TRAILS: Tree reconstruction of ancestry using incomplete lineage sorting

February 8, 2024

TRAILS: Tree reconstruction of ancestry using incomplete lineage sorting

Image credit: pgen.1010836

Research Article

Comparison of clinical geneticist and computer visual attention in assessing genetic conditions

Understanding AI, specifically Deep Learning, in facial diagnostics for genetic conditions can enhance the design and utilization of AI tools, facilitating more meaningful interactions between clinicians and AI technologies.

Image credit: pgen.1011168

Comparison of clinical geneticist and computer visual attention in assessing genetic conditions

Recently Published Articles

  • DNAJB1-PRKACA fusion protein-regulated LINC00473 promotes tumor growth and alters mitochondrial fitness in fibrolamellar carcinoma
  • Spoink , a LTR retrotransposon, invaded D. melanogaster populations in the 1990s"> Spoink , a LTR retrotransposon, invaded D. melanogaster populations in the 1990s
  • A quantitative genetic model of background selection in humans

Current Issue

Current Issue January 2024

Maintenance of proteostasis by Drosophila Rer1 is essential for competitive cell survival and Myc-driven overgrowth

Loss of Rer1 induces proteotoxic stress, leading to cell competition and elimination, while increased Rer1 levels provide cytoprotection and support Myc-driven overgrowth.

Image credit: pgen.1011171

Maintenance of proteostasis by Drosophila Rer1 is essential for competitive cell survival and Myc-driven overgrowth

Anthracyclines induce cardiotoxicity through a shared gene expression response signature

TOP2i induce thousands of shared gene expression changes in cardiomyocytes.

Image credit: pgen.1011164

Anthracyclines induce cardiotoxicity through a shared gene expression response signature

CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair

Co-expression analysis of CryptoCEN network identifys 13 new DNA damage response genes.

CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair

Image credit: pgen.1011158

TRPS1 modulates chromatin accessibility to regulate estrogen receptor alpha (ER) binding and ER target gene expression in luminal breast cancer cells

TRPS1 orchestrates gene expression, estrogen signaling, and chromatin dynamics to shape cell fitness and impact patient prognosis in luminal breast cancer.

TRPS1 modulates chromatin accessibility to regulate estrogen receptor alpha (ER) binding and ER target gene expression in luminal breast cancer cells

Image credit: pgen.1011159

IntroUNET: Identifying introgressed alleles via semantic segmentation

Deep learning algorithm accurately identifies introgressed alleles at the individual level, unveiling insights into the extent and fitness effects of introgression.

IntroUNET: Identifying introgressed alleles via semantic segmentation

Image credit: pgen.1010657

Transposon dynamics in the emerging oilseed crop Thlaspi arvense

Transposable elements Ty3/Athila drive genome evolution in T. arvense …

Transposon dynamics in the emerging oilseed crop Thlaspi arvense

Image credit: pgen.1011141

Precise coordination between nutrient transporters ensures fertility in the malaria mosquito Anopheles gambiae

Reciprocal regulation between lipid transporter lipophorin (Lp) and yolk precursor protein Vg is crucial for proper egg development …

Precise coordination between nutrient transporters ensures fertility in the malaria mosquito Anopheles gambiae

Image credit: pgen.1011145

Emergence and spread of the barley net blotch pathogen coincided with crop domestication and cultivation history

Studying 104 genomes of the barley pathogen Pyrenophora teres f. teres revealed geographically structured populations …

Emergence and spread of the barley net blotch pathogen coincided with crop domestication and cultivation history

Image credit: pgen.1010884

New PLOS journals accepting submissions

Five new journals unified in addressing global health and environmental challenges are now ready to receive submissions: PLOS Climate , PLOS Sustainability and Transformation , PLOS Water , PLOS Digital Health , and PLOS Global Public Health

COVID-19 Collection

The COVID-19 Collection highlights all content published across the PLOS journals relating to the COVID-19 pandemic.

Submit your Lab and Study Protocols to PLOS ONE !

PLOS ONE is now accepting submissions of Lab Protocols, a peer-reviewed article collaboration with protocols.io, and Study Protocols, an article that credits the work done prior to producing and publishing results.

PLOS Reviewer Center

A collection of free training and resources for peer reviewers of PLOS journals—and for the peer review community more broadly—drawn from research and interviews with staff editors, editorial board members, and experienced reviewers.

Ten Simple Rules

PLOS Computational Biology 's "Ten Simple Rules" articles provide quick, concentrated guides for mastering some of the professional challenges research scientists face in their careers.

Welcome New Associate Editors!

PLOS Genetics welcomes several new Associate Editors to our board: Nicolas Bierne, Julie Simpson, Yun Li, Hongbin Ji, Hongbing Zhang, Bertrand Servin, & Benjamin Schwessinger

Expanding human variation at PLOS Genetics

The former Natural Variation section at PLOS Genetics relaunches as Human Genetic Variation and Disease. Read the editors' reasoning behind this change.

PLOS Genetics welcomes new Section Editors

Quanjiang Ji (ShanghaiTech University) joined the editorial board and Xiaofeng Zhu (Case Western Reserve University) was promoted as new Section Editors for the PLOS Genetics Methods section.

PLOS Genetics editors elected to National Academy of Sciences

Congratulations to Associate Editor Michael Lichten and Consulting Editor Nicole King, who are newly elected members of the National Academy of Sciences.

Harmit Malik receives Novitski Prize

Congratulations to Associate Editor Harmit Malik, who was awarded the Edward Novitski Prize by the Genetics Society of America for his work on genetic conflict. Harmit has also been elected as a new member of the American Academy of Arts & Sciences.

Publish with PLOS

  • Submission Instructions
  • Submit Your Manuscript

Connect with Us

  • PLOS Genetics on Twitter
  • PLOS on Facebook

Get new content from PLOS Genetics in your inbox

Thank you you have successfully subscribed to the plos genetics newsletter., sorry, an error occurred while sending your subscription. please try again later..

  • Search Menu
  • Advance Articles
  • Perspectives
  • Knowledgebase and Database Resources
  • Nobel Laureates Collection

China Virtual Outreach Webinar

Neurogenetics, fungal genetics and genomics.

  • Multiparental Populations
  • Genomic Prediction
  • Plant Genetics and Genomics

Genetic Models of Rare Diseases

  • Genomic Data Analyses In Biobanks
  • Why Publish
  • Author Guidelines
  • Submission Site
  • Open Access Options
  • Full Data Policy
  • Self-Archiving Policy
  • About Genetics
  • About Genetics Society of America
  • Editorial Board
  • Early Career Reviewers
  • Guidelines for Reviewers
  • Advertising & Corporate Services
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Editor-in-Chief

Howard Lipshitz

Executive Editor

Tracey DePellegrin

Managing Editor

Ruth Isaacson

Scientific Editor and Program Manager

Opportunities and challenges for genomic data analyses in biobanks: a call for papers.

The GSA Journals are calling for submissions of papers on biobank-scale genomic data analyses. The closing date for submissions is May 31 2024.

Why publish with GENETICS?

Why publish in genetics.

Learn more about why GENETICS is the perfect home for your research, and submit today to join our celebrated author community.

Why publish?

Series and Collections accepting papers

Submit your work to one of GSA’s ongoing series and collections.

Currently accepting submissions

Meet the Editorial Board

See who handles papers for GENETICS by topic.

Editorial board

Re-watch the recent China Virtual Outreach Webinar where you will learn more about publishing your work in the journal.

Watch the webinar

Latest articles

Series & collections.

research papers for genetics

Genes and variants of interest in rare diseases often benefit from modelling in cellular assays or genetic models to aid in understanding molecular and cellular mechanisms of disfunction. Model organisms are useful for the discovery of new genetic diseases and key to understanding variant effects, and modelling a disease gene in a genetic model means that researchers can perform an in-depth exploration of gene or variant function. The GSA Journals are pleased to publish a series highlighting ongoing advances in rare disease discovery and mechanisms by presenting key research findings and new discoveries.

plant genetics and genomics homepage panel

Plant Genetics and Genomics 

Plant science has generated many discoveries and advances in genetics and genomics research. These contributions reflect the ingenuity and rigor of the plant science community, as well as the rich diversity of plants and their biology. To showcase this critical work, GENETICS and G3: Genes|Genomes|Genetics has launched the Plant Genetics and Genomics series with a collection of fourteen research articles and an accompanying editorial.

Neurogenetics Series

Neurogenetics lies at the intersection of Neuroscience and Genetics, where genetic approaches are applied to the study of nervous system development, function, and plasticity. Overseen by Series Editors Oliver Hobert, Cecilia Moens, and Kate O’Connor Giles, this new series aims to make the GSA Journals a home for cutting-edge, robust research in neurogenetics.

Fungal Genetics and Genomics Series

The fungal kingdom is remarkable in its breadth and depth of impact on global health, agriculture, biodiversity, ecology, manufacturing, and biomedical research. Overseen by editors Leah Cowen and Joseph Heitman, this series aims to report and thereby further stimulate advances in genetics and genomics across a diversity of fungal species.

FlyBook

FlyBook from GENETICS is a comprehensive compendium of review articles presenting the current state of knowledge in  Drosophila  research.

Browse FlyBook

WormBook

WormBook from GENETICS features a comprehensive compendium of review articles presenting the current state of knowledge in  C. elegans  research. WormBook articles will span the breadth of the biology, genetics, genomics, and evolutionary biology of  C. elegans .

Browse WormBook

YeastBook

The YeastBook series from GENETICS features a comprehensive compendium of reviews that presents the current state of knowledge of the molecular biology, cellular biology, and genetics of the yeast  Saccharomyces cerevisiae .

Browse YeastBook

More from GSA

G3: Genes|Genomes|Genetics

G3: Genes|Genomes|Genetics

G3, a Genetics Society of America journal, provides a forum for the publication of high-quality foundational research-particularly research that generates useful genetic and genomic information, as well as genome reports, mutant screens, and advances in methods and technology.

Find out more

Join GSA

GSA members of all career stages receive member benefits including access to professional development programs, discounted meeting registration, and eligibility for travel awards. Members also receive a personal subscription to GENETICS, as well as discounted publication fees in both GSA journals.

Conferences

Conferences

GSA conferences have long served as community hubs for researchers focused on particular organisms or topics. GSA also hosts The Allied Genetics Conference (TAGC) , a unique meeting that brings together multiple research communities for collaboration and synthesis.

Attend a conference

Career Development

Career Development

GSA professional development programs provide rich opportunities for scientists to gain skills,  experience, mentors, and networks. Our initiatives and resources range from peer review training to inclusive public engagement, newsletters, webinars, a job board, leadership programs, and much more.

Browse Opportunities

image of inbox

Email alerts

Register to receive email alerts as soon as new content from  GENETICS is published online.

Bookshelf

Recommend to your library

Fill out our simple online form to recommend GENETICS to your library. Recommend now

Author resources

Author resources

Learn about how to submit your article, our publishing process, and tips on how to promote your article.

Related Titles

Cover image of current issue from G3 Genes|Genomes|Genetics

  • Recommend to Your Librarian
  • Advertising and Corporate Services
  • Journals Career Network

Affiliations

  • Online ISSN 1943-2631
  • Copyright © 2024 Genetics Society of America
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Advertisement

Advertisement

A review on genetic algorithm: past, present, and future

  • Published: 31 October 2020
  • Volume 80 , pages 8091–8126, ( 2021 )

Cite this article

  • Sourabh Katoch 1 ,
  • Sumit Singh Chauhan 1 &
  • Vijay Kumar   ORCID: orcid.org/0000-0002-3460-6989 1  

146k Accesses

1656 Citations

14 Altmetric

Explore all metrics

In this paper, the analysis of recent advances in genetic algorithms is discussed. The genetic algorithms of great interest in research community are selected for analysis. This review will help the new and demanding researchers to provide the wider vision of genetic algorithms. The well-known algorithms and their implementation are presented with their pros and cons. The genetic operators and their usages are discussed with the aim of facilitating new researchers. The different research domains involved in genetic algorithms are covered. The future research directions in the area of genetic operators, fitness function and hybrid algorithms are discussed. This structured review will be helpful for research and graduate teaching.

Similar content being viewed by others

research papers for genetics

Genetic algorithms: theory, genetic operators, solutions, and applications

Bushra Alhijawi & Arafat Awajan

research papers for genetics

Genetic Algorithms

research papers for genetics

Structure and Operation of a Basic Genetic Algorithm

Avoid common mistakes on your manuscript.

1 Introduction

In the recent years, metaheuristic algorithms are used to solve real-life complex problems arising from different fields such as economics, engineering, politics, management, and engineering [ 113 ]. Intensification and diversification are the key elements of metaheuristic algorithm. The proper balance between these elements are required to solve the real-life problem in an effective manner. Most of metaheuristic algorithms are inspired from biological evolution process, swarm behavior, and physics’ law [ 17 ]. These algorithms are broadly classified into two categories namely single solution and population based metaheuristic algorithm (Fig.  1 ). Single-solution based metaheuristic algorithms utilize single candidate solution and improve this solution by using local search. However, the solution obtained from single-solution based metaheuristics may stuck in local optima [ 112 ]. The well-known single-solution based metaheuristics are simulated annealing, tabu search (TS), microcanonical annealing (MA), and guided local search (GLS). Population-based metaheuristics utilizes multiple candidate solutions during the search process. These metaheuristics maintain the diversity in population and avoid the solutions are being stuck in local optima. Some of well-known population-based metaheuristic algorithms are genetic algorithm (GA) [ 135 ], particle swarm optimization (PSO) [ 101 ], ant colony optimization (ACO) [ 47 ], spotted hyena optimizer (SHO) [ 41 ], emperor penguin optimizer (EPO) [ 42 ], and seagull optimization (SOA) [ 43 ].

figure 1

Classification of metaheuristic Algorithms

Among the metaheuristic algorithms, Genetic algorithm (GA) is a well-known algorithm, which is inspired from biological evolution process [ 136 ]. GA mimics the Darwinian theory of survival of fittest in nature. GA was proposed by J.H. Holland in 1992. The basic elements of GA are chromosome representation, fitness selection, and biological-inspired operators. Holland also introduced a novel element namely, Inversion that is generally used in implementations of GA [ 77 ]. Typically, the chromosomes take the binary string format. In chromosomes, each locus (specific position on chromosome) has two possible alleles (variant forms of genes) - 0 and 1. Chromosomes are considered as points in the solution space. These are processed using genetic operators by iteratively replacing its population. The fitness function is used to assign a value for all the chromosomes in the population [ 136 ]. The biological-inspired operators are selection, mutation, and crossover. In selection, the chromosomes are selected on the basis of its fitness value for further processing. In crossover operator, a random locus is chosen and it changes the subsequences between chromosomes to create off-springs. In mutation, some bits of the chromosomes will be randomly flipped on the basis of probability [ 77 , 135 , 136 ]. The further development of GA based on operators, representation, and fitness has diminished. Therefore, these elements of GA are focused in this paper.

The main contribution of this paper are as follows:

The general framework of GA and hybrid GA are elaborated with mathematical formulation.

The various types of genetic operators are discussed with their pros and cons.

The variants of GA with their pros and cons are discussed.

The applicability of GA in multimedia fields is discussed.

The main aim of this paper is two folds. First, it presents the variants of GA and their applicability in various fields. Second, it broadens the area of possible users in various fields. The various types of crossover, mutation, selection, and encoding techniques are discussed. The single-objective, multi-objective, parallel, and hybrid GAs are deliberated with their advantages and disadvantages. The multimedia applications of GAs are elaborated.

The remainder of this paper is organized as follows: Section 2 presents the methodology used to carry out the research. The classical genetic algorithm and genetic operators are discussed in Section 3 . The variants of genetic algorithm with pros and cons are presented in Section 4 . Section 5 describes the applications of genetic algorithm. Section 6 presents the challenges and future research directions. The concluding remarks are drawn in Section 7 .

2 Research methodology

PRISMA’s guidelines were used to conduct the review of GA [ 138 ]. A detailed search has been done on Google scholar and PubMed for identification of research papers related to GA. The important research works found during the manual search were also added in this paper. During search, some keywords such as “Genetic Algorithm” or “Application of GA” or “operators of GA” or “representation of GA” or “variants of GA” were used. The selection and rejection of explored research papers are based on the principles, which is mentioned in Table 1 .

Total 27,64,792 research papers were explored on Google Scholar, PubMed and manual search. The research work related to genetic algorithm for multimedia applications were also included. During the screening of research papers, all the duplicate papers and papers published before 2007 were discarded. 4340 research papers were selected based on 2007 and duplicate entries. Thereafter, 4050 research papers were eliminated based on titles. 220 research papers were eliminated after reading of abstract. 70 research papers were left after third round of screening. 40 more research papers were discarded after full paper reading and facts found in the papers. After the fourth round of screening, final 30 research papers are selected for review.

Based on the relevance and quality of research, 30 papers were selected for evaluation. The relevance of research is decided through some criteria, which is mentioned in Table 1 . The selected research papers comprise of genetic algorithm for multimedia applications, advancement of their genetic operators, and hybridization of genetic algorithm with other well-established metaheuristic algorithms. The pros and cons of genetic operators are shown in preceding section.

3 Background

In this section, the basic structure of GA and its genetic operators are discussed with pros and cons.

3.1 Classical GA

Genetic algorithm (GA) is an optimization algorithm that is inspired from the natural selection. It is a population based search algorithm, which utilizes the concept of survival of fittest [ 135 ]. The new populations are produced by iterative use of genetic operators on individuals present in the population. The chromosome representation, selection, crossover, mutation, and fitness function computation are the key elements of GA. The procedure of GA is as follows. A population ( Y ) of n chromosomes are initialized randomly. The fitness of each chromosome in Y is computed. Two chromosomes say C1 and C2 are selected from the population Y according to the fitness value. The single-point crossover operator with crossover probability (C p ) is applied on C1 and C2 to produce an offspring say O . Thereafter, uniform mutation operator is applied on produced offspring ( O ) with mutation probability (M p ) to generate O′ . The new offspring O′ is placed in new population. The selection, crossover, and mutation operations will be repeated on current population until the new population is complete. The mathematical analysis of GA is as follows [ 126 ]:

GA dynamically change the search process through the probabilities of crossover and mutation and reached to optimal solution. GA can modify the encoded genes. GA can evaluate multiple individuals and produce multiple optimal solutions. Hence, GA has better global search capability. The offspring produced from crossover of parent chromosomes is probable to abolish the admirable genetic schemas parent chromosomes and crossover formula is defined as [ 126 ]:

where g is the number of generations, and G is the total number of evolutionary generation set by population. It is observed from Eq.( 1 ) that R is dynamically changed and increase with increase in number of evolutionary generation. In initial stage of GA, the similarity between individuals is very low. The value of R should be low to ensure that the new population will not destroy the excellent genetic schema of individuals. At the end of evolution, the similarity between individuals is very high as well as the value of R should be high.

