PrepScholar

Choose Your Test

Sat / act prep online guides and tips, 113 great research paper topics.

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

Need more help with this topic? Check out Tutorbase!

Our vetted tutor database includes a range of experienced educators who can help you polish an essay for English or explain how derivatives work for Calculus. You can use dozens of filters and search criteria to find the perfect person for your needs.

Connect With a Tutor Now

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Student and Parent Forum

Our new student and parent forum, at ExpertHub.PrepScholar.com , allow you to interact with your peers and the PrepScholar staff. See how other students and parents are navigating high school, college, and the college admissions process. Ask questions; get answers.

Join the Conversation

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

undergraduate research ideas

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

30 Seriously Impressive Undergrad Research Projects

At UT, research isn’t exclusively for faculty and graduate students. Need proof? Just take a look at this impressive list of undergraduate research from this year. “ Unfeminist Coalition in Game of Thrones,” anyone?

Research notes and model

At The University of Texas at Austin, r esearch is an essential part of our DNA. (Coincidentally,  DNA is an essential part of our research .)  UT is one of the most highly rated public research universities in the nation. 

But research isn’t exclusively within the purview of faculty and graduate students. Undergraduates can start as early as freshman year , supported by programs like student-run research journals , the EUREKA Research Database and the Freshman Research Initiative , the nation’s largest effort to involve first-year students in meaningful research, placing them in faculty-led laboratories working on real-world research projects.

Need more proof? Just take a look at this impressive list of undergraduate research poster presentations made at this year’s Research Week , UT’s annual celebration of undergraduate research and creative activity. (For the full list, go here .)

Analyzing and predicting shoreline change rates along the Aransas National Wildlife Refuge

Preston McLaughlin, geography

Bayesian modeling of neuron firing rate maps using a B-spline prior

Eszter Kish, neuroscience; Eric Rincon, computer science

Biological filtration of contaminants from drinking water

Ethan Howley

Building personality

Evan Delord, neuroscience

Computational sequencing and humanization of antibodies

Coral Loockerman, biology

Identifying a novel inhibitor for GES-5 Carbapenemase in Klebsiella pneumonia infections by virtual drug screening

Xenia Gonzalez, biology

Searching for high redshift (z=8) galaxies using the Brightest of Reionizing Galaxies survey (BoRG)

James Diekmann, astronomy

The Herschel Space Telescope confirms the decay of supersonic turbulence

Rebecca Larson, astronomy, physics

Transcriptional control of the Manganese Efflux Transporter, SLC30A10

Jonathan Mercado, biology

Arts and Humanities

Student researcher

Artistic freedom: What is the boundary between freedom of speech and the public good?

Crystal Schreiber, visual art studies; Yeun Jae Chang, visual art studies; Minhye Choi, studio art; Gregory Castillo, visual art studies

College athletics: Athletes first, students second?

Daniel Escobar, philosophy

Fakers of aboriginal art

Ashley Stanford, art history

From the bones of wolves: Guitar music from the southwest United States

Thales Smith, music performance, plan II

Meaning in public space: The Texas State Capitol as epideictic rhetoric

David DeVine, rhetoric and writing

Mistakes were made: On the use of agency and other factors in the analysis of political apology speeches

Alina Carnahan, rhetoric and writing

No crusades, no Columbus: A study of cultural interchange 1100–1500

Jeremy Wenzel, computer science

Rehabilitating canines: The journey of former fighting dogs

Larissa Zelezniak, history

The media and crime: What is real and what is perceived?

Michelle Jackson, psychology

Unfeminist coalition in Game of Thrones

Choyette Mahtab, anthropology

Social Sciences

Students at the 2015 Longhorn Research Bazaar

Gender beliefs and mental health outcomes among Mexican Americans in borderland communities

Maria Renteria, social work, anthropology

Evolving obesity prevention policies in United States elementary schools: 1966–2014

Stephanie Astle, nursing

Investing foul play in financial crisis: An introduction to forensic finance

Kevin Mei, economics, finance

Online activism and networked feminism: Wendy Davis and her filibuster

Ketty Loo, psychology

Prevention of substance use with military veterans in college: Beliefs system and psychological distress

Christine Rodriguez, social work

Testing global colorectal cancer incidence in developing countries using risk factor data

Austin Porter, plan II

The development of auditory category learning: A computational modeling approach

Nicole Tsao, communication sciences and disorders

The effect of candidate race on federal campaign contributions

David Singer, government

The missing piece: Music in geriatric health

Alice Jean, environmental science

The war on coal: A case study in agenda setting

Hannah Johnson, geological sciences, government

Understanding speech patterns in young children with hearing impairments

Samantha Moses, John Torres (both communication sciences and disorders)

Explore Latest Articles

Mar 21, 2024

At Work, Online Communications Leave Impressions

undergraduate research ideas

Machine ‘Unlearning’ Helps Generative AI ‘Forget’ Copyright-Protected and Violent Content

undergraduate research ideas

Justin Dyer Named Dean of the School of Civic Leadership

undergraduate research ideas

Princeton University

  • Advisers & Contacts
  • Bachelor of Arts & Bachelor of Science in Engineering
  • Prerequisites
  • Declaring Computer Science for AB Students
  • Declaring Computer Science for BSE Students
  • Class of '25, '26 & '27 - Departmental Requirements
  • Class of 2024 - Departmental Requirements
  • COS126 Information
  • Important Steps and Deadlines
  • Independent Work Seminars
  • Guidelines and Useful Information

Undergraduate Research Topics

  • AB Junior Research Workshops
  • Undergraduate Program FAQ
  • How to Enroll
  • Requirements
  • Certificate Program FAQ
  • Interdepartmental Committee
  • Minor Program
  • Funding for Student Group Activities
  • Mailing Lists and Policies
  • Study Abroad
  • Jobs & Careers
  • Admissions Requirements
  • Breadth Requirements
  • Pre-FPO Checklist
  • FPO Checklist
  • M.S.E. Track
  • M.Eng. Track
  • Departmental Internship Policy (for Master's students)
  • General Examination
  • Fellowship Opportunities
  • Travel Reimbursement Policy
  • Communication Skills
  • Course Schedule
  • Course Catalog
  • Research Areas
  • Interdisciplinary Programs
  • Technical Reports
  • Computing Facilities
  • Researchers
  • Technical Staff
  • Administrative Staff
  • Graduate Students
  • Undergraduate Students
  • Graduate Alumni
  • Climate and Inclusion Committee
  • Resources for Undergraduate & Graduate Students
  • Outreach Initiatives
  • Resources for Faculty & Staff
  • Spotlight Stories
  • Job Openings
  • Undergraduate Program
  • Independent Work & Theses

Suggested Undergraduate Research Topics

undergraduate research ideas

How to Contact Faculty for IW/Thesis Advising

Send the professor an e-mail. When you write a professor, be clear that you want a meeting regarding a senior thesis or one-on-one IW project, and briefly describe the topic or idea that you want to work on. Check the faculty listing for email addresses.

Parastoo Abtahi, Room 419

Available for single-semester IW and senior thesis advising, 2023-2024

  • Research Areas: Human-Computer Interaction (HCI), Augmented Reality (AR), and Spatial Computing
  • Input techniques for on-the-go interaction (e.g., eye-gaze, microgestures, voice) with a focus on uncertainty, disambiguation, and privacy.
  • Minimal and timely multisensory output (e.g., spatial audio, haptics) that enables users to attend to their physical environment and the people around them, instead of a 2D screen.
  • Interaction with intelligent systems (e.g., IoT, robots) situated in physical spaces with a focus on updating users’ mental model despite the complexity and dynamicity of these systems.

Ryan Adams, Room 411

Research areas:

  • Machine learning driven design
  • Generative models for structured discrete objects
  • Approximate inference in probabilistic models
  • Accelerating solutions to partial differential equations
  • Innovative uses of automatic differentiation
  • Modeling and optimizing 3d printing and CNC machining

Andrew Appel, Room 209

  • Research Areas: Formal methods, programming languages, compilers, computer security.
  • Software verification (for which taking COS 326 / COS 510 is helpful preparation)
  • Game theory of poker or other games (for which COS 217 / 226 are helpful)
  • Computer game-playing programs (for which COS 217 / 226)
  •  Risk-limiting audits of elections (for which ORF 245 or other knowledge of probability is useful)

Sanjeev Arora, Room 407

  • Theoretical machine learning, deep learning and its analysis, natural language processing. My advisees would typically have taken a course in algorithms (COS423 or COS 521 or equivalent) and a course in machine learning.
  • Show that finding approximate solutions to NP-complete problems is also NP-complete (i.e., come up with NP-completeness reductions a la COS 487). 
  • Experimental Algorithms: Implementing and Evaluating Algorithms using existing software packages. 
  • Studying/designing provable algorithms for machine learning and implementions using packages like scipy and MATLAB, including applications in Natural language processing and deep learning.
  • Any topic in theoretical computer science.

David August, Room 221

  • Research Areas: Computer Architecture, Compilers, Parallelism
  • Containment-based approaches to security:  We have designed and tested a simple hardware+software containment mechanism that stops incorrect communication resulting from faults, bugs, or exploits from leaving the system.   Let's explore ways to use containment to solve real problems.  Expect to work with corporate security and technology decision-makers.
  • Parallelism: Studies show much more parallelism than is currently realized in compilers and architectures.  Let's find ways to realize this parallelism.
  • Any other interesting topic in computer architecture or compilers. 

Mark Braverman, 194 Nassau St., Room 231

Available for Spring 2024 single-semester IW, only

  • Research Areas: computational complexity, algorithms, applied probability, computability over the real numbers, game theory and mechanism design, information theory.
  • Topics in computational and communication complexity.
  • Applications of information theory in complexity theory.
  • Algorithms for problems under real-life assumptions.
  • Game theory, network effects
  • Mechanism design (could be on a problem proposed by the student)

Sebastian Caldas, 221 Nassau Street, Room 105

  • Research Areas: collaborative learning, machine learning for healthcare. Typically, I will work with students that have taken COS324.
  • Methods for collaborative and continual learning.
  • Machine learning for healthcare applications.

Bernard Chazelle, 194 Nassau St., Room 301

  • Research Areas: Natural Algorithms, Computational Geometry, Sublinear Algorithms. 
  • Natural algorithms (flocking, swarming, social networks, etc).
  • Sublinear algorithms
  • Self-improving algorithms
  • Markov data structures

Danqi Chen, Room 412

Not available for IW or thesis advising, 2023-2024

  • My advisees would be expected to have taken a course in machine learning and ideally have taken COS484 or an NLP graduate seminar.
  • Representation learning for text and knowledge bases
  • Pre-training and transfer learning
  • Question answering and reading comprehension
  • Information extraction
  • Text summarization
  • Any other interesting topics related to natural language understanding/generation

Marcel Dall'Agnol, Corwin 034

Available for single-semester and senior thesis advising, 2023-2024

  • Research Areas: Theoretical computer science. (Specifically, quantum computation, sublinear algorithms, complexity theory, interactive proofs and cryptography)

Jia Deng, Room 423

Available for Fall 2023 single-semester IW, only

  •  Research Areas: Computer Vision, Machine Learning.
  • Object recognition and action recognition
  • Deep Learning, autoML, meta-learning
  • Geometric reasoning, logical reasoning

Adji Bousso Dieng, Room 406

  • Research areas: Vertaix is a research lab at Princeton University led by Professor Adji Bousso Dieng. We work at the intersection of artificial intelligence (AI) and the natural sciences. The models and algorithms we develop are motivated by problems in those domains and contribute to advancing methodological research in AI. We leverage tools in statistical machine learning and deep learning in developing methods for learning with the data, of various modalities, arising from the natural sciences.

Robert Dondero, Corwin Hall, Room 038

  • Research Areas:  Software engineering; software engineering education.
  • Develop or evaluate tools to facilitate student learning in undergraduate computer science courses at Princeton, and beyond.
  • In particular, can code critiquing tools help students learn about software quality?

Zeev Dvir, 194 Nassau St., Room 250

Not available for IW or thesis advising, 2023-2024.

  • Research Areas: computational complexity, pseudo-randomness, coding theory and discrete mathematics.
  • Independent Research: I have various research problems related to Pseudorandomness, Coding theory, Complexity and Discrete mathematics - all of which require strong mathematical background. A project could also be based on writing a survey paper describing results from a few theory papers revolving around some particular subject.

Benjamin Eysenbach, Room 416

  • Research areas: reinforcement learning, machine learning. My advisees would typically have taken COS324.
  • Using RL algorithms to applications in science and engineering.
  • Emergent behavior of RL algorithms on high-fidelity robotic simulators.
  • Studying how architectures and representations can facilitate generalization.

Christiane Fellbaum, 1-S-14 Green

No longer available for single-term IW and senior thesis advising, 2023-2024

  • Research Areas: theoretical and computational linguistics, word sense disambiguation, lexical resource construction, English and multilingual WordNet(s), ontology
  • Anything having to do with natural language--come and see me with/for ideas suitable to your background and interests. Some topics students have worked on in the past:
  • Developing parsers, part-of-speech taggers, morphological analyzers for underrepresented languages (you don't have to know the language to develop such tools!)
  • Quantitative approaches to theoretical linguistics questions
  • Extensions and interfaces for WordNet (English and WN in other languages),
  • Applications of WordNet(s), including:
  • Foreign language tutoring systems,
  • Spelling correction software,
  • Word-finding/suggestion software for ordinary users and people with memory problems,
  • Machine Translation 
  • Sentiment and Opinion detection
  • Automatic reasoning and inferencing
  • Collaboration with professors in the social sciences and humanities ("Digital Humanities")

Adam Finkelstein, Room 424 

  • Research Areas: computer graphics, audio.

Robert S. Fish, Corwin Hall, Room 037

No longer available for single-semester IW and senior thesis advising, 2023-2024

  • Networking and telecommunications
  • Learning, perception, and intelligence, artificial and otherwise;
  • Human-computer interaction and computer-supported cooperative work
  • Online education, especially in Computer Science Education
  • Topics in research and development innovation methodologies including standards, open-source, and entrepreneurship
  • Distributed autonomous organizations and related blockchain technologies

Michael Freedman, Room 308 

  • Research Areas: Distributed systems, security, networking
  • Projects related to streaming data analysis, datacenter systems and networks, untrusted cloud storage and applications. Please see my group website at http://sns.cs.princeton.edu/ for current research projects.

Ruth Fong, Room 032

  • Research Areas: computer vision, machine learning, deep learning, interpretability, explainable AI, fairness and bias in AI
  • Develop a technique for understanding AI models
  • Design a AI model that is interpretable by design
  • Build a paradigm for detecting and/or correcting failure points in an AI model
  • Analyze an existing AI model and/or dataset to better understand its failure points
  • Build a computer vision system for another domain (e.g., medical imaging, satellite data, etc.)
  • Develop a software package for explainable AI
  • Adapt explainable AI research to a consumer-facing problem

Note: I am happy to advise any project if there's a sufficient overlap in interest and/or expertise; please reach out via email to chat about project ideas.

Tom Griffiths, Room 405

Research areas: computational cognitive science, computational social science, machine learning and artificial intelligence

Note: I am open to projects that apply ideas from computer science to understanding aspects of human cognition in a wide range of areas, from decision-making to cultural evolution and everything in between. For example, we have current projects analyzing chess game data and magic tricks, both of which give us clues about how human minds work. Students who have expertise or access to data related to games, magic, strategic sports like fencing, or other quantifiable domains of human behavior feel free to get in touch.

Aarti Gupta, Room 220

  • Research Areas: Formal methods, program analysis, logic decision procedures
  • Finding bugs in open source software using automatic verification tools
  • Software verification (program analysis, model checking, test generation)
  • Decision procedures for logical reasoning (SAT solvers, SMT solvers)

Elad Hazan, Room 409  

  • Research interests: machine learning methods and algorithms, efficient methods for mathematical optimization, regret minimization in games, reinforcement learning, control theory and practice
  • Machine learning, efficient methods for mathematical optimization, statistical and computational learning theory, regret minimization in games.
  • Implementation and algorithm engineering for control, reinforcement learning and robotics
  • Implementation and algorithm engineering for time series prediction

Felix Heide, Room 410

  • Research Areas: Computational Imaging, Computer Vision, Machine Learning (focus on Optimization and Approximate Inference).
  • Optical Neural Networks
  • Hardware-in-the-loop Holography
  • Zero-shot and Simulation-only Learning
  • Object recognition in extreme conditions
  • 3D Scene Representations for View Generation and Inverse Problems
  • Long-range Imaging in Scattering Media
  • Hardware-in-the-loop Illumination and Sensor Optimization
  • Inverse Lidar Design
  • Phase Retrieval Algorithms
  • Proximal Algorithms for Learning and Inference
  • Domain-Specific Language for Optics Design

Kyle Jamieson, Room 306

  • Research areas: Wireless and mobile networking; indoor radar and indoor localization; Internet of Things
  • See other topics on my independent work  ideas page  (campus IP and CS dept. login req'd)

Alan Kaplan, 221 Nassau Street, Room 105

Research Areas:

  • Random apps of kindness - mobile application/technology frameworks used to help individuals or communities; topic areas include, but are not limited to: first response, accessibility, environment, sustainability, social activism, civic computing, tele-health, remote learning, crowdsourcing, etc.
  • Tools automating programming language interoperability - Java/C++, React Native/Java, etc.
  • Software visualization tools for education
  • Connected consumer devices, applications and protocols

Brian Kernighan, Room 311

  • Research Areas: application-specific languages, document preparation, user interfaces, software tools, programming methodology
  • Application-oriented languages, scripting languages.
  • Tools; user interfaces
  • Digital humanities

Zachary Kincaid, Room 219

  • Research areas: programming languages, program analysis, program verification, automated reasoning
  • Independent Research Topics:
  • Develop a practical algorithm for an intractable problem (e.g., by developing practical search heuristics, or by reducing to, or by identifying a tractable sub-problem, ...).
  • Design a domain-specific programming language, or prototype a new feature for an existing language.
  • Any interesting project related to programming languages or logic.

Gillat Kol, Room 316

Aleksandra korolova, 309 sherrerd hall.

Available for single-term IW and senior thesis advising, 2023-2024

  • Research areas: Societal impacts of algorithms and AI; privacy; fair and privacy-preserving machine learning; algorithm auditing.

Advisees typically have taken one or more of COS 226, COS 324, COS 423, COS 424 or COS 445.

Amit Levy, Room 307

  • Research Areas: Operating Systems, Distributed Systems, Embedded Systems, Internet of Things
  • Distributed hardware testing infrastructure
  • Second factor security tokens
  • Low-power wireless network protocol implementation
  • USB device driver implementation

Kai Li, Room 321

  • Research Areas: Distributed systems; storage systems; content-based search and data analysis of large datasets.
  • Fast communication mechanisms for heterogeneous clusters.
  • Approximate nearest-neighbor search for high dimensional data.
  • Data analysis and prediction of in-patient medical data.
  • Optimized implementation of classification algorithms on manycore processors.

Xiaoyan Li, 221 Nassau Street, Room 104

  • Research areas: Information retrieval, novelty detection, question answering, AI, machine learning and data analysis.
  • Explore new statistical retrieval models for document retrieval and question answering.
  • Apply AI in various fields.
  • Apply supervised or unsupervised learning in health, education, finance, and social networks, etc.
  • Any interesting project related to AI, machine learning, and data analysis.

Wyatt Lloyd, Room 323

  • Research areas: Distributed Systems
  • Caching algorithms and implementations
  • Storage systems
  • Distributed transaction algorithms and implementations

Margaret Martonosi, Room 208

  • Quantum Computing research, particularly related to architecture and compiler issues for QC.
  • Computer architectures specialized for modern workloads (e.g., graph analytics, machine learning algorithms, mobile applications
  • Investigating security and privacy vulnerabilities in computer systems, particularly IoT devices.
  • Other topics in computer architecture or mobile / IoT systems also possible.

Jonathan Mayer, Sherrerd Hall, Room 307 

  • Research areas: Technology law and policy, with emphasis on national security, criminal procedure, consumer privacy, network management, and online speech.
  • Assessing the effects of government policies, both in the public and private sectors.
  • Collecting new data that relates to government decision making, including surveying current business practices and studying user behavior.
  • Developing new tools to improve government processes and offer policy alternatives.

Andrés Monroy-Hernández, Room 405

  • Research Areas: Human-Computer Interaction, Social Computing, Public-Interest Technology, Augmented Reality, Urban Computing
  • Research interests:developing public-interest socio-technical systems.  We are currently creating alternatives to gig work platforms that are more equitable for all stakeholders. For instance, we are investigating the socio-technical affordances necessary to support a co-op food delivery network owned and managed by workers and restaurants. We are exploring novel system designs that support self-governance, decentralized/federated models, community-centered data ownership, and portable reputation systems.  We have opportunities for students interested in human-centered computing, UI/UX design, full-stack software development, and qualitative/quantitative user research.
  • Beyond our core projects, we are open to working on research projects that explore the use of emerging technologies, such as AR, wearables, NFTs, and DAOs, for creative and out-of-the-box applications.

Christopher Moretti, Corwin Hall, Room 036

  • Research areas: Distributed systems, high-throughput computing, computer science/engineering education
  • Expansion, improvement, and evaluation of open-source distributed computing software.
  • Applications of distributed computing for "big science" (e.g. biometrics, data mining, bioinformatics)
  • Software and best practices for computer science education and study, especially Princeton's 126/217/226 sequence or MOOCs development
  • Sports analytics and/or crowd-sourced computing

Radhika Nagpal, F316 Engineering Quadrangle

  • Research areas: control, robotics and dynamical systems

Karthik Narasimhan, Room 422

  • Research areas: Natural Language Processing, Reinforcement Learning
  • Autonomous agents for text-based games ( https://www.microsoft.com/en-us/research/project/textworld/ )
  • Transfer learning/generalization in NLP
  • Techniques for generating natural language
  • Model-based reinforcement learning

Arvind Narayanan, 308 Sherrerd Hall 

Research Areas: fair machine learning (and AI ethics more broadly), the social impact of algorithmic systems, tech policy

Pedro Paredes, Corwin Hall, Room 041

My primary research work is in Theoretical Computer Science.

