, it demonstrates the reasons why low variable cost and low capital cost technologies are suited to different applications by looking at the two extreme ends of the energy deficit duration range. Assume an electricity system with the following characteristics:

1. Zero annual carbon emissions.

2. An identical daily load shape that peaks at 20 GW and has a load factor of 50% (240 GWh daily energy).

3. 362 days with an identical renewable output shape where supply and demand can be balanced by shifting 40 GWh using a storage device with 10 GW capacity (4 h duration).

4. On the remaining 3 days, the one storm of the year arrives and shuts down all renewable production. In these 72 h, the system needs capacity to meet peak load (20 GW) and 720 GWh to meet the need for energy across the 3 days. Due to the risk of even longer storm events, system planners want at least 10% more energy available than used during this period to ensure reliability.

5. The battery storage technology is available to install for $300/kW and $70/kWh, with 100% efficiency 4 and a 15-year lifetime.

6. Gas can be installed for $900/kW at a heat rate of 6,406 BTU/kWh and a 40-year lifetime 5 .

7. Carbon neutral biogas is available at $20/MMBTU to comply with the zero emissions policy, which assumes:

a. A biogas conversion plant costing $2000/kW-output.

b. Lifetime of 25 years.

c. Capital recovery factor of 0.11.

d. Average utilization of 85%.

e. Fixed O&M of 3% of capital cost per year.

f. Delivered biomass cost of $100/dry-ton ($5.56/GJ).

g. Conversion efficiency of 1.52 GJ biomass per GJ produced biogas.

The above example that assumes identical conditions on 362 days followed by 3-days of fallow renewable production is highly stylized, but it illustrates the varying strengths of low variable cost and low capital cost storage options. Prices are illustrative and battery costs are lower than today to reflect a period sometime in the future with a net zero emissions policy.

We consider two hypothetical situations for gas plants. In the first, the existing gas plants can be repurposed to burn clean gas to satisfy the zero emissions policy. In the second, the existing gas fleet must be retired due to age and further use of gas requires construction of new plants.

Figure 1 shows the relative cost of offering diurnal balancing and dealing with the annual storm event. In the repurposed gas case, the cost is just for the fuel burned. When gas is newly built, annualized capacity investments are added to the fuel cost. Battery costs are also annualized 6 .

www.frontiersin.org

Figure 1. Cost of balancing the electricity grid.

The battery is the clear winner in offering diurnal balancing. The quantity of expensive clean gas needed to offer the same service exceeds the battery cost. Building gas generation from scratch, the capital cost alone exceeds the battery cost. In the annual storm case, the opposite is true. The quantity of fuel burned to balance the system is lower than required for a year of diurnal balancing. However, the quantity of energy required in storage to respond to the storm event is higher. A significant investment in the battery is required to store that much energy, whereas storage costs for clean gas are assumed to be low, utilizing existing gas network infrastructure.

In reality, the dynamics of the tradeoff between different storage technologies are far more complicated. Real-world load and renewable data produce a distribution of storage events with different durations and frequencies. That distribution and the competition between resources changes year by year based on load growth and changes in load pattern, renewable build and composition of the renewable fleet, changes in available technology and technology pricing, changes in fuel prices, emissions policy, and many other factors. These complications are picked up in the next section when we model the competition between storage technologies on the United States grid.

The relatively low quantity of gas required for the storm event means that the cost of clean gas is of secondary importance in this example. Clean gas could be significantly higher in cost and the battery would still be more expensive. While simple, this thought experiment illustrates the fundamental advantage for low variable cost technologies in high utilization storage applications, and for low capital cost technologies in low utilization storage applications. The price of $70/kWh is prohibitively high for the conceptual storage device to compete in LTS applications. In the above example, the capital cost of the battery is 3× cheaper than for the gas power plant (300/kW vs. 900/kW), however, the cost of providing 720 GWh in sustained peaking capability is 18× higher for the battery on a $/kWh basis than for the gas plant. The question becomes how would a storage technology with reduced $/kWh costs compete against gas in offering LTS services?

In the next section we investigate this question. The conceptual storage technology is redesigned with low $/kWh options and modeled in the context of a real system using a capacity expansion planning model to capture the more complex interactions between resources, loads, and across time. We show at different price points and efficiencies for the storage technology how much would be adopted as part of a least cost resource portfolio.

Battery Adoption in Least Cost Portfolio Planning

To illustrate the tradeoffs while considering the complex dynamics of planning a real electricity system over time, we model the United States electricity grid from 2020 through 2050 on the trajectory to net zero emissions shown in Figure 2 Left. We use the Regional Investment and Operations (RIO) and EnergyPATHWAYS (EP) models developed by Evolved Energy Research to investigate least cost electricity infrastructure investments and operations over time as we change the cost of storage 7 .

www.frontiersin.org

Figure 2. Left: United States emissions constraint. Right: Electricity load growth.

EnergyPATHWAYS 8 is a bottom-up energy sector model with stock-level accounting of all energy infrastructure. EP was specifically built to explore a range of potential energy system transformations. On the demand side, EP represents the stocks of all energy consuming technologies across all sectors of the economy. This includes the type of technology and vintage, for example vehicles or appliances in homes or businesses, their efficiencies, and the service demand for the service they provide. Assumptions on sales of new equipment that replace these technologies changes the overall stock over time, changing fleet characteristics such as efficiencies and fuel sources. For example, an increasing proportion of internal combustion vehicles may be replaced upon retirement with electric vehicles over time, increasing overall energy efficiency and switching final energy demand from gasoline to electricity. By tracking the stocks of technologies in the economy, EP acts as a detailed accounting system to determine cost and energy implications of detailed user scenario decisions.

For this study, we have assumed aggressive demand side measures to reduce energy consumption and electrify technology stocks. The net result of these assumptions is that final energy demand for electricity grows from 3,775 TWh in 2020 to 7,000 TWh in 2050 ( Figure 2 Right). Fuel based final demand, including feedstocks, falls from 52 quads to 25 quads. To reach this level of transformation, 96% of on road transportation service demand is met with electricity or hydrogen, 89% of building energy consumption is electrified, and aggressive efficiency measures are applied across industry and aviation. These assumptions are not central to this paper’s conclusions on long duration storage, but do create an important backdrop of rapid electricity growth that is consistent with net-zero emissions scenarios for the U.S. by 2050.

The Regional Investment and Operations model takes the energy demands produced in EP as inputs. RIO determines what the least cost way of serving the economy’s energy needs are, including decisions on infrastructure investment in the electricity grid, conventional and decarbonized fuels, and the infrastructure required to produce and transport those fuels. The model blends capacity expansion and sequential hourly system operations to effectively capture the value each resource can offer the system as part of an optimally dispatched portfolio. When investigating storage at different price points and efficiencies in the next section, the resulting storage build is part of a least cost resource portfolio to reach the decarbonization goals. As storage prices change, the build of other resources in the portfolio, such as the location and quantity of renewables over time, will also change as economic dependencies between resources shift with changing storage prices.