According to Schema theorem, the original schema has to be replaced with modified schema. To maintain the diversity in population, the new schema keep the initial population during the early stage of evolution. At the end of evolution, the appropriate schema will be produced to prevent any distortion of excellent genetic schema [ 65 , 75 ]. Algorithm 1 shows the pseudocode of classical genetic algorithm.

Algorithm 1: Classical Genetic Algorithm (GA)

figure a

3.2 Genetic operators

GAs used a variety of operators during the search process. These operators are encoding schemes, crossover, mutation, and selection. Figure 2 depicts the operators used in GAs.

figure 2

Operators used in GA

3.2.1 Encoding schemes

For most of the computational problems, the encoding scheme (i.e., to convert in particular form) plays an important role. The given information has to be encoded in a particular bit string [ 121 , 183 ]. The encoding schemes are differentiated according to the problem domain. The well-known encoding schemes are binary, octal, hexadecimal, permutation, value-based, and tree.

Binary encoding is the commonly used encoding scheme. Each gene or chromosome is represented as a string of 1 or 0 [ 187 ]. In binary encoding, each bit represents the characteristics of the solution. It provides faster implementation of crossover and mutation operators. However, it requires extra effort to convert into binary form and accuracy of algorithm depends upon the binary conversion. The bit stream is changed according the problem. Binary encoding scheme is not appropriate for some engineering design problems due to epistasis and natural representation.

In octal encoding scheme, the gene or chromosome is represented in the form of octal numbers (0–7). In hexadecimal encoding scheme, the gene or chromosome is represented in the form of hexadecimal numbers (0–9, A-F) [ 111 , 125 , 187 ]. The permutation encoding scheme is generally used in ordering problems. In this encoding scheme, the gene or chromosome is represented by the string of numbers that represents the position in a sequence. In value encoding scheme, the gene or chromosome is represented using string of some values. These values can be real, integer number, or character [ 57 ]. This encoding scheme can be helpful in solving the problems in which more complicated values are used. As binary encoding may fail in such problems. It is mainly used in neural networks for finding the optimal weights.

In tree encoding, the gene or chromosome is represented by a tree of functions or commands. These functions and commands can be related to any programming language. This is very much similar to the representation of repression in tree format [ 88 ]. This type of encoding is generally used in evolving programs or expressions. Table 2 shows the comparison of different encoding schemes of GA.

3.2.2 Selection techniques

Selection is an important step in genetic algorithms that determines whether the particular string will participate in the reproduction process or not. The selection step is sometimes also known as the reproduction operator [ 57 , 88 ]. The convergence rate of GA depends upon the selection pressure. The well-known selection techniques are roulette wheel, rank, tournament, boltzmann, and stochastic universal sampling.

Roulette wheel selection maps all the possible strings onto a wheel with a portion of the wheel allocated to them according to their fitness value. This wheel is then rotated randomly to select specific solutions that will participate in formation of the next generation [ 88 ]. However, it suffers from many problems such as errors introduced by its stochastic nature. De Jong and Brindle modified the roulette wheel selection method to remove errors by introducing the concept of determinism in selection procedure. Rank selection is the modified form of Roulette wheel selection. It utilizes the ranks instead of fitness value. Ranks are given to them according to their fitness value so that each individual gets a chance of getting selected according to their ranks. Rank selection method reduces the chances of prematurely converging the solution to a local minima [ 88 ].

Tournament selection technique was first proposed by Brindle in 1983. The individuals are selected according to their fitness values from a stochastic roulette wheel in pairs. After selection, the individuals with higher fitness value are added to the pool of next generation [ 88 ]. In this method of selection, each individual is compared with all n-1 other individuals if it reaches the final population of solutions [ 88 ]. Stochastic universal sampling (SUS) is an extension to the existing roulette wheel selection method. It uses a random starting point in the list of individuals from a generation and selects the new individual at evenly spaced intervals [ 3 ]. It gives equal chance to all the individuals in getting selected for participating in crossover for the next generation. Although in case of Travelling Salesman Problem, SUS performs well but as the problem size increases, the traditional Roulette wheel selection performs relatively well [ 180 ].

Boltzmann selection is based on entropy and sampling methods, which are used in Monte Carlo Simulation. It helps in solving the problem of premature convergence [ 118 ]. The probability is very high for selecting the best string, while it executes in very less time. However, there is a possibility of information loss. It can be managed through elitism [ 175 ]. Elitism selection was proposed by K. D. Jong (1975) for improving the performance of Roulette wheel selection. It ensures the elitist individual in a generation is always propagated to the next generation. If the individual having the highest fitness value is not present in the next generation after normal selection procedure, then the elitist one is also included in the next generation automatically [ 88 ]. The comparison of above-mentioned selection techniques are depicted in Table 3 .

3.2.3 Crossover operators

Crossover operators are used to generate the offspring by combining the genetic information of two or more parents. The well-known crossover operators are single-point, two-point, k-point, uniform, partially matched, order, precedence preserving crossover, shuffle, reduced surrogate and cycle.

In a single point crossover, a random crossover point is selected. The genetic information of two parents which is beyond that point will be swapped with each other [ 190 ]. Figure 3 shows the genetic information after swapping. It replaced the tail array bits of both the parents to get the new offspring.

figure 3

Swapping genetic information after a crossover point

In a two point and k-point crossover, two or more random crossover points are selected and the genetic information of parents will be swapped as per the segments that have been created [ 190 ]. Figure 4 shows the swapping of genetic information between crossover points. The middle segment of the parents is replaced to generate the new offspring.

figure 4

Swapping genetic information between crossover points

In a uniform crossover, parent cannot be decomposed into segments. The parent can be treated as each gene separately. We randomly decide whether we need to swap the gene with the same location of another chromosome [ 190 ]. Figure 5 depicts the swapping of individuals under uniform crossover operation.

figure 5

Swapping individual genes

Partially matched crossover (PMX) is the most frequently used crossover operator. It is an operator that performs better than most of the other crossover operators. The partially matched (mapped) crossover was proposed by D. Goldberg and R. Lingle [ 66 ]. Two parents are choose for mating. One parent donates some part of genetic material and the corresponding part of other parent participates in the child. Once this process is completed, the left out alleles are copied from the second parent [ 83 ]. Figure 6 depicts the example of PMX.

figure 6

Partially matched crossover (PMX) [ 117 ]

Order crossover (OX) was proposed by Davis in 1985. OX copies one (or more) parts of parent to the offspring from the selected cut-points and fills the remaining space with values other than the ones included in the copied section. The variants of OX are proposed by different researchers for different type of problems. OX is useful for ordering problems [ 166 ]. However, it is found that OX is less efficient in case of Travelling Salesman Problem [ 140 ]. Precedence preserving crossover (PPX) preserves the ordering of individual solutions as present in the parent of offspring before the application of crossover. The offspring is initialized to a string of random 1’s and 0’s that decides whether the individuals from both parents are to be selected or not. In [ 169 ], authors proposed a modified version of PPX for multi-objective scheduling problems.

Shuffle crossover was proposed by Eshelman et al. [ 20 ] to reduce the bias introduced by other crossover techniques. It shuffles the values of an individual solution before the crossover and unshuffles them after crossover operation is performed so that the crossover point does not introduce any bias in crossover. However, the utilization of this crossover is very limited in the recent years. Reduced surrogate crossover (RCX) reduces the unnecessary crossovers if the parents have the same gene sequence for solution representations [ 20 , 139 ]. RCX is based on the assumption that GA produces better individuals if the parents are sufficiently diverse in their genetic composition. However, RCX cannot produce better individuals for those parents that have same composition. Cycle crossover was proposed by Oliver [ 140 ]. It attempts to generate an offspring using parents where each element occupies the position by referring to the position of their parents [ 140 ]. In the first cycle, it takes some elements from the first parent. In the second cycle, it takes the remaining elements from the second parent as shown in Fig.  7 .

figure 7

Cycle Crossover (CX) [ 140 ]

Table 4 shows the comparison of crossover techniques. It is observed from Table 4 that single and k-point crossover techniques are easy to implement. Uniform crossover is suitable for large subsets. Order and cycle crossovers provide better exploration than the other crossover techniques. Partially matched crossover provides better exploration. The performance of partially matched crossover is better than the other crossover techniques. Reduced surrogate and cycle crossovers suffer from premature convergence.

3.2.4 Mutation operators

Mutation is an operator that maintains the genetic diversity from one population to the next population. The well-known mutation operators are displacement, simple inversion, and scramble mutation. Displacement mutation (DM) operator displaces a substring of a given individual solution within itself. The place is randomly chosen from the given substring for displacement such that the resulting solution is valid as well as a random displacement mutation. There are variants of DM are exchange mutation and insertion mutation. In Exchange mutation and insertion mutation operators, a part of an individual solution is either exchanged with another part or inserted in another location, respectively [ 88 ].

The simple inversion mutation operator (SIM) reverses the substring between any two specified locations in an individual solution. SIM is an inversion operator that reverses the randomly selected string and places it at a random location [ 88 ]. The scramble mutation (SM) operator places the elements in a specified range of the individual solution in a random order and checks whether the fitness value of the recently generated solution is improved or not [ 88 ]. Table 5 shows the comparison of different mutation techniques.

Table 6 shows the best combination of encoding scheme, mutation, and crossover techniques. It is observed from Table 6 that uniform and single-point crossovers can be used with most of encoding and mutation operators. Partially matched crossover is used with inversion mutation and permutation encoding scheme provides the optimal solution.

4 Variants of GA

Various variants of GA’s have been proposed by researchers. The variants of GA are broadly classified into five main categories namely, real and binary coded, multiobjective, parallel, chaotic, and hybrid GAs. The pros and cons of these algorithms with their application has been discussed in the preceding subsections.

4.1 Real and binary coded GAs

Based on the representation of chromosomes, GAs are categorized in two classes, namely binary and real coded GAs.

4.1.1 Binary coded GAs

The binary representation was used to encode GA and known as binary GA. The genetic operators were also modified to carry out the search process. Payne and Glen [ 153 ] developed a binary GA to identify the similarity among molecules. They used binary representation for position of molecule and their conformations. However, this method has high computational complexity. Longyan et al. [ 203 ] investigated three different method for wind farm design using binary GA (BGA). Their method produced better fitness value and farm efficiency. Shukla et al. [ 185 ] utilized BGA for feature subset selection. They used mutual information maximization concept for selecting the significant features. BGAs suffer from Hamming cliffs, uneven schema, and difficulty in achieving precision [ 116 , 199 ].

4.1.2 Real-coded GAs

Real-coded GAs (RGAs) have been widely used in various real-life applications. The representation of chromosomes is closely associated with real-life problems. The main advantages of RGAs are robust, efficient, and accurate. However, RGAs suffer from premature convergence. Researchers are working on RGAs to improve their performance. Most of RGAs are developed by modifying the crossover, mutation and selection operators.

Crossover operators

The searching capability of crossover operators are not satisfactory for continuous search space. The developments in crossover operators have been done to enhance their performance in real environment. Wright [ 210 ] presented a heuristics crossover that was applied on parents to produce off-spring. Michalewicz [ 135 ] proposed arithmetical crossover operators for RGAs. Deb and Agrawal [ 34 ] developed a real-coded crossover operator, which is based on characteristics of single-point crossover in BGA. The developed crossover operator named as simulated binary crossover (SBX). SBX is able to overcome the Hamming cliff, precision, and fixed mapping problem. The performance of SBX is not satisfactory in two-variable blocked function. Eshelman et al. [ 53 ] utilized the schemata concept to design the blend crossover for RGAs. The unimodal normal distribution crossover operator (UNDX) was developed by Ono et al. [ 144 ]. They used ellipsoidal probability distribution to generate the offspring. Kita et al. [ 106 ] presented a multi-parent UNDX (MP-UNDX), which is the extension of [ 144 ]. However, the performance of RGA with MP-UNDX is much similar to UNDX. Deep and Thakur [ 39 ] presented a Laplace crossover for RGAs, which is based on Laplacian distribution. Chuang et al. [ 27 ] developed a direction based crossover to further explore the all possible search directions. However, the search directions are limited. The heuristic normal distribution crossover operator was developed by Wang et al. [ 207 ]. It generates the cross-generated offspring for better search operation. However, the better individuals are not considered in this approach. Subbaraj et al. [ 192 ] proposed Taguchi self-adaptive RCGA. They used Taguchi method and simulated binary crossover to exploit the capable offspring.

Mutation operators

Mutation operators generate diversity in the population. The two main challenges have to tackle during the application of mutation. First, the probability of mutation operator that was applied on population. Second, the outlier produced in chromosome after mutation process. Michalewicz [ 135 ] presented uniform and non-uniform mutation operators for RGAs. Michalewicz and Schoenauer [ 136 ] developed a special case of uniform mutation. They developed boundary mutation. Deep and Thakur [ 38 ] presented a novel mutation operator based on power law and named as power mutation. Das and Pratihar [ 30 ] presented direction-based exponential mutation operator. They used direction information of variables. Tang and Tseng [ 196 ] presented a novel mutation operator for enhancing the performance of RCGA. Their approach was fast and reliable. However, it stuck in local optima for some applications. Deb et al. [ 35 ] developed polynomial mutation that was used in RCGA. It provides better exploration. However, the convergence speed is slow and stuck in local optima. Lucasius et al. [ 129 ] proposed a real-coded genetic algorithm (RCGA). It is simple and easy to implement. However, it suffers from local optima problem. Wang et al. [ 205 ] developed multi-offspring GA and investigated their performance over single point crossover. Wang et al. [ 206 ] stated the theoretical basis of multi-offspring GA. The performance of this method is better than non-multi-offspring GA. Pattanaik et al. [ 152 ] presented an improvement in the RCGA. Their method has better convergence speed and quality of solution. Wang et al. [ 208 ] proposed multi-offspring RCGA with direction based crossover for solving constrained problems.

Table 7 shows the mathematical formulation of genetic operators in RGAs.

4.2 Multiobjective GAs

Multiobjective GA (MOGA) is the modified version of simple GA. MOGA differ from GA in terms of fitness function assignment. The remaining steps are similar to GA. The main motive of multiobjective GA is to generate the optimal Pareto Front in the objective space in such a way that no further enhancement in any fitness function without disturbing the other fitness functions [ 123 ]. Convergence, diversity, and coverage are main goal of multiobjective GAs. The multiobjective GAs are broadly categorized into two categories namely, Pareto-based, and decomposition-based multiobjective GAs [ 52 ]. These techniques are discussed in the preceding subsections.

4.2.1 Pareto-based multi-objective GA

The concept of Pareto dominance was introduced in multiobjective GAs. Fonseca and Fleming [ 56 ] developed first multiobjective GA (MOGA). The niche and decision maker concepts were proposed to tackle the multimodal problems. However, MOGA suffers from parameter tuning problem and degree of selection pressure. Horn et al. [ 80 ] proposed a niched Pareto genetic algorithm (NPGA) that utilized the concept of tournament selection and Pareto dominance. Srinivas and Deb [ 191 ] developed a non-dominated sorting genetic algorithm (NSGA). However, it suffers from lack of elitism, need of sharing parameter, and high computation complexity. To alleviate these problems, Deb et al. [ 36 ] developed a fast elitist non-dominated sorting genetic algorithm (NSGA-II). The performance of NSGA-II may be deteriorated for many objective problems. NSGA-II was unable to maintain the diversity in Pareto-front. To alleviate this problem, Luo et al. [ 130 ] introduced a dynamic crowding distance in NSGA-II. Coello and Pulido [ 28 ] developed a multiobjective micro GA. They used an archive for storing the non-dominated solutions. The performance of Pareto-based approaches may be deteriorated in many objective problems [ 52 ].

4.2.2 Decomposition-based multiobjective GA

Decomposition-based MOGAs decompose the given problem into multiple subproblems. These subproblems are solved simultaneously and exchange the solutions among neighboring subproblems [ 52 ]. Ishibuchi and Murata [ 84 ] developed a multiobjective genetic local search (MOGLS). In MOGLS, the random weights were used to select the parents and local search for their offspring. They used generation replacement and roulette wheel selection method. Jaszkiewicz [ 86 ] modified the MOGLS by utilizing different selection mechanisms for parents. Murata and Gen [ 141 ] proposed a cellular genetic algorithm for multiobjective optimization (C-MOGA) that was an extension of MOGA. They added cellular structure in MOGA. In C-MOGA, the selection operator was performed on the neighboring of each cell. C-MOGA was further extended by introducing an immigration procedure and known as CI-MOGA. Alves and Almeida [ 11 ] developed a multiobjective Tchebycheffs-based genetic algorithm (MOTGA) that ensures convergence and diversity. Tchebycheff scalar function was used to generate non-dominated solution set. Patel et al. [ 151 ] proposed a decomposition based MOGA (D-MOGA). They integrated opposition based learning in D-MOGA for weight vector generation. D-MOGA is able to maintain the balance between diversity of solutions and exploration of search space.

4.3 Parallel GAs

The motivation behind the parallel GAs is to improve the computational time and quality of solutions through distributed individuals. Parallel GAs are categorized into three broad categories such as master-slave parallel GAs, fine grained parallel GAs, and multi-population coarse grained parallel Gas [ 70 ]. In master-slave parallel GA, the computation of fitness functions is distributed over the several processors. In fine grained GA, parallel computers are used to solve the real-life problems. The genetic operators are bounded to their neighborhood. However, the interaction is allowed among the individuals. In coarse grained GA, the exchange of individuals among sub-populations is performed. The control parameters are also transferred during migration. The main challenges in parallel GAs are to maximize memory bandwidth and arrange threads for utilizing the power of GPUs [ 23 ]. Table 8 shows the comparative analysis of parallel GAs in terms of hardware and software. The well-known parallel GAs are studied in the preceding subsections.

