SplashLearn

Conditional Statement – Definition, Truth Table, Examples, FAQs

What is a conditional statement, how to write a conditional statement, what is a biconditional statement, solved examples on conditional statements, practice problems on conditional statements, frequently asked questions about conditional statements.

A conditional statement is a statement that is written in the “If p, then q” format. Here, the statement p is called the hypothesis and q is called the conclusion. It is a fundamental concept in logic and mathematics. 

Conditional statement symbol :  p → q

A conditional statement consists of two parts.

  • The “if” clause, which presents a condition or hypothesis.
  • The “then” clause, which indicates the consequence or result that follows if the condition is true. 

Example : If you brush your teeth, then you won’t get cavities.

Hypothesis (Condition): If you brush your teeth

Conclusion (Consequence): then you won’t get cavities 

Conditional statement

Conditional Statement: Definition

A conditional statement is characterized by the presence of “if” as an antecedent and “then” as a consequent. A conditional statement, also known as an “if-then” statement consists of two parts:

  • The “if” clause (hypothesis): This part presents a condition, situation, or assertion. It is the initial condition that is being considered.
  • The “then” clause (conclusion): This part indicates the consequence, result, or action that will occur if the condition presented in the “if” clause is true or satisfied. 

Related Worksheets

Complete the Statements Using Addition Sentence Worksheet

Representation of Conditional Statement

The conditional statement of the form ‘If p, then q” is represented as p → q. 

It is pronounced as “p implies q.”

Different ways to express a conditional statement are:

  • p implies q
  • p is sufficient for q
  • q is necessary for p

Parts of a Conditional Statement

There are two parts of conditional statements, hypothesis and conclusion. The hypothesis or condition will begin with the “if” part, and the conclusion or action will begin with the “then” part. A conditional statement is also called “implication.”

Conditional Statements Examples:

Example 1: If it is Sunday, then you can go to play. 

Hypothesis: If it is Sunday

Conclusion: then you can go to play. 

Example 2: If you eat all vegetables, then you can have the dessert.

Condition: If you eat all vegetables

Conclusion: then you can have the dessert 

To form a conditional statement, follow these concise steps:

Step 1 : Identify the condition (antecedent or “if” part) and the consequence (consequent or “then” part) of the statement.

Step 2 : Use the “if… then…” structure to connect the condition and consequence.

Step 3 : Ensure the statement expresses a logical relationship where the condition leads to the consequence.

Example 1 : “If you study (condition), then you will pass the exam (consequence).” 

This conditional statement asserts that studying leads to passing the exam. If you study (condition is true), then you will pass the exam (consequence is also true).

Example 2 : If you arrange the numbers from smallest to largest, then you will have an ascending order.

Hypothesis: If you arrange the numbers from smallest to largest

Conclusion: then you will have an ascending order

Truth Table for Conditional Statement

The truth table for a conditional statement is a table used in logic to explore the relationship between the truth values of two statements. It lists all possible combinations of truth values for “p” and “q” and determines whether the conditional statement is true or false for each combination. 

The truth value of p → q is false only when p is true and q is False. 

If the condition is false, the consequence doesn’t affect the truth of the conditional; it’s always true.

In all the other cases, it is true.

The truth table is helpful in the analysis of possible combinations of truth values for hypothesis or condition and conclusion or action. It is useful to understand the presence of truth or false statements. 

Converse, Inverse, and Contrapositive

The converse, inverse, and contrapositive are three related conditional statements that are derived from an original conditional statement “p → q.” 

Consider a conditional statement: If I run, then I feel great.

  • Converse: 

The converse of “p → q” is “q → p.” It reverses the order of the original statement. While the original statement says “if p, then q,” the converse says “if q, then p.” 

Converse: If I feel great, then I run.

  • Inverse: 

The inverse of “p → q” is “~p → ~q,” where “” denotes negation (opposite). It negates both the antecedent (p) and the consequent (q). So, if the original statement says “if p, then q,” the inverse says “if not p, then not q.”

Inverse : If I don’t run, then I don’t feel great.

  • Contrapositive: 

The contrapositive of “p → q” is “~q → ~p.” It reverses the order and also negates both the statements. So, if the original statement says “if p, then q,” the contrapositive says “if not q, then not p.”

Contrapositive: If I don’t feel great, then I don’t run.

A biconditional statement is a type of compound statement in logic that expresses a bidirectional or two-way relationship between two statements. It asserts that “p” is true if and only if “q” is true, and vice versa. In symbolic notation, a biconditional statement is represented as “p ⟺ q.”

In simpler terms, a biconditional statement means that the truth of “p” and “q” are interdependent. 

If “p” is true, then “q” must also be true, and if “q” is true, then “p” must be true. Conversely, if “p” is false, then “q” must be false, and if “q” is false, then “p” must be false. 

Biconditional statements are often used to express equality, equivalence, or conditions where two statements are mutually dependent for their truth values. 

Examples : 

  • I will stop my bike if and only if the traffic light is red.  
  • I will stay if and only if you play my favorite song.

Facts about Conditional Statements

  • The negation of a conditional statement “p → q” is expressed as “p and not q.” It is denoted as “𝑝 ∧ ∼𝑞.” 
  • The conditional statement is not logically equivalent to its converse and inverse.
  • The conditional statement is logically equivalent to its contrapositive. 
  • Thus, we can write p → q ∼q → ∼p

In this article, we learned about the fundamentals of conditional statements in mathematical logic, including their structure, parts, truth tables, conditional logic examples, and various related concepts. Understanding conditional statements is key to logical reasoning and problem-solving. Now, let’s solve a few examples and practice MCQs for better comprehension.

Example 1: Identify the hypothesis and conclusion. 

If you sing, then I will dance.

Solution : 

Given statement: If you sing, then I will dance.

Here, the antecedent or the hypothesis is “if you sing.”

The conclusion is “then I will dance.”

Example 2: State the converse of the statement: “If the switch is off, then the machine won’t work.” 

Here, p: The switch is off

q: The machine won’t work.

The conditional statement can be denoted as p → q.

Converse of p → q is written by reversing the order of p and q in the original statement.

Converse of  p → q is q → p.

Converse of  p → q: q → p: If the machine won’t work, then the switch is off.

Example 3: What is the truth value of the given conditional statement? 

If 2+2=5 , then pigs can fly.

Solution:  

q: Pigs can fly.

The statement p is false. Now regardless of the truth value of statement q, the overall statement will be true. 

F → F = T

Hence, the truth value of the statement is true. 

Conditional Statement - Definition, Truth Table, Examples, FAQs

Attend this quiz & Test your knowledge.

What is the antecedent in the given conditional statement? If it’s sunny, then I’ll go to the beach.

A conditional statement can be expressed as, what is the converse of “a → b”, when the antecedent is true and the consequent is false, the conditional statement is.

What is the meaning of conditional statements?

Conditional statements, also known as “if-then” statements, express a cause-and-effect or logical relationship between two propositions.

When does the truth value of a conditional statement is F?

A conditional statement is considered false when the antecedent is true and the consequent is false.

What is the contrapositive of a conditional statement?

The contrapositive reverses the order of the statements and also negates both the statements. It is equivalent in truth value to the original statement.

RELATED POSTS

  • Ordering Decimals: Definition, Types, Examples
  • Decimal to Octal: Steps, Methods, Conversion Table
  • Lattice Multiplication – Definition, Method, Examples, Facts, FAQs
  • X Intercept – Definition, Formula, Graph, Examples
  • Lateral Face – Definition With Examples

Banner Image

Math & ELA | PreK To Grade 5

Kids see fun., you see real learning outcomes..

Make study-time fun with 14,000+ games & activities, 450+ lesson plans, and more—free forever.