In contrast to the assumed equilibrium of conditions experienced every year by the storage resources in the thought experiment above, the model captures dynamics over the lifetime of each resource in a changing system. Emissions policy, fuel and technology pricing, and electricity demands are example changes that a resource will experience over its lifetime. Resources are also part of a complex system geographically, with diversity of load and resource potential between regions interconnected by transmission. The model identifies least cost investments in the context of this complex system and changing conditions.

A feature of the model we draw upon in the investigation below is the ability to optimally invest in LTS resources. The model tracks energy storage reservoirs across each modeled year, determining the least cost portfolio investment in storage capacity and energy. A part of this feature is evaluating the contribution of storage toward maintaining reliable system operations. As described above, reliability in highly renewable systems becomes dependent on not only capacity, but energy as well. Storage needs enough state of charge in energy deficit events to contribute to reliability as well as provide energy.

While the model can determine optimal investment in all resource types and their associated infrastructure, including energy storage such as hydro, hydrogen, synthetic fuels production, and novel battery chemistries, in this example we have limited storage investment to gas capacity and a set of conceptual storage technologies of varying price and efficiency. Gas has the option of burning fossil gas or a carbon neutral gas at $20/MMBtu 9 , representing the low capital cost, high variable cost storage option.

In this example system, the goal for the United States is to achieve zero carbon emissions from electricity by the year 2050. The trajectory to reach that goal has steeper declines in the early years, acknowledging: (1) coal to gas switching opportunities for large emissions savings; and (2) staying on a straight-line emissions reductions path between now and 2050 requires frontloading emissions reductions in electricity while sales shares of efficient and electric technologies grow elsewhere ( Haley et al., 2019 ).

The model is populated with the latest publicly available data on resource costs, potentials, operating characteristics such as renewable production shapes by location, transmission capacity and cost of expansion, and fuel costs. The sources drawn upon for these inputs are listed in Table 1 . Load growth was determined through detailed modeling of demand side technology stocks, their lifetimes, and sales of new technology on replacement using the EP model. Though not central to the analysis conducted in this paper, the modeled load growth used gives a realistic projection for a cost-effective pathway to zero emissions economy wide by 2050.

www.frontiersin.org

Table 1. Resource and technology data sources.

Problem Statement

To clearly show the tradeoffs between storage resources, the model is limited to investing in three resource types as loads grow, load and net load patterns change, and existing resources retire. These include renewable generation such as wind and solar, gas generation, either combined cycle or combustion turbine, fueled by fossil gas or clean gas, and a conceptual LTS technology of varying characteristics. We assume that LTS technologies can ramp to full charge or discharge within an hour. Some future LTS technology may not be able to meet this requirement, in which case they may be supplemented with faster responding resources if necessary for system operations.

The problem is narrowly defined to investigate the competitiveness of LTS against carbon neutral gas generation. To focus on this tradeoff, we have omitted the option to invest in large, flexible industrial loads such as electrolysis from the analysis. We often find these are cost effective for reducing both short-term and long-term balancing challenges in decarbonized systems and can reduce the need for LTS and gas generation. In this respect, the analysis in this paper presents an upper bound on the need for LTS and gas that may have otherwise been reduced through using flexible loads for balancing the grid.

We investigate how much of the gas resource vs. LTS is part of the least cost resource portfolio in meeting the zero emissions target by 2050 as we drop the price of the generic storage resource. By doing so we characterize the competition between high capital cost, low variable cost, and low capital cost, high variable cost storage resources in providing services for reliable electricity system operations.

The costs of the gas generation and generic storage options are shown in Table 2 . Each combination of $/kW and $/kWh capital costs, and efficiency, shown for LTS constitutes a different cost scenario. In total we ran 24 different storage cost scenarios. Fuel cost assumptions are shown in Table 3 . In reality, multiple different storage technologies with varying costs will be available and may be suited to providing different types of service. If LTS offers LTS services as part of a least cost portfolio, it will also offer short-term storage services. However, if LTS is not part of the least cost portfolio, a shorter duration storage technology, like lithium ion deployments on the current electricity grid, may cost effectively offer diurnal balancing services. At lower efficiencies for LTS, higher efficiency short duration storage options may also be part of a least cost resource portfolio. For simplicity of presenting the LTS tradeoffs in this analysis however, we model only one long term storage pricing option at a time.

www.frontiersin.org

Table 2. Cost assumptions for gas and LTS.

www.frontiersin.org

Table 3. Fuel cost assumptions.

Results and Discussion

Investment outcomes depend on changing system conditions over resource lifetimes; therefore, all years are important in determining capacity present in any single year. However, it is also useful to look at 2050 to compare the relative success of gas vs. LTS at the point of zero carbon emissions.

Figure 3 shows the total capacity and duration of LTS built at varying LTS capital costs and efficiencies. The left-hand axis and bar chart shows the total number of GWs of LTS present in 2050, while the right-hand axis and line chart shows LTS duration. Figure 4 shows the corresponding CCGT and CT capacity build and Figure 5 shows the utilization of the gas fleet.

www.frontiersin.org

Figure 3. LTS capacity and duration in 2050 at different LTS costs ( top labels: efficiency and $/kW cost, bottom labels: $/kWh cost).

www.frontiersin.org

Figure 4. Gas capacity in 2050 at different LTS costs ( top labels: efficiency and $/kW cost, bottom labels: $/kWh cost).

www.frontiersin.org

Figure 5. Clean gas utilization in 2050 at different LTS costs ( top labels: efficiency and $/kW cost, bottom labels: $/kWh cost).

Long term storage, whether gas or the conceptual LTS resource, offers energy and capacity to the system to maintain reliability during long-duration energy deficit periods. As discussed in the previous section, longer, infrequent energy deficit events favor low capital cost resources because the capacity is seldom used, incurring fewer variable costs. Variable costs become more important in shorter duration events that occur with greater frequency. These results illustrate this concept.

When the capital cost is $20/kWh, the model selects LTS with 10–12 h duration, demarking the duration at which a storage resource can go through a single charge and discharge cycle in a day (diurnal balancing) from the storage duration where cycling behavior extends over multiple days.

As LTS $/kWh costs are reduced, durations steadily increase, displacing gas capacity and gas utilization. Below $5/kWh storage durations selected by the model increase significantly from 45 h at $5/kWh to 345 h at $1/kWh ($500/kW and 50% efficiency). However, even with significantly increased durations, LTS does not have a proportional impact on gas capacity. Each new increment of avoided gas capacity requires an LTS technology with a longer discharge duration than did the last increment because of a long tail of reliability events with progressively longer durations that form the proximal tradeoff point between LTS and thermal capacity. Gas capacity contributes close to nameplate, regardless of event duration with a single $/kW capital cost investment (existing gas infrastructure means gas plants are effectively unconstrained by sequential run hours). LTS, on the other hand, requires the same capacity investment, but also an energy (kWh) investment necessary to respond to the worst-case net load events, requiring a progressively decreasing $/kWh cost to compete against gas on the margin.