4.3.1 Master slave parallel GA

The large number of processors are utilized in master-slave parallel GA (MS-PGA) as compared to other approaches. The computation of fitness functions may be increased by increasing the number of processors. Hong et al. [ 79 ] used MS-PGA for solving data mining problems. Fuzzy rules are used with parallel GA. The evaluation of fitness function was performed on slave machines. However, it suffers from high computational time. Sahingzo [ 174 ] implemented MS-PGA for UAV path finding problem. The genetic operators were executed on processors. They used multicore CPU with four cores. Selection and fitness evaluation was done on slave machines. MS-PGA was applied on traffic assignment problem in [ 127 ]. They used thirty processors to solve this problem at National University of Singapore. Yang et al. [ 213 ] developed a web-based parallel GA. They implemented the master slave version of NSGA-II in distributed environment. However, the system is complex in nature.

4.3.2 Fine grained parallel GA

In last few decades, researchers are working on migration policies of fine grained parallel GA (FG-PGA). Porta et al. [ 161 ] utilized clock-time for migration frequency, which is independent of generations. They used non-uniform structure and static configuration. The best solution was selected for migration and worst solution was replaced with migrant solution. Kurdi [ 115 ] used adaptive migration frequency. The migration procedure starts until there is no change in the obtained solutions after ten successive generations. The non-uniform and dynamic structure was used. In [ 209 ], local best solutions were synchronized and formed a global best solutions. The global best solutions were transferred to all processors for father execution. The migration frequency depends upon the number of generation. They used uniform structure with fixed configuration. Zhang et al. [ 220 ] used parallel GA to solve the set cover problem of wireless networks. They used divide-and-conquer strategy to decompose the population into sub-populations. Thereafter, the genetic operators were applied on local solutions and Kuhn-Munkres was used to merge the local solutions.

4.3.3 Coarse grained parallel GA

Pinel et al. [ 158 ] proposed a GraphCell. The population was initialized with random values and one solution was initialized with Min-min heuristic technique. 448 processors were used to implement the proposed approach. However, coarse grained parallel GAs are less used due to complex in nature. The hybrid parallel GAs are widely used in various applications. Shayeghi et al. [ 182 ] proposed a pool-based Birmingham cluster GA. Master node was responsible for managing global population. Slave node selected the solutions from global population and executed it. 240 processors are used for computation. Roberge et al. [ 170 ] used hybrid approach to optimize switching angle of inverters. They used four different strategies for fitness function computation. Nowadays, GPU, cloud, and grid are most popular hardware for parallel GAs [ 198 ].

4.4 Chaotic GAs

The main drawback of GAs is premature convergence. The chaotic systems are incorporated into GAs to alleviate this problem. The diversity of chaos genetic algorithm removes premature convergence. Crossover and mutation operators can be replaced with chaotic maps. Tiong et al. [ 197 ] integrated the chaotic maps into GA for further improvement in accuracy. They used six different chaotic maps. The performance of Logistic, Henon and Ikeda chaotic GA performed better than the classical GA. However, these techniques suffer from high computational complexity. Ebrahimzadeh and Jampour [ 48 ] used Lorenz chaotic for genetic operators of GA to eliminate the local optima problem. However, the proposed approach was unable to find relationship between entropy and chaotic map. Javidi and Hosseinpourfard [ 87 ] utilized two chaotic maps namely logistic map and tent map for generating chaotic values instead of random selection of initial population. The proposed chaotic GA performs better than the GA. However, this method suffers from high computational complexity. Fuertes et al. [ 60 ] integrated the entropy into chaotic GA. The control parameters are modified through chaotic maps. They investigated the relationship between entropy and performance optimization.

Chaotic systems have also used in multiobjective and hybrid GAs. Abo-Elnaga and Nasr [ 5 ] integrated chaotic system into modified GA for solving Bi-level programming problems. Chaotic helps the proposed algorithm to alleviate local optima and enhance the convergence. Tahir et al. [ 193 ] presented a binary chaotic GA for feature selection in healthcare. The chaotic maps were used to initialize the population and modified reproduction operators were applied on population. Xu et al. [ 115 ] proposed a chaotic hybrid immune GA for spectrum allocation. The proposed approach utilizes the advantages of both chaotic and immune operator. However, this method suffers from parameter initialization problem.

4.5 Hybrid GAs

Genetic Algorithms can be easily hybridized with other optimization methods for improving their performance such as image denoising methods, chemical reaction optimization, and many more. The main advantages of hybridized GA with other methods are better solution quality, better efficiency, guarantee of feasible solutions, and optimized control parameters [ 51 ]. It is observed from literature that the sampling capability of GAs is greatly affected from population size. To resolve this problem, local search algorithms such as memetic algorithm, Baldwinian, Lamarckian, and local search have been integrated with GAs. This integration provides proper balance between intensification and diversification. Another problem in GA is parameter setting. Finding appropriate control parameters is a tedious task. The other metaheuristic techniques can be used with GA to resolve this problem. Hybrid GAs have been used to solve the issues mentioned in the preceding subsections [ 29 , 137 , 186 ].

4.5.1 Enhance search capability

GAs have been integrated with local search algorithms to reduce the genetic drift. The explicit refinement operator was introduced in local search for producing better solutions. El-Mihoub et al. [ 54 ] established the effect of probability of local search on the population size of GA. Espinoza et al. [ 50 ] investigated the effect of local search for reducing the population size of GA. Different search algorithms have been integrated with GAs for solving real-life applications.

4.5.2 Generate feasible solutions

In complex and high-dimensional problems, the genetic operators of GA generate infeasible solutions. PMX crossover generates the infeasible solutions for order-based problems. The distance preserving crossover operator was developed to generate feasible solutions for travelling salesman problem [ 58 ]. The gene pooling operator instead of crossover was used to generate feasible solution for data clustering [ 19 ]. Konak and Smith [ 108 ] integrated a cut-saturation algorithm with GA for designing the communication networks. They used uniform crossover to produce feasible solutions.

4.5.3 Replacement of genetic operators

There is a possibility to replace the genetic operators which are mentioned in Section 3.2 with other search techniques. Leng [ 122 ] developed a guided GA that utilizes the penalties from guided local search. These penalties were used in fitness function to improve the performance of GA. Headar and Fukushima [ 74 ] used simplex crossover instead of standard crossover. The standard mutation operator was replaced with simulated annealing in [ 195 ]. The basic concepts of quantum computing are used to improve the performance of GAs. The heuristic crossover and hill-climbing operators can be integrated into GA for solving three-matching problem.

4.5.4 Optimize control parameters

The control parameters of GA play a crucial role in maintaining the balance between intensification and diversification. Fuzzy logic has an ability to estimate the appropriate control parameters of GA [ 167 ]. Beside this, GA can be used to optimize the control parameters of other techniques. GAs have been used to optimize the learning rate, weights, and topology of neutral networks [ 21 ]. GAs can be used to estimate the optimal value of fuzzy membership in controller. It was also used to optimize the control parameters of ACO, PSO, and other metaheuristic techniques [ 156 ]. The comparative analysis of well-known GAs are mentioned in Table 9 .

5 Applications

Genetic Algorithms have been applied in various NP-hard problems with high accuracy rates. There are a few application areas in which GAs have been successfully applied.

5.1 Operation management

GA is an efficient metaheuristic for solving operation management (OM) problems such as facility layout problem (FLP), supply network design, scheduling, forecasting, and inventory control.

5.1.1 Facility layout

Datta et al. [ 32 ] utilized GA for solving single row facility layout problem (SRFLP). For SRFLP, the modified crossover and mutation operators of GA produce valid solutions. They applied GA to large sized problems that consists of 60–80 instances. However, it suffers from parameter dependency problem. Sadrzadeh [ 173 ] proposed GA for multi-line FLP have multi products. The facilities were clustered using mutation and heuristic operators. The total cost obtained from the proposed GA was decreased by 7.2% as compared to the other algorithms. Wu et al. [ 211 ] implemented hierarchical GA to find out the layout of cellular manufacturing system. However, the performance of GA is greatly affected from the genetic operators. Aiello et al. [ 7 ] proposed MOGA for FLP. They used MOGA on the layout of twenty different departments. Palomo-Romero et al. [ 148 ] proposed an island model GA to solve the FLP. The proposed technique maintains the population diversity and generates better solutions than the existing techniques. However, this technique suffers from improper migration strategy that can be utilized for improving the population. GA and its variants has been successfully applied on FLP [ 103 , 119 , 133 , 201 ].

5.1.2 Scheduling

GA shows the superior performance for solving the scheduling problems such as job-shop scheduling (JSS), integrated process planning and scheduling (IPPS), etc. [ 119 ]. To improve the performance in the above-mentioned areas of scheduling, researchers developed various genetic representation [ 12 , 159 , 215 ], genetic operators, and hybridized GA with other methods [ 2 , 67 , 147 , 219 ].

5.1.3 Inventory control

Besides the scheduling, inventory control plays an important role in OM. Backordering and lost sales are two main approaches for inventory control [ 119 ]. Hiassat et al. [ 76 ] utilized the location-inventory model to find out the number and location of warehouses. Various design constraints have been added in the objective functions of GA and its variants for solving inventory control problem [].

5.1.4 Forecasting and network design

Forecasting is an important component for OM. Researchers are working on forecasting of financial trading, logistics demand, and tourist arrivals. GA has been hybridized with support vector regression, fuzzy set, and neural network (NN) to improve their forecasting capability [ 22 , 78 , 89 , 178 , 214 ]. Supply network design greatly affect the operations planning and scheduling. Most of the research articles are focused on capacity constraints of facilities [ 45 , 184 ]. Multi-product multi-period problems increases the complexity of supply networks. To resolve the above-mentioned problem, GA has been hybridized with other techniques [ 6 , 45 , 55 , 188 , 189 ]. Multi-objective GAs are also used to optimize the cost, profit, carbon emissions, etc. [ 184 , 189 ].

5.2 Multimedia

GAs have been applied in various fields of multimedia. Some of well-known multimedia fields are encryption, image processing, video processing, medical imaging, and gaming.

5.2.1 Information security

Due to development in multimedia applications, images, videos and audios are transferred from one place to another over Internet. It has been found in literature that the images are more error prone during the transmission. Therefore, image protection techniques such as encryption, watermarking and cryptography are required. The classical image encryption techniques require the input parameters for encryption. The wrong selection of input parameters will generate inadequate encryption results. GA and its variants have been used to select the appropriate control parameters. Kaur and Kumar [ 96 ] developed a multi-objective genetic algorithm to optimize the control parameters of chaotic map. The secret key was generated using beta chaotic map. The generated key was use to encrypt the image. Parallel GAs were also used to encrypt the image [ 97 ].

5.2.2 Image processing

The main image processing tasks are preprocessing, segmentation, object detection, denoising, and recognition. Image segmentation is an important step to solve the image processing problems. Decomposing/partitioning an image requires high computational time. To resolve this problem, GA is used due to their better search capability [ 26 , 102 ]. Enhancement is a technique to improve the quality and contrast of an image. The better image quality is required to analyze the given image. GAs have been used to enhance natural contrast and magnify image [ 40 , 64 , 99 ]. Some researchers are working on hybridization of rough set with adaptive genetic algorithm to merge the noise and color attributes. GAs have been used to remove the noise from the given image. GA can be hybridized with fuzzy logic to denoise the noisy image. GA based restoration technique can be used to remove haze, fog and smog from the given image [ 8 , 110 , 146 , 200 ]. Object detection and recognition is a challenging issue in real-world problem. Gaussian mixture model provides better performance during detection and recognition process. The control parameters are optimized through GA [ 93 ].

5.2.3 Video processing

Video segmentation has been widely used in pattern recognition, and computer vision. There are some critical issues that are associated with video segmentation. These are distinguishing object from the background and determine accurate boundaries. GA can be used to resolve these issues [ 9 , 105 ]. GAs have been implemented for gesture recognition successfully by Chao el al. [ 81 ] used GA for gesture recognition. They applied GAs and found an accuracy of 95% in robot vision. Kaluri and Reddy [ 91 ] proposed an adaptive genetic algorithm based method along with fuzzy classifiers for sign gesture recognition. They reported an improved recognition rate of 85% as compared to the existing method that provides 79% accuracy. Beside the gesture recognition, face recognition play an important role in criminal identification, unmanned vehicles, surveillance, and robots. GA is able to tackle the occlusion, orientations, expressions, pose, and lighting condition [ 69 , 95 , 109 ].

5.2.4 Medical imaging

Genetic algorithms have been applied in medical imaging such as edge detection in MRI and pulmonary nodules detection in CT scan images [ 100 , 179 ]. In [ 120 ], authors used a template matching technique with GA for detecting nodules in CT images. Kavitha and Chellamuthu [ 179 ] used GA based region growing method for detecting the brain tumor. GAs have been applied on medical prediction problems captured from pathological subjects. Sari and Tuna [ 176 ] used GA used to solve issues arises in biomechanics. It is used to predict pathologies during examination. Ghosh and Bhattachrya [ 62 ] implemented sequential GA with cellular automata for modelling the coronavirus disease 19 (COVID-19) data. GAs can be applied in parallel mode to find rules in biological datasets [ 31 ]. The authors proposed a parallel GA that runs by dividing the process into small sub-generations and evaluating the fitness of each individual solution in parallel. Genetic algorithms are used in medicine and other related fields. Koh et al. [ 61 ] proposed a genetic algorithm based method for evaluation of adverse effects of a given drug.

5.2.5 Precision agriculture

GAs have been applied on various problems that are related to precision agriculture. The main issues are crop yield, weed detection, and improvement in farming equipment. Pachepsky and Acock [ 145 ] implemented GA to analyze the water capacity in soil using remote sensing images. The crop yield can be predicted through the capacity of water present in soil. The weed identification was done through GA in [ 142 ]. They used aerial image for classification of plants. In [ 124 ], color image segmentation was used to discriminate the weed and plant. Peerlink et al. [ 154 ] determined the appropriate rate of fertilizer for various portions of agriculture field. They GA for determining the nitrogen in wheat field. The energy requirements in water irrigation systems can be optimized by viewing it as a multi-objective optimization problem. The amount of irrigation required and thus power requirements change continuously in a SMART farm. Therefore, GA can be applied in irrigation systems to reduce the power requirements [ 33 ].

5.2.6 Gaming

GAs have been successfully used in games such as gomoku. In [ 202 ], the authors shown that the GA based approach finds the solution having the highest fitness than the normal tree based methods. However, in real-time strategy based games, GA based solutions become less practical to implement [ 82 ]. GAs have been implemented for path planning problems considering the environment constraints as well as avoiding the obstacles to reach the given destination. Burchardt and Salomon [ 18 ] described an implementation for path planning for soccer games. GA can encode the path planning problems via the coordinate points of a two-dimensional playing field, hence resulting in a variable length solution. The fitness function in path planning considers length of path as well as the collision avoiding terms for soccer players.

5.3 Wireless networking

Due to adaptive, scalable, and easy implementation of GA, it has been used to solve the various issues of wireless networking. The main issues of wireless networking are routing, quality of service, load balancing, localization, bandwidth allocation and channel assignment [ 128 , 134 ]. GA has been hybridized with other metaheuristics for solving the routing problems. Hybrid GA not only producing the efficient routes among pair of nodes, but also used for load balancing [ 24 , 212 ].

5.3.1 Load balancing

Nowadays, multimedia applications require Quality-of-Service (QoS) demand for delay and bandwidth. Various researchers are working on GAs for QoS based solutions.GA produces optimal solutions for complex networks [ 49 ]. Roy et al. [ 172 ] proposed a multi-objective GA for multicast QoS routing problem. GA was used with ACO and other search algorithms for finding optimal routes with desired QoS metrics. Load balancing is another issue in wireless networks. Scully and Brown [ 177 ] used MicroGAs and MacroGAs to distribute the load among various components of networks. He et al. [ 73 ] implemented GA to determine the balance load in wireless sensor networks. Cheng et al. [ 25 ] utilized distributed GA with multi-population scheme for load balancing. They used load balancing metric as a fitness function in GA.

5.3.2 Localization

The process of determining the location of wireless nodes is called as localization. It plays an important role in disaster management and military services. Yun et al. [ 216 ] used GA with fuzzy logic to find out the weights, which are assigned according to the signal strength. Zhang et al. [ 218 ] hybridized GA with simulated annealing (SA) to determine the position of wireless nodes. SA is used as local search to eliminate the premature convergence.

5.3.3 Bandwidth and channel allocation

The appropriate bandwidth allocation is a complex task. GAs and its variants have been developed to solve the bandwidth allocation problem [ 92 , 94 , 107 ]. GAs were used to investigate the allocation of bandwidth with QoS constraints. The fitness function of GAs may consists of resource utilization, bandwidth distribution, and computation time [ 168 ]. The channel allocation is an important issue in wireless networks. The main objective of channel allocation is to simultaneously optimize the number of channels and reuse of allocated frequency. Friend et al. [ 59 ] used distributed island GA to resolve the channel allocation problem in cognitive radio networks. Zhenhua et al. [ 221 ] implemented a modified immune GA for channel assignment. They used different encoding scheme and immune operators. Pinagapany and Kulkarni [ 157 ] developed a parallel GA to solve both static and dynamic channel allocation problem. They used decimal encoding scheme. Table 10 summarizes the applications of GA and its variants.

6 Challenges and future possibilities

In this section, the main challenges faced during the implementation of GAs are discussed followed by the possible research directions.

6.1 Challenges

Despite the several advantages, there are some challenges that need to be resolved for future advancements and further evolution of genetic algorithms. Some major challenges are given below:

6.1.1 Selection of initial population

Initial population is always considered as an important factor for the performance of genetic algorithms. The size of population also affects the quality of solution [ 160 ]. The researchers argue that if a large population is considered, then the algorithm takes more computation time. However, the small population may lead to poor solution [ 155 ]. Therefore, finding the appropriate population size is always a challenging issue. Harik and Lobo [ 71 ] investigated the population using self-adaption method. They used two approaches such as (1) use of self-adaption prior to execution of algorithm, in which the size of population remains the same and (2) in which the self-adaption used during the algorithm execution where the population size is affected by fitness function.

6.1.2 Premature convergence

Premature convergence is a common issue for GA. It can lead to the loss of alleles that makes it difficult to identify a gene [ 15 ]. Premature convergence states that the result will be suboptimal if the optimization problem coincides too early. To avoid this issue, some researchers suggested that the diversity should be used. The selection pressure should be used to increase the diversity. Selection pressure is a degree which favors the better individuals in the initial population of GA’s. If selection pressure (SP1) is greater than some selection pressure (SP2), then population using SP1 should be larger than the population using SP2. The higher selection pressure can decrease the population diversity that may lead to premature convergence [ 71 ].

