logo

Python Numerical Methods

../_images/book_cover.jpg

This notebook contains an excerpt from the Python Programming and Numerical Methods - A Guide for Engineers and Scientists , the content is also available at Berkeley Python Numerical Methods .

The copyright of the book belongs to Elsevier. We also have this interactive book online for a better learning experience. The code is released under the MIT license . If you find this content useful, please consider supporting the work on Elsevier or Amazon !

< 2.0 Variables and Basic Data Structures | Contents | 2.2 Data Structure - Strings >

Variables and Assignment ¶

When programming, it is useful to be able to store information in variables. A variable is a string of characters and numbers associated with a piece of information. The assignment operator , denoted by the “=” symbol, is the operator that is used to assign values to variables in Python. The line x=1 takes the known value, 1, and assigns that value to the variable with name “x”. After executing this line, this number will be stored into this variable. Until the value is changed or the variable deleted, the character x behaves like the value 1.

TRY IT! Assign the value 2 to the variable y. Multiply y by 3 to show that it behaves like the value 2.

A variable is more like a container to store the data in the computer’s memory, the name of the variable tells the computer where to find this value in the memory. For now, it is sufficient to know that the notebook has its own memory space to store all the variables in the notebook. As a result of the previous example, you will see the variable “x” and “y” in the memory. You can view a list of all the variables in the notebook using the magic command %whos .

TRY IT! List all the variables in this notebook

Note that the equal sign in programming is not the same as a truth statement in mathematics. In math, the statement x = 2 declares the universal truth within the given framework, x is 2 . In programming, the statement x=2 means a known value is being associated with a variable name, store 2 in x. Although it is perfectly valid to say 1 = x in mathematics, assignments in Python always go left : meaning the value to the right of the equal sign is assigned to the variable on the left of the equal sign. Therefore, 1=x will generate an error in Python. The assignment operator is always last in the order of operations relative to mathematical, logical, and comparison operators.

TRY IT! The mathematical statement x=x+1 has no solution for any value of x . In programming, if we initialize the value of x to be 1, then the statement makes perfect sense. It means, “Add x and 1, which is 2, then assign that value to the variable x”. Note that this operation overwrites the previous value stored in x .

There are some restrictions on the names variables can take. Variables can only contain alphanumeric characters (letters and numbers) as well as underscores. However, the first character of a variable name must be a letter or underscores. Spaces within a variable name are not permitted, and the variable names are case-sensitive (e.g., x and X will be considered different variables).

TIP! Unlike in pure mathematics, variables in programming almost always represent something tangible. It may be the distance between two points in space or the number of rabbits in a population. Therefore, as your code becomes increasingly complicated, it is very important that your variables carry a name that can easily be associated with what they represent. For example, the distance between two points in space is better represented by the variable dist than x , and the number of rabbits in a population is better represented by nRabbits than y .

Note that when a variable is assigned, it has no memory of how it was assigned. That is, if the value of a variable, y , is constructed from other variables, like x , reassigning the value of x will not change the value of y .

EXAMPLE: What value will y have after the following lines of code are executed?

WARNING! You can overwrite variables or functions that have been stored in Python. For example, the command help = 2 will store the value 2 in the variable with name help . After this assignment help will behave like the value 2 instead of the function help . Therefore, you should always be careful not to give your variables the same name as built-in functions or values.

TIP! Now that you know how to assign variables, it is important that you learn to never leave unassigned commands. An unassigned command is an operation that has a result, but that result is not assigned to a variable. For example, you should never use 2+2 . You should instead assign it to some variable x=2+2 . This allows you to “hold on” to the results of previous commands and will make your interaction with Python must less confusing.

You can clear a variable from the notebook using the del function. Typing del x will clear the variable x from the workspace. If you want to remove all the variables in the notebook, you can use the magic command %reset .

In mathematics, variables are usually associated with unknown numbers; in programming, variables are associated with a value of a certain type. There are many data types that can be assigned to variables. A data type is a classification of the type of information that is being stored in a variable. The basic data types that you will utilize throughout this book are boolean, int, float, string, list, tuple, dictionary, set. A formal description of these data types is given in the following sections.

Python Variables and Assignment

Python variables, variable assignment rules, every value has a type, memory and the garbage collector, variable swap, variable names are superficial labels, assignment = is shallow, decomp by var.

  • Module 2: The Essentials of Python »
  • Variables & Assignment
  • View page source

Variables & Assignment 

There are reading-comprehension exercises included throughout the text. These are meant to help you put your reading to practice. Solutions for the exercises are included at the bottom of this page.