Parents, Try for Free Teachers, Use for Free

  • + ACCUPLACER Mathematics
  • + ACT Mathematics
  • + AFOQT Mathematics
  • + ALEKS Tests
  • + ASVAB Mathematics
  • + ATI TEAS Math Tests
  • + Common Core Math
  • + DAT Math Tests
  • + FSA Tests
  • + FTCE Math
  • + GED Mathematics
  • + Georgia Milestones Assessment
  • + GRE Quantitative Reasoning
  • + HiSET Math Exam
  • + HSPT Math
  • + ISEE Mathematics
  • + PARCC Tests
  • + Praxis Math
  • + PSAT Math Tests
  • + PSSA Tests
  • + SAT Math Tests
  • + SBAC Tests
  • + SIFT Math
  • + SSAT Math Tests
  • + STAAR Tests
  • + TABE Tests
  • + TASC Math
  • + TSI Mathematics
  • + ACT Math Worksheets
  • + Accuplacer Math Worksheets
  • + AFOQT Math Worksheets
  • + ALEKS Math Worksheets
  • + ASVAB Math Worksheets
  • + ATI TEAS 6 Math Worksheets
  • + FTCE General Math Worksheets
  • + GED Math Worksheets
  • + 3rd Grade Mathematics Worksheets
  • + 4th Grade Mathematics Worksheets
  • + 5th Grade Mathematics Worksheets
  • + 6th Grade Math Worksheets
  • + 7th Grade Mathematics Worksheets
  • + 8th Grade Mathematics Worksheets
  • + 9th Grade Math Worksheets
  • + HiSET Math Worksheets
  • + HSPT Math Worksheets
  • + ISEE Middle-Level Math Worksheets
  • + PERT Math Worksheets
  • + Praxis Math Worksheets
  • + PSAT Math Worksheets
  • + SAT Math Worksheets
  • + SIFT Math Worksheets
  • + SSAT Middle Level Math Worksheets
  • + 7th Grade STAAR Math Worksheets
  • + 8th Grade STAAR Math Worksheets
  • + THEA Math Worksheets
  • + TABE Math Worksheets
  • + TASC Math Worksheets
  • + TSI Math Worksheets
  • + AFOQT Math Course
  • + ALEKS Math Course
  • + ASVAB Math Course
  • + ATI TEAS 6 Math Course
  • + CHSPE Math Course
  • + FTCE General Knowledge Course
  • + GED Math Course
  • + HiSET Math Course
  • + HSPT Math Course
  • + ISEE Upper Level Math Course
  • + SHSAT Math Course
  • + SSAT Upper-Level Math Course
  • + PERT Math Course
  • + Praxis Core Math Course
  • + SIFT Math Course
  • + 8th Grade STAAR Math Course
  • + TABE Math Course
  • + TASC Math Course
  • + TSI Math Course
  • + Number Properties Puzzles
  • + Algebra Puzzles
  • + Geometry Puzzles
  • + Intelligent Math Puzzles
  • + Ratio, Proportion & Percentages Puzzles
  • + Other Math Puzzles

How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide

In math, and even in everyday life, we often say 'if this, then that.' This is the essence of conditional statements. They set up a condition and then describe what happens if that condition is met. For instance, 'If it rains, then the ground gets wet.' These statements are foundational in math, helping us build logical arguments and solve problems. In this guide, we'll dive into the clear-cut world of conditional statements, breaking them down in both simple terms and their mathematical significance.

How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide

Step-by-step Guide: Conditional Statements

Defining Conditional Statements: A conditional statement is a logical statement that has two parts: a hypothesis (the ‘if’ part) and a conclusion (the ‘then’ part). Written symbolically, it takes the form: \( \text{If } p, \text{ then } q \) Where \( p \) is the hypothesis and \( q \) is the conclusion.

Truth Values: A conditional statement is either true or false. The only time a conditional statement is false is when the hypothesis is true, but the conclusion is false.

Converse, Inverse, and Contrapositive: 1. Converse: The converse of a conditional statement switches the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the converse is “If \( q \), then \( p \)”.

2. Inverse: The inverse of a conditional statement negates both the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the inverse is “If not \( p \), then not \( q \)”.

3. Contrapositive: The contrapositive of a conditional statement switches and negates both the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the contrapositive is “If not \( q \), then not \( p \)”.

Example 1: Simple Conditional Statement: “If it is raining, then the ground is wet.”

Solution: Hypothesis \(( p )\): It is raining. Conclusion \(( q )\): The ground is wet.

Example 2: Determining Truth Value Statement: “If a shape has four sides, then it is a rectangle.”

Solution: This statement is false because a shape with four sides could be a square, trapezoid, or other quadrilateral, not necessarily a rectangle.

Example 3: Converse, Inverse, and Contrapositive Statement: “If a number is even, then it is divisible by \(2\).”

Solution: Converse: If a number is divisible by \(2\), then it is even. Inverse: If a number is not even, then it is not divisible by \(2\). Contrapositive: If a number is not divisible by \(2\), then it is not even.

Practice Questions:

  • Write the converse, inverse, and contrapositive for the statement: “If a bird is a penguin, then it cannot fly.”
  • Determine the truth value of the statement: “If a shape has three sides, then it is a triangle.”
  • For the statement “If an animal is a cat, then it is a mammal,” which of the following is its converse? a) If an animal is a mammal, then it is a cat. b) If an animal is not a cat, then it is not a mammal. c) If an animal is not a mammal, then it is not a cat.
  • Converse: If a bird cannot fly, then it is a penguin. Inverse: If a bird is not a penguin, then it can fly. Contrapositive: If a bird can fly, then it is not a penguin.
  • The statement is true. A shape with three sides is defined as a triangle.
  • a) If an animal is a mammal, then it is a cat.

by: Effortless Math Team about 6 months ago (category: Articles )

Effortless Math Team

Related to this article, more math articles.

  • 7th Grade Wisconsin Forward Math Worksheets: FREE & Printable
  • How to Discover the Key to Math Mastery: “TABE Math for Beginners” Solution Manual Unveiled
  • CHSPE Math Practice Test Questions
  • How to Graph the Secant Function?
  • How to Simplify Polynomials? (+FREE Worksheet!)
  • What Kind of Math Learner Is Your Child?
  • Unraveling the Mysteries of Math: How to Solve Word Problems Involving Percent of Change
  • Top 10 Free Websites for SHSAT Math Preparation
  • 10 Most Common 7th Grade MEAP Math Questions
  • Convert Between Improper Fractions and Mixed Numbers

What people say about "How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Algebra I Study Guide A Comprehensive Review and Step-By-Step Guide to Preparing for Algebra I

Oar math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the oar math, grade 8 math study guide 2021 – 2022 a comprehensive review and step-by-step guide to preparing for grade 8 math, shsat math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the shsat math, hspt math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the hspt math, ati teas 6 math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the ati teas 6 math, act math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the act math, accuplacer math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the accuplacer math, pre-algebra study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the pre-algebra, afoqt math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the afoqt math, astb math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the astb math, tsi math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the tsi math, tabe 11 & 12 math study guide 2020 – 2021 for level d a comprehensive review and step-by-step guide to preparing for the tabe math, ftce math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the ftce general knowledge math, ged math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the ged math.

  • ATI TEAS 6 Math
  • ISEE Upper Level Math
  • SSAT Upper-Level Math
  • Praxis Core Math
  • 8th Grade STAAR Math

Limited time only!

Save Over 45 %

It was $89.99 now it is $49.99

Login and use all of our services.

Effortless Math services are waiting for you. login faster!

Register Fast!

Password will be generated automatically and sent to your email.

After registration you can change your password if you want.

  • Math Worksheets
  • Math Courses
  • Math Topics
  • Math Puzzles
  • Math eBooks
  • GED Math Books
  • HiSET Math Books
  • ACT Math Books
  • ISEE Math Books
  • ACCUPLACER Books
  • Premium Membership
  • Youtube Videos
  • Google Play
  • Apple Store

Effortless Math provides unofficial test prep products for a variety of tests and exams. All trademarks are property of their respective trademark owners.

  • Bulk Orders
  • Refund Policy

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

K12 LibreTexts

2.11: If Then Statements

  • Last updated
  • Save as PDF
  • Page ID 2144

Hypothesis followed by a conclusion in a conditional statement.

Conditional Statements

A conditional statement (also called an if-then statement ) is a statement with a hypothesis followed by a conclusion . The hypothesis is the first, or “if,” part of a conditional statement. The conclusion is the second, or “then,” part of a conditional statement. The conclusion is the result of a hypothesis.

f-d_4db5d03aa180674c10187c8961dc571238102082156ee867771ecea3+IMAGE_TINY+IMAGE_TINY.png

If-then statements might not always be written in the “if-then” form. Here are some examples of conditional statements:

  • Statement 1: If you work overtime, then you’ll be paid time-and-a-half.
  • Statement 2: I’ll wash the car if the weather is nice.
  • Statement 3: If 2 divides evenly into \(x\), then \(x\) is an even number.
  • Statement 4: I’ll be a millionaire when I win the lottery.
  • Statement 5: All equiangular triangles are equilateral.

Statements 1 and 3 are written in the “if-then” form. The hypothesis of Statement 1 is “you work overtime.” The conclusion is “you’ll be paid time-and-a-half.” Statement 2 has the hypothesis after the conclusion. If the word “if” is in the middle of the statement, then the hypothesis is after it. The statement can be rewritten: If the weather is nice, then I will wash the car. Statement 4 uses the word “when” instead of “if” and is like Statement 2. It can be written: If I win the lottery, then I will be a millionaire. Statement 5 “if” and “then” are not there. It can be rewritten: If a triangle is equiangular, then it is equilateral.