Convergence property has to be handled properly so that the algorithm finds global optimal solution instead of local optimal solution (see Fig. 8 ). If the optimal solution lies in the vicinity of an infeasible solution, then the global nature of GA can be combined with local nature of other algorithms such as Tabu search and local search. The global nature of genetic algorithms and local nature of Tabu search provide the proper balance between intensification and diversification.

figure 8

Local and global optima [ 149 ]

6.1.3 Selection of efficient fitness functions

Fitness function is the driving force, which plays an important role in selecting the fittest individual in every iteration of an algorithm. If the number of iterations are small, then a costly fitness function can be adjusted. The number of iterations increases may increase the computational cost. The selection of fitness function depends upon the computational cost as well as their suitability. In [ 46 ], the authors used Davies-Bouldin index for classification of documents.

6.1.4 Degree of mutation and crossover

Crossover and mutation operators are the integral part of GAs. If the mutation is not considered during evolution, then there will be no new information available for evolution. If crossover is not considered during evolution, then the algorithm can result in local optima. The degree of these operators greatly affect the performance of GAs [ 72 ]. The proper balance between these operators are required to ensure the global optima. The probabilistic nature cannot determine the exact degree for an effective and optimal solution.

6.1.5 Selection of encoding schemes

GAs require a particular encoding scheme for a specific problem. There is no general methodology for deciding whether the particular encoding scheme is suitable for any type of real-life problem. If there are two different problems, then two different encoding schemes are required. Ronald [ 171 ] suggested that the encoding schemes should be designed to overwhelm the redundant forms. The genetic operators should be implemented in a manner that they are not biased towards the redundant forms.

6.2 Future research directions

GAs have been applied in different fields by modifying the basic structure of GA. The optimality of a solution obtained from GA can be made better by overcoming the current challenges. Some future possibilities for GA are as follows:

There should be some way to choose the appropriate degree of crossover and mutation operators. For example Self-Organizing GA adapt the crossover and mutation operators according to the given problem. It can save computation time that make it faster.

Future work can also be considered for reducing premature convergence problem. Some researchers are working in this direction. However, it is suggested that new methods of crossover and mutation techniques are required to tackle the premature convergence problem.

Genetic algorithms mimic the natural evolution process. There can be a possible scope for simulating the natural evolution process such as the responses of human immune system and the mutations in viruses.

In real-life problems, the mapping from genotype to phenotype is complex. In this situation, the problem has no obvious building blocks or building blocks are not adjacent groups of genes. Hence, there is a possibility to develop novel encoding schemes to different problems that does not exhibit same degree of difficulty.

7 Conclusions

This paper presents the structured and explained view of genetic algorithms. GA and its variants have been discussed with application. Application specific genetic operators are discussed. Some genetic operators are designed for representation. However, they are not applicable to research domains. The role of genetic operators such as crossover, mutation, and selection in alleviating the premature convergence is studied extensively. The applicability of GA and its variants in various research domain has been discussed. Multimedia and wireless network applications were the main attention of this paper. The challenges and issues mentioned in this paper will help the practitioners to carry out their research. There are many advantages of using GAs in other research domains and metaheuristic algorithms.

The intention of this paper is not only provide the source of recent research in GAs, but also provide the information about each component of GA. It will encourage the researchers to understand the fundamentals of GA and use the knowledge in their research problems.

Abbasi M, Rafiee M, Khosravi MR, Jolfaei A, Menon VG, Koushyar JM (2020) An efficient parallel genetic algorithm solution for vehicle routing problem in cloud implementation of the intelligent transportation systems. Journal of cloud Computing 9(6)

Abdelghany A, Abdelghany K, Azadian F (2017) Airline flight schedule planning under competition. Comput Oper Res 87:20–39

MathSciNet   MATH   Google Scholar  

Abdulal W, Ramachandram S (2011) Reliability-aware genetic scheduling algorithm in grid environment. International Conference on Communication Systems and Network Technologies, Katra, Jammu, pp 673–677

Google Scholar  

Abdullah J (2010) Multiobjectives ga-based QoS routing protocol for mobile ad hoc network. Int J Grid Distrib Comput 3(4):57–68

Abo-Elnaga Y, Nasr S (2020) Modified evolutionary algorithm and chaotic search for Bilevel programming problems. Symmetry 12:767

Afrouzy ZA, Nasseri SH, Mahdavi I (2016) A genetic algorithm for supply chain configuration with new product development. Comput Ind Eng 101:440–454

Aiello G, Scalia G (2012) La, Enea M. A multi objective genetic algorithm for the facility layout problem based upon slicing structure encoding Expert Syst Appl 39(12):10352–10358

Alaoui A, Adamou-Mitiche ABH, Mitiche L (2020) Effective hybrid genetic algorithm for removing salt and pepper noise. IET Image Process 14(2):289–296

Alkhafaji BJ, Salih MA, Nabat ZM, Shnain SA (2020) Segmenting video frame images using genetic algorithms. Periodicals of Engineering and Natural Sciences 8(2):1106–1114

Al-Oqaily AT, Shakah G (2018) Solving non-linear optimization problems using parallel genetic algorithm. International Conference on Computer Science and Information Technology (CSIT), Amman, pp. 103–106

Alvesa MJ, Almeidab M (2007) MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem. Comput Oper Res 34:3458–3470

MathSciNet   Google Scholar  

Arakaki RK, Usberti FL (2018) Hybrid genetic algorithm for the open capacitated arc routing problem. Comput Oper Res 90:221–231

Arkhipov DI, Wu D, Wu T, Regan AC (2020) A parallel genetic algorithm framework for transportation planning and logistics management. IEEE Access 8:106506–106515

Azadeh A, Elahi S, Farahani MH, Nasirian B (2017) A genetic algorithm-Taguchi based approach to inventory routing problem of a single perishable product with transshipment. Comput Ind Eng 104:124–133

Baker JE, Grefenstette J (2014) Proceedings of the first international conference on genetic algorithms and their applications. Taylor and Francis, Hoboken, pp 101–105

Bolboca SD, JAntschi L, Balan MC, Diudea MV, Sestras RE (2010) State of art in genetic algorithms for agricultural systems. Not Bot Hort Agrobot Cluj 38(3):51–63

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Inc

MATH   Google Scholar  

Burchardt H, Salomon R (2006) Implementation of path planning using genetic algorithms on Mobile robots. IEEE International Conference on Evolutionary Computation, Vancouver, BC, pp 1831–1836

Burdsall B, Giraud-Carrier C (1997) Evolving fuzzy prototypes for efficient data clustering," in second international ICSC symposium on fuzzy logic and applications. Zurich, Switzerland, pp. 217-223.

Burkowski FJ (1999) Shuffle crossover and mutual information. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 1999, pp. 1574–1580

Chaiyaratana N, Zalzala AM (2000) "Hybridisation of neural networks and a genetic algorithm for friction compensation," in the 2000 congress on evolutionary computation, vol 1. San Diego, USA, pp 22–29

Chen R, Liang C-Y, Hong W-C, Gu D-X (2015) Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. Appl Soft Comput 26:434–443

J.R. Cheng and M. Gen (2020) Parallel genetic algorithms with GPU computing. Impact on Intelligent Logistics and Manufacturing.

Cheng H, Yang S (2010) Multi-population genetic algorithms with immigrants scheme for dynamic shortest path routing problems in mobile ad hoc networks. Applications of evolutionary computation. Springer, In, pp 562–571

Cheng H, Yang S, Cao J (2013) Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc net-works. Expert Syst Appl 40(4):1381–1392

Chouhan SS, Kaul A, Singh UP (2018) Soft computing approaches for image segmentation: a survey. Multimed Tools Appl 77(21):28483–28537

Chuang YC, Chen CT, Hwang C (2016) A simple and efficient real-coded genetic algorithm for constrained optimization. Appl Soft Comput 38:87–105

Coello CAC, Pulido GT (2001) A micro-genetic algorithm for multiobjective optimization. In: EMO, volume 1993 of lecture notes in computer science, pp 126–140. Springer

Das, K. N. (2014). Hybrid genetic algorithm: an optimization tool. In global trends in intelligent computing Research and Development (pp. 268-305). IGI global.

Das AK, Pratihar DK (2018) A direction-based exponential mutation operator for real-coded genetic algorithm. IEEE International Conference on Emerging Applications of Information Technology.

Dash SR, Dehuri S, Rayaguru S (2013) Discovering interesting rules from biological data using parallel genetic algorithm, 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad,, pp. 631–636.

Datta D, Amaral ARS, Figueira JR (2011) Single row facility layout problem using a permutation-based genetic algorithm. European J Oper Res 213(2):388–394

de Ocampo ALP, Dadios EP (2017) "Energy cost optimization in irrigation system of smart farm by using genetic algorithm," 2017IEEE 9th international conference on humanoid. Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, pp 1–7

Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Systems 9:115–148

Deb K, Deb D (2014) Analysing mutation schemes for real-parameter genetic algorithms. International Journal of Artificial Intelligence and Soft Computing 4(1):1–28

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

Deep K, Das KN (2008) Quadratic approximation based hybrid genetic algorithm for function optimization. Appl Math Comput 203(1):86–98

Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193:211–230

Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188:895–911

Dhal KP, Ray S, Das A, Das S (2018) A survey on nature-inspired optimization algorithms and their application in image enhancement domain. Archives of Computational Methods in Engineering 5:1607–1638

Dhiman G, Kumar V (2017) Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

Dhiman G, Kumar V (2018) Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

Di Fatta G, Hoffmann F, Lo Re G, Urso A (2003) A genetic algorithm for the design of a fuzzy controller for active queue management. IEEE Trans Syst Man Cybern Part C Appl Rev 33(3):313–324

Diabat A, Deskoores R (2016) A hybrid genetic algorithm based heuristic for an integrated supply chain problem. J Manuf Syst 38:172–180

Diaz-Manríquez A, Ríos-Alvarado AB, Barrón-Zambrano JH, Guerrero-Melendez TY, Elizondo-Leal JC (2018) An automatic document classifier system based on genetic algorithm and taxonomy. IEEE Access 6:21552–21559. https://doi.org/10.1109/ACCESS.2018.2815992

Article   Google Scholar  

Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization - artificial ants as a computational intelligence technique. IEEE Comput Intell Mag 1(2006):28–39

Ebrahimzadeh R, Jampour M (2013) Chaotic genetic algorithm based on Lorenz chaotic system for optimization problems. I.J. Intelligent Systems and Applications Intelligent Systems and Applications 05(05):19–24

EkbataniFard GH, Monsefi R, Akbarzadeh-T M-R, Yaghmaee M et al. (2010) A multi-objective genetic algorithm based approach for energy efficient qos-routing in two-tiered wireless sensor net-works. In: wireless pervasive computing (ISWPC), 2010 5th IEEE international symposium on. IEEE, pp 80–85

El-Mihoub T, Hopgood A, Nolle L, Battersby A (2004) Performance of hybrid genetic algorithms incorporating local search. In: Horton G (ed) 18th European simulation multi-conference (ESM2004). Germany, Magdeburg, pp 154–160

El-Mihoub TA, Hopgood AA, Lars N, Battersby A (2006) Hybrid genetic algorithms: A review. Eng Lett 13:2

Emmerich MTM, Deutz AH (2018) A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat Comput 17(3):585–609

Eshelman LJ, Caruana RA, Schaffer JD (1997) Biases in the crossover landscape.

Espinoza FB, Minsker B, Goldberg D (2003) Performance evaluation and population size reduction for self adaptive hybrid genetic algorithm (SAHGA), in the Genetic and Evolutionary Computation Conference, vol. 2723, Lecture Notes in Computer Science San Francisco, USA: Springer, pp. 922–933.

Farahani RZ, Elahipanah M (2008) A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain. Int J Prod Econ 111(2):229–243

Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: ICGA, pp 416–423. Morgan Kaufmann

Fox B, McMahon M (1991) Genetic operators for sequencing problems, in Foundations of Genetic Algorithms, G. Rawlins, Ed. Morgan Kaufmann Publishers, San Mateo,CA, Ed. 1991, pp. 284–300.

Freisleben B, Merz P (1996) New genetic local search operators for the traveling salesman problem," in the Fourth Conference on Parallel Problem Solving from Nature vol. 1141, Lectures Notes in Computer Science, H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, Eds. Berlin, Germany: Springer-Verlag, pp. 890–899.

Friend DH, EI Nainay, M, Shi Y, MacKenzie AB (2008) Architecture and performance of an island genetic algorithm-based cognitive network. In: Consumer communications and networking conference,2008. CCNC 2008. 5th IEEE. IEEE, pp 993–997

Fuertes G, Vargas M, Alfaro M, Soto-Garrido R, Sabattin J, Peralta M-A (2019) Chaotic genetic algorithm and the effects of entropy in performance optimization.

Ghaheri A, Shoar S, Naderan M, Hoseini SS (2015) The applications of genetic algorithms in medicine. CJ 30:406–416

Ghosh S, Bhattachrya S (2020) A data-driven understanding of COVID-19 dynamics using sequential genetic algorithm based probabilistic cellular automata. Applied Soft Computing. 96

Ghoshal AK, Das N, Bhattacharjee S, Chakraborty G (2019) A fast parallel genetic algorithm based approach for community detection in large networks. International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, pp. 95–101.

Gogna A, Tayal A (2012) Comparative analysis of evolutionary algorithms for image enhancement. Int J Met 2(1)

Goldberg D (1989) Genetic algorithm in search. Optimization and Machine Learning, Addison -Wesley, Reading, MA 1989

Goldberg D, Lingle R (1985) Alleles, loci and the traveling salesman problem. In: Proceedings of the 1st international conference on genetic algorithms and their applications, vol. 1985. Los Angeles, USA, pp 154–159

Guido R, Conforti D (2017) A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem. Comput Oper Res 87:270–282

Ha QM, Deville Y, Pham QD, Ha MH (2020) A hybrid genetic algorithm for the traveling salesman problem with drone. J Heuristics 26:219–247

HajiRassouliha A, Gamage TPB, Parker MD, Nash MP, Taberner AJ, Nielsen, PM (2013) FPGA implementation of 2D cross-correlation for real-time 3D tracking of deformable surfaces. In Proceedings of the2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013), Wellington, New Zealand, 27–29 November 2013; IEEE: Piscataway, NJ, USA; pp. 352–357

Harada T, Alba E (2020) Parallel genetic algorithms: a useful survey. ACM Computing Survey 53(4):1–39

Harik GR, Lobo FG (1999) A parameter-less genetic algorithm, in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 258–265.

Hassanat A, Almohammadi K, Alkafaween E, Abunawas E, Hammouri A, Prasath VBS (December 2019) Choosing mutation and crossover ratios for genetic algorithms—A review with a new dynamic approach. Information 10:390. https://doi.org/10.3390/info10120390

He J, Ji S, Yan M, Pan Y, Li Y (2012) Load-balanced CDS construction in wireless sensor networks via genetic algorithm. Int J Sens Netw 11(3):166–178

Hedar A, Fukushima M (2003) Simplex coding genetic algorithm for the global optimization of nonlinear functions, in Multi-Objective Programming and Goal Programming, Advances in Soft Computing, T. Tanino, T. Tanaka, and M. Inuiguchi, Eds.: Springer-Verlag, pp. 135–140.

Helal MHS, Fan C, Liu D, Yuan S (2017) Peer-to-peer based parallel genetic algorithm. International Conference on Information, Communication and Engineering (ICICE), Xiamen, pp 535–538

Hiassat A, Diabat A, Rahwan I (2017) A genetic algorithm approach for location-inventory-routing problem with perishable products. J Manuf Syst 42:93–103

Holland JH (1975) Adaptation in natural and artificial systems. The U. of Michigan Press

Hong W-C, Dong Y, Chen L-Y, Wei S-Y (2011) SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl Soft Comput 11(2):1881–1890

Hong T-P, Lee Y-C, Min-Thai W (2014) An effective parallel approach for genetic-fuzzy data mining. Exp Syst Applic 41(2):655–662

Horn J, Nafpliotis N, Goldberg DE. (1994) A niched Pareto genetic algorithm for multiobjective optimization. Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, Piscataway, NJ: IEEE Service Center, p. 67–72.

Hu C, Wang X, Mandal MK, Meng M, Li D (2003) Efficient face and gesture recognition techniques for robot control. Department of Electrical and Computer Engineering University of Alberta, Edmonton, AB, T6G 2V4, Canada. CCECE2003 - CCGEI 2003, Montreal, May/mai 2003 IEEE, pp 1757-1762.

Peng Huo, Simon C. K. Shiu, Haibo Wang, Ben Niu (2009) Application and Comparison of Particle Swarm Optimization and Genetic Algorithm in Strategy Defense Game. Fifth International Conference on Natural Computation, pp 387–392.