The story for gas power plant run hours is different than that of gas capacity. As can be seen in Figure 5 , gas generation at $1/kWh for LTS almost never generates, so incurs very little variable cost, but ensures enough dependable capacity to maintain system reliability. Rather than fully displacing gas capacity build, LTS at less than $5/kWh is largely displacing consumption of fuel. At such low costs, it is more economic to build additional LTS energy storage, store renewable energy and discharge it than to burn clean gas.

Efficiency of 80 vs. 50% has more impact on LTS build proportionally at costs of $20/kWh than at costs of $1/kWh. This is because of the LTS duration and the resulting operating regime – energy deficit events of short duration are more frequent than longer duration events. Since the 12th hour of storage is utilized far more frequently than the 300th hour of storage, lost energy is a larger component of its total costs and efficiency has a greater impact on cost effectiveness at low durations. Even at longer durations a portion of the LTS capacity is used for more frequent, shorter duration events, such as diurnal balancing. Efficiency differences are impactful on this portion of the storage device and lead to slightly lower total investment in the 50% efficiency case than the 80% case at $1/kWh.

We have shown that short-term balancing challenges are best served by low variable cost resources (high-efficiency short-duration storage) whereas long-term balancing challenges with infrequent cycles favor low capital cost resources (thermal gas). The Advanced Research Projects Agency-Energy (ARPA-E) has targeted LTS devices that can provide between 10 and 100 h of storage with a levelized cost of 5 cents/kWh or less ( Tuttman and Litzelman, 2020 ). A known issue demonstrated again in this paper, is that as the duration of the storage device increases, its utilization declines, which then makes low levelized cost of storage targets increasingly difficult to achieve. Our analysis shows that competitiveness for a storage device with between 10 and 100 h of storage occurs at a marginal capital cost of between $20/kWh and $2.5/kWh (the longer duration storage requires a lower energy cost to stay competitive due to the declining hours of utilization as stated above). These $/kWh capital cost targets are aggressive. In flow batteries, for example, just the tank to hold electrolytes may take up a significant portion of this cost. In addition, for several reasons 10 , our analysis may represent a best-case scenario for LTS deployment. This demonstrates the low target prices LTS must achieve to be cost competitive at durations greater than ∼24 h.

Our analysis has shown that efficiency is of secondary importance to LTS when competing with thermal gas and its importance declines further as renewables continue to become cheaper. We’ve also demonstrated that lower cost storage is more effective at reducing the run-hours of thermal powerplants rather than offsetting the need for thermal capacity for reliability. This raises questions about the ongoing need for thermal capacity and whether advocacy for rapid retirement reflects the lowest cost pathway to a low carbon electricity system, or simply an attribution of carbon emissions to plant capacity rather than energy (i.e., recognizing that a power plant that runs only a handful of hours doesn’t produce many emissions but can still play an important reliability role).

Finally, the dynamics of sustained peaking capability in high renewable systems and the interaction between LTS and reliability is still at a nascent stage in planning, operations, and electricity markets. On the planning side, models that can evaluate loss of load probability with energy-limited resources must be developed before resource planners will feel confident in their dependability (models that study reliability in high hydro systems are the closest analog today, but LTS is more constrained than hydro in system operations). System operators need to develop the forecasting capability and operational heuristics that allow an LTS resource to provide value on a diurnal basis without compromising its longer-term role in reliability. And markets will need to develop capacity products of different durations or ensure sustained peaking capability is adequately incentivized under an energy-market-only structure. The question of planning, operations, and markets also extends to the use of carbon neutral gas. Our analysis assumes that gas storage and delivery infrastructure is available, given the extensive gas transmission and distribution network that exists today. However, markets and operations of this network will look different in a decarbonized future with new, sustainable gas sources and potentially significant levels of electrification in formerly gas consuming end uses.

Each of these questions will require further research, which can in turn help inform technology targets for LTS. This paper has taken a small step toward this end by contextualizing the role for LTS in future power systems with different cost sensitivities and has indicated that LTS must meet a difficult set of design criteria to be relevant in zero-carbon power systems.

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

Author Contributions

JH wrote the manuscript and worked with RJ on the setup of the analysis conducted with the RIO model. RJ conducted the RIO modeling work, developed results graphics, and provided edits to the manuscript. Both authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors are principals at the company Evolved Energy Research. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

  • ^ In the context of this paper, “renewables” is primarily a reference to the variable generation resources of wind and solar due to their low cost and relative abundance.
  • ^ Examples include electrolysis, electric steam production, or desalinization. These loads are ignored in this paper for an easier conceptual comparison between electricity balancing strategies.
  • ^ The difference between gross load and renewable production.
  • ^ Perfect efficiency assumed to simplify the example.
  • ^ A 2020 vintage gas combined cycle plant sourced from NREL Annual Technology Baseline 2019, https://atb.nrel.gov/electricity/2019/ .
  • ^ We assume a cost of capital of 6%.
  • ^ Further details of the Regional Investment and Operations model are included in https://docs.wixstatic.com/ugd/294abc_95dfdf602afe4e11a184ee65ba565e60.pdf .
  • ^ EnergyPATHWAYS is an open-source modeling framework maintained by Evolved Energy Research. Databases used in analyses conducted with the EnergyPATHWAYS source code can public or maintained as proprietary. More detail can be found here: https://github.com/energyPATHWAYS/energyPATHWAYS .
  • ^ See assumptions in section “Conceptualizing the Relative Strengths of Different Storage Options” for derivation of this fuel price.
  • ^ The reasons to believe this analysis may be a best-case scenario for storage economics include: (1) The omission of large flexible industrial loads from fuels and electricity coupling (e.g., hydrogen electrolysis). Flexible load hurts the competitiveness of LTS because it creates competing economic uses for excess renewable generation needed for LTS charging and allows economic overbuild of renewables that helps in stretches of fallow renewable output where LTS or gas would otherwise be needed. (2) The analysis did not address multiple weather years and whether appropriate conservatism in operations and planning for the tails of the distribution on persistent renewable deficits mean that fewer gas plants are avoidable than shown in the analysis. (3) The zero emissions target in electricity did not include sequestration or compliance flexibility with the rest of the economy, both of which have the ability to reduce the marginal cost of fuel below the $20/MMBtu assumed. These three factors were not included in the analysis because it makes the basic illustration between low capital cost vs. low variable cost resources more difficult.

del Alamo, G., Sandquist, J., Vreugdenhil, B. J., Aranda, A. G., and Carbo, M. (2015). Implementation of Bio-CCS in Biofuels Production.” IEA Bioenergy Task 33 Special Project ISBN 978-1-910154-44-1. IEA Bioenergy. Available online at: https://www.ieabioenergy.com/wp-content/uploads/2018/08/Two-page-summary-Implementation-of-bio-CCS-in-biofuels-production-IEA-Bioenergy-Task-33-special-report.pdf (accessed August 23, 2020).