Variables permit us to write code that is flexible and amendable to repurpose. Suppose we want to write code that logs a student’s grade on an exam. The logic behind this process should not depend on whether we are logging Brian’s score of 92% versus Ashley’s score of 94%. As such, we can utilize variables, say name and grade , to serve as placeholders for this information. In this subsection, we will demonstrate how to define variables in Python.

In Python, the = symbol represents the “assignment” operator. The variable goes to the left of = , and the object that is being assigned to the variable goes to the right:

Attempting to reverse the assignment order (e.g. 92 = name ) will result in a syntax error. When a variable is assigned an object (like a number or a string), it is common to say that the variable is a reference to that object. For example, the variable name references the string "Brian" . This means that, once a variable is assigned an object, it can be used elsewhere in your code as a reference to (or placeholder for) that object:

Valid Names for Variables 

A variable name may consist of alphanumeric characters ( a-z , A-Z , 0-9 ) and the underscore symbol ( _ ); a valid name cannot begin with a numerical value.

var : valid

_var2 : valid

ApplePie_Yum_Yum : valid

2cool : invalid (begins with a numerical character)

I.am.the.best : invalid (contains . )

They also cannot conflict with character sequences that are reserved by the Python language. As such, the following cannot be used as variable names:

for , while , break , pass , continue

in , is , not

if , else , elif

def , class , return , yield , raises

import , from , as , with

try , except , finally

There are other unicode characters that are permitted as valid characters in a Python variable name, but it is not worthwhile to delve into those details here.

Mutable and Immutable Objects 

The mutability of an object refers to its ability to have its state changed. A mutable object can have its state changed, whereas an immutable object cannot. For instance, a list is an example of a mutable object. Once formed, we are able to update the contents of a list - replacing, adding to, and removing its elements.

To spell out what is transpiring here, we:

Create (initialize) a list with the state [1, 2, 3] .

Assign this list to the variable x ; x is now a reference to that list.

Using our referencing variable, x , update element-0 of the list to store the integer -4 .

This does not create a new list object, rather it mutates our original list. This is why printing x in the console displays [-4, 2, 3] and not [1, 2, 3] .

A tuple is an example of an immutable object. Once formed, there is no mechanism by which one can change of the state of a tuple; and any code that appears to be updating a tuple is in fact creating an entirely new tuple.

Mutable & Immutable Types of Objects 

The following are some common immutable and mutable objects in Python. These will be important to have in mind as we start to work with dictionaries and sets.

Some immutable objects

numbers (integers, floating-point numbers, complex numbers)

“frozen”-sets

Some mutable objects

dictionaries

NumPy arrays

Referencing a Mutable Object with Multiple Variables 

It is possible to assign variables to other, existing variables. Doing so will cause the variables to reference the same object:

What this entails is that these common variables will reference the same instance of the list. Meaning that if the list changes, all of the variables referencing that list will reflect this change:

We can see that list2 is still assigned to reference the same, updated list as list1 :

In general, assigning a variable b to a variable a will cause the variables to reference the same object in the system’s memory, and assigning c to a or b will simply have a third variable reference this same object. Then any change (a.k.a mutation ) of the object will be reflected in all of the variables that reference it ( a , b , and c ).

Of course, assigning two variables to identical but distinct lists means that a change to one list will not affect the other:

Reading Comprehension: Does slicing a list produce a reference to that list?

Suppose x is assigned a list, and that y is assigned a “slice” of x . Do x and y reference the same list? That is, if you update part of the subsequence common to x and y , does that change show up in both of them? Write some simple code to investigate this.

Reading Comprehension: Understanding References

Based on our discussion of mutable and immutable objects, predict what the value of y will be in the following circumstance:

Reading Comprehension Exercise Solutions: 

Does slicing a list produce a reference to that list?: Solution

Based on the following behavior, we can conclude that slicing a list does not produce a reference to the original list. Rather, slicing a list produces a copy of the appropriate subsequence of the list:

Understanding References: Solutions

Integers are immutable, thus x must reference an entirely new object ( 9 ), and y still references 3 .

Leon Lovett

Leon Lovett

Python Variables – A Guide to Variable Assignment and Naming

a computer monitor sitting on top of a wooden desk

In Python, variables are essential elements that allow developers to store and manipulate data. When writing Python code, understanding variable assignment and naming conventions is crucial for effective programming.

Python variables provide a way to assign a name to a value and use that name to reference the value later in the code. Variables can be used to store various types of data, including numbers, strings, and lists.

In this article, we will explore the basics of Python variables, including variable assignment and naming conventions. We will also dive into the different variable types available in Python and how to use them effectively.