Hussain A, Muhammad YS, Nauman Sajid M, Hussain I, Mohamd Shoukry A, Gani S (2017) Genetic algorithm for traveling salesman problem with modified cycle crossover operator. Computational intelligence and neuroscience 2017:1–7

Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):392–403

Jafari A, Khalili T, Babaei E, Bidram A (2020) Hybrid optimization technique using exchange market and GA. IEEE Access 8:2417–2427

Jaszkiewicz A (February 2002) Genetic local search for multi-objective combinatorial optimization. Eur J Oper Res 137(1):50–71

Javidi M, Hosseinpourfard R (2015) Chaos genetic algorithm instead genetic algorithm. Int J Inf Tech 12(2):163–168

Jebari K (2013) Selection methods for genetic algorithms. Abdelmalek Essaâdi University. International Journal of Emerging Sciences 3(4):333–344

Jiang S, Chin K-S, Wang L, Qu G, Tsui KL (2017) Modified genetic algorithm-based feature selection combined with pre-trained deep neural network for demand forecasting in outpatient department. Expert Syst Appl 82:216–230

Jiang M, Fan X, Pei Z, Zhang Z (2018) Research on text feature clustering based on improved parallel genetic algorithm. Tenth International Conference on Advanced Computational Intelligence (ICACI), Xiamen, pp. 235–238

Kaluri R, Reddy P (2016) Sign gesture recognition using modified region growing algorithm and adaptive genetic fuzzy classifier. International Journal of Intelligent Engineering and Systems 9(4):225–233

Kandavanam G, Botvich D, Balasubramaniam S, Jennings B (2010) A hybrid genetic algorithm/variable neighborhood search approach to maximizing residual bandwidth of links for route planning. Artificial evolution. Springer, In, pp 49–60

Kannan S (2020) Intelligent object recognition in underwater images using evolutionary-based Gaussian mixture model and shape matching. SIViP 14:877–885

Karabudak D, Hung C-C, Bing B (2004) A call admission control scheme using genetic algorithms. In: Proceedings of the 2004ACM symposium on applied computing. ACM, pp 1151–1158

Katz P, Aron M, Alfalou A (2001) A face-tracking system to detect falls in the elderly; SPIE newsroom. SPIE, Bellingham, WA, USA, p 201

Kaur M, Kumar V (2018) Beta chaotic map based image encryption using genetic algorithm. Int J Bifurcation Chaos 28(11):1850132

Kaur M, Kumar V (2018) Parallel non-dominated sorting genetic algorithm-II-based image encryption technique. The Imaging Science Journal. 66(8):453–462

Kaur M, Kumar V (2018) Fourier–Mellin moment-based intertwining map for image encryption. Modern Physics Letters B 32(9):1850115

Kaur G, Bhardwaj N, Singh PK (2018) An analytic review on image enhancement techniques based on soft computing approach. Sensors and Image Processing, Advances in Intelligent Systems and Computing 651:255–266

Kavitha AR, Chellamuthu C (2016) Brain tumour segmentation from MRI image using genetic algorithm with fuzzy initialisation and seeded modified region growing (GFSMRG) method. The Imaging Science Journal 64(5):285–297

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks (1995), pp 1942–1948

Khan, A., ur Rehman, Z., Jaffar, M.A., Ullah, J., Din, A., Ali, A., Ullah, N. (2019) Color image segmentation using genetic algorithm with aggregation-based clustering validity index (CVI). SIViP 13(5), 833–841

Kia R, Khaksar-Haghani F, Javadian N, Tavakkoli-Moghaddam R (2014) Solving a multi-floor layout design model of a dynamic cellular manufacturing system by an efficient genetic algorithm. J Manuf Syst 33(1):218–232

Kim EY, Jung K (2006) Genetic algorithms for video segmentation. Pattern Recogn 38(1):59–73

Kim EY, Park SH (2006) Automatic video segmentation using genetic algorithms. Pattern Recogn Lett 27(11):1252–1265

Kita H, Ono I, Kobayashi S (1999). The multi-parent unimodal normal distribution crossover for real-coded genetic algorithms. Proceedings of the 1999 Congress on Evolutionary Computation, vol. 2, IEEE (1999), pp. 1588–1595

Kobayashi H, Munetomo M, Akama K, Sato Y (2004) Designing a distributed algorithm for bandwidth allocation with a genetic algorithm. Syst Comput Jpn 35(3):37–45

Konak A, Smith AE (1999) A hybrid genetic algorithm approach for backbone design of communication networks, in the 1999 Congress on Evolutionary Computation. Washington D.C, USA: IEEE, pp. 1817-1823.

Kortil Y, Jridi M, Falou AA, Atri M (2020) Face recognition systems: A survey. Sensors. 20:1–34

Krishnan N, Muthukumar S, Ravi S, Shashikala D, Pasupathi P (2013) Image restoration by using evolutionary technique to Denoise Gaussian and impulse noise. In: Prasath R., Kathirvalavakumar T. (eds) mining intelligence and knowledge exploration. Lecture notes in computer science, vol 8284. Springer, Cham.

Kumar A (2013) Encoding schemes in genetic algorithm. Int J Adv Res IT Eng 2(3):1–7

Kumar V, Kumar D (2017) An astrophysics-inspired grey wolf algorithm for numerical optimization and its application to engineering design problems. Adv Eng Softw 112:231–254

Kumar V, Chhabra JK, Kumar D (2014) Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems. J Comput Sci 5(2):144–155

Kumar C, Singh AK, Kumar P (2017) A recent survey on image watermarking techniques and its application in e-governance. MultiMed Tools Appl.

Kurdi M (2016) An effective new island model genetic algorithm for job shop scheduling problem. Comput Oper Res 67(2016):132–142

Larranaga P, Kuijpers CMH, Murga RH, Yurramendi Y (July 1996) Learning Bayesian network structures by searching for the best ordering with genetic algorithms. in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 26(4):487–493

Larranaga P, Kuijpers C, Murga R, Inza I, Dizdarevic S (1999) Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artificial Intelligence Review 13:129–170

Chang-Yong Lee (2003) Entropy-Boltzmann selection in the genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 33, no. 1, pp. 138–149, Feb. 2003.

Lee CKH (2018) A review of applications of genetic algorithms in operations management. Eng Appl Artif Intell 76:1–12

Lee Y, Hara T, Fujita H, Itoh S, Ishigaki T (July 2001) Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. in IEEE Transactions on Medical Imaging 20(7):595–604

Joon-Yong Lee, Min-Soeng Kim, Cheol-Taek Kim and Ju-Jang Lee (2007) Study on encoding schemes in compact genetic algorithm for the continuous numerical problems,SICE Annual Conference 2007, Takamatsu, pp. 2694–2699.

Leng LT (1999) Guided genetic algorithm. University of Essex, Doctoral Dissertation

Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms: A survey. ACM Computing surveys

Lie Tang L (2000) Tian and Brian L steward, "color image segmentation with genetic algorithm for in-field weed sensing". Transactions of the ASAE 43(4):1019–1027

Lima S.J.A., de Araújo S.A. (2018) A new binary encoding scheme in genetic algorithm for solving the capacitated vehicle routing problem. In: Korošec P., Melab N., Talbi EG. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2018. Lecture notes in computer science, vol 10835. Springer, Cham

Liu D (2019) Mathematical modeling analysis of genetic algorithms under schema theorem. Journal of Computational Methods in Sciences and Engineering 19:S131–S137

Liu Z, Meng Q, Wang S (2013) Speed-based toll design for cordon-based congestion pricing scheme. Transport Res Part C: Emerg Technol 31(2013):83–98

Lorenzo B, Glisic S (2013) Optimal routing and traffic scheduling for multihop cellular networks using genetic algorithm. IEEE Trans Mob Comput 12(11):2274–2288

Lucasius CB, Kateman G (1989) Applications of genetic algorithms in chemometrics. In: Proceedings of the 3rd international conference on genetic algorithms. Morgan Kaufmann, Los Altos, CA, USA, pp 170–176

Luo B, Jinhua Zheng, Jiongliang Xie, Jun Wu. Dynamic crowding distance – a new diversity maintenance strategy for MOEAs. ICNC ‘08, Fourth Int. Conf. on Natural Comp., vol. 1 (2008), pp. 580–585

Maghawry A, Kholief M, Omar Y, Hodhod R (2020) An approach for evolving transformation sequences using hybrid genetic algorithms. Int J Intell Syst 13(1):223–233

Manzoni L, Mariot L, Tuba E (2020) Balanced crossover operators in genetic algorithms. Swarm and Evolutionary Computation 54:100646

Mazinani M, Abedzadeh M, Mohebali N (2013) Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. Int J Adv Manuf Technol 65(5–8):929–943

Mehboob U, Qadir J, Ali S, Vasilakos A (2016) Genetic algorithms in wireless networking: techniques, applications, and issues. Soft Comput 20:2467–2501

Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer-Verlag, New York

Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

Mishra R, Das KN (2017). A novel hybrid genetic algorithm for unconstrained and constrained function optimization. In bio-inspired computing for information retrieval applications (pp. 230-268). IGI global

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097

Mooi S, Lim S, Sultan M, Bakar A, Sulaiman M, Mustapha A, Leong KY (2017) Crossover and mutation operators of genetic algorithms. International Journal of Machine Learning and Computing 7:9–12

Mudaliar DN, Modi NK (2013) Unraveling travelling salesman problem by genetic algorithm using m-crossover operator. International Conference on Signal Processing, Image Processing & Pattern Recognition, Coimbatore, pp 127–130

T. Murata and M. Gen (2000) Cellular genetic algorithm for multi-objective optimization, in Proceedings of the Fourth Asian Fuzzy System Symposium, pp. 538–542

Neto JC, Meyer GE, Jones DD (2006) Individual leaf extractions from young canopy images using gustafsonkessel clustering and a genetic algorithm. Comput Electron Agric 51(1):66–85

NKFC, Viswanatha SDK (2009) Routing algorithm using mobile agents and genetic algorithm. Int J Comput Electr Eng, vol 1, no 3

Ono I, Kobayashi S (1997) A real-coded genetic algorithm for functional optimization using unimodal normal distribution crossover. In: Back T (ed) Proceedings of the 7th international conference on genetic algorithms, ICGA-7. Morgan Kaufmann, East Lansing, MI, USA, pp 246–253

Pachepsky Y, Acock B (1998) Stochastic imaging of soil parameters to assess variability and uncertainty of crop yield estimates. Geoderma 85(2):213–229

Paiva JPD, Toledo CFM, Pedrini H (2016) An approach based on hybrid genetic algorithm applied to image denoising problem. Appl Soft Comput 46:778–791

Palencia AER, Delgadillo GEM (2012) A computer application for a bus body assembly line using genetic algorithms. Int J Prod Econ 140(1):431–438

Palomo-Romero JM, Salas-Morera L, García-Hernández L (2017) An island model genetic algorithm for unequal area facility layout problems. Expert Syst Appl 68:151–162

Pandian S, Modrák V (December 2009) "possibilities, obstacles and challenges of genetic algorithm in manufacturing cell formation," advanced logistic systems, University of Miskolc. Department of Material Handling and Logistics 3(1):63–70

Park Y-B, Yoo J-S, Park H-S (2016) A genetic algorithm for the vendor-managed inventory routing problem with lost sales. Expert Syst Appl 53:149–159

Patel R, Raghuwanshi MM, Malik LG (2012) Decomposition based multi-objective genetic algorithm (DMOGA) with opposition based learning

Pattanaik JK, Basu M, Dash DP (2018) Improved real coded genetic algorithm for dynamic economic dispatch. Journal of electrical systems and information technology. Vol. 5(3):349–362

Payne AW, Glen RC (1993) Molecular recognition using a binary genetic system. J Mol Graph 11(2):74–91

Peerlinck A, Sheppard J, Pastorino J, Maxwell B (2019) Optimal Design of Experiments for precision agriculture using a genetic algorithm. IEEE Congress on Evolutionary Computation.

Pelikan M, Goldberg DE, Cantu-Paz E (2000) Bayesian optimization algorithm, population sizing, and time to convergence, Illinois Genetic Algorithms Laboratory, University of Illinois, Tech. Rep

Pilat ML, White T (2002) Using genetic algorithms to optimize ACS-TSP, in the Third International Workshop on Ant Algorithms, vol. Lecture Notes In Computer Science 2463. Berlin, Germany: Springer-Verlag, pp. 282–287.

Pinagapany S, Kulkarni A (2008) Solving channel allocation problem in cellular radio networks using genetic algorithm. In: Communication Systems software and middleware and workshops, 2008.COMSWARE 2008. 3rd International Conference on. IEEE, pp239–244

Pinel F, Dorronsoro B, Bouvry P (2013) Solving very large instances of the scheduling of independent tasks problem on the GPU. J Parallel Distrib. Comput 73(1):101–110

Pinto G, Ainbinder I, Rabinowitz G (2009) A genetic algorithm-based approach for solving the resource-sharing and scheduling problem. Comput Ind Eng 57(3):1131–1143

Piszcz A, Soule T (2006) Genetic programming: optimal population sizes for varying complexity problems, in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 953–954.

Porta J, Parapar R, Doallo F, Rivera F, Santé I, Crecente R (2013) High performance genetic algorithm for land use planning. Comput Environ Urb Syst 37(2013):45–58

Rafsanjani MK, Riyahi M (2020) A new hybrid genetic algorithm for job shop scheduling problem. International Journal of Advanced Intelligence Paradigms 16(2):157–171

Rathi R, Acharjya DP (2018) A framework for prediction using rough set and real coded genetic algorithm. Arab J Sci Eng 43(8):4215–4227

Rathi R, Acharjya DP (2018) A rule based classification for vegetable production using rough set and genetic algorithm. International Journal of Fuzzy System Applications (IJFSA) 7(1):74–100

Rathi R, Acharjya DP (2020) A comparative study of genetic algorithm and neural network computing techniques over feature selection, In advances in distributed computing and machine learning (pp. 491–500). Springer, Singapore

Ray SS, Bandyopadhyay S, Pal SK (2004) New operators of genetic algorithms for traveling salesman problem," Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., Cambridge pp 497-500

Richter JN, Peak D (2002) Fuzzy evolutionary cellular automata, in international conference on artificial neural networks in engineering, vol 12. USA, Saint Louis pp. 185-191

Riedl A (2002) A hybrid genetic algorithm for routing optimization in ip networks utilizing bandwidth and delay metrics. In: IP operations and management, 2002 IEEE Workshop on. IEEE, pp 166–170

Ripon KSN, Siddique N, Torresen J (2011) Improved precedence preservation crossover for multi-objective job shop scheduling problem. Evolving Systems 2:119–129

Roberge V, Tarbouchi M, Okou F (2014) Strategies to accelerate harmonic minimization in multilevel inverters using a parallel genetic algorithm on graphical processing unit. IEEE Trans Power Electron 29(10):5087–5090

Ronald S (1997) Robust encoding in genetic algorithms: a survey of encoding issues. IEEE international conference on evolutionary computation, pp. 43-48

Roy A, Banerjee N, Das SK (2002) An efficient multi-objective qos-routing algorithm for wireless multicasting. In:Vehicular technology conference, 2002. VTC Spring 2002. IEEE 55th, vol 3., pp 1160–1164

Sadrzadeh A (2012) A genetic algorithm with the heuristic procedure to solve the multi-line layout problem. Comput Ind Eng 62(4):1055–1064

Sahingoz OK (2014) Generation of Bezier curve-based flyable trajectories for multi-UAV systems with parallel genetic algorithm. J Intell Robot Syst 74(1):499–511

Saini N (2017) Review of selection methods in genetic algorithms. International Journal of Engineering and Computer Science 6(12):22261–22263

Sari M, Can T (2018) Prediction of pathological subjects using genetic algorithms. Computational and Mathematical Methods in Medicine 2018:1–9

Scully T, Brown KN (2009) Wireless LAN load balancing with genetic algorithms. Knowl Based Syst 22(7):529–534

Sermpinis G, Stasinakis C, Theofilatos K, Karathanasopoulos A (2015) Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms–support vector regression forecast combinations. European J. Oper. Res. 247(3):831–846

Shabankareh SG, Shabankareh SG (2019) Improvement of edge-tracking methods using genetic algorithm and neural network, 2019 5th Iranian conference on signal processing and intelligent systems (ICSPIS). Shahrood, Iran, pp 1–7. https://doi.org/10.1109/ICSPIS48872.2019.9066026

Book   Google Scholar  

Sharma S, Gupta K (2011) Solving the traveling salesman problem through genetic algorithm with new variation order crossover. International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Udaipur, pp. 274–276

Sharma N, Kaushik I, Rathi, R, Kumar S (2020) Evaluation of accidental death records using hybrid genetic algorithm. Available at SSRN: https://ssrn.com/abstract=3563084 or https://doi.org/10.2139/ssrn.3563084

Shayeghi A, Gotz D, Davis JBA, Schafer R, Johnston RL (2015) Pool-BCGA: A parallelised generation-free genetic algorithm for the ab initio global optimisation of nano alloy clusters. Phys Chem Chem Phys 17(3):2104–2112

Guoyong Shi, H. Iima and N. Sannomiya (1996) A new encoding scheme for solving job shop problems by genetic algorithm, Proceedings of 35th IEEE Conference on Decision and Control, Kobe, Japan, 1996, pp. 4395–4400 vol.4.

Shi J, Liu Z, Tang L, Xiong J (2017) Multi-objective optimization for a closed-loop network design problem using an improved genetic algorithm. Appl Math Model 45:14–30

Shukla AK, Singh P, Vardhan M (2019) A new hybrid feature subset selection framework based on binary genetic algorithm and information theory. International Journal of Computational Intelligence and Applications 18(3):1950020(1–10)

Singh A, Deep K (2015) Real coded genetic algorithm operators embedded in gravitational search algorithm for continuous optimization. Int J Intell Syst Appl 7(12):1

Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithm, 1st edn. Springer-Verlag, Berlin Heidelberg

Soleimani H, Kannan G (2015) A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network design in large-scale networks. Appl Math Model 39(14):3990–4012

Soleimani H, Govindan K, Saghafi H, Jafari H (2017) Fuzzy multi-objective sustainable and green closed-loop supply chain network design. Comput Ind Eng 109:191–203

Soon GK, Guan TT, On CK, Alfred R, Anthony P (2013) "A comparison on the performance of crossover techniques in video game," 2013 IEEE international conference on control system. Computing and Engineering, Mindeb, pp 493–498

Srinivas N, Deb K (1995) Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol Comput 2(3):221–248

Subbaraj P, Rengaraj R, Salivahanan S (2011) Enhancement of self-adaptive real-coded genetic algorithm using Taguchi method for economic dispatch problem. Appl Soft Comput 11(1):83–92

Tahir M, Tubaishat A, Al-Obeidat F, et al. (2020) A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare. Neural Comput & Appl

Tam V, Cheng K-Y, Lui K-S (2006) Using micro-genetic algorithms to improve localization in wireless sensor networks. J Commun 1(4):1–10

Tan KC, Li Y, Murray-Smith DJ, Sharman KC (1995) System identification and linearisation using genetic algorithms with simulated annealing, in First IEE/IEEE Int. Conf. on GA in Eng. Syst.: Innovations and Appl. Sheffield, UK, pp. 164–169.