What if you were given a statement like "All squares are rectangles"? How could you determine the hypothesis and conclusion of this statement?

Example \(\PageIndex{1}\)

Determine the hypothesis and conclusion: I'll bring an umbrella if it rains.

Hypothesis: "It rains." Conclusion: "I'll bring an umbrella."

Example \(\PageIndex{2}\)

Determine the hypothesis and conclusion: All right angles are \(90^{\circ}\).

Hypothesis: "An angle is right." Conclusion: "It is \(90^{\circ}\)."

Example \(\PageIndex{3}\)

Use the statement: I will graduate when I pass Calculus.

Rewrite in if-then form and determine the hypothesis and conclusion.

This statement can be rewritten as If I pass Calculus, then I will graduate. The hypothesis is “I pass Calculus,” and the conclusion is “I will graduate.”

Example \(\PageIndex{4}\)

Use the statement: All prime numbers are odd.

Rewrite in if-then form, determine the hypothesis and conclusion, and determine whether this is a true statement.

This statement can be rewritten as If a number is prime, then it is odd. The hypothesis is "a number is prime" and the conclusion is "it is odd". This is not a true statement (remember that not all conditional statements will be true!) since 2 is a prime number but it is not odd.

Example \(\PageIndex{5}\)

Determine the hypothesis and conclusion: Sarah will go to the store if Riley does the laundry.

The statement can be rewritten as "If Riley does the laundry then Sarah will go to the store." The hypothesis is "Riley does the laundry" and the conclusion is "Sarah will go to the store."

Determine the hypothesis and the conclusion for each statement.

  • If 5 divides evenly into \(x\), then \(x\) ends in 0 or 5.
  • If a triangle has three congruent sides, it is an equilateral triangle.
  • Three points are coplanar if they all lie in the same plane.
  • If \(x=3\), then \(x^2=9\).
  • If you take yoga, then you are relaxed.
  • All baseball players wear hats.
  • I'll learn how to drive when I am 16 years old.
  • If you do your homework, then you can watch TV.
  • Alternate interior angles are congruent if lines are parallel.
  • All kids like ice cream.

Additional Resources

Video: If-Then Statements Principles - Basic

Activities: If-Then Statements Discussion Questions

Study Aids: Conditional Statements Study Guide

Practice: If Then Statements

Real World: If Then Statements

A free service from Mattecentrum

If-then statement

  • Logical correct I
  • Logical correct II

When we previously discussed inductive reasoning we based our reasoning on examples and on data from earlier events. If we instead use facts, rules and definitions then it's called deductive reasoning.

We will explain this by using an example.

If you get good grades then you will get into a good college.

The part after the "if": you get good grades - is called a hypotheses and the part after the "then" - you will get into a good college - is called a conclusion.

Hypotheses followed by a conclusion is called an If-then statement or a conditional statement.

This is noted as

$$p \to q$$

This is read - if p then q.

A conditional statement is false if hypothesis is true and the conclusion is false. The example above would be false if it said "if you get good grades then you will not get into a good college".

If we re-arrange a conditional statement or change parts of it then we have what is called a related conditional.

Our conditional statement is: if a population consists of 50% men then 50% of the population must be women.

If we exchange the position of the hypothesis and the conclusion we get a converse statemen t: if a population consists of 50% women then 50% of the population must be men.

$$q\rightarrow p$$

If both statements are true or if both statements are false then the converse is true. A conditional and its converse do not mean the same thing

If we negate both the hypothesis and the conclusion we get a inverse statemen t: if a population do not consist of 50% men then the population do not consist of 50% women.

$$\sim p\rightarrow \: \sim q$$

The inverse is not true juest because the conditional is true. The inverse always has the same truth value as the converse.

We could also negate a converse statement, this is called a contrapositive statemen t:  if a population do not consist of 50% women then the population do not consist of 50% men.

$$\sim q\rightarrow \: \sim p$$

The contrapositive does always have the same truth value as the conditional. If the conditional is true then the contrapositive is true.

A pattern of reaoning is a true assumption if it always lead to a true conclusion. The most common patterns of reasoning are detachment and syllogism.

If we turn of the water in the shower, then the water will stop pouring.

If we call the first part p and the second part q then we know that p results in q. This means that if p is true then q will also be true. This is called the law of detachment and is noted:

$$\left [ (p \to q)\wedge p \right ] \to q$$

The law of syllogism tells us that if p → q and q → r then p → r is also true.

This is noted:

$$\left [ (p \to q)\wedge (q \to r ) \right ] \to (p \to r)$$

If the following statements are true:

If we turn of the water (p), then the water will stop pouring (q). If the water stops pouring (q) then we don't get wet any more (r).

Then the law of syllogism tells us that if we turn of the water (p) then we don't get wet (r) must be true.

Video lesson

Write a converse, inverse and contrapositive to the conditional

"If you eat a whole pint of ice cream, then you won't be hungry"

  • Angles, parallel lines and transversals
  • Congruent triangles
  • More about triangles
  • Inequalities
  • Mean and geometry
  • The converse of the Pythagorean theorem and special triangles
  • Properties of parallelograms
  • Common types of transformation
  • Transformation using matrices
  • Basic information about circles
  • Inscribed angles and polygons
  • Advanced information about circles
  • Parallelogram, triangles etc
  • The surface area and the volume of pyramids, prisms, cylinders and cones
  • SAT Overview
  • ACT Overview

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

3.3: Truth Tables- Conditional, Biconditional

  • Last updated
  • Save as PDF
  • Page ID 52962

  • David Lippman
  • Pierce College via The OpenTextBookStore

Conditional

A conditional is a logical compound statement in which a statement \(p\), called the hypothesis, implies a statement \(q\), called the conclusion.

A conditional is written as \(p \rightarrow q\) and is translated as "if \(p\), then \(q\)".

The English statement “If it is raining, then there are clouds is the sky” is a conditional statement. It makes sense because if the hypothesis “it is raining” is true, then the conclusion “there are clouds in the sky” must also be true.

Notice that the statement tells us nothing of what to expect if it is not raining; there might be clouds in the sky, or there might not. If the hypothesis is false, then the conclusion becomes irrelevant.

Suppose you order a team jersey online on Tuesday and want to receive it by Friday so you can wear it to Saturday’s game. The website says that if you pay for expedited shipping, you will receive the jersey by Friday. In what situation is the website telling a lie?

There are four possible outcomes:

  • You pay for expedited shipping and receive the jersey by Friday
  • You pay for expedited shipping and don’t receive the jersey by Friday
  • You don’t pay for expedited shipping and receive the jersey by Friday
  • You don’t pay for expedited shipping and don’t receive the jersey by Friday

Only one of these outcomes proves that the website was lying: the second outcome in which you pay for expedited shipping but don’t receive the jersey by Friday. The first outcome is exactly what was promised, so there’s no problem with that. The third outcome is not a lie because the website never said what would happen if you didn’t pay for expedited shipping; maybe the jersey would arrive by Friday whether you paid for expedited shipping or not. The fourth outcome is not a lie because, again, the website didn’t make any promises about when the jersey would arrive if you didn’t pay for expedited shipping.

It may seem strange that the third outcome in the previous example, in which the first part is false but the second part is true, is not a lie. Remember, though, that if the hypothesis is false, we cannot make any judgment about the conclusion. The website never said that paying for expedited shipping was the only way to receive the jersey by Friday.

A friend tells you “If you upload that picture to Facebook, you’ll lose your job.” Under what conditions can you say that your friend was wrong?

  • You upload the picture and lose your job
  • You upload the picture and don’t lose your job
  • You don’t upload the picture and lose your job
  • You don’t upload the picture and don’t lose your job

There is only one possible case in which you can say your friend was wrong: the second outcome in which you upload the picture but still keep your job. In the last two cases, your friend didn’t say anything about what would happen if you didn’t upload the picture, so you can’t say that their statement was wrong. Even if you didn’t upload the picture and lost your job anyway, your friend never said that you were guaranteed to keep your job if you didn’t upload the picture; you might lose your job for missing a shift or punching your boss instead.

Truth Table for the Conditional

\(\begin{array}{|c|c|c|} \hline p & q & p \rightarrow q \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Again, if the hypothesis \(p\) is false, we cannot prove that the statement is a lie, so the result of the third and fourth rows is true.

Construct a truth table for the statement \((m \wedge \sim p) \rightarrow r\)

We start by constructing a truth table with 8 rows to cover all possible scenarios. Next, we can focus on the hypothesis, \(m \wedge \sim p\).