Key Takeaways

  • Python variables are used to store and manipulate data in code.
  • Variable assignment allows developers to assign a name to a value and reference it later.
  • Proper variable naming conventions are essential for effective programming.
  • Python supports different variable types, including integers, floats, strings, and lists.

Variable Assignment in Python

Python variables are created when a value is assigned to them using the equals sign (=) operator. For example, the following code snippet assigns the integer value 5 to the variable x :

From this point forward, whenever x is referenced in the code, it will have the value 5.

Variables can also be assigned using other variables or expressions. For example, the following code snippet assigns the value of x plus 2 to the variable y :

It is important to note that variables in Python are dynamically typed, meaning that their type can change as the program runs. For example, the following code snippet assigns a string value to the variable x , then later reassigns it to an integer value:

x = "hello" x = 7

Common Mistakes in Variable Assignment

One common mistake is trying to reference a variable before it has been assigned a value. This will result in a NameError being raised. For example:

print(variable_name) NameError: name ‘variable_name’ is not defined

Another common mistake is assigning a value to the wrong variable name. For example, the following code snippet assigns the value 5 to the variable y instead of x :

y = 5 print(x) NameError: name ‘x’ is not defined

To avoid these mistakes, it is important to carefully review code and double-check variable names and values.

Using Variables in Python

Variables are used extensively in Python code for a variety of purposes, from storing user input to performing complex calculations. The following code snippet demonstrates the basic usage of variables in a simple addition program:

number1 = input("Enter the first number: ") number2 = input("Enter the second number: ") sum = float(number1) + float(number2) print("The sum of", number1, "and", number2, "is", sum)

This program prompts the user to enter two numbers, converts them to floats using the float() function, adds them together, and prints the result using the print() function.

Variables can also be used in more complex operations, such as string concatenation and list manipulation. The following code snippet demonstrates how variables can be used to combine two strings:

greeting = "Hello" name = "Alice" message = greeting + ", " + name + "!" print(message)

This program defines two variables containing a greeting and a name, concatenates them using the plus (+) operator, and prints the result.

Variable Naming Conventions in Python

In Python, proper variable naming conventions are crucial for writing clear and maintainable code. Consistently following naming conventions makes code more readable and easier to understand, especially when working on large projects with many collaborators. Here are some commonly accepted conventions:

It’s recommended to use lowercase or snake case for variable names as they are easier to read and more commonly used in Python. Camel case is common in other programming languages, but can make Python code harder to read.

Variable names should be descriptive and meaningful. Avoid using abbreviations or single letters, unless they are commonly understood, like “i” for an iterative variable in a loop. Using descriptive names will make your code easier to understand and maintain by you and others.

Lastly, it’s a good practice to avoid naming variables with reserved words in Python such as “and”, “or”, and “not”. Using reserved words can cause errors in your code, making it hard to debug.

Scope of Variables in Python

Variables in Python have a scope, which dictates where they can be accessed and used within a code block. Understanding variable scope is important for writing efficient and effective code.

Local Variables in Python

A local variable is created within a particular code block, such as a function. It can only be accessed within that block and is destroyed when the block is exited. Local variables can be defined using the same Python variable assignment syntax as any other variable.

Example: def my_function():     x = 10     print(“Value inside function:”, x) my_function() print(“Value outside function:”, x) Output: Value inside function: 10 NameError: name ‘x’ is not defined

In the above example, the variable ‘x’ is a local variable that is defined within the function ‘my_function()’. It cannot be accessed outside of that function, which is why the second print statement results in an error.

Global Variables in Python

A global variable is a variable that can be accessed from anywhere within a program. These variables are typically defined outside of any code block, at the top level of the program. They can be accessed and modified from any code block within the program.

Example: x = 10 def my_function():     print(“Value inside function:”, x) my_function() print(“Value outside function:”, x) Output: Value inside function: 10 Value outside function: 10

In the above example, the variable ‘x’ is a global variable that is defined outside of any function. It can be accessed from within the ‘my_function()’ as well as from outside it.

When defining a function, it is possible to access and modify a global variable from within the function using the ‘global’ keyword.

Example: x = 10 def my_function():     global x     x = 20 my_function() print(x) Output: 20

In the above example, the ‘global’ keyword is used to indicate that the variable ‘x’ inside the function is the same as the global variable ‘x’. The function modifies the global variable, causing the final print statement to output ’20’ instead of ’10’.