Tang PH, Tseng MH (2013) Adaptive directed mutation for real-coded genetic algorithms. Appl Soft Comput 13(1):600–614

Tiong SK, Yap DFW, Koh SP (2012) A comparative analysis of various chaotic genetic algorithms for multimodal function optimization. Trends in Applied Sciences Research 7:785–791

Toutouh J, Alba E (2017) Parallel multi-objective metaheuristics for smart communications in vehicular networks. Soft Comput 21(8):1949–1961

Umbarkar A, Sheth P (2015) Crossover operators in genetic algorithms: a review. Journal on Soft Computing 6(1)

Verma D, Vishwakarma VP, Dalal S (2020) A hybrid self-constrained genetic algorithm (HSGA) for digital image Denoising based on PSNR improvement. Advances in Bioinformatics, Multimedia, and Electronics Circuits and Signals, In, pp 135–153

Vitayasak S, Pongcharoen P, Hicks C (2016) A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a genetic algorithm or modified backtracking search algorithm. Int J Prod Econ

Junru Wang and Lan Huang (2014) Evolving gomoku Solver by Genetic Algorithm. IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA) pp 1064–1067.

Wang L, Kan MS, Shahriar Md R, Tan ACC (2014) Different approaches of applying single-objective binary genetic algorithm on the wind farm design. In World Congress on Engineering Asset Management.

Wang N, Li Q, Abd El-Latif AA, Zhang T, Niu X (2014) Toward accurate localization and high recognition performance for noisy iris images. Multimed Tools Appl 71(3):1411–1430

Wang JQ, Ersoy OK, He MY et al (2016) Multi-offspring genetic algorithm and its application to the traveling salesman problem. Appl Soft Comput 43:415–423

Wang FL, Fu XM, Zhu HX et al (2016) Multi-child genetic algorithm based on two-point crossover. J Northeast Agric Univ 47(3):72–79

Wang JQ, Cheng ZW, Ersoy OK et al (2018) Improvement analysis and application of real-coded genetic algorithm for solving constrained optimization problems. Math Probl Eng 2018:1–16

Wang J, Zhang M, Ersoy OK, Sun K, Bi Y (2019) An improved real-coded genetic algorithm using the Heuristical Normal distribution and direction-based crossover. Computational Intelligence and Neuroscience 2019:1–17

Wen Z, Yang R, Garraghan P, Lin T, Xu J, Rovatsos M (2017) Fog orchestration for internet of things services. IEEE Internet Comput 21(2) (Mar. 2017):16–24

Wright AH (1991) Genetic algorithms for real parameter optimization. In Foundations of genetic algorithms I,G. J. E. Rawlins, Ed., Morgan Kaufmann, San Mateo, CA,USA

Wu X, Chu C-H, Wang Y, Yan W (2007) A genetic algorithm for cellular manufacturing design and layout. European J Oper Res 181(1):156–167

Yang S, Cheng H, Wang F (2010) Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks. IEEE Trans Syst Man Cybern Part C Appl Rev 40(1):52–63

Yang C, Li H, Rezgui Y, Petri I, Yuce B, Chen B, Jayan B (2014) High throughput computing based distributed genetic algorithm for building energy consumption optimization. Energy Build 76(2014):92–101

Yu F, Xu X (2014) A short-term load forecasting model of natural gas based on optimized genetic algorithm and improve BR neural network. Appl Energy 134:102–113

Yuce B, Fruggiero F, Packianather MS, Pham DT, Mastrocinque E, Lambiase A, Fera M (2017) Hybrid genetic bees algorithm applied to single machine scheduling with earliness and tardiness penalties. Comput Ind Eng 113:842–858

Yun S, Lee J, Chung W, Kim E, Kim S (2009) A soft computing approach to localization in wireless sensor networks. Expert Syst Appl 36(4):7552–7561

Zhai R (2020) Solving the optimization of physical distribution routing problem with hybrid genetic algorithm. J Phys Conf Ser 1550:1–6

Zhang Q, Wang J, Jin C, Zeng Q (2008) Localization algorithm for wireless sensor network based on genetic simulated annealing algorithm. In: 4th IEEE International Conference on Wireless communications, networking and mobile computing. Pp 1–5

Zhang R, Ong SK, Nee AYC (2015) A simulation-based genetic algorithm approach for remanufacturing process planning and scheduling. Appl Soft Comput 37:521–532

Zhang X-Y, Zhang J, Gong Y-J, Zhan Z-H, Chen W-N, Li Y (2016) Kuhn-Munkres parallel genetic algorithm for the set cover problem and its application to large-scale wireless sensor networks. IEEETrans Evol Comput 20(5):695–710

Zhenhua Y, Guangwen Y, Shanwei L, Qishan Z (2010) A modified immune genetic algorithm for channel assignment problems in cellular radio networks. In: Intelligent system design and engineering application (ISDEA), 2010 International Conference on, vol 2. , pp 823–826

Download references

Author information

Authors and affiliations.

Computer Science and Engineering Department, National Institute of Technology, Hamirpur, India

Sourabh Katoch, Sumit Singh Chauhan & Vijay Kumar

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Vijay Kumar .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Katoch, S., Chauhan, S.S. & Kumar, V. A review on genetic algorithm: past, present, and future. Multimed Tools Appl 80 , 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6

Download citation

Received : 27 July 2020

Revised : 12 October 2020

Accepted : 23 October 2020

Published : 31 October 2020

Issue Date : February 2021

DOI : https://doi.org/10.1007/s11042-020-10139-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Optimization
  • Metaheuristic
  • Genetic algorithm
  • Find a journal
  • Publish with us
  • Track your research
  • See us on facebook
  • See us on twitter
  • See us on youtube
  • See us on linkedin
  • See us on instagram

Bengal cat coats are less wild than they look, genetic study finds

Researchers studied hundreds of Bengal cats to uncover the genetic origins of their leopard-like patterns and found that their appearance stems largely from domesticated cats.

March 25, 2024 - By Sarah C.P. Williams

Bengal cat

Researchers have discovered that the spotted coats of Bengal cats are mostly the result of domestic cat genes.  Ermolaev Alexander/Shutterstock.com

Bengal cats are prized for their appearance; the exotically marbled and spotted coats of these domestic pets make them look like small, sleek jungle cats. But the origin of those coats — assumed to come from the genes of Asian leopard cats that were bred with house cats — turns out to be less exotic.

Stanford Medicine researchers, in collaboration with Bengal cat breeders, have discovered that the Bengal cats’ iridescent sheen and leopard-like patterns can be traced to domestic cat genes that were aggressively selected for after the cats were bred with wild cats.

“Most of the DNA changes that underlie the unique appearance of the Bengal cat breed have always been present in domestic cats,” said Gregory Barsh , MD, PhD, an emeritus professor of genetics. “It was really the power of breeding that brought them out.”

For a study published online March 25 in Current Biology , Barsh and his colleagues analyzed genes collected from nearly 1,000 Bengal cats over the course of 15 years. Barsh is the senior author of the paper, and senior scientist  Christopher Kaelin , PhD, is the lead author.

The results shed light not only on the Bengal cat’s coat but also help answer broader questions about how appearance is encoded in genetics and how different genes work together to yield colors, patterns and physical features.

Wild origins

Barsh and his colleagues, including Kaelin, use cats and other animals to study the genetics of physical features. In previous studies, they identified genes responsible for the color coat variation in tabby cats and for the unique markings on the Abyssinian cat.

Gregory Barsh

Gregory Barsh

“The big-picture question is how genetic variation leads to variation in appearance,” Barsh said. “This is a question that has all kinds of implications for different species, but we think that cats offer an especially tractable way to study it.”

From the 1960s through the 1980s, breeders, led by biologist Jean Mills, crossed the wild Asian leopard cat species Prionailurus bengalensis with domestic cats to create a new, visually striking cat breed. Over many generations, the cats with the desired physical characteristics and temperaments were progressively selected and bred. By 1986, the Bengal cat was recognized as its own new breed by the International Cat Association.

Barsh and Kaelin saw Bengals — with their recent genetic origin and unique appearance — as a particularly interesting way to study how genetic variation causes diversity in form, color and pattern. In 2008, they began reaching out to cat breeders, attending cat shows, and collecting cheek swabs and photographs of Bengal cats.

Genetic surprises

The Stanford Medicine team suspected that Bengal cats might give them an accessible way to probe the genetics of wild cat colors and patterns that had evolved naturally. But after sequencing 947 Bengal cat genomes, they found something surprising: There were no parts of the wild Asian leopard cat genomes that were found in all Bengal cats.

“Nearly every Bengal cat breeder and owner has this idea that the distinctive look of the domestic Bengal cat must have come from leopard cats,” Barsh said. “Our work suggests that’s not the case.”

Instead, the genetic signatures suggested that the unique appearance of Bengals was a result of variations in genes that had already been present in domestic cats.

The team found something similar when they looked specifically at “glitter”: About 60% of all Bengal cats have particularly soft, iridescent fur that glitters like gold in the sunlight. A mutation in the gene Fgfr2, they showed, is responsible for glitter and comes not from leopard cats but from domestic cats. Glitter and the underlying Fgfr2 mutation are nearly specific to Bengal cats. Interestingly, the mutation reduces the activity of the protein encoded by Fgfr2, rather than rendering it inactive as many mutations do. This sheds light on how variations in genes can cause subtle changes in appearance, the researchers said.

Christopher Kaelin

Christopher Kaelin

Finally, Barsh and Kaelin’s group analyzed the genetics of “charcoal” Bengals, a rare subset of the breed with darker coloring. They uncovered a leopard cat gene linked to the charcoal color, but only when it was combined with domestic cat genome. The leopard cat gene, known as Asip, essentially doesn’t work as well when it’s mixed with the domestic genes — a phenomenon known as genomic incompatibility. So, in leopard cats, Asip doesn’t cause charcoal coloring, but the same gene in domestic cats does.

“Hybridization between different species can happen naturally and is responsible for the small amount of Neandertal DNA found in many human genomes," Barsh explained. “But the wild leopard cat and the domestic cat are more different from each other than humans are from chimpanzees, and it’s remarkable to see how DNA from these distantly related species can exist and work together in a popular companion animal.”

A boost for biology and breeders

A better understanding of the genetic origins of Bengal cat traits is already helping Bengal breeders fine-tune the way they breed animals to create new colors and patterns. Over the past 15 years, Barsh and Kaelin have worked closely with Bengal cat organizations and given talks at cat shows. They often return ancestry and genetic data to owners to help guide their breeding. 

“Breeders are extremely interested in our data,” Kaelin said. “They not only want to contribute their cats’ DNA but they also want to be involved and help analyze data and hear about our results. It’s been a great collaboration and a true example of citizen science.”

The researchers say there are lessons to be learned in just how powerful artificial selection can be, as the Bengal cat coats could probably have been selected for without the help of the Asian leopard cat.

“People have this idea that we have to get access to these distantly related animals to breed beautiful individuals and designer animals,” Barsh said. “But it turns out all the diversity was already there waiting in the domestic cat genome.”

Scientists from HudsonAlpha Institute of Biotechnology, Gencove Inc., University of Bern, and Texas A&M University were also authors of the paper.

Funding for this research was provided by the HudsonAlpha Institute for Biotechnology and the National Institutes of Health (grant AR082708).

  • Sarah C.P. Williams Sarah C.P. Williams is a freelance science writer.

About Stanford Medicine

Stanford Medicine is an integrated academic health system comprising the Stanford School of Medicine and adult and pediatric health care delivery systems. Together, they harness the full potential of biomedicine through collaborative research, education and clinical care for patients. For more information, please visit med.stanford.edu .

Artificial intelligence

Exploring ways AI is applied to health care

Stanford Medicine Magazine: AI

ScienceDaily

Beethoven's genes reveal low predisposition for beat synchronization

What the exceptional composer's dna tells us about genetics.

Ludwig van Beethoven, one of the most celebrated musicians in human history, has a rather low genetic predisposition for beat synchronization, according to a Current Biology study co-authored by Vanderbilt University Medical Center (VUMC) and theMax Planck Institutes for Empirical Aesthetics in Frankfurt am Main, Germany, and for Psycholinguistics in Nijmegen, the Netherlands.

The question of to what extent are exceptional human achievements influenced by genetic factors dates back to the early days of human genetics but seems to be easier to address today as modern molecular methods make it possible to analyze DNA of individuals throughout history.

An international team of researchers analyzed Beethoven's DNA to investigate his genetic musical predisposition, an ability closely related to musicality, by using sequences from a 2023 study in which the composer's genetic material was extracted from strands of his hair.

"For Beethoven, we used his recently sequenced DNA to calculate a polygenic score as an indicator for his genetic predisposition for beat synchronization," said Tara Henechowicz, B.Mus.Hons, M.A., a current PhD Candidate at the University of Toronto, recent visiting graduate student with the Vanderbilt Human Genetics Program, and the paper's second author.

"Interestingly, Beethoven, one of the most celebrated musicians in history, had an unremarkable polygenic score for general musicality compared to population samples from the Karolinska Institute in Sweden and Vanderbilt's BioVU Repository," she said.

The authors noted that it would be wrong to conclude from Beethoven's low polygenic score that his musical abilities were unexceptional.

"Our aim was to use this as an example of the challenges of making genetic predictions for an individual who lived over 200 years ago," Henechowicz said.

"The mismatch between the DNA-based prediction and Beethoven's musical genius provides a valuable teaching moment, because it demonstrates that DNA tests cannot give us a definitive answer about whether a given child will end up being musically gifted."

Henechowicz said the study does not discount that DNA contributes to people's musical skills, noting that prior studies have found an average heritability, which is the proportion of individual differences explained by all genetic factors, of 42% for musicality.

"In the current era of 'big data' such as Vanderbilt's BioVU repository, we have had the opportunity to look in fine detail at large groups of people to uncover the genetic underpinnings of traits such as rhythm ability or being musically active. The current study and other recent work also suggest that environment plays a key role in musical ability and engagement as well," said co-author Reyna Gordon, PhD, associate professor of Otolaryngology at VUMC and graduate co-advisor to Henechowicz.

"Polygenic scores are intended to work well for comparisons of large groups of people to tell us how genetic risk for one trait relates to the genetics involved in other traits," Henechowicz said.

  • Intelligence
  • Relationships
  • Social Psychology
  • Consumer Behavior
  • Neurobiology
  • Homosexuality
  • Social psychology
  • Collaboration
  • Psycholinguistics

Story Source:

Materials provided by Vanderbilt University Medical Center . Original written by Craig Boerner. Note: Content may be edited for style and length.

Journal Reference :

  • Laura W. Wesseldijk, Tara L. Henechowicz, David J. Baker, Giacomo Bignardi, Robert Karlsson, Reyna L. Gordon, Miriam A. Mosing, Fredrik Ullén, Simon E. Fisher. Notes from Beethoven’s genome . Current Biology , 2024; 34 (6): R233 DOI: 10.1016/j.cub.2024.01.025

Cite This Page :

Explore More

  • Could Tardigrade Proteins Slow Aging in Humans?
  • Supermassive Black Holes Awakened
  • Beethoven's Genes: Low Beat Synchronization
  • Common Household Chemicals Threat to Brain?
  • Tiniest 'Starquake' Ever Detected
  • Amazing Archive of Ancient Human Brains
  • Night-Time Light and Stroke Risk
  • Toward Secure Quantum Communication Globally
  • Artificial Nanofluidic Synapses: Memory
  • 49 New Galaxies Discovered in Under Three Hours

Trending Topics

Strange & offbeat.

NIMH Logo

Transforming the understanding and treatment of mental illnesses.

Información en español

Celebrating 75 Years! Learn More >>

  • About the Director
  • Advisory Boards and Groups
  • Strategic Plan
  • Offices and Divisions
  • Careers at NIMH
  • Staff Directories
  • Getting to NIMH

Photo of Joshua A. Gordon, M.D., Ph.D.

Decoding the Mind: Basic Science Revolutionizes Treatment of Mental Illnesses

By Linda Brady, Margaret Grabb, Susan Koester, Yael Mandelblat-Cerf, David Panchision, Jonathan Pevsner, Ashlee Van’t-Veer, and Aleksandra Vicentic on behalf of the NIMH Division of Neuroscience and Basic Behavioral Science

March 21, 2024 • 75th Anniversary

Follow the NIMH Director on

For 75 years, NIMH has transformed the understanding and treatment of mental illnesses through basic and clinical research—bringing hope to millions of people. This Director’s Message, guest written by NIMH’s Division of Neuroscience and Basic Behavioral Science , is part of an anniversary series celebrating this momentous milestone.

The Division of Neuroscience and Basic Behavioral Science (DNBBS) at the National Institute of Mental Health (NIMH) supports research on basic neuroscience, genetics, and basic behavioral science. These are foundational pillars in the quest to decode the human mind and unravel the complexities of mental illnesses.

At NIMH, we are committed to supporting and conducting genomics research as a priority research area . As the institute celebrates its 75th Anniversary , we are spotlighting DNBBS-supported efforts connecting genes to cells to circuits to behavior that have led to a wealth of discoveries and knowledge that can improve the diagnosis, treatment, and prevention of mental illnesses.

Making gene discoveries

Illustration of a human head showing a brain and DNA.

Medical conditions often run in families. For instance, if someone in your immediate family has high blood pressure, you are more likely to have it too. It is the same with mental disorders—often they run in families. NIMH is supporting research into human genetics to better understand why this occurs. This research has already led to the discovery of hundreds of gene variants that make us more or less likely to develop a mental disorder.

There are two types of genetic variation: common and rare. Common variation refers to DNA changes often seen in the general population, whereas rare variation is DNA changes found in only a small proportion of the population. Individually, most common gene variants have only a minor impact on the risk for a mental disorder. Instead, most disorders result from many common gene variants that, together, contribute to the risk for and severity of that disorder.

NIMH is committed to uncovering the role of genes in mental disorders with the aim of improving the lives of people who experience them. One of the many ways NIMH contributes to the discovery of common gene variants is by supporting the Psychiatric Genomics Consortium (PGC)   . The consortium of almost 1,000 scientists across the globe, including ones in the NIMH Intramural Research Program and others conducting NIMH-supported research, is one of the largest and most innovative biological investigations in psychiatry.

Global collaborations such as the PGC are critical to amassing the immense sample sizes needed to identify common gene variants. Data from the consortium’s almost one million participants have already led to transformative insights about genetic contributors to mental illnesses and the genetic relationships of these illnesses to each other. To date, studies conducted as part of the consortium have uncovered common variation in over a dozen mental illnesses.

In contrast to common gene variants, rare gene variants are very uncommon in the general population. When they do occur, they often have a major impact on the occurrence of an illness, particularly when they disrupt gene function or regulation. Rare variants involving mutations in a single gene have been linked to several mental disorders, often through NIMH-supported research. For instance, a recent NIMH-funded study found that rare variation in 10 genes substantially increased the risk for schizophrenia. However, it is important to note that genetics is not destiny; even rare variants only raise the risk for mental disorders, but many other factors, including your environment and experiences, play important roles as well.