\(\begin{array}{|c|c|c|} \hline m & p & r \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline m & p & r & \sim p \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|c|} \hline m & p & r & \sim p & m \wedge \sim p \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \end{array}\)

Now we can create a column for the conditional. Because it can be confusing to keep track of all the Ts and \(\mathrm{Fs}\), why don't we copy the column for \(r\) to the right of the column for \(m \wedge \sim p\) ? This makes it a lot easier to read the conditional from left to right.

\(\begin{array}{|c|c|c|c|c|c|c|} \hline m & p & r & \sim p & m \wedge \sim p & r & (m \wedge \sim p) \rightarrow r \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

When \(m\) is true, \(p\) is false, and \(r\) is false- -the fourth row of the table-then the hypothesis \(m \wedge \sim p\) will be true but the conclusion false, resulting in an invalid conditional; every other case gives a valid conditional.

If you want a real-life situation that could be modeled by \((m \wedge \sim p) \rightarrow r\), consider this: let \(m=\) we order meatballs, \(p=\) we order pasta, and \(r=\) Rob is happy. The statement \((m \wedge \sim p) \rightarrow r\) is "if we order meatballs and don't order pasta, then Rob is happy". If \(m\) is true (we order meatballs), \(p\) is false (we don't order pasta), and \(r\) is false (Rob is not happy), then the statement is false, because we satisfied the hypothesis but Rob did not satisfy the conclusion.

For any conditional, there are three related statements, the converse, the inverse, and the contrapositive.

Derived Forms of a Conditional

The original conditional is \(\quad\) "if \(p,\) then \(q^{\prime \prime} \quad p \rightarrow q\)

The converse is \(\quad\) "if \(q,\) then \(p^{\prime \prime} \quad q \rightarrow p\)

The inverse is \(\quad\) "if not \(p,\) then not \(q^{\prime \prime} \quad \sim p \rightarrow \sim q\)

The contrapositive is "if not \(q,\) then not \(p^{\prime \prime} \quad \sim q \rightarrow \sim p\)

Consider again the conditional “If it is raining, then there are clouds in the sky.” It seems reasonable to assume that this is true.

The converse would be “If there are clouds in the sky, then it is raining.” This is not always true.

The inverse would be “If it is not raining, then there are not clouds in the sky.” Likewise, this is not always true.

The contrapositive would be “If there are not clouds in the sky, then it is not raining.” This statement is true, and is equivalent to the original conditional.

Looking at truth tables, we can see that the original conditional and the contrapositive are logically equivalent, and that the converse and inverse are logically equivalent.

clipboard_e4fc512ef5eaeb010f3e7328168fcef19.png

Equivalence

A conditional statement and its contrapositive are logically equivalent.

The converse and inverse of a conditional statement are logically equivalent.

In other words, the original statement and the contrapositive must agree with each other; they must both be true, or they must both be false. Similarly, the converse and the inverse must agree with each other; they must both be true, or they must both be false.

We typically represent the conditional using the words, "if ..., then ...," but there are other ways this logical connective can be represented in English. Consider the conditional from Example 5: "If it is raining, then there are clouds in the sky." We could equivalently write, "It is raining only if there are clouds in the sky." You can probably imagine how these two statements are saying the same thing - whenever it's raining outside, it is a safe conclusion there are clouds in the sky as well. Some other wordings that communicate the same information use either "sufficient" or "necessary." For example, "Raining is a sufficient condition for it to be cloudy," and "Being cloudy is a necessary condition for it to be raining." Here is a table summarizing the different wordings.

Different Wordings of the Conditional

The following statements are equivalent:

  • If \(p\), then \(q\).
  • \(q\) only if \(p\).
  • \(p\) is sufficient for \(q\).
  • \(q\) is necessary for \(p\).

In everyday life, we often have a stronger meaning in mind when we use a conditional statement. Consider “If you submit your hours today, then you will be paid next Friday.” What the payroll rep really means is “If you submit your hours today, then you will be paid next Friday, and if you don’t submit your hours today, then you won’t be paid next Friday.” The conditional statement if t , then p also includes the inverse of the statement: if not t , then not p . A more compact way to express this statement is “You will be paid next Friday if and only if you submit your timesheet today.” A statement of this form is called a biconditional .

Biconditional

A biconditional is a logical conditional statement in which the hypothesis and conclusion are interchangeable.

A biconditional is written as \(p \leftrightarrow q\) and is translated as " \(p\) if and only if \(q^{\prime \prime}\).

Because a biconditional statement \(p \leftrightarrow q\) is equivalent to \((p \rightarrow q) \wedge(q \rightarrow p),\) we may think of it as a conditional statement combined with its converse: if \(p\), then \(q\) and if \(q\), then \(p\). The double-headed arrow shows that the conditional statement goes from left to right and from right to left. A biconditional is considered true as long as the hypothesis and the conclusion have the same truth value; that is, they are either both true or both false.

Truth Table for the Biconditional

\(\begin{array}{|c|c|c|} \hline p & q & p \leftrightarrow q \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Notice that the fourth row, where both components are false, is true; if you don’t submit your timesheet and you don’t get paid, the person from payroll told you the truth.

Suppose this statement is true: “The garbage truck comes down my street if and only if it is Thursday morning.” Which of the following statements could be true?

  • It is noon on Thursday and the garbage truck did not come down my street this morning.
  • It is Monday and the garbage truck is coming down my street.
  • It is Wednesday at 11:59PM and the garbage truck did not come down my street today.
  • This cannot be true. This is like the second row of the truth table; it is true that I just experienced Thursday morning, but it is false that the garbage truck came.
  • This cannot be true. This is like the third row of the truth table; it is false that it is Thursday, but it is true that the garbage truck came.
  • This could be true. This is like the fourth row of the truth table; it is false that it is Thursday, but it is also false that the garbage truck came, so everything worked out like it should.

Try it Now 1

Suppose this statement is true: “I wear my running shoes if and only if I am exercising.” Determine whether each of the following statements must be true or false.

  • I am exercising and I am not wearing my running shoes.
  • I am wearing my running shoes and I am not exercising.
  • I am not exercising and I am not wearing my running shoes.

Choices a & b are false; c is true.

Create a truth table for the statement \((A \vee B) \leftrightarrow \sim C\)

Whenever we have three component statements, we start by listing all the possible truth value combinations for \(A, B,\) and \(C .\) After creating those three columns, we can create a fourth column for the hypothesis, \(A \vee B\). Now we will temporarily ignore the column for \(C\) and focus on \(A\) and \(B\), writing the truth values for \(A \vee B\).

\(\begin{array}{|c|c|c|} \hline A & B & C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline A & B & C & A \vee B \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

Next we can create a column for the negation of \(C\). (Ignore the \(A \vee B\) column and simply negate the values in the \(C\) column.)

\(\begin{array}{|c|c|c|c|c|} \hline A & B & C & A \vee B & \sim C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Finally, we find the truth values of \((A \vee B) \leftrightarrow \sim C\). Remember, a biconditional is true when the truth value of the two parts match, but it is false when the truth values do not match.

\(\begin{array}{|c|c|c|c|c|c|} \hline A & B & C & A \vee B & \sim C & (A \vee B) \leftrightarrow \sim C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \end{array}\)

To illustrate this situation, suppose your boss needs you to do either project \(A\) or project \(B\) (or both, if you have the time). If you do one of the projects, you will not get a crummy review ( \(C\) is for crummy). So \((A \vee B) \leftrightarrow \sim C\) means "You will not get a crummy review if and only if you do project \(A\) or project \(B\)." Looking at a few of the rows of the truth table, we can see how this works out. In the first row, \(A, B,\) and \(C\) are all true: you did both projects and got a crummy review, which is not what your boss told you would happen! That is why the final result of the first row is false. In the fourth row, \(A\) is true, \(B\) is false, and \(C\) is false: you did project \(A\) and did not get a crummy review. This is what your boss said would happen, so the final result of this row is true. And in the eighth row, \(A, B\), and \(C\) are all false: you didn't do either project and did not get a crummy review. This is not what your boss said would happen, so the final result of this row is false. (Even though you may be happy that your boss didn't follow through on the threat, the truth table shows that your boss lied about what would happen.)

Talk to our experts

1800-120-456-456

  • Conditional Statement

ffImage

What Is A Conditional Statement?

In mathematics, we define statement as a declarative statement which may either be true or may be false. Often sentences that are mathematical in nature may not be a statement because we might not know what the variable represents. For example, 2x + 2 = 5. Now here we do not know what x represents thus if we substitute the value of x (let us consider that x = 3) i.e., 2 × 3 = 6. Therefore, it is a false statement. So, what is a conditional statement? In simple words, when through a statement we put a condition on something in return of something, we call it a conditional statement. For example, Mohan tells his friend that “if you do my homework, then I will pay you 50 dollars”. So what is happening here? Mohan is paying his friend 50 dollars but places a condition that if only he’s work will be completed by his friend. A conditional statement is made up of two parts. First, there is a hypothesis that is placed after “if” and before the comma and second is a conclusion that is placed after “then”. Here, the hypothesis will be “you do my homework” and the conclusion will be “I will pay you 50 dollars”. Now, this statement can either be true or may be false. We don’t know. 