Google Scholar

Eurek, K., Cole, W., Bielen, D., Blair, N., Cohen, S., Frew, B., et al. (2017). “Regional Energy Deployment System (ReEDS) Model Documentation: Version 2016.” NREL/TP-6A20-67067. Golden, CO: National Renewable Energy Laboratory. doi: 10.2172/1332909

PubMed Abstract | CrossRef Full Text | Google Scholar

Haley, B., Jones, R., Kwok, G., Hargreaves, J., Farbes, J., and Williams, J. (2019). 350 PPM Pathways for the United States”. Evolved Energy Research. Available online at: https://www.ourchildrenstrust.org/350-ppm-pathways (accessed August 23, 2020).

National Renewable Energy Laboratory (2019). Annual Technology Baseline. Golden, CO: National Renewable Energy Laboratory.

Tuttman and Litzelman (2020). Why Long Duration Energy Storage Matters. Advanced Research Projects Agency – Energy (ARPA-E). Available online at: https://arpa-e.energy.gov/?q=news-item/why-long-duration-energy-storage- matters (accessed August 23, 2020).

U.S. Energy Information Administration (2020). Annual Energy Outlook 2020. Washington, DC:U.S. Energy Information Administration.

Keywords : energy policy, energy storage, battery storage, electricity planning, capacity expansion, least cost planning, renewable energy, deep decarbonization pathways

Citation: Hargreaves JJ and Jones RA (2020) Long Term Energy Storage in Highly Renewable Systems. Front. Energy Res. 8:219. doi: 10.3389/fenrg.2020.00219

Received: 18 April 2020; Accepted: 10 August 2020; Published: 03 September 2020.

Reviewed by:

Copyright © 2020 Hargreaves and Jones. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jeremy J. Hargreaves, [email protected]

This article is part of the Research Topic

Long-Duration and Long-Term Energy Storage for Renewable Integration

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.39(Suppl 1); 2010 Jul

Logo of ambio

Renewable Energy

Georgia destouni.

1 Energy Committee of the Royal Swedish Academy of Sciences, Stockholm, Sweden

2 Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden

Harry Frank

3 Mälardalen University, Västerås, Sweden

The Energy Committee of the Royal Swedish Academy of Sciences has in a series of projects gathered information and knowledge on renewable energy from various sources, both within and outside the academic world. In this article, we synthesize and summarize some of the main points on renewable energy from the various Energy Committee projects and the Committee’s Energy 2050 symposium, regarding energy from water and wind, bioenergy, and solar energy. We further summarize the Energy Committee’s scenario estimates of future renewable energy contributions to the global energy system, and other presentations given at the Energy 2050 symposium. In general, international coordination and investment in energy research and development is crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

Introduction

Reducing the fossil fuel contribution to the global energy system, and in particular doing so with renewable energy sources, is a great challenge for the world community. Many of the projects carried out by the Royal Swedish Academy of Sciences’ Energy Committee since 2005 have therefore specifically addressed renewable energy. These projects considered energy from moving water (Energy Committee at the Royal Swedish Academy of Sciences 2008 ), wind power (Energy Committee at the Royal Swedish Academy of Sciences 2010 ), bioenergy (Energy Committee at the Royal Swedish Academy of Sciences 2008 ; Fredga et al. 2008 ), and solar energy (Energy Committee at the Royal Swedish Academy of Sciences 2008 ; Pihl 2009 ).

The Energy Committee projects have gathered knowledge from various sources, both within and outside the academic world, and from a number of seminars and hearings, in addition to the Committee’s Energy 2050 symposium. In this article, we summarize the Energy Committee’s scenario estimates of future renewable energy contributions, which were reported for the first time in their entirety at the symposium, together with the other presentations given at the renewable energy session of the symposium. In a concluding discussion, we synthesize some of the main points on renewable energy from the symposium and relevant Energy Committee projects.

A Quantitative Renewable Energy Scenario for 2050

Figures  1 and ​ and2 2 illustrate the Energy Committee’s global energy projection for the year 2050, compared to conditions in 2007. Figure  1 shows the shares of different renewable sources in the global primary energy supply, and Fig.  2 shows their share in the global production of electricity. In 2007, the total renewable energy contribution was 12% of the global primary energy supply of 140,000 TWh and 18% of the global electricity production of 20,000 TWh. By the year 2050, renewable energy is expected to reach 35% of an estimated global primary energy supply of 170,000 TWh and 50% of an estimated global electricity production of 45,000 TWh.

An external file that holds a picture, illustration, etc.
Object name is 13280_2010_59_Fig1_HTML.jpg

The shares of different renewable and other sources in the global primary energy supply for 2007 according to IEA statistics ( 2007 ) ( upper ) and in a scenario estimate for 2050 by the Energy Committee ( lower )

An external file that holds a picture, illustration, etc.
Object name is 13280_2010_59_Fig2_HTML.jpg

The shares of different renewable and other sources in the global production of electricity for 2007 according to IEA statistics ( 2007 ) ( upper ) and in a scenario estimate for 2050 by the Energy Committee ( lower )

Among the renewable energy sources, hydropower is presently the most important source for electrical power generation. It also provides grid stability and reliability, as well as balancing support to intermittent renewable energy, such as wind and solar power. The global contribution of hydropower, in a 40-year perspective, is estimated to be around double that of today. The future hydropower shares of global electricity production and the total energy supply in 2050 are expected to be around 20 and 6%, respectively.

Bioenergy is an all-round energy source, which can be used for production of electricity, heat, and fuels. The major future biomass energy option is expected to be residues from forestry and agriculture, along with organic wastes. By 2050, the bioenergy contribution is expected to be about 20% of the global energy supply and 10% of global electricity production.

In 2008, wind power provided 0.2% of the global energy supply. It is a rapidly increasing source of renewable electricity generation, with the main constraint for its development being related to its intermittency. A balancing power source is therefore needed. Today, balancing power comes mainly from fossil fuels. In order to reduce fossil fuel use, a combination of hydropower and wind power constitutes an excellent combination. With the estimated hydropower development and the main aim to minimize the use of fossil fuels, the 2050 share of wind power is expected to be around 3–4% of the global energy supply and 12–15% of global electricity production. A future development of large-scale energy storage facilities may allow for greater long-term expansion of wind power.

Solar energy using direct sunlight is potentially the most powerful renewable energy source for electricity and heat. The technologies are developing rapidly, and in 2050, solar energy is expected to contribute up to 6% of the total global energy supply and 6% of the global electricity production. The main solar power constraints are high costs and its intermittency. However, while global energy prices are rising, the costs for solar energy are decreasing. Concentrating solar power (CSP) has the potential to provide significant amounts of base-load power, but is not expected to be viable in areas without much direct sunlight.

Based on our current knowledge, renewable energy sources can be expected to provide up to 35% of the global energy supply and nearly half of the electricity production by 2050. Fossil-energy use is thus expected to remain high, mainly due to increasing energy demands in the developing countries. However, the share of fossil energy in the global energy supply is still expected to drop from the current 80 to 53% by 2050. With most renewable and non-fossil energy sources providing electrical energy, electricity is set to become a major energy carrier in the future. Electricity is expected to increase by as much as 125% by the year 2050, while global primary energy increases by 21%.