Because of the strong interest among researchers and the public in understanding how genes translate to changes in the brain and behavior, NIMH has developed a list of human genes associated with mental illnesses. These genes were identified through rare variation studies and are meant to serve as a resource for the research community. The list currently focuses on rare variants, but NIMH plans to continue expanding it as evidence accumulates for additional gene variants (rare or common).

Moreover, mental illnesses are a significant public health burden worldwide . For this reason, NIMH investments in genomics research extend across the globe. NIMH has established the Ancestral Populations Network (APN) to make genomics studies more diverse and shed light on how genetic variation contributes to mental disorders across populations. APN currently includes seven projects with more than 100 researchers across 25 sites worldwide.

World map showing the location of projects in the Ancestral Populations Network: USA, Mexico, Ecuador, Peru, Chile, Colombia, Brazil, Argentina, Nigeria, South Africa, Uganda, Ethiopia, Kenya, Pakistan, India, Singapore, Taiwan, and South Korea.

Connecting biology to behavior

While hundreds of individual genes have been linked to mental illnesses, the function of most of these genes in the brain remains poorly understood. But high-tech advances and the increased availability of computational tools are enabling researchers to begin unraveling the intricate roles played by genes.

In addition to identifying genetic variation that raises the risk for mental illnesses, NIMH supports research that will help us understand how genes contribute to human behavior. This information is critical to discovering approaches to diagnose, treat, and ultimately prevent or cure mental illnesses.

An NIMH-funded project called the PsychENCODE consortium   focuses on understanding how genes impact brain function. PsychENCODE is furthering knowledge of how gene risk maps onto brain function and dysfunction by cataloging genomic elements in the human brain and studying the actions of different cell types. The PsychENCODE dataset currently includes multidimensional genetic data from the postmortem brains of thousands of people with and without mental disorders.

Findings from the first phase of PsychENCODE were published as a series of 11 papers   examining functional genomics in the developing and adult brains and in mental disorders. A second batch of PsychENCODE papers will be published later this year. These findings help clarify the complex relationships between gene variants and the biological processes they influence.

PsychENCODE and other NIMH-supported projects are committed to sharing biospecimens quickly and openly to help speed research and discovery.

Logo for the NIMH Repository and Genomics Resource showing a brain and a test tube.

Facilitating these efforts is the NIMH Repository and Genomics Resource (NRGR)   , where samples are stored and shared. NRGR includes hundreds of thousands of samples, such as DNA, RNA, and cell lines, from people with and without mental disorders, along with demographic and diagnostic information.

Logo for the Scalable and Systematic Neurobiology of Psychiatric and Neurodevelopmental Disorder Risk Genes (SSPsyGene) showing a brain made of puzzle pieces.

Another NIMH initiative to connect risk genes to brain function is Scalable and Systematic Neurobiology of Psychiatric and Neurodevelopmental Disorder Risk Genes (SSPsyGene) . This initiative uses cutting-edge techniques to characterize the biological functions of 250 mental health risk genes—within the cells where they are expressed—to better understand how those genes contribute to mental illnesses. By systematically characterizing the biological functions of risk genes in cells, SSPsyGene will empower researchers to learn about biological pathways that may serve as new targets for treatment.

Genes also affect behavior by providing the blueprint for neurons, the basic units of the nervous system. Neurons communicate with each other via circuits in the brain, which enables us to process, integrate, and convey information. NIMH supports many initiatives to study the foundational role of neural networks and brain circuits in shaping diverse mental health-related behaviors like mood, learning, memory, and motivation.

For instance, studies supported through a basic-to-translational science initiative at NIMH focus on modifying neural activity to improve cognitive, emotional, and social processing  . Similarly, another new funding opportunity encourages studies in humans and animals examining how emotional and social cues are represented across brain circuits  to help address a core deficit in many mental disorders. These studies will increase understanding of the biological mechanisms that support behavior throughout life and offer interventions to improve these functions in healthy and clinical populations.

Developing treatments and therapeutics

The gene discovery and biology-to-behavior programs described here will lay the foundation for delivering novel therapeutics. To be prepared to rapidly implement findings from this research, NIMH supports several initiatives to identify behavioral and biological markers for use in clinical studies and increase our ability to translate research into practice.

Through its therapeutics discovery research programs , NIMH advances early stage discovery and development studies in humans and early efficacy trials for mental disorders. Taking these efforts a step further, NIMH supports the National Cooperative Drug Discovery/Development Groups for the Treatment of Mental Disorders , which encourage public–private partnerships to accelerate the discovery and development of novel therapeutics and new biomarkers for use in human trials. Moreover, NIMH is one of several institutes and centers in the NIH Blueprint Neurotherapeutics Network  , launched to enable neuroscientists in academia and biotechnology companies to develop new drugs for nervous system disorders.

Graphic showing advancing pathway from exploratory and hit-to lead to lead optimization to scale up and manufacturing to IND enabling, to Phase 1 clinical trial and with exit outcomes of external funding and partnerships, other grants, and attrition.

For the treatments of tomorrow, NIMH is building a new research program called Pre-Clinical Research on Gene Therapies for Rare Genetic Neurodevelopmental Disorders  , which encourages early stage research to optimize gene therapies to treat disorders with prominent cognitive, social, or affective impairment. In parallel, NIMH’s Planning Grants for Natural History Studies of Rare Genetic Neurodevelopmental Disorders  encourage the analysis of pre-existing data from people with rare disorders to learn about disease progression and enable future clinical trials with these populations.

NIMH's Division of Neuroscience and Basic Behavioral Science supports many different research projects that help us learn about genes and gene functions, how the brain develops and works, and impacts on behavior. By investing in basic neuroscience, genetics, and behavioral research, we're trying to find new targets for treatment and develop better therapies for mental disorders. We're hopeful these efforts will lead to new ways to treat and prevent mental illnesses in the near future and, ultimately, improve the lives of people in this country and across the globe.

UC San Diego Roboticists Shine at Human Robot Interaction 2024 Conference

Published Date

  • Artificial Intelligence

Share This:

Article content.

University of California, San Diego robotics research– from supporting patient home care and stroke rehabilitation to facilitating mission critical teamwork among first responders– was on display during the ACM/IEEE International Conference on Human-Robot Interaction (HRI). 

Researchers from UC San Diego’s Healthcare Robotics Lab are at the epicenter of human robot interaction and its applications in the medical field. Led by the lab’s director Laurel Riek, a professor in the Department of Computer Science and Engineering in the Jacobs School of Engineering with a joint appointment in the Department of Emergency Medicine, the group’s groundbreaking research shined at the 19 th Annual HRI conference held in Boulder, Colorado.

An impressive nine papers from the Healthcare Robotics Lab were presented  at the conference, covering the technologies, clinical practicalities, and ethical considerations of implementing robotic systems into complex, socio-technical medical settings.

Riek, who has worked at the intersection of Artificial Intelligence and Robotics for decades, spoke at four HRI conference workshops and was keynote speaker for three of them: Scarecrows in Oz: Large Language Models in HRI; Disability Ethics, Accessibility, & Assistive Applications in HRI; and HRI for Aging in Place.

UC San Diego papers at Human-Robot Interaction

" CARMEN: A Cognitively Assistive Robot for Personalized Neurorehabilitation at Home "  Bouzida, A., Kubota, A., Cruz-Sandoval, D., Twamley, E., and Riek, L.D. (nominated for best paper)

For individuals living with dementia or mild cognitive impairment, simple day-to-day tasks-- such as those related to memory, attention, organization, problem-solving and planning-- can be daunting. The UC San DIego team built CARMEN, or Cognitively Assistive Robot for Motivation and Neurorehabilitation, to one day improve access to care and increase patient independence with the help of custom AI algorithms.

{/exp:typographee}

One of CARMEN’s distinguishing features is its flexibility, rapidly integrating stakeholder input to align with clinical practice.

This work was led by CSE PhD student Anya Bouzida, alumna  Alyssa Kubota (PhD ’23), and postdoc Dago Cruz-Sandoval, in collaboration with Elizabeth Twamley in the UC San Diego Department of Psychiatry. 

Riek was senior author for eight additional papers presented at the 2024 HRI conference.

Work led by alumnus Benjamin Bestmann (BS '23) presented GARRY, a neurorehabilitation robot that could impact the lives of 12.2 million new stroke patients each year. CSE PhD student Pratysha Ghosh led research on how telemedical robots could be used to support people experiencing Long Covid.

PhD students Rabeya Jamshad and Sachiko Matsumoto, master’s student Arthi Haripriyan, and postdoc Preeti Ramaraj led work on building robots that integrate into action teams, such as first responders and emergency medical personnel.  Finally, PhD students Sandhya Jayaraman and Pratyusha Ghosh led research exploring the privacy and ethical concerns of deploying robots in healthcare, which can have global implications.

  • Bestmann, B., Chow, A., Kubota, A., and Riek, L.D. (2024). " GARRY: The Gait Rehabilitation Robotic System .”
  • Ghosh, P., Haripriyan, A., Chow, A., Redfield, S., and Riek, L.D. (2024). " Envisioning Mobile Telemanipulator Robots for Long Covid .” 
  • Matsumoto, S. and Riek, L.D. " Telepresence Robots for Dynamic, Safety-Critical Environments ". 
  • Jamshad, R., Haripriyan, A., Sonti, A., Simkins, S., and Riek, L.D. (2024). “ Human-Robot Action Teams: How Robots Can Be Proactive Teammates .”
  • Ramaraj, P., Hairpriyan, A., Jamshad, R., and Riek, L.D. (2024). " Analysis of Social Signals in Human-Robot Action Teams .” 
  • Jayaraman, S., Philips, E., Church, D., and Riek, L.D. (2024). " Social Robots in Healthcare: Characterizing Privacy Considerations .”
  • Ghosh, P., Leido, B., and Riek, L.D. (2024). " The Problem of Ableist Paternalism in Assistive Robotics .” 
  • Jayaraman, S., Cruz-Sandoval, D., Kubota, A., and Riek, L.D. (2024).  “ What a professional care provider wants, what a disabled person needs: Exploring stakeholder design tensions in assistive robotics .” 

Other UC San Diego faculty with papers at HRI 2024 include Amy Eguchi, School of Education, Hortense Gerardo, the Jacobs School of Engineering, and Robert Twomey, Clarke Imagination Center.

  • Eguchi, A., Gerardo, H., Twomey, R. (2024). "Beyond the Black Box: Human Robot Interaction through Human Robot Performances.”

CSE robotics alumni had a strong presence as well, including a second  best paper nomination for a paper by Angelique Taylor (PhD ’21), an assistant professor at Cornell University, and postdoctoral alumna Hee Rin Lee, now an assistant professor at Michigan State University. 

  • Taylor, A., Tanjim, T., Cao, H., Lee, H.R. (2024). "Towards Collaborative Crash Cart Robots that Support Clinical Teamwork." (nominated for best paper) 

CSE alumnus Tariq Iqbal (PhD ’17), currently an assistant professor at the University of Virginia, also had a paper accepted.

  • Yasar, M., Islam, M., Iqbal, T. (2024). "PoseTron: Enabling Close-Proximity Human-Robot Collaboration Through Multi-human Motion Prediction.”

You May Also Like

New genetic analysis tool tracks risks tied to crispr edits, san diego supercomputer center interns create app for uc san diego’s stuart collection, say hello to biodegradable microplastics, stay in the know.

Keep up with all the latest from UC San Diego. Subscribe to the newsletter today.

You have been successfully subscribed to the UC San Diego Today Newsletter.

Campus & Community

Arts & culture, visual storytelling.

  • Media Resources & Contacts

Signup to get the latest UC San Diego newsletters delivered to your inbox.

Award-winning publication highlighting the distinction, prestige and global impact of UC San Diego.

Popular Searches: Covid-19   Ukraine   Campus & Community   Arts & Culture   Voices

  • Search for: Toggle Search

‘You Transformed the World,’ NVIDIA CEO Tells Researchers Behind Landmark AI Paper

Of GTC ’s 900+ sessions, the most wildly popular was a conversation hosted by NVIDIA founder and CEO Jensen Huang with seven of the authors of the legendary research paper that introduced the aptly named transformer — a neural network architecture that went on to change the deep learning landscape and enable today’s era of generative AI.

“Everything that we’re enjoying today can be traced back to that moment,” Huang said to a packed room with hundreds of attendees, who heard him speak with the authors of “ Attention Is All You Need .”

Sharing the stage for the first time, the research luminaries reflected on the factors that led to their original paper, which has been cited more than 100,000 times since it was first published and presented at the NeurIPS AI conference. They also discussed their latest projects and offered insights into future directions for the field of generative AI.

While they started as Google researchers, the collaborators are now spread across the industry, most as founders of their own AI companies.

“We have a whole industry that is grateful for the work that you guys did,” Huang said.

research papers for genetics

Origins of the Transformer Model

The research team initially sought to overcome the limitations of recurrent neural networks , or RNNs, which were then the state of the art for processing language data.

Noam Shazeer, cofounder and CEO of Character.AI, compared RNNs to the steam engine and transformers to the improved efficiency of internal combustion.

“We could have done the industrial revolution on the steam engine, but it would just have been a pain,” he said. “Things went way, way better with internal combustion.”

“Now we’re just waiting for the fusion,” quipped Illia Polosukhin, cofounder of blockchain company NEAR Protocol.

The paper’s title came from a realization that attention mechanisms — an element of neural networks that enable them to determine the relationship between different parts of input data — were the most critical component of their model’s performance.

“We had very recently started throwing bits of the model away, just to see how much worse it would get. And to our surprise it started getting better,” said Llion Jones, cofounder and chief technology officer at Sakana AI.

Having a name as general as “transformers” spoke to the team’s ambitions to build AI models that could process and transform every data type — including text, images, audio, tensors and biological data.

“That North Star, it was there on day zero, and so it’s been really exciting and gratifying to watch that come to fruition,” said Aidan Gomez, cofounder and CEO of Cohere. “We’re actually seeing it happen now.”

research papers for genetics

Envisioning the Road Ahead 

Adaptive computation, where a model adjusts how much computing power is used based on the complexity of a given problem, is a key factor the researchers see improving in future AI models.

“It’s really about spending the right amount of effort and ultimately energy on a given problem,” said Jakob Uszkoreit, cofounder and CEO of biological software company Inceptive. “You don’t want to spend too much on a problem that’s easy or too little on a problem that’s hard.”

A math problem like two plus two, for example, shouldn’t be run through a trillion-parameter transformer model — it should run on a basic calculator, the group agreed.

They’re also looking forward to the next generation of AI models.

“I think the world needs something better than the transformer,” said Gomez. “I think all of us here hope it gets succeeded by something that will carry us to a new plateau of performance.”

“You don’t want to miss these next 10 years,” Huang said. “Unbelievable new capabilities will be invented.”

The conversation concluded with Huang presenting each researcher with a framed cover plate of the NVIDIA DGX-1 AI supercomputer, signed with the message, “You transformed the world.”

research papers for genetics

There’s still time to catch the session replay by registering for a virtual GTC pass — it’s free.

To discover the latest in generative AI, watch Huang’s GTC keynote address:

NVIDIA websites use cookies to deliver and improve the website experience. See our cookie policy for further details on how we use cookies and how to change your cookie settings.

Share on Mastodon

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Genes (Basel)

Logo of genes

Breast Cancer Genetics: Diagnostics and Treatment

Carmen criscitiello.

1 Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy

2 Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy

Chiara Corti

Breast cancer (BC) genetics has become a fundamental aspect of BC management.

It influences screening, follow-up, prophylactic and therapeutic recommendations in women harboring a germinal BC susceptibility gene. In addition, it helps to identify patient subgroups with either a different prognosis or different response to treatment.

This Special Issue consists of one case report, two original research articles and five reviews, covering both diagnostic aspects and therapeutic implications of genetics in BC.

Pathogenic variants in the BC susceptibility genes represent the strongest hereditary risk factor for disease development, particularly in the context of early onset breast cancer (EOBC). Indeed, around 10–20% of EOBC cases are hereditary [ 1 ]. Consequently, individuals with a personal or family history of breast, ovarian, prostate or pancreatic cancer may benefit from hereditary risk evaluation to determine their own risk and family members’ risk for these and associated cancers. In this regard, Szczerba and colleagues examined 75 tumor samples from a cohort of Polish BC patients that had negative results for targeted breast cancer susceptibility genes 1 ( BRCA1 ) mutations (c.5266dupC, c.181T > G, c.4035delA, c.68_69delAG, c.3700_3704delGTAAA). All coding regions of the BRCA1/2 genes were sequenced with Next Generation Sequencing (NGS), with the detection of nine pathogenic variants and six variants of unknown significance (VUS). The authors also focused on methodological aspects of NGS, highlighting differences in variant calling files (VCF) obtained from the same FASTQ file, according to the variant calling algorithm used. The authors conclude that this observation could potentially affect the identification and interpretation of variants [ 2 ].

Moreover, recent studies have also shown germline BRCA1/2 status to be clinically relevant in the selection of therapy for patients already diagnosed with BC. Indeed, BRCA status predicts responsiveness to platinum-based chemotherapy as well as to inhibitors of poly(ADP-ribose) polymerase (PARP), highlighting the ability of these interventions to inhibit DNA repair pathways. From a surgical standpoint, surgical risk reduction remains a powerful tool in the therapeutic armamentarium for many women with genetic predisposing variants, as comprehensively highlighted by Berger and Golshan [ 3 ]. However, initial BC and contralateral BC risks should be clearly identified (i.e., highly penetrant genes compared to moderately penetrant genes), in order to fine tune risk reduction strategies and ideal timing, also in accordance with patient’s personal preferences [ 3 ]. While the survival benefit related to prophylactic bilateral mastectomy has been established, a growing body of evidence supports the oncological safety of nipple-sparing mastectomy as a risk-reducing procedure in BRCA -mutated patients, with low rates of new BCs, low rates of postoperative complications and high levels of satisfaction and postoperative quality of life, as reported by Rocco et al. [ 4 ]. However, larger multi-institutional studies with longer follow-up are needed to establish this procedure as the best surgical option in this setting.