A hypothesis is a part that is used after the 'if' and before the comma. This composes the first part of a conditional statement. For example, the statement, 'I help you get an A+ in math,' is a hypothesis because this phrase is coming in between the 'if' and the comma. So, now I hope you can spot the hypothesis in other examples of a conditional statement. Of course, you can. Here is a statement: 'If Miley gets a car, then Allie's dog will be trained,' the hypothesis here is, 'Miley gets a car.' For the statement, 'If Tom eats chocolate ice cream, then Luke eats double chocolate ice cream,' the hypothesis here is, 'Tom eats chocolate ice cream. Now it is time for you to try and locate the hypothesis for the statement, 'If the square is a rectangle, then the rectangle is a quadrilateral'?

A conclusion is a part that is used after “then”. This composes the second part of a conditional statement. For example, for the statement, “I help you get an A+ in math”, the conclusion will be “you will give me 50 dollars”. The next statement was “If Miley gets a car, then Allie's dog will be trained”, the conclusion here is Allie's dog will be trained. It is the same with the next statement and for every other conditional statement.   

How Do We Know If A Statement Is True or False? 

In mathematics, the best way we can know if a statement is true or false is by writing a mathematical proof. Before writing a proof, the mathematician must find if the statement is true or false that can be done with the help of exploration and then by finding the counterexample. Once the proof is discovered, the mathematician must communicate this discovery to those who speak the language of maths. 

Converse, Inverse, contrapositive, And Bi-conditional Statement

We usually use the term “converse” as a verb for talking and chatting and as a noun we use it to represent a brand of footwear. But in mathematics, we use it differently. Converse and inverse are the two terms that are a connected concept in the making of a conditional statement.

If we want to create the converse of a conditional statement, we just have to switch the hypothesis and the conclusion. To create the inverse of a conditional statement, we have to turn both the hypothesis and the conclusion to the negative. A contrapositive statement can be made if we first interchange the hypothesis and conclusion then make them both negative. In a bi-conditional statement, we use “if and only if” which means that the hypothesis is true only if the condition is true. For example, 

If you eat junk food, then you will gain weight is a conditional statement.

If you gained weight, then you ate junk food is a converse of a conditional statement.

If you do not eat junk food, then you will not gain weight is an inverse of a conditional statement.

If yesterday was not Monday, then today is not Tuesday is a contrapositive statement. 

Today is Tuesday if and only if yesterday was Monday is a bi-conventional statement.   

Image will be uploaded soon

A Conditional Statement Truth Table

In the table above, p→q will be false only if the hypothesis(p) will be true and the conclusion(q) will be false, or else p→q will be true. 

Conditional Statement Examples

Below, you can see some of the conditional statement examples.

Example 1) Given, P = I do my work; Q = I get the allowance

What does p→q represent?

Solution 1) In the sentence above, the hypothesis is “I do my work” and the conclusion is “ I get the allowance”. Therefore, the condition p→q represents the conditional statement, “If I do my work, then I get the allowance”. 

Example 2) Given, a = The sun is a ball of gas; b = 5 is a prime number. Write a→b in a sentence. 

Solution 2) The conditional statement a→b here is “if the sun is a ball of gas, then 5 is a prime number”.

arrow-right

FAQs on Conditional Statement

1. How many types of conditional statements are there?

There are basically 5 types of conditional statements.

If statement, if-else statement, nested if-else statement, if-else-if ladder, and switch statement are the basic types of conditional statements. If a function displays a statement or performs a function on the condition if the statement is true. If-else statement executes a block of code if the condition is true but if the condition is false, a new block of code is placed. The switch statement is a selection control mechanism that allows the value of a variable to change the control flow of a program. 

2. How are a conditional statement and a loop different from each other?

A conditional statement is sometimes used by a loop but a loop is of no use to a conditional statement. A conditional statement is basically a “yes” or a “no” i.e., if yes, then take the first path else take the second one. A loop is more like a cyclic chain starting from the start point i.e., if yes, then take path a, if no, take path b and it comes back to the start point. 

Conditional statement executes a statement based on a condition without causing any repetition. 

A loop executes a statement repeatedly. There are two loop variables i.e., for loop and while loop.

Conditional Statement

A conditional statement is a part of mathematical reasoning which is a critical skill that enables students to analyze a given hypothesis without any reference to a particular context or meaning. In layman words, when a scientific inquiry or statement is examined, the reasoning is not based on an individual's opinion. Derivations and proofs need a factual and scientific basis. 

Mathematical critical thinking and logical reasoning are important skills that are required to solve maths reasoning questions.

If and Then  conditional image

In this mini-lesson, we will explore the world of conditional statements. We will walk through the answers to the questions like what is meant by a conditional statement, what are the parts of a conditional statement, and how to create conditional statements along with solved examples and interactive questions.

Lesson Plan  

What is meant by a conditional statement.

A statement that is of the form "If p, then q" is a conditional statement. Here 'p' refers to 'hypothesis' and 'q' refers to 'conclusion'.

For example, "If Cliff is thirsty, then she drinks water."

conditional statement

This is a conditional statement. It is also called an implication.

'\(\rightarrow\)' is the symbol used to represent the relation between two statements. For example, A\(\rightarrow\)B. It is known as the logical connector. It can be read as A implies B. 

Here are two more conditional statement examples

Example 1: If a number is divisible by 4, then it is divisible by 2.

Example 2: If today is Monday, then yesterday was Sunday.

What Are the Parts of a Conditional Statement?

Hypothesis (if) and Conclusion (then) are the two main parts that form a conditional statement.

Let us consider the above-stated example to understand the parts of a conditional statement.

Conditional Statement : If today is Monday, then yesterday was Sunday.

Hypothesis : "If today is Monday."

Conclusion : "Then yesterday was Sunday."

On interchanging the form of statement the relationship gets changed.

To check whether the statement is true or false here, we have subsequent parts of a conditional statement. They are:

  • Contrapositive

Biconditional Statement

Let us consider hypothesis as statement A and Conclusion as statement B.

Following are the observations made:

Conditions of conditional statement

Converse of Statement

When hypothesis and conclusion are switched or interchanged, it is termed as converse statement . For example,

Conditional Statement : “If today is Monday, then yesterday was Sunday.”

Hypothesis : “If today is Monday”

Converse : “If yesterday was Sunday, then today is Monday.”

Here the conditional statement logic is, If B, then A (B → A)

Inverse of Statement

When both the hypothesis and conclusion of the conditional statement are negative, it is termed as an inverse of the statement. For example,

Conditional Statement: “If today is Monday, then yesterday was Sunday”.

Inverse : “If today is not Monday, then yesterday was not Sunday.”

Here the conditional statement logic is, If not A, then not B (~A → ~B)

Contrapositive Statement

When the hypothesis and conclusion are negative and simultaneously interchanged, then the statement is contrapositive. For example,

Contrapositive: “If yesterday was not Sunday, then today is not Monday”

Here the conditional statement logic is, if not B, then not A (~B → ~A)

The statement is a biconditional statement when a statement satisfies both the conditions as true, being conditional and converse at the same time. For example,

Biconditional : “Today is Monday if and only if yesterday was Sunday.”

Here the conditional statement logic is, A if and only if B (A ↔ B)

How to Create Conditional Statements?

Here, the point to be kept in mind is that the 'If' and 'then' part must be true.

If a number is a perfect square , then it is even.

  • 'If' part is a number that is a perfect square.

Think of 4 which is a perfect square.

This has become true.

  • The 'then' part is that the number should be even. 4 is even.

This has also become true. 

Thus, we have set up a conditional statement.

Let us hypothetically consider two statements, statement A and statement B. Observe the truth table for the statements:

According to the table, only if the hypothesis (A) is true and the conclusion (B) is false then, A → B will be false, or else A → B will be true for all other conditions.

tips and tricks

  • A sentence needs to be either true or false, but not both, to be considered as a mathematically accepted statement.
  • Any sentence which is either imperative or interrogative or exclamatory cannot be considered a mathematically validated statement. 
  • A sentence containing one or many variables is termed as an open statement. An open statement can become a statement if the variables present in the sentence are replaced by definite values.

Solved Examples

Let us have a look at a few solved examples on conditional statements.

Identify the types of conditional statements.

There are four types of conditional statements:

  • If condition
  • If-else condition
  • Nested if-else
  • If-else ladder.

Ray tells "If the perimeter of a rectangle is 14, then its area is 10."