One of the most fundamental concepts in programming is the use of variables. In Python, variables allow us to store and manipulate data efficiently. Here are some practical examples of how to use variables in Python:

Mathematical Calculations

Variables are often used to perform mathematical calculations in Python. For instance, we can assign numbers to variables and then perform operations on those variables. Here’s an example:

x = 5 y = 10 z = x + y print(z) # Output: 15

In this code, we have assigned the value 5 to the variable x and the value 10 to the variable y. We then create a new variable z by adding x and y together. Finally, we print the value of z, which is 15.

String Manipulation

Variables can also be used to manipulate strings in Python. Here is an example:

first_name = “John” last_name = “Doe” full_name = first_name + ” ” + last_name print(full_name) # Output: John Doe

In this code, we have assigned the strings “John” and “Doe” to the variables first_name and last_name respectively. We then create a new variable full_name by combining the values of first_name and last_name with a space in between. Finally, we print the value of full_name, which is “John Doe”.

Working with Data Structures

Variables are also essential when working with data structures such as lists and dictionaries in Python. Here’s an example:

numbers = [1, 2, 3, 4, 5] sum = 0 for num in numbers:     sum += num print(sum) # Output: 15

In this code, we have assigned a list of numbers to the variable numbers. We then create a new variable sum and initialize it to 0. We use a for loop to iterate over each number in the list, adding it to the sum variable. Finally, we print the value of sum, which is 15.

As you can see, variables are an essential tool in Python programming. By using them effectively, you can manipulate data and perform complex operations with ease.

Variable Types in Python

Python is a dynamically typed language, which means that variables can be assigned values of different types without explicit type declaration. Python supports a wide range of variable types, each with its own unique characteristics and uses.

Numeric Types:

Python supports several numeric types, including integers, floats, and complex numbers. Integers are whole numbers without decimal points, while floats are numbers with decimal points. Complex numbers consist of a real and imaginary part, expressed as a+bi.

Sequence Types:

Python supports several sequence types, including strings, lists, tuples, and range objects. Strings are sequences of characters, while lists and tuples are sequences of values of any type. Range objects are used to represent sequences of numbers.

Mapping Types:

Python supports mapping types, which are used to store key-value pairs. The most commonly used mapping type is the dictionary, which supports efficient lookup of values based on their associated keys.

Boolean Type:

Python supports a Boolean type, which is used to represent truth values. The Boolean type has two possible values: True and False.

Python has a special value called None, which represents the absence of a value. This type is often used to indicate the result of functions that do not return a value.

Understanding the different variable types available in Python is essential for effective coding. Each type has its own unique properties and uses, and choosing the right type for a given task can help improve code clarity, efficiency, and maintainability.

Python variables are a fundamental concept that every aspiring Python programmer must understand. In this article, we have covered the basics of variable assignment and naming conventions in Python. We have also explored the scope of variables and their different types.

It is important to remember that variables play a crucial role in programming, and their effective use can make your code more efficient and easier to read. Proper naming conventions and good coding practices can also help prevent errors and improve maintainability.

As you continue to explore the vast possibilities of Python programming, we encourage you to practice using variables in your code. With a solid understanding of Python variables, you will be well on your way to becoming a proficient Python programmer.

Similar Posts

Python Modules and Packages Explained

Python Modules and Packages Explained

Python programming has become increasingly popular over the years, and for good reason. It is a high-level and versatile language with a wide range of applications, from web development to data analysis. One of the key features of Python that sets it apart from other programming languages is its use of modules and packages. In…

The Collections Module – Python Data Structures

The Collections Module – Python Data Structures

Python is a widely used high-level programming language, loved by developers for its simplicity and code readability. One of the most important features that make Python stand out is its built-in data structures. These built-in data structures in Python are extremely useful when it comes to managing complex data. The Python collections module is a…

Object Oriented Programming in Python – A Beginner’s Guide

Object Oriented Programming in Python – A Beginner’s Guide

Python is a versatile programming language that offers support for object-oriented programming (OOP). OOP is a programming paradigm that provides a modular and reusable way to design software. In this article, we will provide a beginner’s guide to object-oriented programming in Python with a focus on Python classes. Python classes are the building blocks of…

Demystifying the Python __init__ Method

Demystifying the Python __init__ Method

Python is one of the most widely used programming languages in the world, known for its simplicity and ease of use. One of the key features of Python is the __init__ method, which plays a critical role in object-oriented programming. In this article, we will explore the __init__ method in depth, starting with its syntax…

Understanding Python Iterators and Generators

Understanding Python Iterators and Generators

Python is a high-level programming language that offers a wide range of built-in functions and data structures. One of the most powerful and versatile of these data structures are iterators and generators. In this article, we’ll take a closer look at Python iterators and generators, their types, and how to work with them to improve…

Coding Reusable Logic with Python Functions

Coding Reusable Logic with Python Functions

In the world of coding, efficiency and reusability are paramount. With Python functions, you can achieve both. Functions are code blocks that perform specific tasks and can be called multiple times throughout your program. This means you can write a block of code once and reuse it whenever you need it, saving you valuable time…

logo

Learning Python by doing

  • suggest edit

Variables, Expressions, and Assignments

Variables, expressions, and assignments 1 #, introduction #.