Additional Views on Renewable Energy Development

Carlo Rubbia, CERN, Geneva, talked about innovation as the key to a more successful development of renewable energy than expected, based on today’s knowledge. He stressed the fact that the world has been increasingly powered by fossil fuels over the last 150 years and must now reverse this trend over a much shorter time period.

The current trend is unsustainable with respect to both global warming and energy security. Rubbia’s assessment is that this trend can only be changed by vigorous innovative efforts in research and development by universities and other research institutions, and a prompt industrial deployment by the business sector toward new energy sources. Only in this way can today’s carbon-intensive economy be transformed into a new sustainable and equitable system.

Rubbia discussed different concrete ways to achieve these goals, viewing environmentally friendly uses of fossil fuels (e.g., by CO 2 sequestration and storage) as temporary solutions. For longer-term solutions, he discussed mainly two renewable energy sources: solar power, and second and third generation bioenergy, involving non-food crops, organic wastes, and algae. In general, Rubbia emphasized investment in energy research, development, and innovation as crucial for the emergence of a sustainable energy system beyond the fossil-energy era.

Robert Pitz-Paal from the German Aerospace Center, Köln, talked more about solar power, in particular about CSP, and its possible road from research to market. He described how CSP plants with thermal energy storage can be built to allow for efficient and CO 2 -free power supply. Such CSP plants can be managed to scale up and down, following the load, with the storage being dispatchable to quickly meet peak demand, independent of weather conditions.

A main CSP option involves export of electricity through high voltage direct current (HVDC)-transmission lines, from countries in the Sun Belt to densely populated areas with lower incident solar radiation in developed countries, as envisioned in the DESERTEC concept illustrated in Fig.  3 . Projections with this option for the countries of the EU and the Middle East and North Africa (MENA) are foreseen to include a mix of different power sources (see Fig.  3 ) and to reduce the EU dependency on fuel imports from 80% (year 2050, business as usual) to 32%.

An external file that holds a picture, illustration, etc.
Object name is 13280_2010_59_Fig3_HTML.jpg

The DESERTEC concept of exporting electricity through high voltage direct current (HVDC)-transmission lines, from countries in the Sun Belt to densely populated areas with lower incident solar radiation in developed countries (DESERTEC Foundation 2010 )

Pitz-Paal described the CSP development from the first to present commercial plants. The first plants had a total capacity of several hundred MW and were built in the late 1980s in the Californian Mojave desert. They have accumulated more than 15 TWh of solar electricity and 20 years of commercial operation experience. During 2008, commercial systems were into operation in Spain and the US, with further deployment of several GW being underway in other countries.

Hermann-Josef Wagner from Ruhr Universität, Bochum, talked about the status and prospects of wind energy in the world. Wind energy will be an important component of the future electricity system. In some countries, such as Germany, where the potential of wind energy onshore has been nearly exhausted, future projects will have to go offshore.

Wagner emphasized that wind is a stochastically fluctuating energy source. In order to meet consumer demands, it must be embedded in a complex electricity system that can react quickly and can use alternative power stations as the wind fluctuates. Today, these alternatives are mostly fossil-fueled power stations. The EU expansion of wind energy requires extension of the electrical grid in every country that introduces renewable energy sources. In Germany, for example, 800 km of new high voltage lines are needed to meet the political goal of 20% electricity from wind in 2020. Wind energy systems are material intensive, but the technical problems involved are solvable.

Wagner also stressed that the use of wind energy requires further research. This research must address wind power life cycle and sustainability analyses, material and design requirements, and forecasting of the wind resource and the needs and use of energy storage.

Concluding Discussion

Among the renewable energy sources, hydropower plays a key role, with a unique capacity to quickly respond to fluctuating electricity demands. It has large development possibilities in different parts of the world, but there are a number of essential social and environmental obstacles and constraints to its development. Most of the hydropower development potential is to be found in developing countries, whereas, for example, the EU already has exploited most of the readily accessible resources.

Less developed technologies for energy production from moving water than traditional hydropower, such as wave and tidal power, have large theoretical potential for renewable energy production. However, significant energy production cannot be expected from these sources within the next few decades. Research and development efforts are needed to clarify their feasibility and enable sustainable use of their renewable energy potential.

Wind power will play a role in future electricity supply. However, it currently depends mainly on gas and coal power to balance its intermittency. In the long term, 2050 and beyond, this balancing must be provided by non-fossil or CO 2 -emission-free energy sources. Hydropower is the most interesting renewable alternative for this purpose. Demand, management, and geographic location optimization of new wind power plants are important issues for improving wind power efficiency.

Bioenergy will increase in importance, and the major future biomass energy option is expected to be residues from forestry and agriculture, along with organic wastes. Added agricultural production of biofuels may not yield a net positive climate effect (Crutzen et al. 2008 ; Destouni and Darracq 2009 ) and will need to compete with the production of food for land and water (Académie des Sciences 2006 ). The global population of 9–10 billion people expected in year 2050 will need food with an energy content of about 10,000 TWh per year (2,500 kcal/person/day), which is several times more energy than that provided today by fossil fuels.

Solar energy technologies are developing rapidly and, in the next 40 years, can become important global energy providers. The solar resource base exceeds that of all other renewable alternatives, but a breakthrough has so far been limited by the high costs involved and the intermittent nature of solar radiation. CSP with integrated heat storage has the potential to provide significant amounts of base-load power, but will be feasible only in regions with high input of direct sunlight, i.e., in or close to desert areas. Electricity export from these areas requires long-range, high-capacity continental power grids. Small-scale solar energy systems, such as photovoltaics and heating panels, are expected to become increasingly important at the local level. Large-scale research efforts and development needs still remain for the development of viable large-scale solar power solutions.

In general, for the global energy system, international coordination and investment in energy research and development are crucial to enable future reliance on renewable energy sources with minimal fossil fuel use.

Biographies

is Professor of Hydrology, Hydrogeology and Water Resources at Stockholm University, and research leader in the Bert Bolin Centre for Climate Research. She is member of the Royal Swedish Academy of Sciences and its Energy Committee, and member of the Royal Swedish Academy of Engineering Sciences.

is Professor of Technological Innovation at Mälardalen University, and former head of research for ABB Corporate Research. He is member of the Royal Swedish Academy of Sciences and its Energy Committee, and member of the Royal Swedish Academy of Engineering Sciences.