Which of the following could be the counterexamples? Justify your decision.

a) A rectangle with sides measuring 2 and 5

b) A rectangle with sides measuring 10 and 1

c) A rectangle with sides measuring 1 and 5

d) A rectangle with sides measuring 4 and 3

a) Rectangle with sides 2 and 5: Perimeter = 14 and area = 10

Both 'if' and 'then' are true.

b) Rectangle with sides 10 and 1: Perimeter = 22 and area = 10

'If' is false and 'then' is true.

c) Rectangle with sides 1 and 5: Perimeter = 12 and area = 5

Both 'if' and 'then' are false.

d) Rectangle with sides 4 and 3: Perimeter = 14 and area = 12

'If' is true and 'then' is false.

Joe examined the set of numbers {16, 27, 24} to check if they are the multiples of 3. He claimed that they are divisible by 9. Do you agree or disagree? Justify your answer.

Conditional statement : If a number is a multiple of 3, then it is divisible by 9.

Let us find whether the conditions are true or false.

a) 16 is not a multiple of 3. Thus, the condition is false. 

16 is not divisible by 9. Thus, the conclusion is false. 

b) 27 is a multiple of 3. Thus, the condition is true.

27 is divisible by 9. Thus, the conclusion is true. 

c) 24 is a multiple of 3. Thus the condition is true.

24 is not divisible by 9. Thus the conclusion is false.

Write the converse, inverse, and contrapositive statement for the following conditional statement. 

If you study well, then you will pass the exam.

The given statement is - If you study well, then you will pass the exam.

It is of the form, "If p, then q"

The converse statement is, "You will pass the exam if you study well" (if q, then p).

The inverse statement is, "If you do not study well then you will not pass the exam" (if not p, then not q).

The contrapositive statement is, "If you did not pass the exam, then you did not study well" (if not q, then not p).

Interactive Questions

Here are a few activities for you to practice. Select/Type your answer and click the "Check Answer" button to see the result.

Challenge your math skills

Let's Summarize

The mini-lesson targeted the fascinating concept of the conditional statement. The math journey around conditional statements started with what a student already knew and went on to creatively crafting a fresh concept in the young minds. Done in a way that not only it is relatable and easy to grasp, but also will stay with them forever.

About Cuemath

At  Cuemath , our team of math experts is dedicated to making learning fun for our favorite readers, the students!

Through an interactive and engaging learning-teaching-learning approach, the teachers explore all angles of a topic.

Be it worksheets, online classes, doubt sessions, or any other form of relation, it’s the logical thinking and smart learning approach that we, at Cuemath, believe in.

FAQs on Conditional Statement

1. what is the most common conditional statement.

'If and then' is the most commonly used conditional statement.

2. When do you use a conditional statement?

Conditional statements are used to justify the given condition or two statements as true or false.

3. What is if and if-else statement?

If is used when a specified condition is true. If-else is used when a particular specified condition is not satisfying and is false.

4. What is the symbol for a conditional statement?

'\(\rightarrow\)' is the symbol used to represent the relation between two statements. For example, A\(\rightarrow\)B. It is known as the logical connector. It can be read as A implies B.

5. What is the Contrapositive of a conditional statement?

If not B, then not A (~B → ~A)

6. What is a universal conditional statement?

Conditional statements are those statements where a hypothesis is followed by a conclusion. It is also known as an " If-then" statement. If the hypothesis is true and the conclusion is false, then the conditional statement is false. Likewise, if the hypothesis is false the whole statement is false. Conditional statements are also termed as implications.

Conditional Statement: If today is Monday, then yesterday was Sunday

Hypothesis: "If today is Monday."

Conclusion: "Then yesterday was Sunday."

If A, then B (A → B)

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school

Section 2.2

Conditional Statements (p. 71)

Students will write definitions as conditional statements and write equivalent statements.

Conditional Statement

  • A conditional statement is a logical statement that has two parts.
  • When a conditional statement is written in if-then form the “if” part contains the hypothesis and the “then” part contains the conclusion .

If you like Geometry, then you will pass the class.

What is the hypothesis of the conditional statement?

What is the conclusion of the conditional statement?

Ans: You like Geometry.

Ans: You will pass the class.

Rewrite the conditional in if-then form.

  • All whales are mammals.

2. Three points are collinear if there is a line containing them.

Ans: If an animal is a whale, then it is a mammal.

Ans: If there is a line containing three points, then the points are collinear.

The negation of a statement is the opposite of the original statement.

Use the word ‘“not”.

Example: The game is Tuesday night.

Negation: The game is not Tuesday night.

Example: My truck is black.

Negation: My truck is not black.

Verifying Statements

  • Conditional statements can be true or false .
  • To show that a conditional statement is true you must:
  • Prove the conclusion true every time the hypothesis true .
  • To show that a conditional statement is false you must:
  • Give only one counterexample!

Related Conditionals

Let’s go back to our first conditional statement.

p : You like Geometry

Let p stand for the hypothesis and q stand for the conclusion.

q : You will pass the class.

A conditional statement is of the form: If p then q .

Related Conditionals: Converse

  • To write the converse of a conditional statement switch the hypothesis with the conclusion.
  • If p then q becomes If q then p .
  • C.S. : If you like Geometry, then you will pass the class.
  • Converse : If you pass the class, then you will like Geometry.

Related Conditionals: Inverse

  • To write the inverse of a conditional statement negate both the hypothesis and the conclusion.
  • If p then q becomes If not p then not q .
  • Inverse : If you do not like Geometry, then you will not pass the class.

Related Conditionals: Contrapositive

  • To write the contrapositive of a conditional statement negate both the hypothesis and the conclusion then switch them.
  • If p then q becomes If not q then not p .
  • Contrapositive : If you do not pass the class, then you will not like Geometry.

Write the converse, inverse, and contrapositive of the given conditional statement. Tell whether each one is true or false.

If a polygon is equilateral, then it is regular.

Inverse: If a polygon is not equilateral, then it is not regular.

Converse: If a polygon is regular then it is equilateral.

Contrapositive: If a polygon is not regular, then it is not equilateral.

Equivalent Statements

What do you notice about the truth value of the previous statements?

What is logically equivalent to: If it is Saturday, then I will go to the park?

The same goes for the converse and the inverse.

When the conditional statement is true, the contrapositive is true. Likewise for when one is false. The other will be false

Definitions

You can write a definition as a conditional statement or you can write it as a converse.

Biconditional Statements

When both the conditional statement and the converse are true you can write them as a biconditional statement .

This will contain the phrase “ if and only if”

Write the definition of a right angle. Write the definition’s converse. Then write the definition as a biconditional.

Definition: If an angle is a right angle, then its measure is 90 o .

Converse: If the measure of an angle is 90 o , then it is a right angle.

Biconditional: An angle is a right angle if and only if its measure is 90 o .

Page 74 3 - 25 odd

Page 74 3 - 25 odd, 30, and 35

Calcworkshop

Conditional Statement If Then's Defined in Geometry - 15+ Examples!

// Last Updated: January 21, 2020 - Watch Video //

In today’s geometry lesson , you’re going to learn all about conditional statements!

Jenn (B.S., M.Ed.) of Calcworkshop® introducing conditional statements

Jenn, Founder Calcworkshop ® , 15+ Years Experience (Licensed & Certified Teacher)

We’re going to walk through several examples to ensure you know what you’re doing.

In addition, this lesson will prepare you for deductive reasoning and two column proofs later on.

Here we go!

What are Conditional Statements?

To better understand deductive reasoning, we must first learn about conditional statements.

A conditional statement has two parts: hypothesis ( if ) and conclusion ( then ).

In fact, conditional statements are nothing more than “If-Then” statements!

Sometimes a picture helps form our hypothesis or conclusion. Therefore, we sometimes use Venn Diagrams to visually represent our findings and aid us in creating conditional statements.

But to verify statements are correct, we take a deeper look at our if-then statements. This is why we form the converse , inverse , and contrapositive of our conditional statements.

What is the Converse of a Statement?

Well, the converse is when we switch or interchange our hypothesis and conclusion.

Conditional Statement : “If today is Wednesday, then yesterday was Tuesday.”

Hypothesis : “If today is Wednesday” so our conclusion must follow “Then yesterday was Tuesday.”

So the converse is found by rearranging the hypothesis and conclusion, as Math Planet accurately states.

Converse : “If yesterday was Tuesday, then today is Wednesday.”

What is the Inverse of a Statement?

Now the inverse of an If-Then statement is found by negating (making negative) both the hypothesis and conclusion of the conditional statement.

So using our current conditional statement, “If today is Wednesday, then yesterday was Tuesday”.

Inverse : “If today is not Wednesday, then yesterday was not Tuesday.”