 * Research Interest: Spectral Graph theory, Pseudorandomness, Complexity theory, Coding Theory, Quantum Information Theory, Combinatorics.

The IW projects I am interested in advising can be divided into three categories:

 1. Theoretical research

I am open to advise work on research projects in any topic in one of my research areas of interest. A project could also be based on writing a survey given results from a few papers. Students should have a solid background in math (e.g., elementary combinatorics, graph theory, discrete probability, basic algebra/calculus) and theoretical computer science (226 and 240 material, like big-O/Omega/Theta, basic complexity theory, basic fundamental algorithms). Mathematical maturity is a must.

A (non exhaustive) list of topics of projects I'm interested in:   * Explicit constructions of better vertex expanders and/or unique neighbor expanders.   * Construction deterministic or random high dimensional expanders.   * Pseudorandom generators for different problems.   * Topics around the quantum PCP conjecture.   * Topics around quantum error correcting codes and locally testable codes, including constructions, encoding and decoding algorithms.

 2. Theory informed practical implementations of algorithms   Very often the great advances in theoretical research are either not tested in practice or not even feasible to be implemented in practice. Thus, I am interested in any project that consists in trying to make theoretical ideas applicable in practice. This includes coming up with new algorithms that trade some theoretical guarantees for feasible implementation yet trying to retain the soul of the original idea; implementing new algorithms in a suitable programming language; and empirically testing practical implementations and comparing them with benchmarks / theoretical expectations. A project in this area doesn't have to be in my main areas of research, any theoretical result could be suitable for such a project.

Some examples of areas of interest:   * Streaming algorithms.   * Numeric linear algebra.   * Property testing.   * Parallel / Distributed algorithms.   * Online algorithms.    3. Machine learning with a theoretical foundation

I am interested in projects in machine learning that have some mathematical/theoretical, even if most of the project is applied. This includes topics like mathematical optimization, statistical learning, fairness and privacy.

One particular area I have been recently interested in is in the area of rating systems (e.g., Chess elo) and applications of this to experts problems.

Final Note: I am also willing to advise any project with any mathematical/theoretical component, even if it's not the main one; please reach out via email to chat about project ideas.

Iasonas Petras, Corwin Hall, Room 033

  • Research Areas: Information Based Complexity, Numerical Analysis, Quantum Computation.
  • Prerequisites: Reasonable mathematical maturity. In case of a project related to Quantum Computation a certain familiarity with quantum mechanics is required (related courses: ELE 396/PHY 208).
  • Possible research topics include:

1.   Quantum algorithms and circuits:

  • i. Design or simulation quantum circuits implementing quantum algorithms.
  • ii. Design of quantum algorithms solving/approximating continuous problems (such as Eigenvalue problems for Partial Differential Equations).

2.   Information Based Complexity:

  • i. Necessary and sufficient conditions for tractability of Linear and Linear Tensor Product Problems in various settings (for example worst case or average case). 
  • ii. Necessary and sufficient conditions for tractability of Linear and Linear Tensor Product Problems under new tractability and error criteria.
  • iii. Necessary and sufficient conditions for tractability of Weighted problems.
  • iv. Necessary and sufficient conditions for tractability of Weighted Problems under new tractability and error criteria.

3. Topics in Scientific Computation:

  • i. Randomness, Pseudorandomness, MC and QMC methods and their applications (Finance, etc)

Yuri Pritykin, 245 Carl Icahn Lab

  • Research interests: Computational biology; Cancer immunology; Regulation of gene expression; Functional genomics; Single-cell technologies.
  • Potential research projects: Development, implementation, assessment and/or application of algorithms for analysis, integration, interpretation and visualization of multi-dimensional data in molecular biology, particularly single-cell and spatial genomics data.

Benjamin Raphael, Room 309  

  • Research interests: Computational biology and bioinformatics; Cancer genomics; Algorithms and machine learning approaches for analysis of large-scale datasets
  • Implementation and application of algorithms to infer evolutionary processes in cancer
  • Identifying correlations between combinations of genomic mutations in human and cancer genomes
  • Design and implementation of algorithms for genome sequencing from new DNA sequencing technologies
  • Graph clustering and network anomaly detection, particularly using diffusion processes and methods from spectral graph theory

Vikram Ramaswamy, 035 Corwin Hall

  • Research areas: Interpretability of AI systems, Fairness in AI systems, Computer vision.
  • Constructing a new method to explain a model / create an interpretable by design model
  • Analyzing a current model / dataset to understand bias within the model/dataset
  • Proposing new fairness evaluations
  • Proposing new methods to train to improve fairness
  • Developing synthetic datasets for fairness / interpretability benchmarks
  • Understanding robustness of models

Ran Raz, Room 240

  • Research Area: Computational Complexity
  • Independent Research Topics: Computational Complexity, Information Theory, Quantum Computation, Theoretical Computer Science

Szymon Rusinkiewicz, Room 406

  • Research Areas: computer graphics; computer vision; 3D scanning; 3D printing; robotics; documentation and visualization of cultural heritage artifacts
  • Research ways of incorporating rotation invariance into computer visiontasks such as feature matching and classification
  • Investigate approaches to robust 3D scan matching
  • Model and compensate for imperfections in 3D printing
  • Given a collection of small mobile robots, apply control policies learned in simulation to the real robots.

Olga Russakovsky, Room 408

  • Research Areas: computer vision, machine learning, deep learning, crowdsourcing, fairness&bias in AI
  • Design a semantic segmentation deep learning model that can operate in a zero-shot setting (i.e., recognize and segment objects not seen during training)
  • Develop a deep learning classifier that is impervious to protected attributes (such as gender or race) that may be erroneously correlated with target classes
  • Build a computer vision system for the novel task of inferring what object (or part of an object) a human is referring to when pointing to a single pixel in the image. This includes both collecting an appropriate dataset using crowdsourcing on Amazon Mechanical Turk, creating a new deep learning formulation for this task, and running extensive analysis of both the data and the model

Sebastian Seung, Princeton Neuroscience Institute, Room 153

  • Research Areas: computational neuroscience, connectomics, "deep learning" neural networks, social computing, crowdsourcing, citizen science
  • Gamification of neuroscience (EyeWire  2.0)
  • Semantic segmentation and object detection in brain images from microscopy
  • Computational analysis of brain structure and function
  • Neural network theories of brain function

Jaswinder Pal Singh, Room 324

  • Research Areas: Boundary of technology and business/applications; building and scaling technology companies with special focus at that boundary; parallel computing systems and applications: parallel and distributed applications and their implications for software and architectural design; system software and programming environments for multiprocessors.
  • Develop a startup company idea, and build a plan/prototype for it.
  • Explore tradeoffs at the boundary of technology/product and business/applications in a chosen area.
  • Study and develop methods to infer insights from data in different application areas, from science to search to finance to others. 
  • Design and implement a parallel application. Possible areas include graphics, compression, biology, among many others. Analyze performance bottlenecks using existing tools, and compare programming models/languages.
  • Design and implement a scalable distributed algorithm.

Mona Singh, Room 420

  • Research Areas: computational molecular biology, as well as its interface with machine learning and algorithms.
  • Whole and cross-genome methods for predicting protein function and protein-protein interactions.
  • Analysis and prediction of biological networks.
  • Computational methods for inferring specific aspects of protein structure from protein sequence data.
  • Any other interesting project in computational molecular biology.

Robert Tarjan, 194 Nassau St., Room 308

Available for single-semester IW and senior thesis advising, 2022-2023

  • Research Areas: Data structures; graph algorithms; combinatorial optimization; computational complexity; computational geometry; parallel algorithms.
  • Implement one or more data structures or combinatorial algorithms to provide insight into their empirical behavior.
  • Design and/or analyze various data structures and combinatorial algorithms.

Olga Troyanskaya, Room 320

  • Research Areas: Bioinformatics; analysis of large-scale biological data sets (genomics, gene expression, proteomics, biological networks); algorithms for integration of data from multiple data sources; visualization of biological data; machine learning methods in bioinformatics.
  • Implement and evaluate one or more gene expression analysis algorithm.
  • Develop algorithms for assessment of performance of genomic analysis methods.
  • Develop, implement, and evaluate visualization tools for heterogeneous biological data.

David Walker, Room 211

  • Research Areas: Programming languages, type systems, compilers, domain-specific languages, software-defined networking and security
  • Independent Research Topics:  Any other interesting project that involves humanitarian hacking, functional programming, domain-specific programming languages, type systems, compilers, software-defined networking, fault tolerance, language-based security, theorem proving, logic or logical frameworks.

Shengyi Wang, Postdoctoral Research Associate, Room 216

  • Independent Research topics: Explore Escher-style tilings using (introductory) group theory and automata theory to produce beautiful pictures.

Kevin Wayne, Corwin Hall, Room 040

  • Research Areas: design, analysis, and implementation of algorithms; data structures; combinatorial optimization; graphs and networks.
  • Design and implement computer visualizations of algorithms or data structures.
  • Develop pedagogical tools or programming assignments for the computer science curriculum at Princeton and beyond.
  • Develop assessment infrastructure and assessments for MOOCs.

Matt Weinberg, 194 Nassau St., Room 222

  • Research Areas: algorithms, algorithmic game theory, mechanism design, game theoretical problems in {Bitcoin, networking, healthcare}.
  • Theoretical questions related to COS 445 topics such as matching theory, voting theory, auction design, etc. 
  • Theoretical questions related to incentives in applications like Bitcoin, the Internet, health care, etc. In a little bit more detail: protocols for these systems are often designed assuming that users will follow them. But often, users will actually be strictly happier to deviate from the intended protocol. How should we reason about user behavior in these protocols? How should we design protocols in these settings?

Huacheng Yu, Room 310

  • data structures
  • streaming algorithms
  • design and analyze data structures / streaming algorithms
  • prove impossibility results (lower bounds)
  • implement and evaluate data structures / streaming algorithms

Ellen Zhong, Room 314

No longer available for single-term IW  and senior thesis advising, 2023-2024

Opportunities outside the department

We encourage students to look in to doing interdisciplinary computer science research and to work with professors in departments other than computer science.  However, every CS independent work project must have a strong computer science element (even if it has other scientific or artistic elements as well.)  To do a project with an adviser outside of computer science you must have permission of the department.  This can be accomplished by having a second co-adviser within the computer science department or by contacting the independent work supervisor about the project and having he or she sign the independent work proposal form.

Here is a list of professors outside the computer science department who are eager to work with computer science undergraduates.

Maria Apostolaki, Engineering Quadrangle, C330

  • Research areas: Computing & Networking, Data & Information Science, Security & Privacy

Branko Glisic, Engineering Quadrangle, Room E330

  • Documentation of historic structures
  • Cyber physical systems for structural health monitoring
  • Developing virtual and augmented reality applications for documenting structures
  • Applying machine learning techniques to generate 3D models from 2D plans of buildings
  •  Contact : Rebecca Napolitano, rkn2 (@princeton.edu)

Mihir Kshirsagar, Sherrerd Hall, Room 315

Center for Information Technology Policy.

  • Consumer protection
  • Content regulation
  • Competition law
  • Economic development
  • Surveillance and discrimination

Sharad Malik, Engineering Quadrangle, Room B224

Select a Senior Thesis Adviser for the 2020-21 Academic Year.

  • Design of reliable hardware systems
  • Verifying complex software and hardware systems

Prateek Mittal, Engineering Quadrangle, Room B236

  • Internet security and privacy 
  • Social Networks
  • Privacy technologies, anonymous communication
  • Network Science
  • Internet security and privacy: The insecurity of Internet protocols and services threatens the safety of our critical network infrastructure and billions of end users. How can we defend end users as well as our critical network infrastructure from attacks?
  • Trustworthy social systems: Online social networks (OSNs) such as Facebook, Google+, and Twitter have revolutionized the way our society communicates. How can we leverage social connections between users to design the next generation of communication systems?
  • Privacy Technologies: Privacy on the Internet is eroding rapidly, with businesses and governments mining sensitive user information. How can we protect the privacy of our online communications? The Tor project (https://www.torproject.org/) is a potential application of interest.

Ken Norman,  Psychology Dept, PNI 137

  • Research Areas: Memory, the brain and computation 
  • Lab:  Princeton Computational Memory Lab

Potential research topics

  • Methods for decoding cognitive state information from neuroimaging data (fMRI and EEG) 
  • Neural network simulations of learning and memory

Caroline Savage

Office of Sustainability, Phone:(609)258-7513, Email: cs35 (@princeton.edu)

The  Campus as Lab  program supports students using the Princeton campus as a living laboratory to solve sustainability challenges. The Office of Sustainability has created a list of campus as lab research questions, filterable by discipline and topic, on its  website .

An example from Computer Science could include using  TigerEnergy , a platform which provides real-time data on campus energy generation and consumption, to study one of the many energy systems or buildings on campus. Three CS students used TigerEnergy to create a  live energy heatmap of campus .

Other potential projects include:

  • Apply game theory to sustainability challenges
  • Develop a tool to help visualize interactions between complex campus systems, e.g. energy and water use, transportation and storm water runoff, purchasing and waste, etc.
  • How can we learn (in aggregate) about individuals’ waste, energy, transportation, and other behaviors without impinging on privacy?

Janet Vertesi, Sociology Dept, Wallace Hall, Room 122

  • Research areas: Sociology of technology; Human-computer interaction; Ubiquitous computing.
  • Possible projects: At the intersection of computer science and social science, my students have built mixed reality games, produced artistic and interactive installations, and studied mixed human-robot teams, among other projects.

David Wentzlaff, Engineering Quadrangle, Room 228

Computing, Operating Systems, Sustainable Computing.

  • Instrument Princeton's Green (HPCRC) data center
  • Investigate power utilization on an processor core implemented in an FPGA
  • Dismantle and document all of the components in modern electronics. Invent new ways to build computers that can be recycled easier.
  • Other topics in parallel computer architecture or operating systems

Facebook

Department of Biological Sciences

undergraduate research ideas

Examples of Undergraduate Research Projects

Fall 2021 projects, previous projects.

John Hopkins University logo

  • Get Curious
  • Talk to People
  • Take Action
  • Inspire Others
  • Events and Outcomes
  • JHU At-A-Glance
  • Students and Schools
  • Ready to Hire?
  • Mentor Students
  • Hire Students
  • “When U Grow Up” Podcast

A student’s guide to undergraduate research

  • Share This: Share A student’s guide to undergraduate research on Facebook Share A student’s guide to undergraduate research on LinkedIn Share A student’s guide to undergraduate research on X

Originally written by Shiwei Wang for Nature journal in March 2019.

Participating in original research during your undergraduate studies can greatly expand your learning experience. However, finding the project can be a challenging task, so here’s a short but comprehensive guide that can help you get the most out of an undergraduate research opportunity.

Choose the right lab

Learn to think like a scientist. A lot of people start their undergraduate research by glancing at the faculty list and e-mailing multiple professors whose work seems interesting. Although this might get you a position somewhere, it is not the most effective approach. Before looking at labs, dive into the science to find out which areas fascinate you. Read a lot, go to talks, and talk to your professors not just about their classes, but about science in general as well.

Subscribe to e-mail newsletters from journals such as Nature and Science. Try to read research highlights and science news regularly. Podcasts and articles by, for example, Nature, Science, Scientific American or Quanta can also be interesting sources of information. Follow academics, journals and universities on Twitter. Start your undergraduate research by learning more about science, thinking like a scientist and working out what you love.

Look for questions, not subjects. You might have chosen a major to study, but don’t let this limit your search for research labs. Modern labs are interdisciplinary and very different from what you do in undergrad labs. Instead of limiting your search to your department, try to look at labs in all related departments. Choose labs on the basis of the questions they’re trying to answer.

Mentoring is as important as research. Contact group members to learn about your prospective laboratory’s environment. Are the group members close? Is the lab friendly or competitive and condescending? Is the lab head hands-off or hands-on? The size of the group is also important. If you join a small group, you’ll have a higher chance of being mentored directly by your principal investigator, whereas in a big group, you are more likely to be mentored by a postdoctoral researcher or graduate student.

Reach out with confidence. Once you’ve determined that the research programme interests you and the group dynamic is healthy, send the principal investigator an e-mail. Make sure to explain why you’re interested in working in the lab and that you have spoken to other lab members. Be patient if they don’t reply. If you don’t receive a response after a week or so, send a second e-mail or reach out in other ways, such as by asking group members to enquire for you.

undergraduate research ideas

Get the most out of the experience

Start your research with reading, and keep on reading. Usually, the principal investigator will assign you a mentor and a project. Ask for literature to read: learning about the state of the field and why the work is important will help you to push the project forward. Read about your field as well as other, totally unrelated fields. As an undergraduate, you have the freedom to change your major and your future plans. Make sure to strike a balance between reading and conducting experiments. It’s hard to do both at the same time, but it will make you a better scientist.

Set specific goals for yourself and let your mentors know. Think about what you want from your research and how much time you are willing to put in. Besides learning the techniques, do you want to learn how to analyse results and design experiments? Do you want to learn how to write proposals by applying for undergraduate research grants? Do you want to improve your presentation skills by going to conferences? Do you want to potentially finish a project for publication? Working out what you want to achieve will help you to direct your time effectively.

Research takes time. Don’t blame yourself if experiments don’t work or the project is not moving forward as fast as you expected. Science is about failing and trying again. Getting used to and coping with frustration is part of the learning curve of research.

Find a healthy balance. University is already a lot of work, and research will only take up more time. When planning your schedule, try to allocate large blocks of time (whole afternoons or individual days) to research. Rushing through a procedure could be unsafe and will often produce useless results. Always plan extra time for experiments. Consider working less in the lab during exam weeks so you don’t get overwhelmed. Talk to your mentor about your schedule and feelings regularly, so that you can arrange experiments at times that suit you, and you can keep on top of your mental health.

Find financial support. If you wish to do research at your own institution over the summer, your institution might offer funding to cover your expenses. If you want to go to another university, you can apply for funding from that institution’s undergraduate research programme, or from foundations, companies or academic societies. For example, the US National Science Foundation offers a Research Experiences for Undergraduates programme. Universities, foundations and academic societies might also offer grants to cover your travel expense to various conferences. Don’t let money limit what you want to do. Talk to senior students or professors, or search online to find all the opportunities!

Always think about the big picture. Your undergraduate research doesn’t define what you’re going to do after your degree. Keep reading and taking classes outside your comfort zone. Explore and learn as much as possible. Working out what you love is the best preparation you can get for the rest of your career.

Read the full article on the Nature website.

To find a research opportunity at Johns Hopkins University, visit the Hopkins Office of Undergraduate Research website .

Grad Coach

Research Topics & Ideas: Education

170+ Research Ideas To Fast-Track Your Project

Topic Kickstarter: Research topics in education

If you’re just starting out exploring education-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from actual dissertations and theses..

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable education-related research topic, you’ll need to identify a clear and convincing research gap , and a viable plan of action to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Overview: Education Research Topics

  • How to find a research topic (video)
  • List of 50+ education-related research topics/ideas
  • List of 120+ level-specific research topics 
  • Examples of actual dissertation topics in education
  • Tips to fast-track your topic ideation (video)
  • Free Webinar : Topic Ideation 101
  • Where to get extra help

Education-Related Research Topics & Ideas

Below you’ll find a list of education-related research topics and idea kickstarters. These are fairly broad and flexible to various contexts, so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • The impact of school funding on student achievement
  • The effects of social and emotional learning on student well-being
  • The effects of parental involvement on student behaviour
  • The impact of teacher training on student learning
  • The impact of classroom design on student learning
  • The impact of poverty on education
  • The use of student data to inform instruction
  • The role of parental involvement in education
  • The effects of mindfulness practices in the classroom
  • The use of technology in the classroom
  • The role of critical thinking in education
  • The use of formative and summative assessments in the classroom
  • The use of differentiated instruction in the classroom
  • The use of gamification in education
  • The effects of teacher burnout on student learning
  • The impact of school leadership on student achievement
  • The effects of teacher diversity on student outcomes
  • The role of teacher collaboration in improving student outcomes
  • The implementation of blended and online learning
  • The effects of teacher accountability on student achievement
  • The effects of standardized testing on student learning
  • The effects of classroom management on student behaviour
  • The effects of school culture on student achievement
  • The use of student-centred learning in the classroom
  • The impact of teacher-student relationships on student outcomes
  • The achievement gap in minority and low-income students
  • The use of culturally responsive teaching in the classroom
  • The impact of teacher professional development on student learning
  • The use of project-based learning in the classroom
  • The effects of teacher expectations on student achievement
  • The use of adaptive learning technology in the classroom
  • The impact of teacher turnover on student learning
  • The effects of teacher recruitment and retention on student learning
  • The impact of early childhood education on later academic success
  • The impact of parental involvement on student engagement
  • The use of positive reinforcement in education
  • The impact of school climate on student engagement
  • The role of STEM education in preparing students for the workforce
  • The effects of school choice on student achievement
  • The use of technology in the form of online tutoring

Level-Specific Research Topics

Looking for research topics for a specific level of education? We’ve got you covered. Below you can find research topic ideas for primary, secondary and tertiary-level education contexts. Click the relevant level to view the respective list.

Research Topics: Pick An Education Level

Primary education.