In this chapter, we introduce some of the main building blocks needed to create programs–that is, variables, expressions, and assignments. Programming related variables can be intepret in the same way that we interpret mathematical variables, as elements that store values that can later be changed. Usually, variables and values are used within the so-called expressions. Once again, just as in mathematics, an expression is a construct of values and variables connected with operators that result in a new value. Lastly, an assignment is a language construct know as an statement that assign a value (either as a constant or expression) to a variable. The rest of this notebook will dive into the main concepts that we need to fully understand these three language constructs.

Values and Types #

A value is the basic unit used in a program. It may be, for instance, a number respresenting temperature. It may be a string representing a word. Some values are 42, 42.0, and ‘Hello, Data Scientists!’.

Each value has its own type : 42 is an integer ( int in Python), 42.0 is a floating-point number ( float in Python), and ‘Hello, Data Scientists!’ is a string ( str in Python).

The Python interpreter can tell you the type of a value: the function type takes a value as argument and returns its corresponding type.

Observe the difference between type(42) and type('42') !

Expressions and Statements #

On the one hand, an expression is a combination of values, variables, and operators.

A value all by itself is considered an expression, and so is a variable.

When you type an expression at the prompt, the interpreter evaluates it, which means that it calculates the value of the expression and displays it.

In boxes above, m has the value 27 and m + 25 has the value 52 . m + 25 is said to be an expression.

On the other hand, a statement is an instruction that has an effect, like creating a variable or displaying a value.

The first statement initializes the variable n with the value 17 , this is a so-called assignment statement .

The second statement is a print statement that prints the value of the variable n .

The effect is not always visible. Assigning a value to a variable is not visible, but printing the value of a variable is.

Assignment Statements #

We have already seen that Python allows you to evaluate expressions, for instance 40 + 2 . It is very convenient if we are able to store the calculated value in some variable for future use. The latter can be done via an assignment statement. An assignment statement creates a new variable with a given name and assigns it a value.

The example in the previous code contains three assignments. The first one assigns the value of the expression 40 + 2 to a new variable called magicnumber ; the second one assigns the value of π to the variable pi , and; the last assignment assigns the string value 'Data is eatig the world' to the variable message .

Programmers generally choose names for their variables that are meaningful. In this way, they document what the variable is used for.

Do It Yourself!

Let’s compute the volume of a cube with side \(s = 5\) . Remember that the volume of a cube is defined as \(v = s^3\) . Assign the value to a variable called volume .

Well done! Now, why don’t you print the result in a message? It can say something like “The volume of the cube with side 5 is \(volume\) ”.

Beware that there is no checking of types ( type checking ) in Python, so a variable to which you have assigned an integer may be re-used as a float, even if we provide type-hints .

Names and Keywords #

Names of variable and other language constructs such as functions (we will cover this topic later), should be meaningful and reflect the purpose of the construct.

In general, Python names should adhere to the following rules:

It should start with a letter or underscore.

It cannot start with a number.

It must only contain alpha-numeric (i.e., letters a-z A-Z and digits 0-9) characters and underscores.

They cannot share the name of a Python keyword.

If you use illegal variable names you will get a syntax error.

By choosing the right variables names you make the code self-documenting, what is better the variable v or velocity ?

The following are examples of invalid variable names.

These basic development principles are sometimes called architectural rules . By defining and agreeing upon architectural rules you make it easier for you and your fellow developers to understand and modify your code.

If you want to read more on this, please have a look at Code complete a book by Steven McConnell [ McC04 ] .

Every programming language has a collection of reserved keywords . They are used in predefined language constructs, such as loops and conditionals . These language concepts and their usage will be explained later.

The interpreter uses keywords to recognize these language constructs in a program. Python 3 has the following keywords:

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass break

except in raise

Reassignments #

It is allowed to assign a new value to an existing variable. This process is called reassignment . As soon as you assign a value to a variable, the old value is lost.

The assignment of a variable to another variable, for instance b = a does not imply that if a is reassigned then b changes as well.

You have a variable salary that shows the weekly salary of an employee. However, you want to compute the monthly salary. Can you reassign the value to the salary variable according to the instruction?

Updating Variables #

A frequently used reassignment is for updating puposes: the value of a variable depends on the previous value of the variable.