Besides BRCA1/2 , pathogenic variants in other high- to moderate-risk genes such as tumor protein p53 ( TP53 ), partner and localizer of BRCA2 ( PALB2 ), phosphatase and tensin homolog ( PTEN ), checkpoint kinase 2 ( CHEK2 ) and ataxia-telangiectasia mutated ( ATM ) account for a smaller percentage of BC, and, in some cases, ovarian, prostate or pancreatic cancers [ 5 , 6 , 7 , 8 ].

In particular, ATM is involved in cell cycle control, apoptosis, oxidative stress and telomere maintenance, and its role as a risk factor for cancer development is well established [ 9 ]. Recent studies confirmed that some variants of ATM are associated with intermediate- and high-grade disease, a higher rate of lymph node metastatic involvement, HER2 positivity as well as the development of a contralateral breast tumor, as depicted by Stucci and colleagues [ 9 ]. Clinicopathologic characteristics of BC developed by ATM and checkpoint kinase 2 ( CHEK2 ) mutation were also explored by Toss and colleagues, who reviewed the archive of the local Family Cancer Clinic. Since 2018, 1185 multi-gene panel tests were performed. In total, 19 ATM and 17 CHEK2 mutation carriers affected by 46 different BCs were identified. A high rate of bilateral tumors was observed in ATM (26.3%) and CHEK2 mutation carriers (41.2%). While 64.3% of CHEK2 -mutant tumors were luminal A-like, 56.2% of ATM -mutant tumors were luminal B-like/HER2-negative. Moreover, 21.4% of CHEK2 -related invasive tumors showed a lobular histotype. About a quarter of all ATM -related BCs and a third of CHEK2 -related BCs were in situ carcinomas and more than half of ATM - and CHEK2 -related BCs were diagnosed at stage I-II. The biological and clinical characteristics of ATM - and CHEK2 -related tumors may help improve diagnosis, prognostication and targeted therapeutic approaches. Importantly, the authors advise the consideration and discussion of contralateral mastectomy for ATM and CHEK2 mutation carriers at the first diagnosis of BC.

This growing body of data regarding the identification of new ATM aberration as well as association with ancestry, prognosis and treatment outcomes could support clinicians in personalizing both treatments, as well as follow-up, in these patients [ 10 ]. Moreover, since mutations in ATM are involved in DNA repair mechanisms, ATM aberrations may sensitize cancer cells to platinum-derived drugs and PARPi, as BRCA1/2 mutations do. Some evidence suggests that ATM mutations could also be involved in the resistance to cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in luminal BC [ 10 ].

In this context, publicly available archives and case reports highlighting relationships among human gene variants and phenotypes are of particular importance. For example, Parenti et al. identified a new ATM deletion associated with a BRCA -negative patient who developed BC at the age of 34 [ 10 ]. Her mother had unilateral receptor-positive BC at the age of 45 with axillary lymph node involvement. The authors utilized SOPHiA Genetics Hereditary Cancer Solutions gene panel to detect a copy number variant (CNV), that was first validated by Multiplex Ligation-dependent Probe Amplification (MLPA). Afterward, long-range Polymerase Chain Reaction (PCR) and Sanger sequencing were used to characterize the breakpoint at DNA level (c.2838+2162_4110-292del) in proband and to also study segregation in the patient’s mother and sister. Further characterization at the RNA level on the proband’s mother and sister identified the presence of both the wild-type and the mutant allele in the mother’s sample. This abnormal ATM protein lacks the domain required for c-Abl protein interaction and mediation of cell cycle arrest in G1 phase. In addition, at least three other important domains are deleted from the ATM protein, such as the FAT (FRAP-ATM-TRRAP), PIKK (phosphatidylinositol 3-kinase-related kinase domain) and FATC (FAT C-terminal domain) domains, mediating most ATM functions.

Siddig et al. focused more broadly on the genetic landscape of EOBC, since 10–20% of these cancers are related to germline BC susceptibility genes. The authors provide an overview of somatic mutations, chromosome CNVs, single-nucleotide polymorphisms (SNPs), differential gene expression, microRNAs and gene methylation profile as well as of altered pathways resulting from those aberrations. Interestingly, the E-Cadherin/β-Catenin complex and the overall determinants of epithelial barrier integrity have been implicated in EOBC, with cell–cell adhesion genes such as CDH1 , GATA3 , CTNNB1 , MUC17 and FLG involved [ 1 , 11 ]. Eight stromal genes are differentially expressed in breast tumors from very young patients (≤35 years) compared to tumors from older age patients (≥50 years), with UQCRQ , ALDH1A3 , EGLN1 and IGF1 being overexpressed and FUT9 , IDI2 , PDHX and CCL18 being underexpressed. The TP53 gene typically shows a high mutational load in EOBC and plays an important pathogenic role by affecting cell cycle arrest mechanisms and the transcription of other genes, such as GAS7b , which regulates the cell structure and cell migration [ 12 ]. EOBC aggressive characteristics also appear to be linked to DNA methylations events [ 13 ]. EOBC displays several CNVs implicated in tumorigenesis (6q27, 6p32 and 7p21.1), advance-stage tumor progression (22q12.3 and 22q13.31), disease progression (19q13.32) and prognosis (CNV in BIRC5 gene). However, further studies that correlate the CNV profile with the gene and protein expression profile are needed. Finally, different SNPs may be linked to EOBC tumorigenesis, progression, resistance to chemotherapy and poor prognosis. Additionally, it is possible to discriminate BC arising in young women from that in older women using a microRNA profile [ 1 ].

In terms of future perspectives, even though several disease-causing mutations have been identified, therapy is often aimed at interfering with an aberrantly activated pathway, rather than rectifying the mutation in the DNA sequence. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 is a groundbreaking tool that is being utilized for the identification and validation of genomic targets bearing tumorigenic potential. CRISPR/Cas9 supersedes its gene editing predecessors through its unparalleled simplicity, efficiency and affordability. Ahmed and colleagues provide an overview of the CRISPR/Cas9 mechanism and discuss genes that were edited using this system for the treatment of BC. In addition, the authors shed light on the delivery methods, both viral and non-viral, that may be used to deliver the system, as well as on the main challenges associated with each method. However, despite great expectations, remarkable limitations related to ethics, off-target effects, mutagenesis and delivery necessitate further studies. For the conventional use of this system in the near future, both precise knowledge of pathogenic variants as well as the optimization of the system itself are essential.

In conclusion, the papers in this Special Issue cover various aspects of genetics in BC. Overall, they provide a summary of hereditary BC syndromes, personalized BC risk assessments, as well as historical and novel risk reduction approaches. They also offer a comprehensive overview regarding major advances in understanding the most frequent genetic aberrations, with potential implications for present and future treatment approaches.

Conflicts of Interest

The authors declare no conflict of interest.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Population genetics articles from across Nature Portfolio

Population genetics is the study of the genetic composition of populations, including distributions and changes in genotype and phenotype frequency in response to the processes of natural selection, genetic drift, mutation and gene flow.

Related Subjects

  • Genetic variation

Latest Research and Reviews

research papers for genetics

Loss-of-function mutations are main drivers of adaptations during short-term evolution

  • Joanna Klim
  • Urszula Zielenkiewicz
  • Szymon Kaczanowski

research papers for genetics

An analysis of the accuracy of retrospective birth location recall using sibling data

Many surveys ask participants to retrospectively record their location of birth. Here, the authors find misreporting in retrospective birth location data in UK Biobank using data from siblings, which can lead to bias in estimates of the impact of location-based exposures.

  • Stephanie von Hinke
  • Nicolai Vitt

research papers for genetics

The direction, timing and demography of Popillia japonica (Coleoptera) invasion reconstructed using complete mitochondrial genomes

  • Francesco Nardi
  • Sara Boschi
  • Francesco Frati

research papers for genetics

The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal

The timing and chronology of the movement of Homo sapiens after migration out of Africa remains unclear. Here, the authors combine a genetic approach with a palaeoecological model to estimate that the Persian Plateau could have been a hub for migration out of Africa, suggesting the environment may have been suitable for population maintenance.

  • Leonardo Vallini
  • Carlo Zampieri
  • Luca Pagani

research papers for genetics

BridGE: a pathway-based analysis tool for detecting genetic interactions from GWAS

Genetic interactions have been found to influence phenotypes in a variety of systems, yet their specific contribution to complex diseases remains unclear. This protocol describes Bridging Gene sets with Epistasis (BridGE), a computational approach for discovering interactions between biological pathways from genome-wide association studies data.

  • Mehrad Hajiaghabozorgi
  • Mathew Fischbach
  • Chad L. Myers

research papers for genetics

Single-cell multi-ome regression models identify functional and disease-associated enhancers and enable chromatin potential analysis

Single-cell ATAC + RNA linking (SCARlink) predicts gene expression by jointly modeling local tiled chromatin accessibility using regularized Poisson regression on multi-ome data. SCARlink predictions can be used to identify cell-type-specific enhancers and perform chromatin potential analysis.

  • Sneha Mitra
  • Rohan Malik
  • Christina S. Leslie

Advertisement

News and Comment

research papers for genetics

Global genomic diversity for All of Us

A publication in Nature reports the data release of around 245,000 clinical-grade whole-genome sequences as part of the NIH’s All of Us Research Programme. Several companion papers highlight the value of better capturing global genomic diversity.

The evolution of modifier genes

In this Journal Club, Yoav Ram recalls how he reconciled results from his own research with the reduction principle through the help of a paper published in PNAS by Altenberg et al.

Guidance on use of race, ethnicity, and geographic origin as proxies for genetic ancestry groups in biomedical publications

  • W. Gregory Feero
  • Robert D. Steiner
  • Kirsten Bibbins-Domingo

Sharpen SV detection

research papers for genetics

Detection of chromosomal abnormalities and monogenic variants in fetal cfDNA for prenatal diagnosis

In a prospective study involving 1,090 high-risk pregnancies, a comprehensive screening test of fetal cell-free DNA successfully detected pathogenic aneuploidies, microdeletions and monogenic variants linked to fetal anomalies. The inclusion of monogenic conditions alongside chromosomal abnormalities in this test resulted in a 60.7% increase in the detection rate for suspected fetal structural abnormalities.

research papers for genetics

Ancient migration and the modern genome

Four papers in Nature describe how ancient European migration patterns have shaped the modern human genome.

  • Michael Attwaters

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research papers for genetics

IMAGES

  1. FREE 42+ Research Paper Examples in PDF

    research papers for genetics

  2. (PDF) The rise of developmental genetics . a historical account of the

    research papers for genetics

  3. (PDF) Some pioneers of European human genetics

    research papers for genetics

  4. Genetics research papers

    research papers for genetics

  5. (PDF) GENETICS AND GENOMICS

    research papers for genetics

  6. FREE 38+ Research Papers in PDF

    research papers for genetics

VIDEO

  1. 6th sem Biochemistry molecular endocrinology, recombinant DNA technology, classical genetics

  2. Research Methods Coursework 1: Reading Research Papers and Extracting the Essentials(zheng zhang)

  3. The Basics of DNA and Genetics

  4. Types of Research Papers

  5. International Research Awards on Genetics and Genomics of Diseases

  6. International Conference on Genetics and Genomics of Disease

COMMENTS

  1. Genetics research

    RSS Feed. Genetics research is the scientific discipline concerned with the study of the role of genes in traits such as the development of disease. It has a key role in identifying potential ...

  2. Genetics

    RSS Feed. Genetics is the branch of science concerned with genes, heredity, and variation in living organisms. It seeks to understand the process of trait inheritance from parents to offspring ...

  3. Human Molecular Genetics and Genomics

    In 1987, the New York Times Magazine characterized the Human Genome Project as the "biggest, costliest, most provocative biomedical research project in history." 2 But in the years between the ...

  4. Genetics articles: The New England Journal of Medicine

    N Engl J Med 2024;390:1022-1028. Cerebral cavernous malformations occur in 0.5% of the population; 85% are sporadic, and 15% are familial or radiation-induced. Several genetic variants, including ...

  5. Nature Genetics

    Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human traits, agricultural genomics and other model organisms.

  6. PLOS Genetics

    Maintenance of proteostasis by Drosophila Rer1 is essential for competitive cell survival and Myc-driven overgrowth. Loss of Rer1 induces proteotoxic stress, leading to cell competition and elimination, while increased Rer1 levels provide cytoprotection and support Myc-driven overgrowth. Image credit: pgen.1011171. 02/28/2024.

  7. Frontiers in Genetics

    The most cited genetics and heredity journal, which advances our understanding of genes from humans to plants and other model organisms. It highlights developments in the function and variability o...

  8. Population genetics: past, present, and future

    We present selected topics of population genetics and molecular phylogeny. As several excellent review articles have been published and generally focus on European and American scientists, here, we emphasize contributions by Japanese researchers. Our review may also be seen as a belated 50-year celebration of Motoo Kimura's early seminal paper on the molecular clock, published in 1968.

  9. Genetics

    The GSA Journals are calling for submissions of papers on biobank-scale genomic data analyses. The closing date for submissions is May 31 2024. Discover more and submit today. ... Plant science has generated many discoveries and advances in genetics and genomics research. These contributions reflect the ingenuity and rigor of the plant science ...

  10. Genetics Research

    Genetics Research is a fully open access journal providing a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations, developmental, evolutionary, and population genetics as well as ethical, legal and social aspects.

  11. Genetics Research

    Genetics Research is a fully open access journal providing a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic ...

  12. The genetic basis of disease

    Cell cycle The process by which a cell divides into two cells. The cycle usually follows the four stages: G 1 (gap or growth 1), S (synthesis of DNA), G 2 (gap or growth 2), finally mitosis (note in meiosis, the cell cycle follows a different pattern, as described below). G 1, S and G 2 together make up 'interphase'.

  13. Frontiers in Genetics

    Pluripotent Stem Cells: Maintenance, Differentiation, and Applications. The most cited genetics and heredity journal, which advances our understanding of genes from humans to plants and other model organisms. It highlights developments in the function and variability o...

  14. Principles of Genetic Engineering

    Genetic engineering is the use of molecular biology technology to modify DNA sequence(s) in genomes, using a variety of approaches. For example, homologous recombination can be used to target specific sequences in mouse embryonic stem (ES) cell genomes or other cultured cells, but it is cumbersome, poorly efficient, and relies on drug positive/negative selection in cell culture for success.

  15. Journal of Human Genetics

    The Journal of Human Genetics is a leading international journal, publishing articles on human genetics, including medical genetics and human genome analysis, ...

  16. A review on genetic algorithm: past, present, and future

    In this paper, the analysis of recent advances in genetic algorithms is discussed. The genetic algorithms of great interest in research community are selected for analysis. This review will help the new and demanding researchers to provide the wider vision of genetic algorithms. The well-known algorithms and their implementation are presented with their pros and cons. The genetic operators and ...

  17. Population genetics: past, present, and future

    In the early 1900s, focusing on the evolution of genetic variants in the population, R. A. Fisher, S. Wright, and J. B. S. Haldane made fundamental theoretical contributions to population genetics (Provine 1971), Fisher in his 1922 paper (Fisher 1922), which was the first to introduce diffusion equations into population genetics, and Haldane in ...

  18. Novel genetic variants associated with Alzheimer's disease

    A new study has identified 17 genetic variants that may influence Alzheimer's disease risk, putting researchers one step closer to uncovering biological pathways to target for future treatment and ...

  19. Why don't humans have tails?

    Humans' closest primate relatives lost their tails about 25 million years ago, but exactly how has remained a mystery. A breakthrough in genetic research may finally offer answers.

  20. Bengal cat coats are less wild than they look, genetic study finds

    Barsh is the senior author of the paper, and senior scientist Christopher Kaelin, PhD, is the lead author. The results shed light not only on the Bengal cat's coat but also help answer broader questions about how appearance is encoded in genetics and how different genes work together to yield colors, patterns and physical features. Wild origins

  21. Beethoven's genes reveal low predisposition for beat synchronization

    Ludwig van Beethoven, one of the most celebrated musicians in human history, has a rather low genetic predisposition for beat synchronization, according to a Current Biology study co-authored by ...

  22. Genomics

    Genomics is the study of the full genetic complement of an organism (the genome). ... sequences as part of the NIH's All of Us Research Programme. Several companion papers highlight the value of ...

  23. Rare Genetic Diseases: Nature's Experiments on Human Development

    Abstract. Rare genetic diseases are the result of a continuous forward genetic screen that nature is conducting on humans. Here, we present epistemological and systems biology arguments highlighting the importance of studying these rare genetic diseases. We contend that the expanding catalog of mutations in ∼4,000 genes, which cause ∼6,500 ...

  24. Decoding the Mind: Basic Science Revolutionizes Treatment of ...

    The Division of Neuroscience and Basic Behavioral Science (DNBBS) at the National Institute of Mental Health (NIMH) supports research on basic neuroscience, genetics, and basic behavioral science. These are foundational pillars in the quest to decode the human mind and unravel the complexities of mental illnesses. At NIMH, we are committed to supporting and conducting genomics research as a ...

  25. UC San Diego Roboticists Shine at Human Robot Interaction 2024 Conference

    The UC San DIego team built CARMEN, or Cognitively Assistive Robot for Motivation and Neurorehabilitation, to one day improve access to care and increase patient independence with the help of custom AI algorithms. UC San Diego robotics researchers diplayed their work at the 2024 Human-Robot Interaction conference that could have broad ...

  26. Global genomic diversity for All of Us

    A publication in Nature reports the data release of around 245,000 clinical-grade whole-genome sequences as part of the NIH's All of Us Research Programme. Several companion papers highlight the ...

  27. Talk About Transformation

    March 21, 2024 by Isha Salian. Of GTC 's 900+ sessions, the most wildly popular was a conversation hosted by NVIDIA founder and CEO Jensen Huang with seven of the authors of the legendary research paper that introduced the aptly named transformer — a neural network architecture that went on to change the deep learning landscape and enable ...

  28. Breast Cancer Genetics: Diagnostics and Treatment

    Breast cancer (BC) genetics has become a fundamental aspect of BC management. It influences screening, follow-up, prophylactic and therapeutic recommendations in women harboring a germinal BC susceptibility gene. In addition, it helps to identify patient subgroups with either a different prognosis or different response to treatment.

  29. Intermittent fasting: New research casts doubt on its effectiveness

    Concerning new findings. Research presented this week immediately drew doubt and critiques from experts by suggesting that eating within an eight-hour window or less was significantly associated ...

  30. Population genetics

    Population genetics is the study of the genetic composition of populations, including distributions and changes in genotype and phenotype frequency in response to the processes of natural ...