  • Académie des Sciences. 2006. Les Eaux Continentales, sous la direction de G. de Marsily. Paris, France: EDP Sciences.
  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. N 2 O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics. 2008; 8 :389–395. doi: 10.5194/acp-8-389-2008. [ CrossRef ] [ Google Scholar ]
  • DESERTEC Foundation. Downloaded February 2010. Red paper: An overview of the DESERTEC concept . DESERTEC RedPaper 2nd edition, http://www.desertec.org/en/press/media-center/summaries/ .
  • Destouni, G., and A. Darracq. 2009. Nutrient cycling and N 2 O emissions in a changing climate: The subsurface water system role. Environmental Research Letters 4:035008 (7 pp). doi: 10.1088/1748-9326/4/3/035008.
  • Energy Committee at the Royal Swedish Academy of Sciences. 2008. Statements on solar energy . Royal Swedish Academy of Sciences, 10 November 2008.
  • Energy Committee at the Royal Swedish Academy of Sciences. 2010. Statements on wind power . Royal Swedish Academy of Sciences, 18 January 2010.
  • Energy Committee at the Royal Swedish Academy of Sciences. 2008. Statements on bioenergy . Royal Swedish Academy of Sciences, 23 June 2008.
  • Energy Committee at the Royal Swedish Academy of Sciences. 2008. Statements on energy from moving water . Royal Swedish Academy of Sciences, 9 October 2008.
  • Fredga, K., K. Danell, H. Frank, D. Hedberg, and S. Kullander. 2008. Bioenergy, opportunities and constraints . Energy Committee Report, June 2008, Royal Swedish Academy of Sciences.
  • International Energy Agency (IEA). 2007. Key World Energy Statistics. www.iea.org/textbase/nppdf/free/2007/Key_Stats_2007.pdf .
  • Pihl, E. 2009. Concentrating solar power . Energy Committee Report, April 2009, Royal Swedish Academy of Sciences.

ScienceDaily

Using pulp and paper waste to scrub carbon from emissions

Researchers at McGill University have come up with an innovative approach to improve the energy efficiency of carbon conversion, using waste material from pulp and paper production.

The technique they've pioneered using the Canadian Light Source at the University of Saskatchewan not only reduces the energy required to convert carbon into useful products, but also reduces overall waste in the environment.

"We are one of the first groups to combine biomass recycling or utilization with CO 2 capture," said Ali Seifitokaldani, Assistant Professor in the Department of Chemical Engineering and Canada Research Chair (Tier II) in Electrocatalysis for Renewable Energy Production and Conversion. The research team, from McGill's Electrocatalysis Lab, published their findings in the journal RSC Sustainability .

Capturing carbon emissions is one of the most exciting emerging tools to fight climate change. The biggest challenge is figuring out what to do with the carbon once the emissions have been removed, especially since capturing CO 2 can be expensive. The next hurdle is that transforming CO 2 into useful products takes energy. Researchers want to make the conversion process as efficient and profitable as possible.

  • Energy and Resources
  • Energy Technology
  • Energy and the Environment
  • Environmental Science
  • Renewable Energy
  • Global Warming
  • Hazardous waste
  • Photosynthesis
  • Climate change mitigation
  • Radioactive waste
  • Carbon cycle
  • Carbon dioxide

Story Source:

Materials provided by McGill University . Note: Content may be edited for style and length.

Journal Reference :

  • Roger Lin, Haoyan Yang, Hanyu Zheng, Mahdi Salehi, Amirhossein Farzi, Poojan Patel, Xiao Wang, Jiaxun Guo, Kefang Liu, Zhengyuan Gao, Xiaojia Li, Ali Seifitokaldani. Efficient integration of carbon dioxide reduction and 5-hydroxymethylfurfural oxidation at high current density . RSC Sustainability , 2024; 2 (2): 445 DOI: 10.1039/D3SU00379E

Cite This Page :

Explore More

  • Ozone Removes Mating Barriers Between Fly ...
  • Parkinson's: New Theory On Origins and Spread
  • Clash of Stars Solves Stellar Mystery
  • Secure Quantum Computing at Home
  • Ocean Currents: Collapse of Antarctic Ice ...
  • Pacific Cities Much Older Than Previously ...
  • The Milky Way in Ancient Egyptian Mythology
  • Physical Activity Best in the Evening
  • How the Body Switches out of 'Fight' Mode
  • New Drug Prevents Flu-Related Lung Damage

Trending Topics

Strange & offbeat.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • ADVERTISEMENT FEATURE Advertiser retains sole responsibility for the content of this article

New energy technology research

Produced by

research paper on renewable energy

The transition to a low/zero-carbon energy system and the reshaping of the modern energy system are necessary for achieving the Sustainable Development Goals (SDG) of the United Nations. Such a transition must allow for coping with the global climate change crisis, and promoting the ‘green recovery’ of the world economy in the post-pandemic era. Currently, major countries and regions take the development of new energy technologies as a crucial opportunity to lead the new round of energy revolution and science and technology innovation. New energy technologies are being updated at an unprecedented pace.

Based on the Dimensions database of Digital Science, this study, combining bibliometric analysis, patent analysis and expert interviews, systematically analyses eight new energy fields, including solar, wind, biomass, geothermal, nuclear, hydrogen, energy storage, and energy internet, as well as 20 subtypes of new energy technologies over the period of 2000-2019 (with a focus on the period of 2015-2019), to reveal hot directions for global new energy research, the potential for industrial transformation, and future development trends. The study takes a global perspective, considering the development of China's new energy technologies and corresponding research patterns, and conducts a comparative analysis of China’s research competitiveness with other major countries and regions.

This study reveals that:

1. Global research in the new energy field is in a period of accelerated growth, with solar energy, energy storage and hydrogen energy receiving extensive attention from the global research community.

2. China's total contribution to new energy research is substantial, and the contribution to high-quality research is also large, but compared with the United States, Germany, Japan and other developed countries, China is relatively down the country ranks in terms of average citations per paper in most energy fields, suggesting that its overall efficiency needs improvement.

3. The level of transformation of new energy research to applicable technologies is relatively low globally, and industry-academia-research integration needs to be further strengthened. In general, research transformation for energy storage, biomass energy and solar energy is at a relatively high level, with technologies for lithium-ion batteries and organic solar cells being the hotspots of common interest for both the research community and industry.

4. The qualitative analysis of expert interviews reveals that the rapid progress of energy storage technologies will provide powerful support for large-scale development of renewable power generation and electric vehicles; hydrogen will be an important medium for building future energy systems and realizing the energy revolution; breakthroughs in solar fuel technologies and relevant cost reduction may help reduce dependence on fossil fuels; and energy internet will bring dual advantages of the internet and smart energy systems into full play to realize coordinated optimal allocation of resources.

For the full report, please click the PDF icon on the page.

research paper on renewable energy

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Energy.gov Home

  • Vehicle Technologies Office
  • About the Vehicle Technologies Office
  • Technology Areas
  • Technology Integration
  • Reports and Publications

Office: Vehicle Technologies Office FOA number:  DE-FOA-0003248 Link to apply:  Apply on EERE Exchange FOA Amount: $45,800,000

Today, the Department of Energy (DOE) announced $45.8 million in new funding for projects that will advance research, development, demonstration, and deployment (RDD&D) critical to achieving net-zero greenhouse gas emissions in the transportation sector. The funding will drive innovation in equitable clean transportation and is aligned with strategies detailed in the U.S. National Blueprint for Transportation Decarbonization . 