This statement expresses “get the current value of x , add one, and then update x with the new value.”

Beware, that the variable should be initialized first, usually with a simple assignment.

Do you remember the salary excercise of the previous section (cf. 13. Reassignments)? Well, if you have not done it yet, update the salary variable by using its previous value.

Updating a variable by adding 1 is called an increment ; subtracting 1 is called a decrement . A shorthand way of doing is using += and -= , which stands for x = x + ... and x = x - ... respectively.

Order of Operations #

Expressions may contain multiple operators. The order of evaluation depends on the priorities of the operators also known as rules of precedence .

For mathematical operators, Python follows mathematical convention. The acronym PEMDAS is a useful way to remember the rules:

Parentheses have the highest precedence and can be used to force an expression to evaluate in the order you want. Since expressions in parentheses are evaluated first, 2 * (3 - 1) is 4 , and (1 + 1)**(5 - 2) is 8 . You can also use parentheses to make an expression easier to read, even if it does not change the result.

Exponentiation has the next highest precedence, so 1 + 2**3 is 9 , not 27 , and 2 * 3**2 is 18 , not 36 .

Multiplication and division have higher precedence than addition and subtraction . So 2 * 3 - 1 is 5 , not 4 , and 6 + 4 / 2 is 8 , not 5 .

Operators with the same precedence are evaluated from left to right (except exponentiation). So in the expression degrees / 2 * pi , the division happens first and the result is multiplied by pi . To divide by 2π, you can use parentheses or write: degrees / 2 / pi .

In case of doubt, use parentheses!

Let’s see what happens when we evaluate the following expressions. Just run the cell to check the resulting value.

Floor Division and Modulus Operators #

The floor division operator // divides two numbers and rounds down to an integer.

For example, suppose that driving to the south of France takes 555 minutes. You might want to know how long that is in hours.

Conventional division returns a floating-point number.

Hours are normally not represented with decimal points. Floor division returns the integer number of hours, dropping the fraction part.

You spend around 225 minutes every week on programming activities. You want to know around how many hours you invest to this activity during a month. Use the \(//\) operator to give the answer.

The modulus operator % works on integer values. It computes the remainder when dividing the first integer by the second one.

The modulus operator is more useful than it seems.

For example, you can check whether one number is divisible by another—if x % y is zero, then x is divisible by y .

String Operations #

In general, you cannot perform mathematical operations on strings, even if the strings look like numbers, so the following operations are illegal: '2'-'1' 'eggs'/'easy' 'third'*'a charm'

But there are two exceptions, + and * .

The + operator performs string concatenation, which means it joins the strings by linking them end-to-end.

The * operator also works on strings; it performs repetition.

Speedy Gonzales is a cartoon known to be the fastest mouse in all Mexico . He is also famous for saying “Arriba Arriba Andale Arriba Arriba Yepa”. Can you use the following variables, namely arriba , andale and yepa to print the mentioned expression? Don’t forget to use the string operators.

Asking the User for Input #

The programs we have written so far accept no input from the user.

To get data from the user through the Python prompt, we can use the built-in function input .

When input is called your whole program stops and waits for the user to enter the required data. Once the user types the value and presses Return or Enter , the function returns the input value as a string and the program continues with its execution.

Try it out!

You can also print a message to clarify the purpose of the required input as follows.

The resulting string can later be translated to a different type, like an integer or a float. To do so, you use the functions int and float , respectively. But be careful, the user might introduce a value that cannot be converted to the type you required.

We want to know the name of a user so we can display a welcome message in our program. The message should say something like “Hello \(name\) , welcome to our hello world program!”.

Script Mode #

So far we have run Python in interactive mode in these Jupyter notebooks, which means that you interact directly with the interpreter in the code cells . The interactive mode is a good way to get started, but if you are working with more than a few lines of code, it can be clumsy. The alternative is to save code in a file called a script and then run the interpreter in script mode to execute the script. By convention, Python scripts have names that end with .py .

Use the PyCharm icon in Anaconda Navigator to create and execute stand-alone Python scripts. Later in the course, you will have to work with Python projects for the assignments, in order to get acquainted with another way of interacing with Python code.

This Jupyter Notebook is based on Chapter 2 of the books Python for Everybody [ Sev16 ] and Think Python (Sections 5.1, 7.1, 7.2, and 5.12) [ Dow15 ] .

Python Variables – The Complete Beginner's Guide

Variables are an essential part of Python. They allow us to easily store, manipulate, and reference data throughout our projects.

This article will give you all the understanding of Python variables you need to use them effectively in your projects.