  • Investigating the effects of peer tutoring on academic achievement in primary school
  • Exploring the benefits of mindfulness practices in primary school classrooms
  • Examining the effects of different teaching strategies on primary school students’ problem-solving skills
  • The use of storytelling as a teaching strategy in primary school literacy instruction
  • The role of cultural diversity in promoting tolerance and understanding in primary schools
  • The impact of character education programs on moral development in primary school students
  • Investigating the use of technology in enhancing primary school mathematics education
  • The impact of inclusive curriculum on promoting equity and diversity in primary schools
  • The impact of outdoor education programs on environmental awareness in primary school students
  • The influence of school climate on student motivation and engagement in primary schools
  • Investigating the effects of early literacy interventions on reading comprehension in primary school students
  • The impact of parental involvement in school decision-making processes on student achievement in primary schools
  • Exploring the benefits of inclusive education for students with special needs in primary schools
  • Investigating the effects of teacher-student feedback on academic motivation in primary schools
  • The role of technology in developing digital literacy skills in primary school students
  • Effective strategies for fostering a growth mindset in primary school students
  • Investigating the role of parental support in reducing academic stress in primary school children
  • The role of arts education in fostering creativity and self-expression in primary school students
  • Examining the effects of early childhood education programs on primary school readiness
  • Examining the effects of homework on primary school students’ academic performance
  • The role of formative assessment in improving learning outcomes in primary school classrooms
  • The impact of teacher-student relationships on academic outcomes in primary school
  • Investigating the effects of classroom environment on student behavior and learning outcomes in primary schools
  • Investigating the role of creativity and imagination in primary school curriculum
  • The impact of nutrition and healthy eating programs on academic performance in primary schools
  • The impact of social-emotional learning programs on primary school students’ well-being and academic performance
  • The role of parental involvement in academic achievement of primary school children
  • Examining the effects of classroom management strategies on student behavior in primary school
  • The role of school leadership in creating a positive school climate Exploring the benefits of bilingual education in primary schools
  • The effectiveness of project-based learning in developing critical thinking skills in primary school students
  • The role of inquiry-based learning in fostering curiosity and critical thinking in primary school students
  • The effects of class size on student engagement and achievement in primary schools
  • Investigating the effects of recess and physical activity breaks on attention and learning in primary school
  • Exploring the benefits of outdoor play in developing gross motor skills in primary school children
  • The effects of educational field trips on knowledge retention in primary school students
  • Examining the effects of inclusive classroom practices on students’ attitudes towards diversity in primary schools
  • The impact of parental involvement in homework on primary school students’ academic achievement
  • Investigating the effectiveness of different assessment methods in primary school classrooms
  • The influence of physical activity and exercise on cognitive development in primary school children
  • Exploring the benefits of cooperative learning in promoting social skills in primary school students

Secondary Education

  • Investigating the effects of school discipline policies on student behavior and academic success in secondary education
  • The role of social media in enhancing communication and collaboration among secondary school students
  • The impact of school leadership on teacher effectiveness and student outcomes in secondary schools
  • Investigating the effects of technology integration on teaching and learning in secondary education
  • Exploring the benefits of interdisciplinary instruction in promoting critical thinking skills in secondary schools
  • The impact of arts education on creativity and self-expression in secondary school students
  • The effectiveness of flipped classrooms in promoting student learning in secondary education
  • The role of career guidance programs in preparing secondary school students for future employment
  • Investigating the effects of student-centered learning approaches on student autonomy and academic success in secondary schools
  • The impact of socio-economic factors on educational attainment in secondary education
  • Investigating the impact of project-based learning on student engagement and academic achievement in secondary schools
  • Investigating the effects of multicultural education on cultural understanding and tolerance in secondary schools
  • The influence of standardized testing on teaching practices and student learning in secondary education
  • Investigating the effects of classroom management strategies on student behavior and academic engagement in secondary education
  • The influence of teacher professional development on instructional practices and student outcomes in secondary schools
  • The role of extracurricular activities in promoting holistic development and well-roundedness in secondary school students
  • Investigating the effects of blended learning models on student engagement and achievement in secondary education
  • The role of physical education in promoting physical health and well-being among secondary school students
  • Investigating the effects of gender on academic achievement and career aspirations in secondary education
  • Exploring the benefits of multicultural literature in promoting cultural awareness and empathy among secondary school students
  • The impact of school counseling services on student mental health and well-being in secondary schools
  • Exploring the benefits of vocational education and training in preparing secondary school students for the workforce
  • The role of digital literacy in preparing secondary school students for the digital age
  • The influence of parental involvement on academic success and well-being of secondary school students
  • The impact of social-emotional learning programs on secondary school students’ well-being and academic success
  • The role of character education in fostering ethical and responsible behavior in secondary school students
  • Examining the effects of digital citizenship education on responsible and ethical technology use among secondary school students
  • The impact of parental involvement in school decision-making processes on student outcomes in secondary schools
  • The role of educational technology in promoting personalized learning experiences in secondary schools
  • The impact of inclusive education on the social and academic outcomes of students with disabilities in secondary schools
  • The influence of parental support on academic motivation and achievement in secondary education
  • The role of school climate in promoting positive behavior and well-being among secondary school students
  • Examining the effects of peer mentoring programs on academic achievement and social-emotional development in secondary schools
  • Examining the effects of teacher-student relationships on student motivation and achievement in secondary schools
  • Exploring the benefits of service-learning programs in promoting civic engagement among secondary school students
  • The impact of educational policies on educational equity and access in secondary education
  • Examining the effects of homework on academic achievement and student well-being in secondary education
  • Investigating the effects of different assessment methods on student performance in secondary schools
  • Examining the effects of single-sex education on academic performance and gender stereotypes in secondary schools
  • The role of mentoring programs in supporting the transition from secondary to post-secondary education

Tertiary Education

  • The role of student support services in promoting academic success and well-being in higher education
  • The impact of internationalization initiatives on students’ intercultural competence and global perspectives in tertiary education
  • Investigating the effects of active learning classrooms and learning spaces on student engagement and learning outcomes in tertiary education
  • Exploring the benefits of service-learning experiences in fostering civic engagement and social responsibility in higher education
  • The influence of learning communities and collaborative learning environments on student academic and social integration in higher education
  • Exploring the benefits of undergraduate research experiences in fostering critical thinking and scientific inquiry skills
  • Investigating the effects of academic advising and mentoring on student retention and degree completion in higher education
  • The role of student engagement and involvement in co-curricular activities on holistic student development in higher education
  • The impact of multicultural education on fostering cultural competence and diversity appreciation in higher education
  • The role of internships and work-integrated learning experiences in enhancing students’ employability and career outcomes
  • Examining the effects of assessment and feedback practices on student learning and academic achievement in tertiary education
  • The influence of faculty professional development on instructional practices and student outcomes in tertiary education
  • The influence of faculty-student relationships on student success and well-being in tertiary education
  • The impact of college transition programs on students’ academic and social adjustment to higher education
  • The impact of online learning platforms on student learning outcomes in higher education
  • The impact of financial aid and scholarships on access and persistence in higher education
  • The influence of student leadership and involvement in extracurricular activities on personal development and campus engagement
  • Exploring the benefits of competency-based education in developing job-specific skills in tertiary students
  • Examining the effects of flipped classroom models on student learning and retention in higher education
  • Exploring the benefits of online collaboration and virtual team projects in developing teamwork skills in tertiary students
  • Investigating the effects of diversity and inclusion initiatives on campus climate and student experiences in tertiary education
  • The influence of study abroad programs on intercultural competence and global perspectives of college students
  • Investigating the effects of peer mentoring and tutoring programs on student retention and academic performance in tertiary education
  • Investigating the effectiveness of active learning strategies in promoting student engagement and achievement in tertiary education
  • Investigating the effects of blended learning models and hybrid courses on student learning and satisfaction in higher education
  • The role of digital literacy and information literacy skills in supporting student success in the digital age
  • Investigating the effects of experiential learning opportunities on career readiness and employability of college students
  • The impact of e-portfolios on student reflection, self-assessment, and showcasing of learning in higher education
  • The role of technology in enhancing collaborative learning experiences in tertiary classrooms
  • The impact of research opportunities on undergraduate student engagement and pursuit of advanced degrees
  • Examining the effects of competency-based assessment on measuring student learning and achievement in tertiary education
  • Examining the effects of interdisciplinary programs and courses on critical thinking and problem-solving skills in college students
  • The role of inclusive education and accessibility in promoting equitable learning experiences for diverse student populations
  • The role of career counseling and guidance in supporting students’ career decision-making in tertiary education
  • The influence of faculty diversity and representation on student success and inclusive learning environments in higher education

Research topic idea mega list

Education-Related Dissertations & Theses

While the ideas we’ve presented above are a decent starting point for finding a research topic in education, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses in the education space to see how this all comes together in practice.

Below, we’ve included a selection of education-related research projects to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • From Rural to Urban: Education Conditions of Migrant Children in China (Wang, 2019)
  • Energy Renovation While Learning English: A Guidebook for Elementary ESL Teachers (Yang, 2019)
  • A Reanalyses of Intercorrelational Matrices of Visual and Verbal Learners’ Abilities, Cognitive Styles, and Learning Preferences (Fox, 2020)
  • A study of the elementary math program utilized by a mid-Missouri school district (Barabas, 2020)
  • Instructor formative assessment practices in virtual learning environments : a posthumanist sociomaterial perspective (Burcks, 2019)
  • Higher education students services: a qualitative study of two mid-size universities’ direct exchange programs (Kinde, 2020)
  • Exploring editorial leadership : a qualitative study of scholastic journalism advisers teaching leadership in Missouri secondary schools (Lewis, 2020)
  • Selling the virtual university: a multimodal discourse analysis of marketing for online learning (Ludwig, 2020)
  • Advocacy and accountability in school counselling: assessing the use of data as related to professional self-efficacy (Matthews, 2020)
  • The use of an application screening assessment as a predictor of teaching retention at a midwestern, K-12, public school district (Scarbrough, 2020)
  • Core values driving sustained elite performance cultures (Beiner, 2020)
  • Educative features of upper elementary Eureka math curriculum (Dwiggins, 2020)
  • How female principals nurture adult learning opportunities in successful high schools with challenging student demographics (Woodward, 2020)
  • The disproportionality of Black Males in Special Education: A Case Study Analysis of Educator Perceptions in a Southeastern Urban High School (McCrae, 2021)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic within education, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Business/management/MBA research topics

53 Comments

Watson Kabwe

This is an helpful tool 🙏

Musarrat Parveen

Special education

Akbar khan

Really appreciated by this . It is the best platform for research related items

Angel taña

Research title related to students

Ngirumuvugizi Jaccques

Good idea I’m going to teach my colleagues

Anangnerisia@gmail.com

You can find our list of nursing-related research topic ideas here: https://gradcoach.com/research-topics-nursing/

FOSU DORIS

Write on action research topic, using guidance and counseling to address unwanted teenage pregnancy in school

Samson ochuodho

Thanks a lot

Johaima

I learned a lot from this site, thank you so much!

Rhod Tuyan

Thank you for the information.. I would like to request a topic based on school major in social studies

Mercedes Bunsie

parental involvement and students academic performance

Abshir Mustafe Cali

Science education topics?

Karen Joy Andrade

How about School management and supervision pls.?

JOHANNES SERAME MONYATSI

Hi i am an Deputy Principal in a primary school. My wish is to srudy foe Master’s degree in Education.Please advice me on which topic can be relevant for me. Thanks.

NKWAIN Chia Charles

Every topic proposed above on primary education is a starting point for me. I appreciate immensely the team that has sat down to make a detail of these selected topics just for beginners like us. Be blessed.

Nkwain Chia Charles

Kindly help me with the research questions on the topic” Effects of workplace conflict on the employees’ job performance”. The effects can be applicable in every institution,enterprise or organisation.

Kelvin Kells Grant

Greetings, I am a student majoring in Sociology and minoring in Public Administration. I’m considering any recommended research topic in the field of Sociology.

Sulemana Alhassan

I’m a student pursuing Mphil in Basic education and I’m considering any recommended research proposal topic in my field of study

Kupoluyi Regina

Kindly help me with a research topic in educational psychology. Ph.D level. Thank you.

Project-based learning is a teaching/learning type,if well applied in a classroom setting will yield serious positive impact. What can a teacher do to implement this in a disadvantaged zone like “North West Region of Cameroon ( hinterland) where war has brought about prolonged and untold sufferings on the indegins?

Damaris Nzoka

I wish to get help on topics of research on educational administration

I wish to get help on topics of research on educational administration PhD level

Sadaf

I am also looking for such type of title

Afriyie Saviour

I am a student of undergraduate, doing research on how to use guidance and counseling to address unwanted teenage pregnancy in school

wysax

the topics are very good regarding research & education .

William AU Mill

Can i request your suggestion topic for my Thesis about Teachers as an OFW. thanx you

ChRISTINE

Would like to request for suggestions on a topic in Economics of education,PhD level

Would like to request for suggestions on a topic in Economics of education

George

Hi 👋 I request that you help me with a written research proposal about education the format

Sarah Moyambo

l would like to request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

Ernest Gyabaah

I would to inquire on research topics on Educational psychology, Masters degree

Aron kirui

I am PhD student, I am searching my Research topic, It should be innovative,my area of interest is online education,use of technology in education

revathy a/p letchumanan

request suggestion on topic in masters in medical education .

D.Newlands PhD.

Look at British Library as they keep a copy of all PhDs in the UK Core.ac.uk to access Open University and 6 other university e-archives, pdf downloads mostly available, all free.

Monica

May I also ask for a topic based on mathematics education for college teaching, please?

Aman

Please I am a masters student of the department of Teacher Education, Faculty of Education Please I am in need of proposed project topics to help with my final year thesis

Ellyjoy

Am a PhD student in Educational Foundations would like a sociological topic. Thank

muhammad sani

please i need a proposed thesis project regardging computer science

also916

Greetings and Regards I am a doctoral student in the field of philosophy of education. I am looking for a new topic for my thesis. Because of my work in the elementary school, I am looking for a topic that is from the field of elementary education and is related to the philosophy of education.

shantel orox

Masters student in the field of curriculum, any ideas of a research topic on low achiever students

Rey

In the field of curriculum any ideas of a research topic on deconalization in contextualization of digital teaching and learning through in higher education

Omada Victoria Enyojo

Amazing guidelines

JAMES MALUKI MUTIA

I am a graduate with two masters. 1) Master of arts in religious studies and 2) Master in education in foundations of education. I intend to do a Ph.D. on my second master’s, however, I need to bring both masters together through my Ph.D. research. can I do something like, ” The contribution of Philosophy of education for a quality religion education in Kenya”? kindly, assist and be free to suggest a similar topic that will bring together the two masters. thanks in advance

betiel

Hi, I am an Early childhood trainer as well as a researcher, I need more support on this topic: The impact of early childhood education on later academic success.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER COLUMN
  • 15 March 2019

A student’s guide to undergraduate research

  • Shiwei Wang 0

Shiwei Wang is a junior undergraduate student studying Integrated Science and Chemistry at Northwestern University in Evanston, Illinois. Twitter: @W_Shiwei

You can also search for this author in PubMed   Google Scholar

I have thoroughly enjoyed my experience working in a materials-chemistry laboratory at Northwestern University in Evanston, Illinois, for the past two years. Being able to mix an undergraduate education with original research in a proper laboratory has been a fantastic opportunity.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

doi: https://doi.org/10.1038/d41586-019-00871-x

This is an article from the Nature Careers Community, a place for Nature readers to share their professional experiences and advice. Guest posts are encouraged. You can get in touch with the editor at [email protected].

Wang, S. et al. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.7824707.v2 (2019).

Download references

Related Articles

undergraduate research ideas

Bring training forward for undergraduate researchers

‘Woah, this is affecting me’: why I’m fighting racial inequality in prostate-cancer research

‘Woah, this is affecting me’: why I’m fighting racial inequality in prostate-cancer research

Career Q&A 20 MAR 24

So … you’ve been hacked

So … you’ve been hacked

Technology Feature 19 MAR 24

Four years on: the career costs for scientists battling long COVID

Four years on: the career costs for scientists battling long COVID

Career Feature 18 MAR 24

How to stop ‘passing the harasser’: universities urged to join information-sharing scheme

How to stop ‘passing the harasser’: universities urged to join information-sharing scheme

News 18 MAR 24

People, passion, publishable: an early-career researcher’s checklist for prioritizing projects

People, passion, publishable: an early-career researcher’s checklist for prioritizing projects

Career Column 15 MAR 24

Postdoctoral Associate

Our laboratory at the Washington University in St. Louis is seeking a postdoctoral experimental biologist to study urogenital diseases and cancer.

Saint Louis, Missouri

Washington University School of Medicine Department of Medicine

Recruitment of Global Talent at the Institute of Zoology, Chinese Academy of Sciences (IOZ, CAS)

The Institute of Zoology (IOZ), Chinese Academy of Sciences (CAS), is seeking global talents around the world.

Beijing, China

Institute of Zoology, Chinese Academy of Sciences (IOZ, CAS)

undergraduate research ideas

Postdoctoral Fellow-Proteomics/Mass Spectrometry

Location: Tulane University School of Medicine, New Orleans, LA, USA Department: Biochemistry and Molecular Biology Tulane University School of Med...

New Orleans, Louisiana

Tulane University School of Medicine (SOM)

undergraduate research ideas

Open Faculty Position in Mathematical and Information Security

We are now seeking outstanding candidates in all areas of mathematics and information security.

Dongguan, Guangdong, China

GREAT BAY INSTITUTE FOR ADVANCED STUDY: Institute of Mathematical and Information Security

Faculty Positions in Bioscience and Biomedical Engineering (BSBE) Thrust, Systems Hub, HKUST (GZ)

Tenure-track and tenured faculty positions at all ranks (Assistant Professor/Associate Professor/Professor)

The university is situated in the heart of the Guangdong-Hong Kong-Macau Greater Bay Area, a highly active and vibrant region in the world.

The Hong Kong University of Science and Technology (Guangzhou)

undergraduate research ideas

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

You are using an outdated browser. Please upgrade your browser to improve your experience.

Johns Hopkins University

  • Undergraduate Research

You are in a modal window. Press the escape key to exit.

  • News & Events
  • See programs

Common Searches

  • Why is it called Johns Hopkins?
  • What majors and minors are offered?
  • Where can I find information about graduate programs?
  • How much is tuition?
  • What financial aid packages are available?
  • How do I apply?
  • How do I get to campus?
  • Where can I find job listings?
  • Where can I log in to myJHU?
  • Where can I log in to SIS?
  • University Leadership
  • History & Mission
  • Diversity & Inclusion
  • Notable Alumni
  • Hopkins in the Community
  • Hopkins Around the World
  • News from Johns Hopkins
  • Undergraduate Studies
  • Graduate Studies
  • Online Studies
  • Part-Time & Non-Degree Programs
  • Summer Programs
  • Academic Calendars
  • Advanced International Studies
  • Applied Physics Laboratory
  • Arts & Sciences
  • Engineering
  • Peabody Conservatory
  • Public Health
  • Undergraduate Admissions
  • Graduate Admissions
  • Plan a Visit
  • Tuition & Costs
  • Financial Aid
  • Innovation & Incubation
  • Bloomberg Distinguished Professors
  • Our Campuses
  • About Baltimore
  • Housing & Dining
  • Arts & Culture
  • Health & Wellness
  • Disability Services
  • Calendar of Events
  • Maps & Directions
  • Contact the University
  • Employment Opportunities
  • Give to the University
  • For Parents
  • For News Media
  • Office of the President
  • Office of the Provost
  • Gilman’s Inaugural Address
  • Academic Support
  • Study Abroad
  • Nobel Prize winners
  • Homewood Campus
  • Emergency Contact Information

As  America’s first research university , we have been tackling difficult questions and finding answers since 1876.

Every day, our faculty and students work side by side in a tireless pursuit of discovery, continuing our founding mission to bring knowledge to the world. Whether you study engineering, chemistry, music, anthropology, or all of the above, every student here—no matter his or her major—is an investigator.

You can find research in whatever field you want because everyone here is doing some sort of research, and you can help out.

Yadam

Explore supernovae alongside a Nobel laureate. Learn how to make music with lasers . Create devices that will save lives in impoverished countries . Take a grand tour of the cities that inspired some of the Western world’s great thinkers—Venice, Florence, Paris, or London.

At Hopkins, you can do all of the above. The possibilities are limited only by your imagination.

15 students smile for a group photo.

Credit: Johns Hopkins University

Program funds undergraduate summer research experiences

Kendra Brewer

Rising senior earns Beinecke Scholarship

Clockwise from top left: Sheila Iyer, Sumasri Kotha, Erick Rocher, and Nathan Wang

Image caption: Clockwise from top left: Sheila Iyer, Sumasri Kotha, Erick Rocher, and Nathan Wang

Four win Goldwater Scholarships

Programs & fellowships.

  • Provost’s Undergraduate Research Awards : Receive up to $3,000 and be paired with a full-time faculty sponsor for research on any topic of your choosing
  • Woodrow Wilson Undergraduate Research Fellowship Program : Engage in hands-on, independent learning with faculty mentors and receive funding of up to $10,000 over four years
  • ASPIRE grants : Promote independent research projects among undergrads in the School of Arts and Sciences; awards range from $500 to $4,500 per academic year

Learn more:

  • Hopkins Office of Undergraduate Research
  • Student research opportunities at the School of Engineering
  • Student research opportunities at the School of Arts and Sciences

Johns Hopkins University

  • Johns Hopkins University
  • Address Baltimore, Maryland
  • Phone number 410-516-8000
  • © 2024 Johns Hopkins University. All rights reserved.
  • Schools & Divisions
  • Admissions & Aid
  • Research & Faculty
  • Campus Life
  • University Policies and Statements
  • Privacy Statement
  • Title IX Information and Resources
  • Higher Education Act Disclosures
  • Clery Disclosure
  • Accessibility
  • Guide to Undergraduate Research at Duke

Duke is among the top universities for research, but when you think of research, do you think of undergraduates?