The funding is through DOE’s Office of Energy Efficiency and Renewable Energy (EERE). Topic areas in the Vehicle Technologies Office (VTO) Fiscal Year (FY) 2024 R&D funding opportunity include:

  • Next-generation phosphate-based cathodes.
  • Advancing the state of the art for sodium-ion batteries.
  • Developing concepts for decreasing greenhouse gas emissions from off-road vehicles such as construction, agriculture, mining, and forestry vehicles.
  • Developing and deploying vehicle-to-everything technologies that can lead to meaningful savings at the vehicle and transportation system level.
  • Developing high-performance, domestically produced electrical steels (E-steels) for use in electrified powertrains.
  • Addressing critical cybersecurity needs for smart and secure electric vehicle charging.

As part of the Biden-Harris Administration’s commitment to ensuring the benefits of a clean transportation system are shared equally, the funding seeks the participation of underserved communities and underrepresented groups. Applicants are required to describe how diversity, equity, and inclusion objectives will be incorporated into their project. 

VTO provides a series of funding opportunity announcement (FOA) information session videos , which help applicants understand VTO’s FOA process and requirements. The recently released, Session 3: Tips for a Strong FOA Application, includes best practices for incorporating Diversity, Equity, Inclusion, and Accessibility in a project.

Learn more about this and other funding opportunities on VTO’s funding webpage . 

Topic Areas

Topic Area 1: Next-Generation Phosphate-Based Cathodes

This topic area targets the development of phosphate-based cathode materials that surpass the performance of state-of-the-art lithium iron phosphate (LFP) cathode materials, which are currently gaining traction as an alternative low-cost solution. The primary objective of this area of interest is to develop high energy density battery cells containing phosphate-based cathodes at the material and cell level.

Topic Area 2: Na-ion Battery Seedling Projects for Electric Vehicle Applications

While shifting to alternative cathode materials like LFP can alleviate the impact of nickel and cobalt, the impact of lithium has not been adequately addressed. One alternative to lithium is sodium (Na). While there is much promise for Na-ion chemistries, key issues still limit their adoption. This objective of this topic area is to advance the state of the art for Na-ion batteries by solving key challenges for the cathode, anode, or electrolyte through the development of 1 Ah full cells utilizing cell chemistries that are significant advancements over current industry state-of-the-art Na-ion technology.

Topic Area 3: Low-GHG Concepts for Off-Road Vehicles

The objective of this topic area is to develop and validate technology concepts capable of significantly decreasing greenhouse gas emissions, energy use, harmful criteria emissions, and total cost of ownership across the entire off-road vehicle sector, including construction, agriculture, mining, forestry, ports, warehouses, etc. Concepts must demonstrate they can meet the unique requirements for off-road vehicles and gain customer acceptance.

Topic Area 4: Saving Energy with Connectivity

Research has shown that vehicle-to-everything (V2X) communications can lead to meaningful energy savings at the vehicle and transportation system level by integrating interoperable vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-pedestrian (V2P) communications. The objective of this topic area is to develop and deploy V2X technologies with a focus on the efficiency and convenience of the mobility ecosystem, while reducing transportation’s environmental impacts. Examples could include but are not limited to eco-driving along connected corridors, transit or freight priority, integrated corridor management, or passenger or freight trip-chaining optimization.

Topic Area 5: Domestically Produced Electrical Steels (E-Steels)

The US transportation sector is in a technology revolution where light-duty vehicles are rapidly transitioning from internal combustion engines to electrified powertrains. Although most of the vehicles are produced in the US, many of the powertrain components rely on imports and foreign supply chains. Of particular interest are traction motors and their components. The objective of this topic are is to develop E-Steels meeting properties including frequency, thickness, ductility, cost, and manufacturability. 

Topic Area 6: Cybersecurity for Smart and Secure Electric Vehicle Charging

This topic area is addressing critical cybersecurity needs to address through two subtopics: 

  • Subtopic 6.a: Enabling Wide-scale, Cybersecure EV/EVSE Aggregation for Grid Services :  To support the integration of electric vehicles (EVs) and their charging requirements with the electric grid, both government and the private sector have made significant investments in the development of smart charge management (SCM) systems and technologies for EV charging infrastructure. The objective of this subtopic area is to research, develop, and demonstrate systems, technologies, and tools necessary for the cybersecure aggregation of EVs and charging infrastructure to provide widescale, cybersecure grid services.
  • Subtopic 6.b: Tools to Assess EV/EVSE/Charging System Cybersecurity Posture and Compliance with Standards and Protocols for Communications, Controls, and Monitoring :   Testing and evaluation of Electric Vehicle Supply Equipment (EVSE) by DOE national laboratories has clearly indicated a lack of compliance by many vendors with certified and/or regulated EV charging standards and protocols. In addition to creating cybersecurity vulnerabilities, this non-compliance greatly inhibits interoperability, supplier-managed SCM, and right-to-repair. The objective of this subtopic is to research, develop, and validate a suite of tools and associated procedures to comprehensively assess EV/EVSE/charging system compliance with relevant standards and protocols and cybersecurity posture.

Additional Information

  • Download the full funding opportunity  on the EERE Exchange website.
  • For FOA-specific support, contact  [email protected]
  • Sign up for the  Office of Energy Efficiency and Renewable Energy (EERE) funding email list  to get notified of new EERE funding opportunities. Also sign up for  VTO’s newsletter to stay current with the latest news.
  • Watch the VTO Funding Opportunity Announcement information series webinars.

IMAGES

  1. Growing Significance of Renewable Energy

    research paper on renewable energy

  2. ≫ Renewable Energy Development Free Essay Sample on Samploon.com

    research paper on renewable energy

  3. IRJET- Design And Analysis Of Integrated Solar Panel, 51% OFF

    research paper on renewable energy

  4. Renewable energy infographic Royalty Free Vector Image

    research paper on renewable energy

  5. Renewable Energy: Sources, Applications and Emerging Technologies

    research paper on renewable energy

  6. Can renewable energy expand beyond wind and solar?

    research paper on renewable energy

VIDEO

  1. Renewable Energy and the Energy Future: Embracing the Sustainable Future!

  2. reV: The Renewable Energy Potential Model

  3. Renewable Energy and Energy Harvesting B.Sc. 3rd Year Physics Question Paper 2023 HPU

  4. World Sustainable Energy Day

  5. Principles of Renewable Energy

COMMENTS

  1. A comprehensive study of renewable energy sources: Classifications

    Renewable energy (RE) is the key element of sustainable, environmentally friendly, and cost-effective electricity generation. An official report by International Energy Agency (IEA) states that the demand on fossil fuel usage to generate electricity has started to decrease since year 2019, along with the rise of RE usage to supply global energy demands.

  2. Towards Sustainable Energy: A Systematic Review of Renewable Energy

    This review discusses the world's energy needs, renewable energy technologies for domestic use, and highlights public opinions on renewable energy. A systematic review of the literature was conducted from 2009 to 2018. During this process, more than 300 articles were classified and 42 papers were filtered for critical review. The literature ...

  3. Renewable energy

    A view of wind turbines drives down home values — but only briefly. House prices drop by 1% if wind turbines are close and visible, but they rebound quickly. Research Highlights 20 Mar 2024 ...