What is a Contrapositive?

And the contrapositive is formed by interchanging the hypothesis and conclusion and then negating both.

Contrapositive : “If yesterday was not Tuesday, then today is not Wednesday”

What is a Biconditional Statement?

A statement written in “if and only if” form combines a reversible statement and its true converse. In other words the conditional statement and converse are both true.

Continuing with our initial condition, “If today is Wednesday, then yesterday was Tuesday.”

Biconditional : “Today is Wednesday if and only if yesterday was Tuesday.”

examples of conditional statements

Examples of Conditional Statements

In the video below we will look at several harder examples of how to form a proper statement, converse, inverse, and contrapositive. And here’s a big hint…

Whenever you see “con” that means you switch! It’s like being a con-artist!

Moreover, we will detail the process for coming up with reasons for our conclusions using known postulates. We will review the ten postulates that we have learned so far, and add a few more problems dealing with perpendicular lines, planes, and perpendicular bisectors.

After this lesson, we will be ready to tackle deductive reasoning head-on, and feel confident as we march onward toward learning two-column proofs!

Conditional Statements – Lesson & Examples (Video)

  • Introduction to conditional statements
  • 00:00:25 – What are conditional statements, converses, and biconditional statements? (Examples #1-2)
  • 00:05:21 – Understanding venn diagrams (Examples #3-4)
  • 00:11:07 – Supply the missing venn diagram and conditional statement for each question (Examples #5-8)
  • Exclusive Content for Member’s Only
  • 00:17:48 – Write the statement and converse then determine if they are reversible (Examples #9-12)
  • 00:29:17 – Understanding the inverse, contrapositive, and symbol notation
  • 00:35:33 – Write the statement, converse, inverse, contrapositive, and biconditional statements for each question (Examples #13-14)
  • 00:45:40 – Using geometry postulates to verify statements (Example #15)
  • 00:53:23 – What are perpendicular lines, perpendicular planes and the perpendicular bisector?
  • 00:56:26 – Using the figure, determine if the statement is true or false (Example #16)
  • Practice Problems with Step-by-Step Solutions
  • Chapter Tests with Video Solutions

Get access to all the courses and over 450 HD videos with your subscription

Monthly and Yearly Plans Available

Get My Subscription Now

Still wondering if CalcWorkshop is right for you? Take a Tour and find out how a membership can take the struggle out of learning math.

5 Star Excellence award from Shopper Approved for collecting at least 100 5 star reviews

Conditional Statements and Their Converse

Malcolm McKinsey

Conditional and converse statements

Geometry is a wonderful part of mathematics for people who don't like a lot of numbers. It has shapes and angles, and it also has logic. Logic is formal, correct thinking, reasoning, and inference. Logic is not something humans are born with; we have to learn it, and geometry is a great way to learn to be logical.

Converse statements

You may know the word  converse  for a verb meaning to chat, or for a noun as a particular brand of footwear. Neither of those is how mathematicians use converse. Converse and  inverse  are connected concepts in making conditional statements.

To create the  converse  of a conditional statement, switch the hypothesis and conclusion. To create the  inverse  of a conditional statement, turn both hypothesis and conclusion to the negative.

Converse and Inverse of a Conditional Statement

Converse statement examples

If I eat a pint of ice cream, then I will gain weight. ( Conditional Statement)

If I gained weight, then I ate a pint of ice cream. ( Converse)

If I do not eat a pint of ice cream, then I will not gain weight. ( Inverse)

Converse Statement Examples

Conditional statements

Conditional statements set up conditions that could be true or false. These conditions lead to a result that may or may not be true. Conditional statements start with a hypothesis and end with a conclusion.

Conditional statement examples

If my cat is hungry, then she will rub my leg.

If a polygon has exactly four sides, then it is a quadrilateral.

If triangles are congruent, then they have equal corresponding angles.

Conditional Statement Examples

You can always test the hypothesis.  Does the polygon have four sides? Are the triangles congruent?  If the hypothesis is false, the conclusion is false.

Here are examples of conditional statements with false hypotheses:

If I am 9 meters tall, then I can play basketball.

If a square has three sides, then its interior angles add to 180° .

You can test the hypothesis immediately:  Are you 9 meters tall? Do squares have three sides?

These conditional statements result in false conclusions because they started with false hypotheses.

Creating conditional statements

Conditional statements begin with "If" to introduce the hypothesis. The hypothesis is the part that sets up the condition leading to a conclusion. The conclusion begins with "then," like this:

Creating Conditional Statements (If, Then)

If my dog barks, then my dog observed something that excited him.

You will see conditional statements in geometry all the time. You can set up your own conditional statements. Here is one for an isosceles triangle:

If the triangle is isosceles, then only two of its sides are equal in length.

Exchanging parts of conditional statements

You can switch the hypothesis and conclusion of a conditional statement. You take the conclusion and make it the beginning, and take the hypothesis and make it the end:

If my dog observes something that excites him, then he barks.

If triangles have equal corresponding sides, then they are congruent.

Converse of a conditional statement

The converse of a true conditional statement does not automatically produce another true statement. It might create a true statement, or it could create nonsense:

If a polygon is a square, then it is also a quadrilateral.

That statement is true. But the converse of that is nonsense:

If a polygon is a quadrilateral, then it is also a square.

We know it is untrue because plenty of quadrilaterals exist that are not squares.

Geometry and conditional statements

Many times in geometry we see postulates and theorems that seem like they could become conditional statements and converse conditional statements:

Parallel lines never meet. (Postulate)

If two lines are parallel, then they are lines that never meet. (Conditional Statement)

If two lines never meet, then they are parallel. (Converse)

Adjacent angles share a common side. (Postulate)

If angles share a common side, then they are adjacent. (Conditional Statement)

If angles are adjacent, then they share a common side. (Converse)

Some postulates are even written as conditional statements:

If two parallel lines are cut by a transversal, then the corresponding angles are congruent.

If two points lie in a plane, then the line joining them lies in that plane.

Practice conditional statements

Below we have equilateral triangle  △NAP . We can set up conditional statements about it. Here are five statements. Decide which ones are conditional, which are not conditional, and which conditional statements are true:

Conditional statements geometry

If △NAP is equilateral, then its interior angles are all equal.

If △NAP is equilateral, then interior ∠N is 60° .

If interior ∠N is 60° , then △NAP is equilateral.

Equilateral triangles have equal interior angles.

If △NAP is equilateral, then it is also isosceles.

Statements 1 , 2 , and 5 are all true conditional statements (If … then).

Statement 3 is a converse of statement 2 .

Statement 4 is not a conditional statement, but it is true. You have enough information to change statement 4 into a conditional statement.

Let's check the converse statement, 3 , to see if it is true. Can you create a triangle with one interior angle measuring  60°  but with the other angles having different measures?

Of course you can, like a  30−60−90 triangle, which is definitely not equilateral. So the converse statement is not true.

Lesson summary

In this lesson you have learned to identify and explain conditional statements and create your own conditional statements. You know conditional statements could be true or false. You are able to exchange the hypothesis and conclusion of a conditional statement to produce a converse of the statement, and you can test to see if the converse of a true conditional statement is true.

Logic laws: converse, inverse, contrapositive, and counter example

Rise and Sine

conditional statement switches the hypothesis and conclusion

Conditional Statements in Geometry

conditional statement switches the hypothesis and conclusion

Conditional statements in geometry can be confusing for even the best geometry students. The logic and proof portion of your geometry curriculum is bursting with new terminology! There are conditional statements, and the inverse, converse, contrapositive, etc. And wait, we represent them with p’s and q’s?! Ok, let’s break it down. 

What is a Conditional Statement?

conditional statement switches the hypothesis and conclusion

A conditional statement in geometry is an “if-then” statement.

The part of the statement that follows “if” is called the hypothesis , and the part of the statement that follows “then” is called the conclusion .

We also represent conditional statements symbolically. For a conditional statement, p represents the hypothesis and q represents the conclusion. Symbolically we write p → q, which reads “if p then q.”

Statements Related to the Conditional Statement

conditional statement switches the hypothesis and conclusion

  Inverse . To write the inverse of the conditional statement, you negate the hypothesis AND conclusion. Symbolically, it’s written as ~p → ~q and read as “If not p, then not q”.

Converse . To write the converse of the conditional statement, you switch the hypothesis and conclusion. Symbolically, it’s written as q → p and read “if q then p”.

Contrapositive . To write the contrapositive of the conditional statement, you both negate AND switch the hypothesis and conclusion. Symbolically, it’s written as ~q → ~p and read “if not q, then not p”. 

Resources for Teaching Conditional Statements

Looking for a graphic organizer to summarize conditional statements in geometry? Leave me your e-mail and I’ll send you one for FREE!  