If you answered no, think again. Research isn’t only for faculty or graduate students; undergrads can begin participating in research in a multitude of ways from as early as their first year at Duke.

The  Directors of Academic Engagement , faculty, and students from across Duke took time this year to explain the value of research experiences for undergraduates and break down the elusive process of finding a research project.

From Dance and English, Political Science and Psychology, to Biology and Neuroscience, these Duke researchers demonstrate the various types of opportunities available to students in all areas of Duke while breaking down myths that research is out of reach.

 Welcome to Undergraduate Research at Duke 

Start with a passion

If students feel overwhelmed by the options available to them, they aren’t alone, says  Bridgette Hard , professor of the practice of  Psychology & Neuroscience . There are many options for students at Duke to pursue research, whether through independent study or work with individual faculty mentors,  summer research programs  or through established, interdisciplinary programs like  Bass Connections .

The first step in research is taking a step — any step — especially if it is still the first year.

What is successful research?

Sometimes research fails. You uncover information or results that you didn’t expect. Plans fall apart, or new hurdles appear along the way. What’s next? Duke researchers discuss why this isn’t necessarily a bad thing and how “failing” research might actually be successful in the long run. 

“Nothing is unproductive in research…and nothing is unproductive in the way you get involved in research at Duke. Everything is a learning process,” says Director of Academic Engagement Jules Odendahl-James.

Finding partners in research

At Duke, there are many avenues to connect to others doing research and lots of people who are interested in helping. The key is finding the right people.

“The institution is resource rich,” says  Iyun Ashani Harrison , associate professor of the practice in  Dance . “Access to intellectuals, to ideas, it influences your processes, your research, how you imagine yourself in the world and what you might be able to do.”

The unexpected gifts of research

The benefits of engaging in research aren’t limited merely to research outcomes.

“Meeting people that you didn’t know you should know,” is one of the most important outcomes of participating in research according to  Candis Watts Smith , associate professor of  Political Science . Listen as other faculty and students share the benefits they have found from participating in research at Duke.

To take the next step — or the first step — in exploring research opportunities at Duke, students can visit this  page for   many resources on identifying mentors conducting research of interest and ideas for contacting potential mentors. 

  • Getting Started in Research
  • Undergrad Research Calendar
  • Honors Theses
  • Explore Research by Department
  • Compensation for International Students
  • Research Abroad: Safety Considerations
  • Human Subjects: Institutional Review Board
  • Responsible Conduct of Research Training and Tutorials
  • Frequently Asked Questions
  • URS Academic Term Grants
  • Duke Opportunities
  • Opportunities Database
  • Non-Duke Opportunities
  • Resources for Presentations
  • Undergraduate Research Journals
  • Student Team Grants
  • Eligibility & Requirements
  • Application Instructions
  • Background & Facts
  • Duke ASP Faculty Mentors
  • Duke ASP Scholars
  • Financial Support
  • Contact the Amgen Scholars Program
  • PRIME-Cancer Research Program Mentors
  • Student Stories
  • Student Advisory Council
  • Annual Undergraduate Research Symposium
  • Previous Abstract Books
  • Events & Workshops
  • Join our Listserv!

How Undergraduates Benefit From Doing Research

Undergraduate research isn't just for STEM subjects.

Benefits of Undergraduate Research

Young man removing book from shelf while sitting in library at university

Getty Images

Studies show students who participate in research earn better grades, are more likely to graduate and are better equipped for graduate school or careers.

Jessica Stewart understands from personal experience the value of doing research as a college undergraduate. In her junior year at the University of California, Berkeley , Stewart worked with art historian Darcy Grimaldo Grigsby on her book, "Colossal," researching the Suez Canal, Eiffel Tower and other massive art and engineering monuments.

She loved the research so much that she went on to get her Ph.D. in art history. Almost 20 years after working on "Colossal," Stewart now directs the program that gave her the opportunity: UC Berkeley’s Undergraduate Research Apprenticeship Program.

But the initial benefit of doing undergraduate research was even more practical. When she was deciding which projects to apply for as an undergraduate, she got to explore many academic disciplines. This process opened her eyes.

“From the moment I set foot on campus, URAP allowed me to see what kinds of ideas I could study,” Stewart says. “The research and credit are great, but there’s this wayfinding side, too, where students can learn who researchers are, what research looks like and fields they may not have had any exposure to.”

A long tradition at some universities, mentored research projects are now offered at undergraduate institutions around the U.S. While many programs started out focused on science, today most universities offer opportunities across disciplines, including all aspects of STEM as well as architecture, business and theater arts.

No matter the subject area, research participation is an asset for undergrads. Studies show students who participate earn better grades , are more likely to graduate and are better equipped for graduate school or careers.

“It’s often most transformative for nontraditional learners and underrepresented students,” Stewart says. “They learn to triangulate life experience and studies in ways that may not have been intuitive for them. It greatly improves academic performance, retention and persistence.”

Research Roots in STEM

Every year, 6,000 undergraduates participate in research experiences through the National Science Foundation, mostly during the summer. Projects span nearly 20 subject areas , such as astronomy and ocean sciences. Most take place in the U.S., but some research is done abroad, including a marine sciences project at the Bermuda Institute of Ocean Sciences.

Experiences like these increase students’ confidence in their research skills and boost awareness of what graduate school will be like, according to a 2018 study . They also help students identify whether they want to pursue a science career.

“It’s one of the best ways to recruit students into STEM careers and retain them,” says Corby Hovis, a program director at the NSF's Division of Undergraduate Education. “That’s why we do it. It’s an effective way to get students from classrooms into doing STEM.”

The NSF is especially interested in applications from students who might not have had past opportunities to do research, including those who are the first in their families to attend college, and Black and Latino students.

Research institutions apply for NSF grants to mentor undergraduate students and guide them through participation in an ongoing project. For students, the experience includes orientation and training, as well as a stipend and allowances for housing and travel. In most cases, students write a paper about their contribution to research and may even present at a conference or seminar.

Some opportunities require that students have specific math courses under their belts, but all focus on helping students build other skills, aside from lab or research techniques, that they’ll need for future academic work or careers.

“Communicating clearly the results of research is a skill that could carry over into any field,” Hovis says. “The teamwork and cohort experience not only encourages them to continue in science, but (is) translatable to any number of other activities they will do later on.”

Connecting With Faculty

At the Massachusetts Institute of Technology , research has been part of the undergraduate experience for more than 50 years. Some students choose the school specifically for this reason, and more than 90% of students participate. As at other schools, research is part of a bigger initiative around experiential learning, which also includes service learning and study abroad .

The biggest challenge for students is usually figuring out what kind of research they’re interested in.

“We depend on students to do some of that footwork,” says Michael Bergren, director of MIT's Undergraduate Research Opportunities Program. “There are a lot of supports, but at the end of the day a student needs to understand what they’re interested in, who's doing the work they’re interested in and what the steps are to participating in that research.”

But there is hand-holding, if needed. Before applying to work on a project, students have to approach the lead faculty member and introduce themselves.

“This is really intimidating. We don’t take that for granted,” Bergren says. “Part of life skills development is approaching a lab or faculty member and advocating for themselves.”

Peers offer tips about how to navigate that face-to-face encounter, such as find out a faculty member's office hours, send an email with a resume attached and attend a departmental event.

The networking doesn’t stop there. Get to know which graduate students work on the project, talk to other students who might be exploring the same opportunities and make sure you know what the work involves.

“As the research progresses, deliverables amp up,” Bergren says. “You may find you need to put more time into this right when finals are happening.”

The Future of Undergraduate Research

Some undergraduate researchers might share their work at academic conferences or seminars, or even be published in journals. Some might participate in the Council on Undergraduate Research annual conference , the largest symposium of its kind. Every year, more than 4,000 students attend a graduate school and career fair and present work that spans the disciplines.

Students have come to expect that they’ll get a chance to do research as undergrads, says Lindsay Currie, the council's director.

“More recent generations grew up in a different climate. They learned by doing in classrooms,” Currie says. “That, combined with a workforce that expects people to have lived experience, means students want to be able to say that they’ve already done research as part of their coursework.”

What’s next, Currie says, is universities that integrate research into coursework so that students start a project their first year and continue through their time in college. Working with a network of universities, the Council on Undergraduate Research has completed a study of how schools can modify their curricula to incorporate research from the very beginning.

“Starting as freshmen, students would work on research that would build,” Currie says. “This would be significantly more advanced projects that would be consistent across the particular department. This is how they’re going to teach, because they know students benefit from doing.”

Tips to Make Your Final College Choice

Teens in domestic kitchen

2024 Best Colleges

undergraduate research ideas

Search for your perfect fit with the U.S. News rankings of colleges and universities.

College Admissions: Get a Step Ahead!

Sign up to receive the latest updates from U.S. News & World Report and our trusted partners and sponsors. By clicking submit, you are agreeing to our Terms and Conditions & Privacy Policy .

Ask an Alum: Making the Most Out of College

You May Also Like

Toward semiconductor gender equity.

Alexis McKittrick March 22, 2024

undergraduate research ideas

March Madness in the Classroom

Cole Claybourn March 21, 2024

undergraduate research ideas

20 Lower-Cost Online Private Colleges

Sarah Wood March 21, 2024

undergraduate research ideas

How to Choose a Microcredential

Sarah Wood March 20, 2024

undergraduate research ideas

Basic Components of an Online Course

Cole Claybourn March 19, 2024

undergraduate research ideas

Can You Double Minor in College?

Sarah Wood March 15, 2024

undergraduate research ideas

How to Avoid Scholarship Scams

Cole Claybourn March 15, 2024

undergraduate research ideas

Ways to Maximize Campus Life

Anayat Durrani March 14, 2024

undergraduate research ideas

8 People to Meet on Your College Campus

Sarah Wood March 12, 2024

undergraduate research ideas

Completing College Applications on Time

Cole Claybourn March 12, 2024

undergraduate research ideas

Students & Educators  —Menu

  • Educational Resources
  • Educators & Faculty
  • College Planning
  • ACS ChemClub
  • Project SEED
  • U.S. National Chemistry Olympiad
  • Student Chapters
  • ACS Meeting Information
  • Undergraduate Research
  • Internships, Summer Jobs & Coops
  • Study Abroad Programs
  • Finding a Mentor
  • Two Year/Community College Students
  • Social Distancing Socials
  • Planning for Graduate School
  • Grants & Fellowships
  • Career Planning
  • International Students
  • Planning for Graduate Work in Chemistry
  • ACS Bridge Project
  • Graduate Student Organizations (GSOs)
  • Schedule-at-a-Glance
  • Standards & Guidelines
  • Explore Chemistry
  • Science Outreach
  • Publications
  • ACS Student Communities
  • You are here:
  • American Chemical Society
  • Students & Educators
  • Undergraduate

Undergraduate Research in Chemistry

Undergraduate research in chemistry is self-directed experimentation work under the guidance and supervision of a mentor or advisor. Students participate in an ongoing research project and investigate phenomena of interest to them and their advisor.

There is a broad range of research areas in the chemical sciences. Today’s research groups are interdisciplinary, crossing boundaries across fields and across other disciplines, such as physics, biology, materials science, engineering and medicine.

Basic or Applied Research?

Basic research The objective of basic research is to gain more comprehensive knowledge or understanding of the subject under study, without specific applications in mind. In industry, basic research is defined as research that advances scientific knowledge but does not have specific immediate commercial objectives, although it may be in fields of present or potential commercial interest.

Applied research Applied research is aimed at gaining knowledge or understanding to determine the means by which a specific, recognized need may be met. In industry, applied research includes investigations oriented to discovering new scientific knowledge that has specific commercial objectives with respect to products, processes, or services.

undergraduate research ideas

  • Undergraduate Research Opportunities
  • International Research Experiences for Undergraduates Program (IREU)
  • Opportunities

What is research at the undergraduate level?    

At the undergraduate level, research is self-directed work under the guidance and supervision of a mentor/advisor ― usually a university professor. A gradual transition towards independence is encouraged as a student gains confidence and is able to work with minor supervision. Students normally participate in an ongoing research project and investigate phenomena of interest to them and their advisor. In the chemical sciences, the range of research areas is quite broad. A few groups maintain their research area within a single classical field of analytical, inorganic, organic, physical, chemical education or theoretical chemistry. More commonly, research groups today are interdisciplinary, crossing boundaries across fields and across other disciplines, such as physics, biology, materials science, engineering and medicine.

What are the benefits of being involved in undergraduate research?

There are many benefits to undergraduate research, but the most important are:

  • Learning, learning, learning. Most chemists learn by working in a laboratory setting. Information learned in the classroom is more clearly understood and it is more easily remembered once it has been put into practice. This knowledge expands through experience and further reading. From the learning standpoint, research is an extremely productive cycle.
  • Experiencing chemistry in a real world setting. The equipment, instrumentation and materials used in research labs are generally more sophisticated, advanced, and of far better quality than those used in lab courses
  • Getting the excitement of discovery. If science is truly your vocation, regardless of any negative results, the moment of discovery will be truly exhilarating. Your results are exclusive. No one has ever seen them before.
  • Preparing for graduate school. A graduate degree in a chemistry-related science is mostly a research degree. Undergraduate research will not only give you an excellent foundation, but working alongside graduate students and post-doctorates will provide you with a unique opportunity to learn what it will be like.

Is undergraduate research required for graduation?

Many chemistry programs now require undergraduate research for graduation. There are plenty of opportunities for undergraduate students to get involved in research, either during the academic year, summer, or both. If your home institution is not research intensive, you may find opportunities at other institutions, government labs, and industries.

When should I get involved in undergraduate research?

Chemistry is an experimental science. We recommended that you get involved in research as early in your college life as possible. Ample undergraduate research experience gives you an edge in the eyes of potential employers and graduate programs.

While most mentors prefer to accept students in their research labs once they have developed some basic lab skills through general and organic lab courses, some institutions have programs that involve students in research projects the summer prior to their freshman year. Others even involve senior high school students in summer research programs. Ask your academic/departmental advisor about the options available to you.

What will I learn by participating in an undergraduate research program?

Conducting a research project involves a series of steps that start at the inquiry level and end in a report. In the process, you learn to:

  • Conduct scientific literature searches
  • Read, interpret and extract information from journal articles relevant to the project
  • Design experimental procedures to obtain data and/or products of interest
  • Operate instruments and implement laboratory techniques not usually available in laboratories associated with course work
  • Interpret results, reach conclusions, and generate new ideas based on results
  • Interact professionally (and socially) with students and professors within the research group, department and school as well as others from different schools, countries, cultures and backgrounds
  • Communicate results orally and in writing to other peers, mentors, faculty advisors, and members of the scientific community at large via the following informal group meeting presentations, reports to mentor/advisor, poster presentations at college-wide, regional, national or international meetings; formal oral presentations at scientific meetings; or journal articles prepared for publication

How do I select an advisor?

This is probably the most important step in getting involved in undergraduate research. The best approach is multifaceted. Get informed about research areas and projects available in your department, which are usually posted on your departmental website under each professor’s name.

Talk to other students who are already involved in research. If your school has an  ACS Student Chapter , make a point to talk to the chapter’s members. Ask your current chemistry professor and lab instructor for advice. They can usually guide you in the right direction. If a particular research area catches your interest, make an appointment with the corresponding professor.

Let the professor know that you are considering getting involved in research, you have read a bit about her/his research program, and that you would like to find out more. Professors understand that students are not experts in the field, and they will explain their research at a level that you will be able to follow. Here are some recommended questions to ask when you meet with this advisor:

  • Is there a project(s) within her/his research program suitable for an undergraduate student?
  • Does she/he have a position/space in the lab for you?
  • If you were to work in her/his lab, would you be supervised directly by her/him or by a graduate student? If it is a graduate student, make a point of meeting with the student and other members of the research group. Determine if their schedule matches yours. A night owl may not be able to work effectively with a morning person.
  • Does she/he have funding to support the project? Unfunded projects may indicate that there may not be enough resources in the lab to carry out the project to completion. It may also be an indication that funding agencies/peers do not consider this work sufficiently important enough for funding support. Of course there are exceptions. For example, a newly hired assistant professor may not have external funding yet, but he/she may have received “start-up funds” from the university and certainly has the vote of confidence of the rest of the faculty. Otherwise he/she would not have been hired. Another classical exception is computational chemistry research, for which mostly fast computers are necessary and therefore external funding is needed to support research assistants and computer equipment only. No chemicals, glassware, or instrumentation will be found in a computational chemistry lab.
  • How many of his/her articles got published in the last two or three years? When prior work has been published, it is a good indicator that the research is considered worthwhile by the scientific community that reviews articles for publication. Ask for printed references. Number of publications in reputable refereed journals (for example ACS journals) is an excellent indicator of the reputation of the researcher and the quality of his/her work.

Here is one last piece of advice: If the project really excites you and you get satisfactory answers to all your questions, make sure that you and the advisor will get along and that you will enjoy working with him/her and other members of the research group.

Remember that this advisor may be writing recommendation letters on your behalf to future employers, graduate schools, etc., so you want to leave a good impression. To do this, you should understand that the research must move forward and that if you become part of a research team, you should do your best to achieve this goal. At the same time, your advisor should understand your obligations to your course work and provide you with a degree of flexibility.

Ultimately, it is your responsibility to do your best on both course work and research. Make sure that the advisor is committed to supervising you as much as you are committed to doing the required work and putting in the necessary/agreed upon hours.

How much time should I allocate to research?

The quick answer is as much as possible without jeopardizing your course work. The rule of thumb is to spend 3 to 4 hours working in the lab for every credit hour in which you enroll. However, depending on the project, some progress can be achieved in just 3-4 hours of research/week. Most advisors would recommend 8-10 hours/week.

Depending on your project, a few of those hours may be of intense work and the rest may be spent simply monitoring the progress of a reaction or an instrumental analysis. Many research groups work on weekends. Saturdays are excellent days for long, uninterrupted periods of lab work.

What are some potential challenges?

  • Time management . Each project is unique, and it will be up to you and your supervisor to decide when to be in the lab and how to best utilize the time available to move the project forward.
  • Different approaches and styles . Not everyone is as clean and respectful of the equipment of others as you are. Not everyone is as punctual as you are. Not everyone follows safety procedures as diligently as you do. Some groups have established protocols for keeping the lab and equipment clean, for borrowing equipment from other members, for handling common equipment, for research meetings, for specific safety procedures, etc. Part of learning to work in a team is to avoid unnecessary conflict while establishing your ground to doing your work efficiently.
  • “The project does not work.”  This is a statement that advisors commonly hear from students. Although projects are generally very well conceived, and it is people that make projects work, the nature of research is such that it requires patience, perseverance, critical thinking, and on many occasions, a change in direction. Thoroughness, attention to detail, and comprehensive notes are crucial when reporting the progress of a project.

Be informed, attentive, analytical, and objective. Read all the background information. Read user manuals for instruments and equipment. In many instances the reason for failure may be related to dirty equipment, contaminated reagents, improperly set instruments, poorly chosen conditions, lack of thoroughness, and/or lack of resourcefulness. Repeating a procedure while changing one parameter may work sometimes, while repeating the procedure multiple times without systematic changes and observations probably will not.

When reporting failures or problems, make sure that you have all details at hand. Be thorough in you assessment. Then ask questions. Advisors usually have sufficient experience to detect errors in procedures and are able to lead you in the right direction when the student is able to provide all the necessary details. They also have enough experience to know when to change directions. Many times one result may be unexpected, but it may be interesting enough to lead the investigation into a totally different avenue. Communicate with your advisor/mentor often.

Are there places other than my institution where I can conduct research?

Absolutely! Your school may be close to other universities, government labs and/or industries that offer part-time research opportunities during the academic year. There may also be summer opportunities in these institutions as well as in REU sites (see next question).

Contact your chemistry department advisor first. He/she may have some information readily available for you. You can also contact nearby universities, local industries and government labs directly or through the career center at your school. You can also find listings through ACS resources:

  • Research Opportunities (US only)
  • International Research Opportunities
  • Internships and Summer Jobs

What are Research Experiences for Undergraduates (REU) sites? When should I apply for a position in one of them?

REU is a program established by the National Science Foundation (NSF) to support active research participation by undergraduate students at host institutions in the United States or abroad. An REU site may offer projects within a single department/discipline or it may have projects that are inter-departmental and interdisciplinary. There are currently over 70 domestic and approximately 5 international REU sites with a chemistry theme. Sites consist of 10-12 students each, although there are larger sites that supplement NSF funding with other sources. Students receive stipends and, in most cases, assistance with housing and travel.

Most REU sites invite rising juniors and rising seniors to participate in research during the summer. Experience in research is not required to apply, except for international sites where at least one semester or summer of prior research experience is recommended. Applications usually open around November or December for participation during the following summer. Undergraduate students supported with NSF funds must be citizens or permanent residents of the United States or its possessions. Some REU sites with supplementary funds from other sources may accept international students that are enrolled at US institutions.

  • Get more information about REU sites

How do I prepare a scientific research poster?

Here are some links to sites with very useful information and samples.

  • Anatomy of an Ace Research Paper
  • Getting Ready for the ACS National Meeting
  • Survivng Your First ACS Undergraduate Poster Presentation
  • Six Ways Research Can Fire Up Your Chapter

Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy .

1155 Sixteenth Street, NW, Washington, DC 20036, USA |  service@acs.org  | 1-800-333-9511 (US and Canada) | 614-447-3776 (outside North America)

  • Terms of Use
  • Accessibility

Copyright © 2024 American Chemical Society

  • Utility Menu

University Logo

Undergraduate Science Education at Harvard

A world of exploration. a world of expertise..

Sci Ed multicolor

Research Opportunities and Funding

• Look below to find summer and term-time Harvard research opportunities on campus and abroad. • For summer programs at other sites, see Summer Programs Away in the tab on the right. • For selected undergraduate science research opportunities at Harvard, see the Undergraduates: Open Research Positions & Projects  tab on the right.

  • Funding For Research at Harvard
  • Research Away Harvard Programs

Biological Chemistry and Molecular Pharmacology (BCMP) Summer Scholars Program Brigham Research Institute Undergraduate Internships Broad Institute at Harvard Summer Program CARAT Cell Biology Research Scholars Program (CRSP) Center for Astrophysics Solar Research Experience for Undergraduates Program CURE, Dana Farber Harvard Cancer Center DaRin Butz Research Internship Program on Biology of Plants and Climate Ernst Mayer Travel Grants in Animal Systematics E3 Evolution, Ecology and Environment REU Harvard-Amgen Scholars Program Harvard College Funding Sources Database Harvard College Research Program (HCRP) Harvard Forest Summer Research Program in Ecology Harvard Global Health Institute Funding for Independent Projects and Internships Harvard Global Health Institute Cordeiro Summer Research Fellowship Harvard Global Health Institute Domestic and Global Health Fellowships  Harvard Medical School Undergraduate Summer Internship in Systems Biology Harvard Multidisciplinary International Research Training (MIRT) Program Harvard-MIT Health Sciences and Technology HST Summer Institute Harvard Origins of Life Initiative Harvard School of Public Health Summer Program in Biological Sciences Harvard School of Public Health Summer Program in Biostatistics & Computational Biology Harvard Stem Cell Institute Harvard Student Employment Office Harvard Summer Research Program in Kidney Medicine Harvard University Center for the Environment Undergraduate Fund Herchel Smith-Harvard Undergraduate Science Research Program (any science area) International Genetically Engineered Machine (iGEM) McLean Hospital Mental Health Summer Research Program MCZ Grants-in-Aid for Undergraduate Research MGH Orthopedic Trauma Undergraduate Summer Program MGH Summer Research Trainee Program MGHfC Digestive Disease Summer Research Program Microbial Sciences Initiative Mind, Brain, Behavior Summer Thesis Award PRISE (any science or engineering area) Research Experience for Undergraduates (REU) at the School of Engineering and Applied Sciences Summer Institute in Biomedical Informatics, HMS Summer Program in Epidemiology, HSPH STARS - Summer Training in Academic Research Training and Scholarship Summer Research Opportunities at Harvard Summer Research Program, Division of Newborn Medicine at Boston Children's Hospital Summer Undergraduate Research in Global Health (SURGH) Radcliffe Institute Research Partnership Program Ragon Institute Summer Program The Arnold Arboretum The Joey Hanzich Memorial Undergraduate Travel and Research Fellowship Undergraduate Research in Mathematics Undergraduate Research Opportunities in Oceanography Undergraduate Summer Immunology Program at Harvard Medical School Undergraduate Summer Research in Physics

Harvard College Funding Sources Database  - Database of both Harvard and outside funding sources for a variety of educational purposes, including research. Additional database: https://uraf.harvard.edu/find-opportunities/resources-your-search/campus-partners  

The  Harvard Student Employment Office  manages a Jobs Database , the Faculty Aide Program  and the Federal Work Study Program . All of these programs may offer student research assistant opportunities. The site also provides information about Job Search Resources  and Research Opportunities .

  CARAT  – CARAT (Common Application for Research and Travel) is used by all the major funding sources at Harvard.

Harvard College Research Program (HCRP)  – Summer (or term time) stipend. Applications from the Office of Undergraduate Research and Fellowships at 77 Dunster Street.

Deadlines:   Fall term funding: 12 noon (EST), Tuesday, September 14, 2021 Spring term funding: 12 noon (EST), Tuesday, February 1, 2022 Summer funding: 12 noon (EST), Tuesday, March 22, 2022  [TENTATIVE]

Late applications  will not  be accepted for term-time or summer cycles.

Conference funding: rolling application deadline

Summer Research Opportunities at Harvard

The Summer Research Opportunities at Harvard (SROH) program connects undergraduates interested in a PhD with first-class researchers working in the life and physical sciences, humanities, and social sciences. This program is offered through GSAS and the  Leadership Alliance .

During this 10-week program, SROH interns conduct research and participate in discussions with Cambridge-based Harvard faculty, build their presentation and research discussion skills, and take part in field trips with other Harvard summer programs. Students in the program live in Harvard housing and enjoy access to the outstanding resources of the university.

Note that we also have funding for students interested in  atmospheric sciences  as part of the NSF-supported International Partnership in Cirrus Studies project.  Please see pire.geosci.uchicago.edu for information on participating faculty. Research focuses on modeling and measurement of high-altitude clouds.

PRISE  – The Program for Research in Science and Engineering (PRISE) is a summer residential community of Harvard undergraduates conducting research in science or engineering. By the application deadline students must be progressing toward finding a lab or research group but do not need to have finalized their research group or project. Participants must be in residence and be active participants for the entire duration of this ten week program.

Deadline:  Tuesday, February 15, 2022 at 12:00 noon (EST)

Herchel Smith-Harvard Undergraduate Science Research Program  – Primarily directed toward students intending to pursue research-intensive concentrations and post-graduate study in the sciences. Undergraduate research either at Harvard or elsewhere, including internationally. Applications from the  Office of Undergraduate Research and Fellowships .

Deadline:  Tuesday, February 8, 2022 at 12:00 noon (EST) via CARAT

Harvard-Amgen Scholars Program  -- The Amgen Scholars Program at Harvard is a 10-week faculty-mentored residential summer research program  in biotechnology for sophomores (with four quarters or three semesters of college experience), juniors, or non-graduating seniors (who are returning in the fall to continue undergraduate studies)

Deadline : Tuesday, February 1, 2022, 12 noon

Harvard Origins of Life Initiative

Research Grants:   Harvard undergraduates can apply for grants to support their research during the academic year.

Summer Undergraduate Program:  Summer Undergraduate Research Grants are available for undergraduates working in Origins member faculty  on Origins-related projects. Possible research areas include astronomy, astrophysics, chemical biology, geophysics, chemistry, genetics, and earth and planetary sciences. 

iGEM (International Genetically Engineered Machine) team  - The iGEM team is a research experience targeted toward undergraduates interested in synthetic biology and biomolecular engineering. 

Mind, Brain, Behavior  – Summer Thesis Awards for rising seniors in the MBB track. Applications through MBB.

If interested, contact Shawn Harriman in March of your junior year.

Harvard Stem Cell Institute (HSCI) Internship Program (HIP) – for students interested in stem cell biology research. Students conduct research in labs affiliated with the HSCI. Accepted students are matched with a research laboratory group. or any college or university across the United States and internationally.  Harvard University will sponsor the visas for international students who are selected for this program.

Deadline:  Feb 7, 2022

Harvard Summer Research Program in Kidney Medicine (HSRPKM) - an introduction to nephrology (kidney medicine) for the undergraduates considering career paths spanning science and medicine. The Program includes nephrology divisions of four Harvard-affiliated hospitals – Brigham and Women’s Hospital (BWH), Beth Israel Deaconess Medical Center (BIDMC), Boston’s Children’s Hospital (BCH) and Massachusetts General Hospital (MGH).

Deadline : check the program website: https://hskp.bwh.harvard.edu/

BCMP Summer Scholars Program at Harvard University is organized by the The Department of Biological Chemistry and Molecular Pharmacology (BCMP) at Harvard Medical School. This 10-week program is open to both Harvard undergraduates and to students from other colleges and universities. Students must be authorized to work in the United States.

Deadline: contact program for details

Undergraduate Summer Immunology Program at Harvard Medical School  - a ten week summer research internship with a stipend. The program consists of laboratory research, lectures, and workshops and is open to Harvard undergraduates and students from other colleges and universities. Applicants must be eligible for employment in the US.

Deadline: contact program 

Microbial Sciences Initiative  - Summer research with Harvard Faculty. Email applications to  Dr. Karen Lachmayr .

Deadline:  contact program

Summer Undergraduate Research in Global Health (SURGH)  offers Harvard undergraduates the opportunity to research critical issues in global health under the direction of a Harvard faculty or affiliate mentor. Students in SURGH receive housing in the Harvard Undergraduate Research Village and a stipend for living expenses. The summer savings requirement is also provided for students who are on financial aid. Throughout the summer, participants in SURGH have the opportunity to interact with students in the other on-campus research programs. 

Domestic and Global Health Fellowships (DGHI)  offers Harvard undergraduates the opportunity to work in field-based and office-based internships in both US health policy and global health. Sites can be domestic or international. Students receive a stipend to cover travel expenses to and from their site, living expenses, and local transportation. Unfortunately DGHI cannot cover the summer savings requirement for students who are on financial aid. 

Harvard Global Health Institute Funding for Independent Projects and Internships

Funding for projects in the United States and abroad.

Deadline: contact program

The Joey Hanzich Memorial Undergraduate Travel and Research Fellowship  provides up to $5000 to a rising junior or rising senior enrolled in the Secondary Field in Global Health and Health Policy (or another field) who pursues a summer internship, project or research in health policy or global health, either in the United States or abroad.

Cordeiro Summer Research Fellowship Registered GHHP students may apply for a Cordeiro Summer Research Fellowship for the summer before their senior year. Each year 12 to 15 fellowships allow students to get a head start on their senior theses or research projects related to global health or health policy without incurring major costs to themselves.

Harvard-MIT Health Sciences and Technology HST Summer Institute  - The HST Summer Institute offers hands-on research experience for undergraduates in two areas of study: Biomedical Informatics and Biomedical Optics . Participating institutions include the Harvard-MIT Program in Health Sciences and Technology, Massachusetts General Hospital, and Department of Biomedical Informatics, Harvard Medical School.

Deadline : contact program

MCZ Grants-in-Aid for Undergraduate Research  -The Museum of Comparative Zoology (MCZ), the Harvard University Herbaria (HUH), and the Arnold Arboretum of Harvard University (AA) award small grants in support of faculty-supervised research by Harvard College undergraduates.

Deadlines:  contact program

Ernst Mayer Travel Grants in Animal Systematics

Proposals are reviewed two times a year. 

The Arnold Arboretum : Fellowships are available to support undergraduate research

  • Ashton Award for Student Research
  • Cunin / Sigal Research Award
  • Deland Award for Student Research
  • Shiu-Ying Hu Student/Postdoctoral Exchange Award
  • Summer Short Course in Organismic Plant Biology
  • Arnold Arboretum Genomics Initiative and Sequencing Award
  • Jewett Prize
  • Sargent Award for Visiting Scholars
  • Sinnott Award

Living Collections Fellowship  – Arnold Arboretum of Harvard University

Hunnewell Internships  – Arnold Arboretum of Harvard University

Summer Short Course in Organismic Plant Biology Harvard Forest Summer Research Program in Ecology  - The Harvard Forest Summer Research (REU) program is an intensive 11-week residential research and education experience at the Harvard Forest, a 3,700-acre outdoor laboratory and classroom in central Massachusetts. Students conduct research on the effects of natural and human disturbances on forest ecosystems, including global climate change, hurricanes, forest harvest, changing wildlife dynamics, and invasive species. The program includes a stipend, free housing, all meals, and the travel cost of one round trip to Harvard Forest. This program is open to not only Harvard undergraduates, but also students from all colleges and universities in the United States.

Harvard University Center for the Environment Undergraduate Fund  provides financial support for student research projects related to the environment. In the context of this program, 'environment' refers to understanding the relationships and balances of the natural and constructed world around us, with a particular emphasis on understanding how anthropogenic activities and policies affect the environment, including the intimate relationships between energy use and demand, environmental integrity and quality, human health, and climate change.  Two types of funding are available: 1) Funds for independent research (preference given to rising seniors seeking funds for senior honors thesis research) and 2) Research Assistantships (directed summer research experiences under Harvard faculty guidance). Award are intended to be applied towards living expenses (room, board), travel expenses related to research activities, and minor research expenses (for students doing independent research projects) for up to 10 weeks.  Awards are not intended to serve as a salary stipend for students. 


Undergraduate Research Opportunities in Oceanography : The Harvard Oceanography Committee has funding and fellowships for both term time and summer research. 

Harvard School of Public Health Summer Program in Biological Sciences -   This intensive 8 week laboratory-based biological research program is for undergraduates during the summer following their sophomore or junior years.

Additional programs at the HSPH:

  • Summer Honors Undergraduate Research Program (SHURP)  – for undergraduate students outside of Harvard
  • Additional summer programs  – for undergraduate students outside of Harvard
  • Additional summer programs  – for undergraduate students at Harvard
  • Boston-based undergraduate students looking for coop or other research internship positions are encouraged to contact faculty members directly.

STARS - Summer Training in Academic Research Training and Scholarship  - provides underrepresented minority (URM) medical and undergraduate students an opportunity to engage in exciting basic, clinical and translational research projects during the summer at Brigham and Women's Hospital (BWH) and Harvard Medical School (HMS). Housing and stipend provided.

Radcliffe Institute Research Partnership Program  -- The Radcliffe Institute Research Partnership Program matches students with leading artists, scholars, scientists, and professionals. Radcliffe Fellows act as mentors and students provide research assistance, acquire valuable research skills, and participate in the Institute’s rich intellectual life.

Harvard School of Public Health Summer Program in Biostatistics & Computational Biology

The Summer Program is a relatively intensive 6-week program, during which qualified participants receive an interesting and enjoyable introduction to biostatistics, epidemiology, and public health research. This program is designed to expose undergraduates to the use of quantitative methods for biological, environmental, and medical research. 

MGH Summer Research Trainee Program

The goal of the MGH Summer Research Trainee Program (SRTP) is to inspire students who are underrepresented in medicine (URM) to consider careers in academic medicine by immersing them in cutting-edge research opportunities. Each summer, fifteen students are selected from a nationwide competition to join SRTP. Each student is assigned to a specific MGH laboratory, clinical site, health policy, or health services research area where they undertake an original research project under the mentorship and guidance of a Mass General Hospital (MGH) investigator. Assignments are carefully considered and are made with the student's research and career interests in mind. In addition to this unique research experience, students will gain knowledge through weekly didactic seminars, both at the MGH and at Harvard Medical School, attend career development workshops and networking event, and have opportunities for clinical shadowing.

Application deadline:  contact program

MGHfC Digestive Disease Summer Research Program

Massachusetts General Hospital for Children (MGHfC) Digestive Disease Summer Research Program provides support for 10 students at the undergraduate or medical school level. Each student will be matched with a research mentor to perform an independent research project focused on digestive diseases over a 10-week period during the summer months within a laboratory or collaborating laboratory of the MGHfC. MGHfC collaborating laboratories at MGH possess unique expertise in engineering and computational sciences in support of various projects centered on digestive disease research. 

Contact: Bryan P. Hurley, Ph.D., Assistant Professor & Program Director, Mucosal Immunology & Biology Research Center, Massachusetts General Hospital for Children, Department of Pediatrics, Harvard Medical School,  [email protected] ,   http://www.massgeneral.org/mucosal-immunology/Education/summer-research-program.aspx

Broad Institute at Harvard Summer Program

Broad Summer Research Program BSRP is a nine-week undergraduate research program designed for students with an interest in genomics and a commitment to research. Students spend the summer in a laboratory at the Broad Institute, engaged in rigorous scientific research under the guidance of experienced scientists and engineers. Underrepresented minority students enrolled in a four-year college are eligible to apply.

Broad Summer Scholars Program BSSP invites a small number of exceptional and mature high school students with a keen interest in science to spend six weeks at the Broad Institute, working side-by-side with scientists in the lab on cutting-edge research. Rising seniors who live within commuting distance to the Broad Institute are eligible to apply.

DaRin Butz Research Internship Program   The program gives undergraduates in the life sciences a unique opportunity to experience research from start to finish while gaining training and connections among scientific colleagues. DaRin Butz Interns will not only conduct research, but will also develop their project with their advisors and be guided through the process of sharing their research through written reports and oral presentations, an important component of scientific research.

MGH Orthopedic Trauma Undergraduate Summer Program

The Harvard Orthopedic Trauma Service provides number of undergraduate opportunities:

Orthopedic Internship

This internship is for undergraduate and graduate/medical students who are looking for exposure to Orthopaedic clinical and basic research.

Orthopedic Trauma Undergraduate Summer Internship

Our program is intended for undergraduates interested in healthcare careers. Our interns are introduced to the hospital experience through orthopedic research and observation.

Women's Sports Medicine Summer Internship Program

Learn more about this month long internship open to medical and premedical students.

Summer Research Program, Division of Newborn Medicine at Boston Children's Hospital

Summer Student Research Program sponsored by the Harvard Program in Neonatology, an academic program which includes Boston Children's Hospital (BCH) and Beth Israel Deaconess Medical Center (BIDMC). The objective of the Summer Student Research Program is to provide motivated students with an intensive laboratory and clinical research experience under the guidance of Faculty and Fellow mentors from the Academic Program. The Summer Program experience includes:

Brigham Research Institute Undergraduate Internships

The internship programs hosted by the Brigham Research Institute provides undergraduate students with a focused and challenging summer research experience in a cutting-edge science laboratory. Interns will have the opportunity to obtain a research training experience in a laboratory or research setting at Brigham and Women’s Hospital.

Deadlines: check program website

Undergraduate Summer Research in Physics

Undergraduate Research in Mathematics

CURE, Dana Farber Harvard Cancer Center

The CURE program introduces scientifically curious high school and college students from groups currently underrepresented in the sciences to the world of cancer research. Students are placed in laboratories and research environments at the seven DF/HCC member institutions: Beth Israel Deaconess Medical Center, Boston Children’s Hospital, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Harvard T.H. Chan School of Public Health, and Massachusetts General Hospital, as well as research environments at the University of Massachusetts, Boston.

Ragon Institute Summer Program

The Ragon Institute of MGH, MIT and Harvard brings together scientists and engineers from diverse fields to better understand the immune system and support human health. 

Deadline: check program website

Harvard Medical School Undergraduate Summer Internship in Systems Biology

The Undergraduate Summer Internship is our headline program enabling undergraduate students to collaborate with our researchers, as well as their own peers, through Harvard's Quantitative Biology Initiative and the Department of Systems Biology at Harvard Medical School. ​Participants work in our labs, gain hands-on experience with state-of-the-art tools, learn cutting-edge scientific techniques in our dynamic research environment. Students interested in pursuing a PhD or MD/PhD, and students from under-represented minorities or disadvantaged backgrounds, are especially encouraged to apply.  

Research Experience for Undergraduates (REU) at the School of Engineering and Applied Sciences

The Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS)  Research Experience for Undergraduates  (REU) is a 10-week program that introduces undergraduates to bioengineering, materials research, nanoscience, and engineering while providing a coordinated, educational, and dynamic research community that inspires them to seek a graduate degree. 

Center for Astrophysics Solar Research Experience for Undergraduates Program

Scientists from the Solar and Stellar X-Ray Group (SSXG) and the Solar, Stellar, and Planetary Group (SSP) at the  Harvard-Smithsonian Center for Astrophysics  (CfA) host undergraduate students from around the US. Please visit the  website for more information .

E3 Evolution, Ecology and Environment REU

We are seeking rising sophomores, juniors and seniors majoring in the life sciences who would like to join a new Research Experience for Undergraduates program based in the  Department of Organismic and Evolutionary Biology (OEB)  at Harvard University. Members of the program will enjoy cutting edge research experiences within the context of a strong mentorship community made up of faculty, graduate students, and peers. In addition, members will participate in a professional development program that is aimed at preparing students for the graduate school application process, building confidence to succeed in graduate school, and exploring long-term career opportunities. These professional development activities will include attendance of the annual  Leadership Alliance National Symposium  (LANS) research and mentoring conference. The E3 REU is part of a larger umbrella program, hosted by the Harvard GSAS  Summer Research Opportunities at Harvard (SROH) .

Program website:  https://reu.oeb.harvard.edu/sroh 

Harvard Multidisciplinary International Research Training (MIRT) Program

The 10-week  Systems Biology Summer Internship Program  enables interns to work on research projects spanning many scientific fields, including systems biology, biophysics, bioinformatics, genomics, applied mathematics, and computation. 

McLean Hospital Mental Health Summer Research Program

This competitive program seeks to  engage scientific curiosity ,  create research opportunities , and  promote academic success in mental health fields  for promising young  Black, Indigenous and underrepresented People of Color (BIPOC) interested in science .  We had our first, very successful MMHRSP last summer, and applications are now open for next summer. MMHRSP is an intensive, 10-week, full-time mental health/neuroscience research experience at McLean Hospital. McLean is the primary psychiatric teaching affiliate of Harvard Medical School and is located in Belmont, MA ( https://www.mcleanhospital.org/ ).  Chosen Fellows will receive a $7,000 stipend for the 10-week program.  

https://www.mcleanhospital.org/training/student-opportunities#research

https://www.mcleanhospital.org/news/new-summer-research-program-welcomes-undergraduates-color

Cell Biology Research Scholars Program (CRSP)

The Cell Biology Research Scholars Program  provides a 10-week full-time research opportunity to undergraduate students with a passion for scientific discovery and fundamental biology. Students will be hosted by faculty investigators to work on cutting-edge research projects and participate in training workshops and mentoring activities in preparation for a productive scientific research career.