If you want the most convenient way to review all the topics covered here, I've put together a helpful cheatsheet for you right here:

Download the Python variables cheatsheet (it takes 5 seconds).

What is a Variable in Python?

So what are variables and why do we need them?

Variables are essential for holding onto and referencing values throughout our application. By storing a value into a variable, you can reuse it as many times and in whatever way you like throughout your project.

You can think of variables as boxes with labels, where the label represents the variable name and the content of the box is the value that the variable holds.

In Python, variables are created the moment you give or assign a value to them.

How Do I Assign a Value to a Variable?

Assigning a value to a variable in Python is an easy process.

You simply use the equal sign = as an assignment operator, followed by the value you want to assign to the variable. Here's an example:

In this example, we've created two variables: country and year_founded. We've assigned the string value "United States" to the country variable and integer value 1776 to the year_founded variable.

There are two things to note in this example:

  • Variables in Python are case-sensitive . In other words, watch your casing when creating variables, because Year_Founded will be a different variable than year_founded even though they include the same letters
  • Variable names that use multiple words in Python should be separated with an underscore _ . For example, a variable named "site name" should be written as "site_name" . This convention is called snake case (very fitting for the "Python" language).

How Should I Name My Python Variables?

There are some rules to follow when naming Python variables.

Some of these are hard rules that must be followed, otherwise your program will not work, while others are known as conventions . This means, they are more like suggestions.

Variable naming rules

  • Variable names must start with a letter or an underscore _ character.
  • Variable names can only contain letters, numbers, and underscores.
  • Variable names cannot contain spaces or special characters.

Variable naming conventions

  • Variable names should be descriptive and not too short or too long.
  • Use lowercase letters and underscores to separate words in variable names (known as "snake_case").

What Data Types Can Python Variables Hold?

One of the best features of Python is its flexibility when it comes to handling various data types.

Python variables can hold various data types, including integers, floats, strings, booleans, tuples and lists:

Integers are whole numbers, both positive and negative.

Floats are real numbers or numbers with a decimal point.

Strings are sequences of characters, namely words or sentences.

Booleans are True or False values.

Lists are ordered, mutable collections of values.

Tuples are ordered, immutable collections of values.

There are more data types in Python, but these are the most common ones you will encounter while working with Python variables.

Python is Dynamically Typed

Python is what is known as a dynamically-typed language. This means that the type of a variable can change during the execution of a program.

Another feature of dynamic typing is that it is not necessary to manually declare the type of each variable, unlike other programming languages such as Java.

You can use the type() function to determine the type of a variable. For instance:

What Operations Can Be Performed?

Variables can be used in various operations, which allows us to transform them mathematically (if they are numbers), change their string values through operations like concatenation, and compare values using equality operators.

Mathematic Operations

It's possible to perform basic mathematic operations with variables, such as addition, subtraction, multiplication, and division:

It's also possible to find the remainder of a division operation by using the modulus % operator as well as create exponents using the ** syntax:

String operators

Strings can be added to one another or concatenated using the + operator.

Equality comparisons

Values can also be compared in Python using the < , > , == , and != operators.

These operators, respectively, compare whether values are less than, greater than, equal to, or not equal to each other.

Finally, note that when performing operations with variables, you need to ensure that the types of the variables are compatible with each other.

For example, you cannot directly add a string and an integer. You would need to convert one of the variables to a compatible type using a function like str() or int() .

Variable Scope

The scope of a variable refers to the parts of a program where the variable can be accessed and modified. In Python, there are two main types of variable scope:

Global scope : Variables defined outside of any function or class have a global scope. They can be accessed and modified throughout the program, including within functions and classes.

Local scope : Variables defined within a function or class have a local scope. They can only be accessed and modified within that function or class.

In this example, attempting to access local_var outside of the function_with_local_var function results in a NameError , as the variable is not defined in the global scope.

Don't be afraid to experiment with different types of variables, operations, and scopes to truly grasp their importance and functionality. The more you work with Python variables, the more confident you'll become in applying these concepts.

Finally, if you want to fully learn all of these concepts, I've put together for you a super helpful cheatsheet that summarizes everything we've covered here.

Just click the link below to grab it for free. Enjoy!

Download the Python variables cheatsheet

Become a Professional React Developer

React is hard. You shouldn't have to figure it out yourself.

I've put everything I know about React into a single course, to help you reach your goals in record time:

Introducing: The React Bootcamp

It’s the one course I wish I had when I started learning React.

Click below to try the React Bootcamp for yourself:

Click to join the React Bootcamp

Full stack developer sharing everything I know.

If this article was helpful, share it .