Students can practice writing statements and determining their truth value with this self-checking assignment ! 

conditional statement switches the hypothesis and conclusion

Stay tuned for a Logic and Proof Unit Bundle coming soon! 

Happy teaching!

'  data-srcset=

Related posts

interactive-unit-circle

How to Implement an Interactive Unit Circle In Your Lesson

conditional statement switches the hypothesis and conclusion

Fresh Ideas to Teach the Unit Circle in Trigonometry

conditional statement switches the hypothesis and conclusion

10 Geometry Theorem Proofs You Need to Teach Your Students

No comments, leave a reply cancel reply.

Save my name, email, and website in this browser for the next time I comment.

IMAGES

  1. PPT

    conditional statement switches the hypothesis and conclusion

  2. PPT

    conditional statement switches the hypothesis and conclusion

  3. Conditional Statements

    conditional statement switches the hypothesis and conclusion

  4. CONDITIONAL STATEMENTS (IDENTIFYING HYPOTHESIS AND CONCLUSION)

    conditional statement switches the hypothesis and conclusion

  5. PPT

    conditional statement switches the hypothesis and conclusion

  6. PPT

    conditional statement switches the hypothesis and conclusion

VIDEO

  1. Programs of javascript using conditional statements

  2. Conditional Sentences

  3. Lesson 2 Section 2 Conditional Statements

  4. Conditional Statements Hypothesis and conclusion

  5. Forms of Conditional Propositions (Converse, Contrapositive, Inverse)

  6. 2-2 Conditional Statements 2013

COMMENTS

  1. Conditional Statement: Definition, Truth Table, Examples

    There are two parts of conditional statements, hypothesis and conclusion. The hypothesis or condition will begin with the "if" part, and the conclusion or action will begin with the "then" part. A conditional statement is also called "implication." Conditional Statements Examples: Example 1: If it is Sunday, then you can go to play.

  2. How to Understand 'If-Then' Conditional Statements: A Comprehensive

    A conditional statement is either true or false. The only time a conditional statement is false is when the hypothesis is true, but the conclusion is false. Converse, Inverse, and Contrapositive: 1. Converse: The converse of a conditional statement switches the hypothesis and the conclusion. For the statement "If \( p \), then \( q \)", the ...

  3. 1.1: Statements and Conditional Statements

    The statement "If \ (P\) then \ (Q\)" means that \ (Q\) must be true whenever \ (P\) is true. The statement \ (P\) is called the hypothesis of the conditional statement, and the statement \ (Q\) is called the conclusion of the conditional statement. Since conditional statements are probably the most important type of statement in ...

  4. 2.11: If Then Statements

    The conclusion is the result of a hypothesis. Figure 2.11.1 2.11. 1. If-then statements might not always be written in the "if-then" form. Here are some examples of conditional statements: Statement 1: If you work overtime, then you'll be paid time-and-a-half. Statement 2: I'll wash the car if the weather is nice.

  5. How to identify the hypothesis and conclusion of a conditional statement

    A conditional statement is an if-then statement connecting a hypothesis (p) and the conclusion (q... 👉 Learn how to label the parts of a conditional statement.

  6. If-then statement (Geometry, Proof)

    Hypotheses followed by a conclusion is called an If-then statement or a conditional statement. This is noted as. p → q p → q. This is read - if p then q. A conditional statement is false if hypothesis is true and the conclusion is false. The example above would be false if it said "if you get good grades then you will not get into a good ...

  7. 3.3: Truth Tables- Conditional, Biconditional

    A biconditional is a logical conditional statement in which the hypothesis and conclusion are interchangeable. A biconditional is written as p ↔ q p ↔ q and is translated as " p p if and only if q′′ q ′ ′. Because a biconditional statement p ↔ q p ↔ q is equivalent to (p → q) ∧ (q → p), ( p → q) ∧ ( q → p), we may ...

  8. Conditional Statement

    A conditional statement is made up of two parts. First, there is a hypothesis that is placed after "if" and before the comma and second is a conclusion that is placed after "then". Here, the hypothesis will be "you do my homework" and the conclusion will be "I will pay you 50 dollars". Now, this statement can either be true or ...

  9. Determining Converses of Conditional Statements

    Step 1: Identify the hypothesis and conclusion of the conditional statement. For example, if our statement reads "if p, then q," then our hypothesis is p, and our conclusion is q. Step 2: Switch ...

  10. Inverse, Converse, and Contrapositive

    Converse: Switches the order of the hypothesis and the conclusion of the original conditional statement, but its truth values are not always identical to the original. Contrapositive: Switches the hypothesis with the conclusion and negates both parts of the original conditional statement. The contrapositive of a conditional statement is ...

  11. Conditional Statement

    Conditional Statement. A conditional statement is a part of mathematical reasoning which is a critical skill that enables students to analyze a given hypothesis without any reference to a particular context or meaning. In layman words, when a scientific inquiry or statement is examined, the reasoning is not based on an individual's opinion.

  12. If-Then Statements ( Read )

    Conditional Statements. A conditional statement (also called an if-then statement) is a statement with a hypothesis followed by a conclusion.The hypothesis is the first, or "if," part of a conditional statement. The conclusion is the second, or "then," part of a conditional statement. The conclusion is the result of a hypothesis. If-then statements might not always be written in the ...

  13. FAQ: What Is a Conditional Statement?

    A conditional statement includes two main components: a hypothesis and a conclusion. The hypothesis establishes a basis against which you can compare your conclusion. In a basic conditional statement, the hypothesis comes first, and the conclusion comes second. Examine the following conditional statement structure, where the hypothesis is x and ...

  14. 2.2 Conditional Statements

    Section 2.2. Conditional Statements (p. 71) Objectives. Students will write definitions as conditional statements and write equivalent statements. Conditional Statement. A conditional statement is a logical statement that has two parts. When a conditional statement is written in if-then form the "if" part contains the hypothesis and the ...

  15. Conditional Statements (15+ Examples in Geometry)

    Example. Conditional Statement: "If today is Wednesday, then yesterday was Tuesday.". Hypothesis: "If today is Wednesday" so our conclusion must follow "Then yesterday was Tuesday.". So the converse is found by rearranging the hypothesis and conclusion, as Math Planet accurately states.

  16. PDF 5-4 Inverses, Contrapositives, and Indirect Reasoning

    The of a conditional statement negates both the hypothesis and the conclusion.The of a conditional switches the hypothesis and the conclusion and negates both. contrapositive inverse Quick Check 1 1 EXAMPLE negation 5-4 11 Writing the Negation, Inverse, and Contrapositive If we go skiing, then it snows tomorrow. If 2 lines do not intersect, then

  17. Conditional Statements and Their Converse (Examples & Video)

    Converse statements. You may know the word converse for a verb meaning to chat, or for a noun as a particular brand of footwear.Neither of those is how mathematicians use converse. Converse and inverse are connected concepts in making conditional statements. To create the converse of a conditional statement, switch the hypothesis and conclusion.

  18. Logic

    the statement formed by switching the hypothesis and conclusion of a conditional statement, q -> p. Negation. ... Switches and negates the hypothesis and conclusion of a conditional statement, ~q -> ~p. Biconditional-Statement containing a conditional and its converse -Contains the words "if and only if"

  19. Determine the hypothesis and conclusion of a conditional statement

    A conditional statement is an if-then statement connecting a hypothesis (p) and the conclusion (q... 👉 Learn how to label the parts of a conditional statement.

  20. Conditional statement Flashcards

    Study with Quizlet and memorize flashcards containing terms like Conjecture, Counterexample, Conditional statement and more. ... statement formed from a conditional statement by switching and negating the hypothesis and conclusion. Biconditional statement. statement combining a conditional statement and its converse using the phrase if and only ...

  21. Conditional Statements in Geometry

    The part of the statement that follows "if" is called the hypothesis, and the part of the statement that follows "then" is called the conclusion. We also represent conditional statements symbolically. For a conditional statement, p represents the hypothesis and q represents the conclusion. Symbolically we write p → q, which reads ...

  22. COUNTEREXAMPLES Flashcards

    Study with Quizlet and memorize flashcards containing terms like the "then" portion of your conditional statement; what your conditional statement is doing this version of the conditional combines the converse with, the inverse and switches the hypothesis and conclusion while negating both portions., this version of the conditional switches the hypothesis portion with conclusion portion of the ...

  23. Geom 1A: 2-1 Flashcards

    The converse of a conditional switches the hypothesis and the conclusion. A biconditional statement is the combination of a conditional statement and its converse. A biconditional contains the words "if and only if." SECTION 2-2 ALSO!!!1 TERM!!!!! Learn with flashcards, games, and more — for free.