Summer Institute in Biomedical Informatics , now entering its 15th year, is a 9-week full-time extensive research opportunity with a curriculum including didactic lectures, clinical case studies, a mentored research project, and presentation of findings. 

The  Summer Program in Epidemiology  at the Harvard T.H. Chan School of Public Health is an intensive 5-week program that integrates mathematics and quantitative methods to provide students with an understanding of the skills and processes necessary to pursue a career in public health. 

Biodiversity of Hispaniola Booth Fund Fellowship Cognitive Neurosciences at the University of Trento, Italy Darwin and the Origins of Evolutionary Biology, Oxford, England David Rockefeller International Experience Grant Harvard-Bangalore Science Initiative Harvard Summer School Study Abroad in the Sciences HCRP Herchel Smith-Harvard Undergraduate Science Research Program International Summer Undergraduate Research in Global Health (I-SURGH) RIKEN Center for Allergy and Immunology, Japan RIKEN Brain Science Institute, Japan Rosenkrantz Travel Grants Study Abroad in Paris, France The Office of Career Services (OCS) awards Undergraduate Research in Engineering and Applied Sciences Undergraduate Research in Mathematics Undergraduate Summer Research in Physics Weissman International Internship

Harvard Summer School Study Abroad in the Sciences

In 2015 Harvard Summer School Science Study Abroad programs will be offered in the Dominican Republic, England, Italy, France, and Japan. See below for links to information on each of these programs.

Darwin and the Origins of Evolutionary Biology  - Oxford, England.

Prerequisites:  None. Apply through Harvard Summer School.

Information:   Andrew Berry

RIKEN Center for Allergy and Immunology  - Yokohama, Japan.

Laboratory research in immunology. Students will also receive some Japanese language training. Apply through Harvard Summer School.

Accepted students may apply to the  Reischauser Institute  for scholarships to help defray the costs of the program.

RIKEN Brain Science Institute  – Laboratory Research in Neurobiology, Tokyo, Japan.

Prerequisites:  Neurobiology of Behavior (MCB 80) or Animal Behavior (OEB 50); laboratory experience preferred but not required. Apply through Harvard Summer School.

Biodiversity of Hispaniola  - Santo Domingo, Dominican Republic.  This six-week course covers basic prinicples of ecology, evolution, and island biogeography in the context of the diversity of habitats and organisms on the island of Hispaniola.

Prerequisites:  course work in biology

Information:   Brian Farrell  

Cognitive Neurosciences at the University of Trento  - Trento, Italy

This eight-week program at the University of Trento, Italy, organized by the Mind/Brain/Behavior Initiative, provides students a unique opportunity to study the mind/brain. Taught by leaders in the fields of neuroscience and cognitive science, the program includes daily, hands-on, laboratory sessions (e.g., neuroimaging demos) and Italian language classes, all while surrounded by the breathtaking Italian Alps.

Information:   Alfonso Caramazza

Study Abroad in Paris, France

Biology and the evolution of Paris as a Smart City.

Information:  Robert Lue

  • Bangalore, India;  The Jawaharlal Nehru Centre for Advanced Scientific Research  (JNCASR)
  • National Centre of Biological Sciences  (NCBS)
  • The Indian Institute of Science  (IISc) 

Note:  This is not a Harvard Summer School Program. 

Prerequisites:  Introductory coursework in basic biology, chemistry, physics, and math.

Information:   Venkatesh N. Murthy  or   Ryan Draft

International Summer Undergraduate Research in Global Health (I-SURGH)  I-SURGH offers Harvard undergraduates the opportunity to conduct cutting-edge global health research in an international setting. Students in I-SURGH receive a stipend to cover travel costs to and from their site, living expenses, and local transportation. Unfortunately Harvard Global Health Institute cannot cover the summer savings requirement for I-SURGH students who are on financial aid.  Once accepted to their site, participants in I-SURGH meet with a Harvard faculty member to develop a project that falls within the research agenda of the site. Throughout the summer, students work with a local mentor who supervises their daily work. While all returning Harvard College undergraduates are eligible to apply for an I-SURGH placement, preference is given to sophomores and juniors. 

The Office of Career Services (OCS) awards funding for research abroad, including both Harvard Summer School Study Abroad and non-Harvard International programs.  The  David Rockefeller International Experience Grant , which is a need-based grant aimed at students who have not previously received Harvard international funding, supports many of these awards. Award amounts vary. The purpose of the grant is to afford all students the opportunity to take part in a significant international experience, regardless of financial background. See the  Office of Career Services Summer Funding webpage  for more information.

Herchel Smith-Harvard Undergraduate Science Research Program  – Primarily directed toward students intending to pursue research-intensive concentrations and post-graduate study in the sciences. Undergraduate research either at Harvard or elsewhere, including internationally. Applications from the  Office of Undergraduate Research and Fellowships .

Harvard College Research Program (HCRP) – Summer stipend that can be applied towards travel expenses. Applications from the Office of Undergraduate Research and Fellowships at 77 Dunster Street.

Weissman International Internship  – Research abroad for returning Harvard undergraduates. Average award ~$4000. More information and applications available through OCS.

Deadline:   See the  Office of Careers Summer Funding webpage

Booth Fund Fellowship  - For seniors to engage in a program of travel, study, research or observation that will further expand and challenge an existing interest in a particular field. 

Rosenkrantz Travel Grants

This grant program is exclusively for concentrators in History and Science.  It allows motivated rising juniors  (who have completed sophomore tutorial) and who are concentrating in history and science to devise a short but meaningful plan of travel and academic discovery in the United States or abroad. This grant program may serve as the first stage of research towards a senior thesis or junior research paper, but there is no requirement that it do so. The only requirement is a sincere passion for adventure and exploration, and a willingness to prepare well for the experience.

Please visit the Department of Physics webpage for more information:  https://www.physics.harvard.edu/academics/undergrad/summer

Please visit the Harvard Mathematics Department webpage for more information:  http://abel.harvard.edu/research/index.html

Undergraduate Research in Engineering and Applied Sciences

Please visit SEAS website for more information: https://www.seas.harvard.edu/faculty-research/research-opportunities

David Rockefeller International Experience Grant The David Rockefeller International Experience Grants were established in 2009 by David Rockefeller SB ’36, LLD ’69 to give students the opportunity to gain a broader understanding of the world beyond the U.S. or their home country, and to learn about other countries and peoples by spending time immersed in another culture. The purpose of the grant is to afford all students the opportunity to take part in a significant international experience, regardless of financial constraints.

A significant international experience may consist of:

  • summer study abroad programs
  • internships and service projects
  • research assistantships (under the direction of a principle investigator)
  • experiential learning projects.
  • Harvard-affiliated Labs
  • Undergraduates: Open Research Positions & Projects
  • Harvard Wintersession & Winter Recess
  • Summer Programs Away
  • Underrepresented Minority Fellowships
  • Post-Bac Job Listings
  • Post-Bac Resources
  • Transportation for Researchers
  • Undergraduate Research Opportunities (HUROS) Fair
  • Undergraduate Research Spotlight
  • Resume Template & Proposal Tips
  • Lab Citizenship
  • Research Ethics and Lab Safety
  • Conference Presentation Grants
  • Research Advising - Contact Us!
  • Give to Undergraduate Research

What is Undergraduate Research?

What is undergraduate research.

Research is a creative and systematic process of asking questions and discovering new knowledge. Any student, regardless of major, year, or experience, can get involved in undergraduate research.

“Find what you love! The sheer abundance of research opportunities at UW can be overwhelming. Take the time to explore what you like.” Sophia Mar Biochemistry Undergraduate

Frequently asked questions about undergraduate research:

Many students who answered these questions are Undergraduate Research Leaders (URLs) with the Office of Undergraduate Research . Click here to learn about the URL program.

Do I need prior research experience(s) to participate in undergraduate research?

No! Most people don’t have any experience with research before college, so it is more than okay to reach out before you have any formal research experience. I would encourage everyone interested in research to look into professors or researchers who conduct research on topics that you are interested in and email them to ask if they have any space in their lab! – Megana Shivakumar

View Megana’s URL profile here .

You definitely do not need prior experience to start researching as an undergrad! Most professors/UW programs supporting undergrad research are more than happy to support students through their first research experience. If you have found a topic or program that interests you, your interest is enough to make you a valuable member of the research process. Also, each research project/lab/program is completely different and will be a new starting point for each person involved even if they already have research experience. – Ruby Barone

When is a good time to start research and/or apply for a research opportunity?

Everyone has a different path to research! I started in high school through a Biomedical Sciences class and continued research at the UW through a summer program before freshman year. With this being said, you do not have to start research this early on. Some students begin research after the fall or winter quarter of Freshman year while others wait until Sophomore year. Personally, I took a break from research my sophomore year and just participated in summer research through an internship. Currently, I am starting in a different lab, so don’t worry about starting later into your undergraduate year as a junior. However, I would suggest reaching out sooner rather than later, so you do not wait until your senior year because you may not have enough time to learn whether you enjoy research or not. – Nisha BK

View Nisha’s URL profile here .

Can/should I do research before I’m in a major?

Yes! I would definitely encourage students to look into getting involved with research before they’re in their major so that you can learn more about the specific topics within your major that interest you. In addition, many PIs like to work with students earlier in their college career so that you can spend more time working in their lab and specializing in your skill set. It’s never too early to start! – Megana Shivakumar

Can I do research outside of my major?

You absolutely can! I conduct research in a Microbiology lab as a Biochemistry major. My research provides me with insight into the unique workings of biochemical assays specifically used with bacteria. For example, I research DNA replication proteins and am working to determine the biochemical mechanism of action for protein-protein interactions that are unique to bacteria using both in-vivo and in-vitro assays. Additionally, many fields are interdisciplinary in their research: in my lab, I get to work with aspects of Microbiology, Virology, Molecular Biology, and Biochemistry. Having a different major from your research topic can make you a unique asset to a research group, as you may be better equipped to answer questions in ways that come from your major compared to the field of the research you participate in. If you’re passionate about the topic, I would encourage you to pursue the research opportunity! – Tara Young

View Tara’s URL profile here .

Are there research opportunities for students in arts and humanities? (Can only STEM students get involved in research?)

This is one big misconception that I have come across at UW – that research is only STEM-related. This is wrong!! UW has tons of great opportunities for research in the humanities – for example, the Summer Institute in the Arts and Humanities is a summer program that supports students through an arts/humanities-centered research project based around a common theme (selected students also receive a financial award and course credit!). The Mary Gates Endowment awards research scholarships to students from all disciplines, and many UW professors in the arts/humanities are also happy to have students reach out to them with research interests that can be pursued on a more one-on-one level with a mentor or instructor. – Ruby Barone

What do research experiences look like in the arts/humanities? Do you bring ideas or is there an assigned project?

Research in the arts/humanities is a lot less structured than how lab-based research and experiments might flow – students can create a research style and project that is tailored to their individual topic and interests, which allows projects to take form as research essays, art forms, performances, video essays, and the list goes on. For research programs like the Summer Institute in the Arts and Humanities, and for more individualized research that one might work with a faculty member on, you are highly encouraged to bring your own interests and passions to the table. Your mentor(s) will likely provide a basic framework for the final project you are aiming to produce, but they also allow a lot of room for creativity and your own interpretation of your research to take place. For example, my last big research project took form as both a formal research project and an art piece, which ended up being displayed in UW libraries and the UW office of research. Research in the arts/humanities is very fluid, and your project’s form will likely evolve as you learn more about your topic. – Ruby Barone

If I started a research project in high school, can I continue it as an undergraduate?

If you began a research project in high school, it is absolutely up to you and your research mentor whether you want to continue it into your undergraduate career. If you feel passionate and excited about your research, don’t feel obligated to switch topics as you enter undergraduate research. However, I would say that the transition to college can be a great time to try new things and extend yourself as a researcher to learn new skills, techniques, and about new topics! You have a lot of years to experiment with new things. Anecdotally, the research I participated in during high school in seismology is completely different from the research I conduct now in microbiology, and I really value having had that experience in gaining skills in a more “dry lab” environment. Although I now work in a wet lab, there are many skills that can carry over, and it allows you to get a better sense of what excites you as a researcher. – Tara Young

How many hours per week are undergraduates expected to dedicate to research?

It depends. Most professors in STEM fields, from my understanding, expect approximately 9-12 hours per week. That said, you can fulfill these hours whenever it works best with your schedule. Moreover, all professors understand that you are a student first. If there are weeks where you have several exams, for example, or are particularly busy with schoolwork, communicate this to your research mentor! Odds are they will understand that you can’t work on your project as much as usual and it will be totally ok. – Carson Butcher

View Carson’s URL profile here .

How long (how many terms, how many hours per week) are you expected to be in a research experience?

For research in the STEM fields, mentors usually expect 10 hours per week of time commitment. However, it does not mean that you will and must do 10 hours of work every week. You would start easy with ~3 hours per week of training, getting yourself familiarized with the research methodology and protocols. As you gain familiarity and confidence in research methods, you can be more independent and conduct more experiments based on your interest, therefore spending more time in the lab. Mentors usually expect a long-term commitment of a minimum 1 year, and it is reasonable: most of the training, whether wet lab work or computational work, would require at least a quarter of training to gain confidence. You are left with two quarters (or more) of independent research to learn, grow and contribute. – Teng-Jui Lin

View Carson’s Teng-Jui’s profile here .

Can you apply to get basic research skills even if you don’t want a project or without having a specific goal in mind?

I recently transitioned to a new lab, and I do not have a specific project I am working on. I am mostly learning basic biomedical science lab bench work even though I have prior experience. My mentor encouraged me to start from the beginning as if I had no previous experience, so I can relearn the fundamentals. If you want to develop basic research skills, I would highly recommend applying because you will spend time learning techniques in the beginning and your mentor will be there to supervise you. – Nisha BK.

How do you balance schoolwork, work, life, home-life with research?

As a student who juggles a full course load and anywhere between 5-10 extracurriculars every quarter, I understand the struggle of maintaining a healthy work-life balance! Something that has always helped me is organizing my life into a calendar and being very intentional with how I spend my time. Especially when it comes to research, I set clear boundaries with my mentors about when I’ll be working. It also helps that I love everything that I do—I get to study neuroscience, do research, direct a mentorship program, and do a communications internship. It’s so rewarding when you get to do work that you are genuinely passionate about. But of course, we can’t be productive all the time. Make sure to prioritize your health and give yourself time to rest and recharge! – Shannon Hong

View Shannon’s URL profile here .

Additional Resources

  • View the UW Libraries Undergraduate Research Tutorial module: Finding Your Balance

Anyone can participate in research and the Office of Undergraduate Research can help!

If you are curious about a subject and can find a mentor who is willing to support your endeavor, you can participate in research. The Office of Undergraduate Research is here to help you find research opportunities and mentors who can help you reach your goals. Check out a variety of undergraduate research projects below!

Jasmine Mae

Jasmine smiling for the camera

Jasmine did undergraduate research on the Supreme Courts of the Philippines.

Learn more!

Matthew Nguyen

Matthew smiling for the camera

Matthew is pursuing research to find novel therapy for late-stage prostate cancer.

Meron Girma

cupcakes

Meron conducted research on healthcare accessibility within Ethiopia.

Abi smiling for the camera

Abi worked to understand the impact of legal discourse on Seattle’s history of racially segregated schools.

Anika Lindley

Anika smiling for the camera

Anika studied the association between aggression and social functioning in people with Autism Spectrum Disorder.

Daniel Piacitelli

Daniel smiling for the camera

Daniel studies cosmological emissions in metal spectral lines as an Astronomy and Physics student.

Economics Department lobby

Undergraduate Research

We firmly believe that hands-on experience with economic research is a vital component of MIT Economics training. Undergraduate students can hone their research skills through multiple channels.

Economics Project Lab

The Project Lab is required as part of 14.33: Economics Research and Communication. In the lab, students prepare a study of a question in applied economics and combine their knowledge of economic principles with data analysis to study a topic of their choosing. Topics vary widely, from the measurement of how price changes affect the demand for particular products to studies of how monetary or fiscal policies have affected interest rates or unemployment.

MIT’s Undergraduate Research Opportunities Program (UROP) gives undergraduates the chance to work closely with our world-class faculty on projects related to their research. In the course of their UROP projects, which supplement ongoing coursework, students strengthen their research skills by gathering and analyzing data, writing computer programs, checking calculations, gathering research materials, and more.

The department's UROP coordinator for academic year 2023-2024 is Professor Josh Angrist . Please contact Josh or MIT's UROP office with questions.

Summer projects

There are often opportunities in the summer months for students to work on faculty research projects or internships in government, industry or research organizations. UROP involvement is often a first step toward obtaining an internship. Interested students can also contact faculty directly to inquire about opportunities.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

50+ Research Topics for Psychology Papers

How to Find Psychology Research Topics for Your Student Paper

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

undergraduate research ideas

Steven Gans, MD is board-certified in psychiatry and is an active supervisor, teacher, and mentor at Massachusetts General Hospital.

undergraduate research ideas

  • Specific Branches of Psychology
  • Topics Involving a Disorder or Type of Therapy
  • Human Cognition
  • Human Development
  • Critique of Publications
  • Famous Experiments
  • Historical Figures
  • Specific Careers
  • Case Studies
  • Literature Reviews
  • Your Own Study/Experiment

Are you searching for a great topic for your psychology paper ? Sometimes it seems like coming up with topics of psychology research is more challenging than the actual research and writing. Fortunately, there are plenty of great places to find inspiration and the following list contains just a few ideas to help get you started.

Finding a solid topic is one of the most important steps when writing any type of paper. It can be particularly important when you are writing a psychology research paper or essay. Psychology is such a broad topic, so you want to find a topic that allows you to adequately cover the subject without becoming overwhelmed with information.

In some cases, such as in a general psychology class, you might have the option to select any topic from within psychology's broad reach. Other instances, such as in an  abnormal psychology  course, might require you to write your paper on a specific subject such as a psychological disorder.

As you begin your search for a topic for your psychology paper, it is first important to consider the guidelines established by your instructor.

Research Topics Within Specific Branches of Psychology

The key to selecting a good topic for your psychology paper is to select something that is narrow enough to allow you to really focus on the subject, but not so narrow that it is difficult to find sources or information to write about.

One approach is to narrow your focus down to a subject within a specific branch of psychology. For example, you might start by deciding that you want to write a paper on some sort of social psychology topic. Next, you might narrow your focus down to how persuasion can be used to influence behavior .

Other social psychology topics you might consider include:

  • Prejudice and discrimination (i.e., homophobia, sexism, racism)
  • Social cognition
  • Person perception
  • Social control and cults
  • Persuasion, propaganda, and marketing
  • Attraction, romance, and love
  • Nonverbal communication
  • Prosocial behavior

Psychology Research Topics Involving a Disorder or Type of Therapy

Exploring a psychological disorder or a specific treatment modality can also be a good topic for a psychology paper. Some potential abnormal psychology topics include specific psychological disorders or particular treatment modalities, including:

  • Eating disorders
  • Borderline personality disorder
  • Seasonal affective disorder
  • Schizophrenia
  • Antisocial personality disorder
  • Profile a  type of therapy  (i.e., cognitive-behavioral therapy, group therapy, psychoanalytic therapy)

Topics of Psychology Research Related to Human Cognition

Some of the possible topics you might explore in this area include thinking, language, intelligence, and decision-making. Other ideas might include:

  • False memories
  • Speech disorders
  • Problem-solving

Topics of Psychology Research Related to Human Development

In this area, you might opt to focus on issues pertinent to  early childhood  such as language development, social learning, or childhood attachment or you might instead opt to concentrate on issues that affect older adults such as dementia or Alzheimer's disease.

Some other topics you might consider include:

  • Language acquisition
  • Media violence and children
  • Learning disabilities
  • Gender roles
  • Child abuse
  • Prenatal development
  • Parenting styles
  • Aspects of the aging process

Do a Critique of Publications Involving Psychology Research Topics

One option is to consider writing a critique paper of a published psychology book or academic journal article. For example, you might write a critical analysis of Sigmund Freud's Interpretation of Dreams or you might evaluate a more recent book such as Philip Zimbardo's  The Lucifer Effect: Understanding How Good People Turn Evil .

Professional and academic journals are also great places to find materials for a critique paper. Browse through the collection at your university library to find titles devoted to the subject that you are most interested in, then look through recent articles until you find one that grabs your attention.

Topics of Psychology Research Related to Famous Experiments

There have been many fascinating and groundbreaking experiments throughout the history of psychology, providing ample material for students looking for an interesting term paper topic. In your paper, you might choose to summarize the experiment, analyze the ethics of the research, or evaluate the implications of the study. Possible experiments that you might consider include:

  • The Milgram Obedience Experiment
  • The Stanford Prison Experiment
  • The Little Albert Experiment
  • Pavlov's Conditioning Experiments
  • The Asch Conformity Experiment
  • Harlow's Rhesus Monkey Experiments

Topics of Psychology Research About Historical Figures

One of the simplest ways to find a great topic is to choose an interesting person in the  history of psychology  and write a paper about them. Your paper might focus on many different elements of the individual's life, such as their biography, professional history, theories, or influence on psychology.

While this type of paper may be historical in nature, there is no need for this assignment to be dry or boring. Psychology is full of fascinating figures rife with intriguing stories and anecdotes. Consider such famous individuals as Sigmund Freud, B.F. Skinner, Harry Harlow, or one of the many other  eminent psychologists .

Psychology Research Topics About a Specific Career

​Another possible topic, depending on the course in which you are enrolled, is to write about specific career paths within the  field of psychology . This type of paper is especially appropriate if you are exploring different subtopics or considering which area interests you the most.