  4. Full article: A review of renewable energy sources, sustainability

    The aim of the paper is to ascertain if renewable energy sources are sustainable and examine how a shift from fossil fuel-based energy sources to renewable energy sources would help reduce climate change and its impact. ... energy efficiency, clean energy technology and research and energy infrastructure investment will reduce the cost of ...

  5. (PDF) The Need For Renewable Energy Sources

    This paper briefly presents the importance of renewable sources of energy owing to the backdrop of fossil fuel dilemma. Major emphasis is placed on the use of alternative energy technologies.

  6. Clean energy can fuel the future

    Renewable energy's share of total global energy consumption was just 19.1% in 2020, according to the latest UN tracking report, but one-third of that came from burning resources such as wood.

  7. Climate change impacts on renewable energy supply

    Since climate processes fuel most renewable energy resources, the impact of climate change on renewable energy supply has been identified as a key area for further research 7,8,9,10,11,12,13,14,15 ...

  8. Towards Sustainable Energy: A Systematic Review of Renewable Energy

    This paper aims to assess the situation of the energy system throughout the European Union member states (EU28), with a focus set on renewable energy and energy efficiency programs.

  9. City-integrated renewable energy for urban sustainability

    With limited available installation space, renewable energy generation within urban areas poses particular challenges. We use the balance between the high energy demand of cities and the available energy density supplied by renewable sources as a starting point for an analytic framework for decarbonized urban spaces ().However, in the waves of innovation that will be needed, strategies ranging ...

  10. Sustainability

    This paper addresses the necessity of adopting renewable energy technologies in order to achieve sustainable development goals in light of increasing global challenges, with a particular focus on the current generation's well-being. It addresses the potential impacts of global crises, such as energy and food crises, on the transition to renewable energy. Using a descriptive and analytical ...

  11. Frontiers

    This paper aims to systematically review the consumption nexus of renewable energy and economic growth. A total of 46 articles has been reviewed following the PRISMA guidelines from the year 2010-2021. Our review research shows that renewable energy does not hinder economic growth for both developing and developed countries.

  12. Renewable energy for sustainable development in India: current status

    The primary objective for deploying renewable energy in India is to advance economic development, improve energy security, improve access to energy, and mitigate climate change. Sustainable development is possible by use of sustainable energy and by ensuring access to affordable, reliable, sustainable, and modern energy for citizens. Strong government support and the increasingly opportune ...

  13. Sustainable Energy Transition for Renewable and Low Carbon Grid

    The greatest sustainability challenge facing humanity today is the greenhouse gas emissions and the global climate change with fossil fuels led by coal, natural gas and oil contributing 61.3% of global electricity generation in the year 2020. The cumulative effect of the Stockholm, Rio, and Johannesburg conferences identified sustainable energy development (SED) as a very important factor in ...

  14. The effect of renewable energy incorporation on power grid ...

    The objective of this paper is to determine the dependence of network resilience on key previously unconsidered spatiotemporal features associated with small-scale renewable-integrated power grids. This is achieved by marrying network architecture and power flow dynamics with fluctuations in renewable generation and consumer demand, informed by ...

  15. Machine learning for a sustainable energy future

    Nature Reviews Materials (2024) Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it demands advances — at the materials, devices and systems levels ...

  16. Long Term Energy Storage in Highly Renewable Systems

    Sustainable energy consumption demands new ways of producing, storing, and consuming energy, underpinned by renewable energy 1. Novel balancing and reliability challenges of high renewable energy penetrations define the need for LTS in future energy systems. Renewable energy is clean, plentiful, increasingly affordable, and the cornerstone of ...

  17. Breaking barriers in deployment of renewable energy

    This indicates that technological barriers are moderately significant in the deployment of renewable energy. Earlier research (Gullberg et al., 2014) has pointed out that lack of technology advancement has created obstacles for implementing renewable energy. This research paper corroborates the findings of previous studies.

  18. [PDF] Recent Advances in Renewable Energy: Research, Applications and

    Aims : Researches into a host of energy deployment options and creative policy initiatives continue in respect of renewable energy and this paper highlights some of the recent advances observed. It investigates the potentials of some second generation biofuels such as manure, tuber peels and other by-products of agriculture in providing biogas, bioethanol and biodiesel, and those of hydro ...

  19. Renewable Energy

    A Quantitative Renewable Energy Scenario for 2050. Figures 1 and and2 2 illustrate the Energy Committee's global energy projection for the year 2050, compared to conditions in 2007. Figure 1 shows the shares of different renewable sources in the global primary energy supply, and Fig. 2 shows their share in the global production of electricity. In 2007, the total renewable energy contribution ...

  20. PDF Rural Renewable Energy Based Infrastructure of the Philippines Ryan Amador

    the urban areas while 50.5 million were rural dwellers.18To put in perspective, the population. level from years 2010 to 2017 was a whopping jump at approximately 42.4% of the total. population who lived in urban areas.19. Indeed, the Philippines is regarded as one of the fastest urbanizing countries due to the.

  21. Geopolitics of Renewable Energy: Shaping the Global Power Landscape

    This research paper provides a comprehensive analysis of the geopolitical implications of the global transition towards renewable energy. It scrutinizes the traditional energy landscape, emphasizing how fossil fuel resources have historically shaped geopolitical power structures. The key drivers of the shift towards renewables, such as climate change, economic viability, and energy security ...

  22. Geophysical constraints on the reliability of solar and wind ...

    Abstract. If future net-zero emissions energy systems rely heavily on solar and wind resources, spatial and temporal mismatches between resource availability and electricity demand may challenge ...

  23. PDF Research Projects in Renewable Energy for High School Student

    RESEARCH PROJECTS IN RENEWABLE ENERGY FOR HIGH SCHOOL STUDENTS National Renewable Energy Laboratory Education Programs 1617 Cole Blvd. Golden, CO 80401 ... research is about without reading the paper. • Abstract - a brief condensation of the entire report, 150 to 250 words for advanced

  24. Algeria's journey towards a green hydrogen future: Strategies for

    In pursuit of energy transition objectives, Algeria is increasingly focusing on the production and utilization of low-carbon and renewable hydrogen. While hydrogen has predominantly been used in the chemical and refining industries, it holds promise for decarbonizing specific industrial sectors, enabling electricity storage, and powering the transport sector. However, several barriers must be ...

  25. Using pulp and paper waste to scrub carbon from emissions

    Using pulp and paper waste to scrub carbon from emissions. Date: April 8, 2024. Source: McGill University. Summary: Researchers have come up with an innovative approach to improve the energy ...

  26. New energy technology research

    1. Global research in the new energy field is in a period of accelerated growth, with solar energy, energy storage and hydrogen energy receiving extensive attention from the global research ...

  27. Funding Notice: Vehicle Technologies Office Fiscal Year 2024 Research

    Office: Vehicle Technologies Office FOA number: DE-FOA-0003248 Link to apply: Apply on EERE Exchange FOA Amount: $45,800,000 Today, the Department of Energy (DOE) announced $45.8 million in new funding for projects that will advance research, development, demonstration, and deployment (RDD&D) critical to achieving net-zero greenhouse gas emissions in the transportation sector.