In your paper, you might opt to explore the typical duties of a psychologist, how much people working in these fields typically earn, and the different employment options that are available.

Topics of Psychology Research Involving Case Studies

One potentially interesting idea is to write a  psychology case study  of a particular individual or group of people. In this type of paper, you will provide an in-depth analysis of your subject, including a thorough biography.

Generally, you will also assess the person, often using a major psychological theory such as  Piaget's stages of cognitive development  or  Erikson's eight-stage theory of human development . It is also important to note that your paper doesn't necessarily have to be about someone you know personally.

In fact, many professors encourage students to write case studies on historical figures or fictional characters from books, television programs, or films.

Psychology Research Topics Involving Literature Reviews

Another possibility that would work well for a number of psychology courses is to do a literature review of a specific topic within psychology. A literature review involves finding a variety of sources on a particular subject, then summarizing and reporting on what these sources have to say about the topic.

Literature reviews are generally found in the  introduction  of journal articles and other  psychology papers , but this type of analysis also works well for a full-scale psychology term paper.

Topics of Psychology Research Based on Your Own Study or Experiment

Many psychology courses require students to design an actual psychological study or perform some type of experiment. In some cases, students simply devise the study and then imagine the possible results that might occur. In other situations, you may actually have the opportunity to collect data, analyze your findings, and write up your results.

Finding a topic for your study can be difficult, but there are plenty of great ways to come up with intriguing ideas. Start by considering your own interests as well as subjects you have studied in the past.

Online sources, newspaper articles, books , journal articles, and even your own class textbook are all great places to start searching for topics for your experiments and psychology term papers. Before you begin, learn more about  how to conduct a psychology experiment .

What This Means For You

After looking at this brief list of possible topics for psychology papers, it is easy to see that psychology is a very broad and diverse subject. While this variety makes it possible to find a topic that really catches your interest, it can sometimes make it very difficult for some students to select a good topic.

If you are still stumped by your assignment, ask your instructor for suggestions and consider a few from this list for inspiration.

  • Hockenbury, SE & Nolan, SA. Psychology. New York: Worth Publishers; 2014.
  • Santrock, JW. A Topical Approach to Lifespan Development. New York: McGraw-Hill Education; 2016.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Strengthening Research Experiences for Undergraduate STEM Students

Undergraduate research has a rich history, and many practicing researchers point to undergraduate research experiences (UREs) as crucial to their own career success. There are many ongoing efforts to improve undergraduate science, technology, engineering, and mathematics (STEM) education that focus on increasing the active engagement of students and decreasing traditional lecture-based teaching. The study will explore what is known about student participation in UREs, best practices in UREs design, and evidence of beneficial outcomes from UREs.

Publications

Cover art for record id: 24622

Undergraduate Research Experiences for STEM Students: Successes, Challenges, and Opportunities

Undergraduate research has a rich history, and many practicing researchers point to undergraduate research experiences (UREs) as crucial to their own career success. There are many ongoing efforts to improve undergraduate science, technology, engineering, and mathematics (STEM) education that focus on increasing the active engagement of students and decreasing traditional lecture-based teaching, and UREs have been proposed as a solution to these efforts and may be a key strategy for broadening participation in STEM. In light of the proposals questions have been asked about what is known about student participation in UREs, best practices in UREs design, and evidence of beneficial outcomes from UREs.

Undergraduate Research Experiences for STEM Students provides a comprehensive overview of and insights about the current and rapidly evolving types of UREs, in an effort to improve understanding of the complexity of UREs in terms of their content, their surrounding context, the diversity of the student participants, and the opportunities for learning provided by a research experience. This study analyzes UREs by considering them as part of a learning system that is shaped by forces related to national policy, institutional leadership, and departmental culture, as well as by the interactions among faculty, other mentors, and students. The report provides a set of questions to be considered by those implementing UREs as well as an agenda for future research that can help answer questions about how UREs work and which aspects of the experiences are most powerful.

Read Full Description

  • Press Release
  • Report Brief

Description

An ad hoc committee will synthesize the broad range of literature on models for providing undergraduate students with authentic research experiences in STEM disciplines or professions.  The committee will define what qualifies as “authentic undergraduate research experiences” and assess the quality of research available on various types of these research experiences. If possible and based on the strength of the literature, the committee will compare the effectiveness of different mechanisms and programs for providing undergraduate research experiences and provide best-practice examples of successful strategies for involving undergraduate research programs. The committee will review the empirical evidence of benefits across a range of outcomes associated with the multitude of educational, student, and institutional goals. It will critically assess the associated full costs involved in providing authentic research experiences within the context of undergraduate STEM education across all types of post-secondary institutions of higher learning and provide recommendations for research and practice. The committee will also discuss the needs of faculty and departmental administrators in order to successfully implement or improve and expand undergraduate research opportunities. The committee will develop a conceptual framework for designing and evaluating undergraduate research opportunities and create a research and development agenda to clarify what additional research is needed to robustly assess the quality and outcomes of undergraduate research experiences. The committee will balance the potential value added of making research or practice experiences more “authentic” with the potential additional investment of time, institutional capacity and financial support needed and suggest strategies for implementing undergraduate research experiences for various goals and outcomes, and for a variety of institutions with different types and levels of resources at their disposal.

  • Division of Behavioral and Social Sciences and Education
  • Division on Earth and Life Studies
  • Board on Science Education
  • Board on Life Sciences

Consensus Study

Contact the Public Access Records Office to make an inquiry, request a list of the public access file materials, or obtain a copy of the materials found in the file.

Past Events

Multiday Event | March 3-4, 2016

[Closed] Strengthening Research Experiences for Undergraduate STEM Students - Fifth Meeting

Multiday Event | January 14-15, 2016

[Closed] Strengthening Research Experiences for Undergraduate STEM Students - Fourth Meeting

Multiday Event | November 19-20, 2015

[Closed] Strenghtening Research Experiences for Undergraduate STEM Students - Third Meeting

Multiday Event | September 16-17, 2015

[Closed] Strengthening Research Experiences for Undergraduate STEM Students - Second Meeting

Multiday Event | June 4-5, 2015

[Closed] Strengthening Research Experiences for Undergraduate STEM Students - Meeting One

Responsible Staff Officers

  • Kerry Brenner  

Additional Project Staff

Undergraduate Research

Where to start:.

A good starting point is the Harvard College Undergraduate Research and Fellowships page. The Office of Undergraduate Research and Fellowships administers research programs for Harvard College undergraduates. Check out the website . Another resource is OCS , the Harvard Office of Career Services. It offers help on preparing a CV or cover letters and gives advice on how to network, interview, etc. Their website is here . Other Sources that can provide additional information on Scholarships, awards, and other grants:

  • Committee on General Scholarships: more …
  • Office of International Programs: more …
  • Student Employment Office: more …

Prise

Independent study in Mathematics

Students who would like to do some independent study or a reading class please read the pamphlet page . about Math 91r.

THE ANNUAL OCS SUMMER OPPORTUNITIES FAIR

The Office of Career Services hosts summer programs to help you begin your summer search. Programs are both Harvard affiliated and public or private sector and include internships, public service, funding, travel, and research (URAF staff will be there to answer your questions!). Check out the website.

Harvard-Amgen Scholars program in Biotechnology

Check out the Harvard-Amgen Scholars Program Learn about Harvard’s Amgen 10-week intensive summer research program, one of ten Amgen U.S. programs that support research in biotechnology. The Harvard program includes faculty projects in FAS science departments, SEAS, the Wyss Institute for Biologically-inspired Engineering, and the School of Medicine, open to rising juniors and seniors in biotechnology-related fields.

PRIMO program

The Program for research in Markets and Organizations (PRIMO) is a 10-week program for Harvard undergraduates who wish to work closely with Harvard Business School faculty on research projects.

Harvard Undergraduate Research Events

  • Wednesday, October 10, 12:00-1: 20 PM – Fall Undergraduate Research Spotlight. Come and meet Harvard undergraduate peers who will showcase their research projects and share their experiences conducting research at Harvard and abroad, followed by reception and deserts. Event program and list of presentations can be found here: here (pizza and desserts while supplies last). Free for Harvard students. Cabot Library 1st floor Discovery Bar.
  • Wednesday, October 17, 12:00-1: 00 PM – Undergraduate Science Research Workshop. Workshop facilitators Dr. Margaret A. Lynch, (Assoc. Director of Science #Education) and Dr. Anna Babakhanyan, (Undergraduate Research Advisor) will help Harvard students learn about science research landscape at Harvard. You will learn about what kind of research (basic science vs. clinical, various research areas) is available at Harvard, where you can conduct research, the types of undergraduate research appointments, how to find a lab that fits, interviewing and more. In addition, the workshop will provide strategies for students to prepare for the Annual HUROS Fair, see below. No registration is required for this event (pizza while supplies last). Free for all Harvard students. Cabot Library first floor Discover Bar. More.

Outside Programs

Caltech always announces two summer research opportunities available to continuing undergraduate students. Examples: WAVE Student-Faculty Programs The WAVE Fellows program provides support for talented undergraduates intent on pursuing a Ph.D. to conduct a 10-week summer research project at Caltech. And then there is the AMGEN Scholars program. See the website for more details.

Johns Hopkins Summer 2018 Opportunities

The Johns Hopkins University Center for Talented Youth (CTY) is seeking instructors and teaching assistants for our summer programs. CTY offers challenging academic programs for highly talented elementary, middle, and high school students from across the country and around the world. Positions are available at residential and day sites at colleges, universities, and schools on the East and West coasts, as well as internationally in Hong Kong. Website

Math REU list from AMS

AMS

Mellon Mays opportunities awareness

The Mellon Mays Undergraduate Fellowship Program ( MMUF ) selects ten students in their sophomore year to join a tightly-knit research community during junior and senior years to conduct independent research in close collaboration with a faculty mentor. Join us at this information session to find out more about the program. MMUF exists to counter the under-representation of minority groups on college and university faculties nationwide through activities designed to encourage the pursuit of the Ph.D. in the humanities and core sciences.

MIT Amgen and UROP

You may be familiar with the Amgen Scholars Program, a summer research program in science and biotechnology. The Massachusetts Institute of Technology is a participant in the Amgen-UROP Scholars Program for a ninth year. UROP is MIT’s Undergraduate Research Opportunities Program. The mission of the Amgen-UROP Scholars Program is to provide students with a strong science research experience that may be pivotal in their undergraduate career, cultivate a passion for science, encourage the pursuit of graduate studies in the sciences, and stimulate interest in research and scientific careers. MIT is delighted to invite undergraduate students from other colleges and universities to join our research enterprise. We value the knowledge, experience, and enthusiasm these young scholars will bring to our campus and appreciate this opportunity to build a relationship with your faculty and campus.

More REU's, not only math

The National Science Foundation Research Experiences for Undergraduates (REU) NSF funds a large number of research opportunities for undergraduate students through its REU Sites program. An REU Site consists of a group of ten or so undergraduates who work in the research programs of the host institution. Each student is associated with a specific research project, where he/she works closely with the faculty and other researchers. Students are granted stipends and, in many cases, assistance with housing and travel. Undergraduate students supported with NSF funds must be citizens or permanent residents of the United States or its possessions. An REU Site may be at either the US or foreign location. By using the web page , search for an REU Site, you may examine opportunities in the subject areas supported by various NSF units. Also, you may search by keywords to identify sites in particular research areas or with certain features, such as a particular location. Students must contact the individual sites for information and application materials. NSF does not have application materials and does not select student participants. A contact person and contact information are listed for each site.

Here is a link with more information about summer programs for undergraduates at NSA: NSA The most math-related one is DSP, but those students who are more interested in computer science could also look at, say, CES SP. They are all paid with benefits and housing is covered. Note that application deadlines are pretty early (usually mid-October). The application process will involve usually a few interviews and a trip down to DC.

NSF Graduate Research Fellowships

US citizens and permanent residents who are planning to enter graduate school in the fall of 2019 are eligible (as are those in the first two years of such a graduate program, or who are returning to graduate school after being out for two or more years). The program solicitation contains full details. Information about the NSF Graduate Research Fellowship Program (GRFP) is here . The GRFP supports outstanding graduate students in NSF-supported science, technology, engineering, and mathematics disciplines who are pursuing research-based Masters and doctoral degrees at accredited United States institutions. The program provides up to three years of graduate education support, including an annual, 000 stipend. Applications for Mathematical Sciences topics are due October 26, 2018.

Pathway to Science

summer research listings from pathways to science.

Perimeter Institute

Applications are now being accepted for Perimeter Institute’s Undergraduate Theoretical Physics Summer Program. The program consists of two parts:

  • Fully-Funded Two Week Summer School (May 27 to June 7, 2019) Students are immersed in Perimeter’s dynamic research environment — attending courses on cutting-edge topics in physics, learning new techniques to solve interesting problems, working on group research projects, and potentially even publishing their work. All meals, accommodation, and transportation provided
  • Paid Research Internship (May 1 to August 30, 2019, negotiable) Students will work on projects alongside Perimeter researchers. Students will have the opportunity to develop their research skills and absorb the rich variety of talks, conferences, and events at the Perimeter Institute. Applicants can apply for the two-week summer school or for both the summer school and the research internship. Summer school and internship positions will be awarded by February 28, 2019. Selected interns will be contacted with the research projects topics. All research interns must complete the two-week summer school.

Apply online at perimeterinstitute.ca/undergrad

Stanford resident counselors

Stanford Pre-Collegiate Institutes is hiring Residential Counselors for the summer to work with the following courses:

  • Cryptography (grades 9-10)
  • Knot Theory (grades 10-11)
  • Logic and Problem Solving (grades 8-9)
  • Number Theory (grades 9-11)
  • Excursions in Probability (grades 8-9)
  • Discrete Mathematics (grades 9-10)
  • The Mathematics of Symmetry (grades 10-11)
  • Mathematical Puzzles and Games (grades 8-9)

Stanford Pre-Collegiate Institutes offers three-week sessions for academically talented high school students during June and July. Interested candidates can learn more about our positions and apply by visiting our employment website .

Summer Research 2019 at Nebraska

We are now accepting applications for the University of Nebraska’s 2019 Summer Research Program, and we’d like to encourage your students to apply. Details.

Independent Study Topics in Mechanical and Industrial Engineering

Participation in research can be a rewarding component of an undergraduate engineering program. Motivated students can earn credit and satisfy some elective degree requirements by conducting independent study or thesis research with a supervising faculty member. Alternatively, students can be paid to conduct research; for example, by completing a summer Research Experience for Undergraduates (REU) program at UMass or at another university.

Most undergraduate research projects are “arranged” by the student who meets with faculty to discuss research interests and needs. Students often consult  faculty web pages  for overviews of faculty research interests and contact information for prospective advisors. Most faculty members welcome undergraduate researchers to their labs, and many can create undergraduate research projects reflecting student interests and capabilities that are related to their own research. Other projects may be more clearly defined in advance by faculty members, derive from other projects, or reflect a new idea that a student wishes to explore. Descriptions of some of the more well-defined research projects follow. Students interested in any of these projects or in other research topics are encouraged to contact the associated faculty members.

Professor Erin Baker :  

My research is on energy technology policy, especially related to  energy equity and the transition to a low carbon energy system. The methods are mathematical and computational decision modeling. Examples of current honors topics include modeling the impact of heat pumps on electricity demand in New England and evaluating energy storage options, including cooperatively owned and operated batteries and hot water storage.

Professor Wen Chen :  

Our  Multiscale Materials and Manufacturing Laboratory  is very interested in hosting students for research intern, independent study, or senior project throughout the year. Our research group is focused on advanced manufacturing of structural and functional materials using various 3D printing technologies. Structural metal alloys that we study include Al alloys, steels, high entropy alloys, metallic glasses, and 3D architected materials (also called mechanical metamaterials). We also collaborate with many other universities (UPenn, Brown, Stanford, Georgia Tech), national labs (Oak Ridge National Lab, Lawrence Livermore National Lab, Argonne National Lab), and industry partners to develop next-generation eco-friendly batteries. Our lab houses a wide range of 3D printing facilities including direct ink writing, laser powder bed fusion, laser engineered net shaping, and plasma wire arc additive manufacturing system. We have a multidisciplinary team working on alloy development, mechanical behavior of 3D-printed materials, powder metallurgy, and electrochemistry.     If you are interested in applying for research opportunities in our lab, please send a CV to wenchen [at] umass [dot] edu (Dr. Wen Chen) .  

Professor Steve de Bruyn Kops :  

I study fluid turbulence at a very fundamental level. Fundamental science, not engineering. I can work with students who have some appreciation for how to move massive amounts of data through a computer (files larger than the hard drive on a laptop). Knowledge of python and C++ is good. Excel and Matlab are not adequate. In particular, I am looking for a student with these computer skills and an interest in learning something about artificial intelligence, data mining, and/or big data.

Professor Xian Du : 

I am very interested in the supervision of senior students. Following are my research areas (please also refer to my Google Scholar page here ): Roll to Roll Flexible Electronics Printing Intelligent Vision Medical Device Realization Specific projects regarding which I would like to meet students to discuss include: The design, realization, control, and scale up of Roll to Roll Print Machines. You will work with me and my PhD students who have rich industrial experience, and my industrial collaborators in the project. You will learn both hand-on skills in design and programming, many interesting research directions in the manufacturing of flexible electronics. This project will be good for students who are interested in precision machine design, control, and manufacturing. Machine vision, image processing, machine learning, and data mining for nanomanufacturing, or medical devices. The data can be from MRI, high-speed/high-resolution optical and NIR camera, or microscope. You will learn the how to apply AI to the above areas. You also will learn how to solve fundamental problems in setup, calibration, and using of these imaging devices. You have chance to work with both my industrial and hospital collaborators. This project will be good for students who are interested in AI applications and discovery of novel AI computations.

Professor Chaitra Gopalappa :  

My research area and previous work can be found here . Students interested in doing a CHC thesis or independent study should contact me at  chaitrag [at] umass [dot] edu (chaitrag[at]umass[dot]edu)  to set up an appointment to discuss specific projects of interest. Students can expect to use one or more of stochastic processes, optimization, simulation, computational modeling, and data analytics. Students can expect to work in the "broad" area of disease prevention and control, though the methodologies can be transferable to other areas.

Professor Meghan Huber : 

The mission of the Human Robot Systems Lab is to advance how humans and robots learn to guide the physical interactive behavior of one another. To achieve this, our research aims to: (1) develop new methods of describing human motor behavior that are compatible for robot control, (2) understand and improve how humans learn models of robot behavior, and (3) develop robot controllers that are compatible for human-robot physical collaboration. This highly interdisciplinary research lies at the intersection of robotics, dynamics, controls, human neuroscience, and biomechanics. To apply, please follow the instructions here .

Professor Juan Jiménez :

The research goal of the Jiménez laboratory at the University of Massachusetts Amherst is to elucidate the fluid flow characteristics and fluid flow-dependent biomolecular pathways relevant to diseases and processes in the body, by integrating fluid dynamic engineering into cellular and molecular mechanisms important in medicine. Our research focuses on experimental cardiovascular biomedicine; specifically, addressing the interaction of flow in the blood vasculature and lymphatic system with the endothelium. Furthermore, we also work in the area of biomedical implantable devices like stents. Active areas of research are: Atherosclerosis & Stents: Elucidating the role of fluid flow on endothelial cell migration by investigating cell motility, reactive oxygen species, and gene expression Cerebral Aneurysms & Stroke: Recreating the fluid flow environment present in the cerebral vasculature to identify pro-inflammatory endothelial cell gene expression Vascular Biology: In-vitro models of disease and endothelial cell phenotype

Professor Jim Lagrant :  

I typically advise 2–3 independent study projects each semester in industrial automation, engineering education, machine design and fabrication. Topics include selection and application of industrial control hardware, Programmable Logic Controller programming, Human Machine Interface design and programming, classroom aid and laboratory experiment design, and equipment redesign. Students interested in doing a CHC thesis or independent study should contact me at  jlagrant [at] umass [dot] edu (jlagrant[at]umass[dot]edu)  to set up an appointment to discuss specific projects of interest.

Professor Jae-Hwang Lee :  Nano-Engineering Laboratory

We are looking for a few research-oriented undergraduates interested in materials in mechanical extremes. Their material research topics could potentially relate to bulletproof materials or additive manufacturing. We prefer a research plan more extended than one semester.

Professor Tingyi “Leo” Liu :

My Inter²EngrLAB  welcomes any passionate undergraduate students who want to step out of their comfort zone to prepare themselves for the challenging future. We work on interdisciplinary topics and aim to advance fundamental science and develop enabling technologies in the fields such as Micro Electromechanical Systems (MEMS), nanotechnology, brain-machine interface, soft electronics and robotics, listing just a few. Example projects include neurosurgical robots, automated nanomanufacturing systems, multifunctional neural probes, super-repellent surfaces. Our projects offer students research experience on mechatronics, CNC machining, MEMS, control systems, hardware-software interface programming, lithography, app design, bioinspired design, human-factor product design, etc., with hardcore training in both hands-on and theory as well as interdisciplinary communication. We have opportunities for students to do research intern, senior design projects, independent studies, and honor thesis that may involve all phases of academic research, technology transfer and development, and industrial product development. I individually train students who are interested in working with me to maximize their potential and let them work with everyone in my lab to encourage diversity and inclusivity. Feel free to talk to me for more in-depth discussion on possible projects.

Professor Yahya Modarres-Sadeghi :  

I always have projects for undergraduate students: General Fluid-Structure Interactions (FSI) problems, mainly experimental, with specific problems being those in which the students conduct experiments in the water tunnel or wind tunnel for either fundamental FSI problems, fish propulsion, wind energy related projects, or our bat deterrent device. I also have projects on biomedical FSI.

Professor Jinglei Ping:  

The goal of Ping Lab  is to determine the fundamental principles governing applications of nanomaterials and nanomaterial-based device structures in biotechnology, healthcare, environmental monitoring, and so on. Fascinating phenomena emerge as materials or devices scale down, inducing "surprises" and offering promise for dramatic improvement in the material or device performances. However, not all "surprises" are favorable. Moreover, fabrication and investigation at micro or nano scales can be technically challenging. We tackle the challenges by combining techniques in bioelectronics, microfluidics, microscopy, microfabrication and more (sometimes we invent the techniques) to harness innovative physicochemical principles at micro or nano scales to create devices and systems for processing, detecting, and/or stimulating biosystems. We are an energetic lab focusing on interdisciplinary research. If you are interested in novel nanomaterials, understanding their bio-transducing properties, building nano-enabled biosensors, etc., reach out to us at  ping [at] engin [dot] umass [dot] edu (ping[at]engin[dot]umass[dot]edu) ! Students from underrepresented groups are particularly encouraged.

Professor Anuj K. Pradhan : 

The  Pradhan Research Group  operates as part of the  Human Performance Laboratory . Our group conducts research on driver behaviors in the context of driving safety, with a specific focus on advanced vehicle technologies including Connected and Automated Vehicles. Past and current students (undergraduate and graduate) have worked on research projects on: Human Factors of Automated Vehicles, Distracted Driving, Impact of Advanced Technologies on Driver Safety, user-centered design for automotive interfaces, and Driving Simulation Methodologies. These projects are undertaken using an advanced Driving Simulator, or are conducted on public roadways with advanced vehicles, or via analytical human factors methods. Students in the group will have opportunities to be involved in all phases of a research study, from conceptualization and design and preparation of experiments, to data collection, data analyses, and reporting of results. Students will also have opportunities to independently conduct research of their interest if that overlaps with the group’s interests. Our group students are encouraged to and regularly present their research at conferences at UMass or at domestic conferences and are supported financially to do so. Please visit the  group website  to learn more and to contact Professor Pradhan. 

Professor Shannon Roberts : 

The  Roberts Research group , a part of the  Human Performance Laboratory , is always interested in having undergraduate students join our research team. Broadly speaking, our work is focused on Human Factors in transportation safety. We look at how to improve driving behavior among young adults and teens. We also examine issues in driving automation systems, including how to design in-vehicle interfaces & training systems and differences in performance across demographic groups. Undergraduate students have the opportunity to use a variety of tools (e.g., driving simulators) and are typically involved in all stages of research, from ideation to research design to analysis to publishing.

Professor Jonathan Rothstein :  

I am always willing to supervise experimental fluid dynamics projects. The list of possible projects is long, and I usually have 10 or so that I sketch out for any student who is interested in working with me. I let them pick out the one that they like best.

Professor Krish Thiagarajan Sharman:  

I am interested in working with one or two honors students in the following topics: Modeling an offshore wind turbine using industry standard software. Explore new concepts and produce interesting simulation results. No computing skills needed, but interest in learning new skills is essential. Design, build and test an offshore wind turbine platform in our wave tank (Gunness Hall). Knowledge of SolidWorks is essential. Hands-on work in the workshop will be required.

Professor Yubing Sun :  

Potential projects for undergraduate honors research include: using microfluidic devices to study the mechanotransduction in epithelial cells, using engineered hydrogels and pluripotent stem cells to model early neural development, and imaging analysis using Matlab to track cell migration and proliferation.

Professor Frank Sup :  The Mechatronics and Robotics Research Laboratory

I am looking for students interested in the areas of: Robot design Biomechanics of human locomotion Collaborative human-robot systems Robot tele-operation

Professor Yanfei Xu : Xu Research Group at UMass Amherst

We are looking for like minded scientists and engineers with synergistic research interests to work together on  multifunctional polymers, integrated devices and systems, and advanced manufacturing. Applicants should send cover letter and curriculum vitae through email to  yanfeixu [at] umass [dot] edu (subject: Xu%20Research%20Group) (yanfeixu[at]umass[dot]edu) .

Global footer

  • ©2024 University of Massachusetts Amherst
  • Site policies
  • Non-discrimination notice
  • Accessibility
  • Terms of use

Undergraduate Research

Participating in research as an undergraduate can be a very rewarding experience. Approximately 90% of Biology majors pursue an independent research project at some point during their undergraduate careers; some also pursue honors, and some do not.

Jump to:  How to get started In-department research Out-of-department research Questions about enrolling

How to Get Started

Biology majors in particular have a plethora of research opportunities in the Biology Department, departments in the Medical School, and labs at Hopkins Marine Station. To get started in searching for a potential lab, these are some great resources to consider:  

  • Biology Department Faculty : Browse each faculty member's areas of research
  • Research Areas : Search for a faculty member based on a particular area of interest within the field of Biology
  • Community Academic Profiles : This site allows you to search for faculty labs in the Stanford School of Medicine. You can search by name, department, or even keyword. This is a useful tool if you know generally what area of research you would like to pursue, but are unsure of a specific lab that does what interests you.

Once you have narrowed down 3-5 of your top choices, use the following steps as a general guide:

Spend time thoroughly looking over the lab's website. This will give a lot of information including how large the lab is, what types of projects are underway, and how many and what kinds of publications are getting done.

Read through a few publications to familiarize yourself with the research. This will give you something to talk about when you set up a meeting with the faculty member, and it also shows a genuine interest in their work.

Email the faculty member asking for an appointment. Be sure to mention that you have looked through their website and publications. This shows that you have made an effort and have an interest in them specifically. Be prepared to discuss your specific research interests.

Send a generic email simply asking if there are spaces in their lab. This is not compelling, and you may not even get a response.

Assume that the faculty member knows who you are. Briefly introduce yourself as a Biology major interested in pursuing ____.

Remember: politeness and persistence are important!

In-Department Research (BIO 199)

Once you have found and been accepted into a lab, you are strongly encouraged to enroll in academic credit for your work in the lab. The general formula for determining units is: 1 unit=3 hours of work per week.

Working in a Lab in Biology

Students doing research in Biology Department labs can study anything from cell biology, genetics, and plants to ecology, conservation, and marine biology. To get academic credit for Biology Department research (which can also count toward Biology major electives and Biology Honors requirements), students should enroll in their faculty member's section of BIO 199.

Be sure to discuss the number of units and grading options ahead of time with your faculty research advisor. No petition is required to enroll in BIO 199, and students in any major are welcome to enroll provided they have permission from the faculty member.

Out-of-Department Research (BIO 199X)

Working in a lab outside of biology.

Many students find research opportunities in labs outside the Biology Department.  BIO 199X is available for declared Biology majors only.  If you are not a Biology major, consider enrolling under your PI's home department subject code, e.g. MED 199. Once you declare the major, you will submit a BIO 199X petition and start enrolling under that subject code.

You must submit your BIO 199X petition within one quarter of declaring the Biology major in order to receive credit toward your major electives . 

For Honors, only your BIO 199/X units count from your junior and senior years.

Students only need to petition ONCE to work with the same sponsor. If you switch labs, you will be required to submit a new petition.

Appropriate Research Projects

The research field is expected to encompass biological concepts and processes. Projects should be empirical or theoretical biological research, consisting of independent and original scientific work by the student. Applied clinical, environmental, or technological studies may be appropriate in cases where there is a major analytical, experimental or observational component to the study, involving independent conceptual, field or laboratory work by the student. Simply collecting data or samples from human subjects or interviewees, collating data, doing repetitive technical work, or doing statistical analysis is not sufficient for Bio 199X credit. Students should discuss the nature of their projects with their Departmental advisors prior to petitioning for approval, if there is any doubt about appropriateness.

Research Sponsors

Sponsors should be Academic Council members (assistant, associate, or full professors) if possible. If you are not sure if your research sponsor is an Academic Council member, search on Stanford Who in the "Search in Stanford view." If your sponsor is not an Academic Council member you will need to find a faculty member in the Department of Biology to serve as a co-sponsor of your research. This can be your faculty advisor if appropriate.

Autumn 2023 – October 4, 2023, 3:00 pm Winter 2024 – January 17, 2024, 3:00 pm Spring 2024 – April 10, 2024, 3:00 pm

Petition Procedure

To petition for BIO 199X credit , students must submit the following items to Gilbert 118 or as one PDF to Patricia Ayala Macias at ayalamac [at] stanford.edu (ayalamac[at]stanford[dot]edu) :

Fill out the  Petition and Research Sponsorship Form  (Fillable)

Your research proposal should be at least 2-3 pages in length (double spaced, not including references and figures) and should be organized as described below using the following headings. Also please include your Sponsor's name and department at the top.

Title of Research Project

Objective of research . Briefly and clearly state the question that your research is designed to address. Explain the specific aims of the research.

Background and Significance . Using appropriate background information which is appropriately referenced, indicate the significance of your research.

Experimental design . Describe the project design you will use to carry out your research including methods and materials. Indicate how these techniques will allow you to address your research question. Note the following: 1) research involving vertebrate animals requires that your sponsor have an approved Animal Use Protocol on file with the University Panel on Laboratory Animal Care; 2) work with radioactive substances requires certification in the University’s radiation safety course; 3) work with pathogenic organisms requires special training and precautions 4) work with human material requires that you complete the Human Subjects Training. If any of these apply, describe them in your proposal.

Possible results . Describe the expected outcome of your research, indicating how the data collected will be used to draw conclusions regarding the research question. Throughout your proposal, be specific about your own work: do not simply state the goals of the lab in which you are working. Stress the biological concepts you are using and your understanding of the methodology. The proposal should clearly show some level of independence in your research, the feasibility of the project, and an understanding of the basic biology involved. If this is your first Quarter of Bio 199X and you do not yet have your own project, but are helping someone else in the lab on their project while learning concepts and methods, then describe the project that you are working on instead.

Print or email the  sponsor information sheet  and give it to your sponsor for their reference.

Submit your Petition Form and Research Description to both your PI and major advisor well ahead of the submission deadline! Both readers will need time to review your proposal and provide feedback for revisions.

Questions about enrolling?

If you're unsure if you should enroll in BIO 199, BIO 199X, or something else (e.g. MED 199), use this decision tree to make your decision. Still unsure?  ayalamac [at] stanford.edu (subject: BIO%20199X%20Enrollment) (Contact the student services office) .  

Decision tree to aid in enrolling in research units

Presenting Undergraduate Research, Scholarly, and Creative Work

6191 Room, Helen C. White Hall April 11, 2024 @ 4:30 pm CDT - 6:00 pm CDT Register Online!

Sharing your research, scholarly, and creative projects at a conference provides an opportunity to convey your ideas to a wide variety of individuals. Since this audience has a heterogeneous knowledge base regarding your topic or art form, conference presentation skills differ from those used in classroom presentations, where a shared background is assumed.

This interactive workshop will help you develop the techniques to make the most of the opportunity to connect with an audience over your topic of interest and mode of exploration. You will learn strategies for preparation, organization, and delivery, including tips for scenarios such as Q&A and dealing with unforeseen circumstances. 

The workshop is designed for students presenting at the UW-Madison Undergraduate Symposium but open to all undergraduate students preparing for conference presentations. If possible, please bring the abstract for your project for the hands-on components.

Co-sponsored by The Undergraduate Symposium Team.

For more information about the Undergraduate Symposium, visit https://ugradsymposium.wisc.edu/ . 

Register Online!

Research Assistants on Energy and Climate

William & Mary

Search wm.edu

undergraduate research ideas

  • Arts & Sciences
  • Graduate Studies
  • Research Symposium

Graduate & Honors Research Symposium

March 21-22, 2024, sadler center.

Plus, Three Minute Thesis Competition , March 20, 2024!

View the Full 2024 GHRS Online Program

Learn more about the 2024 Symposium

Download the Basic Presenter Schedule [.pdf]

About the Graduate & Honors Research Symposium

The Symposium, which began as the Graduate Research Symposium, is one of only a few graduate-focused conferences that is broadly themed and therefore designed to bring together graduate students from differing areas of study and from all stages of the degree process. In 2023, the Symposium began welcoming W&M undergraduate Honors students in partnership with the Charles Center . The 2024 Symposium will feature more than 150 poster and panel presentations by graduate and honors students representing Arts & Sciences, plus graduate students from other regional institutions.  

Event History

The Graduate Research Symposium grew out of, and along with, the American Cultures Conference, an annual event launched in 2002 by William & Mary's  American Studies Program . The Graduate & Honors Research Symposium is now co-hosted by the A&S Graduate Center and the Charles Center for Academic Excellence; it is organized by a dedicated group of William & Mary graduate student volunteers, and supported by the staff in the Office of Graduate Studies and the Charles Center.  

To get a sense of past GRS events, check out our past symposia programs.

Call for Abstracts

To present at the 2024 Symposium use our GHRS Abstract Submission Portal (Qualtrics form) . Deadline : January 15, 2024, 11:59 p.m. (ET)

Read more about eligibility to present at the GHRS and guidelines for abstract submissions .

William & Mary invites interested scholars from W&M, VIMS, and other Virginia universities to present at the Graduate & Honors Research Symposium hosted by the Arts & Sciences Graduate Center and W&M's Charles Center for Academic Excellence. The Symposium will be held in the Sadler Center,  March 21-22, 2024 (Thursday & Friday). This event encourages interdisciplinary exchange, bringing together students from the sciences and the humanities at William & Mary and other surrounding regional universities. Check out our past symposia programs to get a sense of the even

Follow W&M on Social Media:

Williamsburg, Virginia

  • Accessibility
  • Consumer Information
  • Non-Discrimination Notice
  • Privacy & Security

IMAGES

  1. Undergraduate Research Center

    undergraduate research ideas

  2. 55 Brilliant Research Topics For STEM Students

    undergraduate research ideas

  3. Take a Look at Interesting Research Topics in Education

    undergraduate research ideas

  4. Undergraduate Research Showcase

    undergraduate research ideas

  5. FAQs

    undergraduate research ideas

  6. Why is Research Important for Undergraduate Students?

    undergraduate research ideas

COMMENTS

  1. 113 Great Research Paper Topics

    113 Great Research Paper Topics. Posted by Christine Sarikas. General Education. One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and ...

  2. 30 Seriously Impressive Undergrad Research Projects

    30 Seriously Impressive Undergrad Research Projects. At UT, research isn't exclusively for faculty and graduate students. Need proof? Just take a look at this impressive list of undergraduate research from this year. " Unfeminist Coalition in Game of Thrones," anyone? Get advice and insights on undergraduate research from students themselves.

  3. Undergraduate Research Topics

    Available for single-semester IW and senior thesis advising, 2023-2024. Research Areas: Human-Computer Interaction (HCI), Augmented Reality (AR), and Spatial Computing. Independent Research Topics: Input techniques for on-the-go interaction (e.g., eye-gaze, microgestures, voice) with a focus on uncertainty, disambiguation, and privacy.

  4. Examples of Undergraduate Research Projects

    Examples of Undergraduate Research Projects Fall 2021 Projects. Student Research Proposal; Whitney Brown: Characterizing the role of FOXP3 in ccRCC: Ziche Chen: Intereations between LANA and Super-enhancers: Anna Eberwein: Synaptic Dysfunction in the Drosophila Niemann Pick Type C Disease Model:

  5. A student's guide to undergraduate research

    A student's guide to undergraduate research. Published on August 16, 2021. Originally written by Shiwei Wang for Nature journal in March 2019. Participating in original research during your undergraduate studies can greatly expand your learning experience. However, finding the project can be a challenging task, so here's a short but ...

  6. 170+ Research Topics In Education (+ Free Webinar)

    The impact of poverty on education. The use of student data to inform instruction. The role of parental involvement in education. The effects of mindfulness practices in the classroom. The use of technology in the classroom. The role of critical thinking in education.

  7. A student's guide to undergraduate research

    As an undergraduate, you have the freedom to change your major and your future plans. Make sure to strike a balance between reading and conducting experiments. It's hard to do both at the same ...

  8. Undergraduate Research

    Programs & Fellowships. Provost's Undergraduate Research Awards: Receive up to $3,000 and be paired with a full-time faculty sponsor for research on any topic of your choosing. ASPIRE grants : Promote independent research projects among undergrads in the School of Arts and Sciences; awards range from $500 to $4,500 per academic year.

  9. Guide to Undergraduate Research at Duke

    "Access to intellectuals, to ideas, it influences your processes, your research, how you imagine yourself in the world and what you might be able to do." ... Undergraduate Research Support Office. 011 Allen Building Duke University Box 90051 Durham, NC 27708-0051. 919.684.9259 [email protected]. Getting Started in Research. Frequently ...

  10. Undergraduate Research in Chemistry Guide

    Undergraduate Research in Chemistry Guide. Research is the pursuit of new knowledge through the process of discovery. Scientific research involves diligent inquiry and systematic observation of phenomena. Most scientific research projects involve experimentation, often requiring testing the effect of changing conditions on the results.

  11. Undergraduate research experiences: Impacts and opportunities

    Key words included undergraduate research, research opportunities, and science, physics, chemistry, biology. Computer science and psychology were excluded to keep the research experiences as similar as possible. ... Both interviews and journal writing had the added value of supporting students to connect ideas from their research experience to ...

  12. 2024 Colleges With Undergraduate Research Projects

    in Undergraduate Research/Creative Projects (tie) #3. in National Universities (tie) The sunny campus of Stanford University is located in California's Bay Area, about 30 miles from San ...

  13. How Undergraduates Benefit From Doing Research

    Undergraduate research isn't just for STEM subjects. "From the moment I set foot on campus, URAP allowed me to see what kinds of ideas I could study," Stewart says.

  14. Undergraduate Research in Chemistry

    Undergraduate Research in Chemistry. Undergraduate research in chemistry is self-directed experimentation work under the guidance and supervision of a mentor or advisor. Students participate in an ongoing research project and investigate phenomena of interest to them and their advisor. There is a broad range of research areas in the chemical ...

  15. Research Opportunities and Funding

    BSRP is a nine-week undergraduate research program designed for students with an interest in genomics and a commitment to research. Students spend the summer in a laboratory at the Broad Institute, engaged in rigorous scientific research under the guidance of experienced scientists and engineers. Underrepresented minority students enrolled in a ...

  16. PDF Undergraduate Research Topics

    Office: 704C Rieveschl. Telephone: 513-556-9280. Email: [email protected]. Research in the Ayres Lab is focused on synthetic polymer chemistry for applications in biomaterials. We have ongoing projects investigating polymer biomimics for blood-contacting biomaterials, reversible gels with self-healing properties, and shape memory polymers.

  17. What is Undergraduate Research?

    Research is a creative and systematic process of asking questions and discovering new knowledge. Any student, regardless of major, year, or experience, can get involved in undergraduate research. "Find what you love! The sheer abundance of research opportunities at UW can be overwhelming. Take the time to explore what you like.".

  18. Undergraduate Research

    UROP. MIT's Undergraduate Research Opportunities Program (UROP) gives undergraduates the chance to work closely with our world-class faculty on projects related to their research. In the course of their UROP projects, which supplement ongoing coursework, students strengthen their research skills by gathering and analyzing data, writing ...

  19. 50+ Research Topics for Psychology Papers

    Topics of Psychology Research Related to Human Cognition. Some of the possible topics you might explore in this area include thinking, language, intelligence, and decision-making. Other ideas might include: Dreams. False memories. Attention. Perception.

  20. Strengthening Research Experiences for Undergraduate STEM Students

    There are many ongoing efforts to improve undergraduate science, technology, engineering, and mathematics (STEM) education that focus on increasing the active engagement of students and decreasing traditional lecture-based teaching. The study will explore what is known about student participation in UREs, best practices in UREs design, and ...

  21. Undergraduate Research

    The Mellon Mays Undergraduate Fellowship Program selects ten students in their sophomore year to join a tightly-knit research community during junior and senior years to conduct independent research in close collaboration with a faculty mentor.Join us at this information session to find out more about the program. MMUF exists to counter the under-representation of minority groups on college ...

  22. Independent Study Topics in Mechanical and Industrial Engineering

    Students interested in any of these projects or in other research topics are encouraged to contact the associated faculty members. Professor Erin Baker: My research is on energy technology policy, especially related to energy equity and the transition to a low carbon energy system. The methods are mathematical and computational decision modeling.

  23. Undergraduate Research

    Students doing research in Biology Department labs can study anything from cell biology, genetics, and plants to ecology, conservation, and marine biology. To get academic credit for Biology Department research (which can also count toward Biology major electives and Biology Honors requirements), students should enroll in their faculty member's ...

  24. Presenting Undergraduate Research, Scholarly, and Creative Work

    Sharing your research, scholarly, and creative projects at a conference provides an opportunity to convey your ideas to a wide variety of individuals. Since this audience has a heterogeneous knowledge base regarding your topic or art form, conference presentation skills differ from those used in classroom presentations, where a shared ...

  25. Research Assistants on Energy and Climate

    Bruegel is a European think tank working in the field of international economics. Established in 2005, Bruegel is independent and non-doctrinal. Its mission is to improve the quality of economic policy with open and fact-based research, analysis and debate. We are committed to impartiality, openness and excellence. Bruegel's membership includes European Member State governments ...

  26. my research mentor keep telling me my project idea is not ...

    A place to ask questions and get answers on how to start performing undergraduate research including asking for letters of recommendation, applying to REUs, and making the most of the experience.

  27. PDF Graduate & Honors Research Symposium

    The Graduate Research Symposium grew out of, and along with, the American Cultures Conference, an annual event launched in 2002 by William & Mary's American Studies Program. The Graduate & Honors Research Symposium is now co-hosted by the A&S Graduate Center and the Charles Center for Academic Excellence; it is organized by a dedicated group of ...