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

assignment in python variables

The biomedical informatics hub's Introduction to Python workshop pages

© 2019. All rights reserved.

python-intro

Variables & the assignment operator, `=`.

The last exercise in particular would have been much cleaner if we had a way of referring to that particular string instead of having to write it all out several times!

This is one of the basic use-cases of variables !

A variable is a way of keeping a handle on data. Variables can hold numerical or string data that we’ve encountered so far, as well any other type of data, as we’ll see later.

In order to create a variable in python, we use the assignment operator , = i.e. the equals sign.

For example

Naming variables

You are free to choose any name for a variable that you wish . The only exceptions are that the variable name cannot contain spaces or other special characters, and cannot correspond to a special python keyword like if , else , or for , as these are reserved for special operations.

While not being illegal ( illegal in programming means that it will give an error), you are also strongly advised to not over-write built-in function names.

For example it is technically legal to name a variable print ! However, you would then overwrite the print function and no longer be able to print things to the terminal!

Python variables are case-sensitive , so a variable called a cannot be referred to as A , and a variable called MyNumber is not the same as mynumber !

Note on variables vs the data they hold

New programmers are sometimes confused by variables vs the data they contain, especially when it comes to string variables.

For example, the following are all valid variable assignments

  • one = "1" - a variable called one that holds the single-character string “1”
  • one = 1 - a variable called one that holds the number 1
  • OnE = "one" - a variable called OnE that holds the string “one”

Using variables

Once a variable has been assigned, we can manipulate its data in exactly the same way as if we were dealing with the data (number, string, etc) directly.

would both output Bloggs .

What happened here?

  • In the first line we assigned the string "Joe Bloggs" to the variable somename .
  • Then in the second line, we access the last 6 characters of the string using the slicing that we learned about above, and print it to the terminal.

Exercise : Basic variable usage

Write a script (name the file exercise_variables.py ) and create a variable (give it any name you like!) that contains the string

Then create a second variable that contains the text

Now use the replace member-function to replace “lazy dog” with the contents of the second variable and assign the result into a third variable. Remember that a member-function is called using the

Lastly print out all three variables.

Variables exercise

The new part of this exercise is using the assignment operator; e.g.

Most of the other functionality has been covered before!

Variables exercise answer

The following example achieves each of the steps:

Here I’ve used very short and simple variable names, a , b , c - but usually a balance between simplicity and readabilty is best!

If this were part of a big script and saw variable a , b , and c , we wouldn’t have a clue what they meant.

Instead, we could use, for example input_text , replacement , and result_text . Then if we read the script again in a year’s time, (or if our collaborator reads it) there’s a much better chance that we (/ he/she) will understand it.

The output of the script should be

More assignment operators

Along with the standard assignment operator, = , Python has additional extensions that provide shorthand ways to assign values into a variable.

For example (rhs = right hand side)

  • += : add the rhs to the variable; a += 10 is the same as a = a + 10
  • *= : multiply rhs by the variable; a *= 2 is the same as a = a * 2
  • /= : divide variable by rhs; a /= 4 is the same as a = a/4

Where appropriate, this also applies to string data, e.g.

would output Some text .

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

Multiple assignment in Python: Assign multiple values or the same value to multiple variables

In Python, the = operator is used to assign values to variables.

You can assign values to multiple variables in one line.

Assign multiple values to multiple variables

Assign the same value to multiple variables.

You can assign multiple values to multiple variables by separating them with commas , .

You can assign values to more than three variables, and it is also possible to assign values of different data types to those variables.

When only one variable is on the left side, values on the right side are assigned as a tuple to that variable.

If the number of variables on the left does not match the number of values on the right, a ValueError occurs. You can assign the remaining values as a list by prefixing the variable name with * .

For more information on using * and assigning elements of a tuple and list to multiple variables, see the following article.

  • Unpack a tuple and list in Python

You can also swap the values of multiple variables in the same way. See the following article for details:

  • Swap values ​​in a list or values of variables in Python

You can assign the same value to multiple variables by using = consecutively.

For example, this is useful when initializing multiple variables with the same value.

After assigning the same value, you can assign a different value to one of these variables. As described later, be cautious when assigning mutable objects such as list and dict .

You can apply the same method when assigning the same value to three or more variables.

Be careful when assigning mutable objects such as list and dict .

If you use = consecutively, the same object is assigned to all variables. Therefore, if you change the value of an element or add a new element in one variable, the changes will be reflected in the others as well.

If you want to handle mutable objects separately, you need to assign them individually.

after c = []; d = [] , c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object to both c and d .) 3. Data model — Python 3.11.3 documentation

You can also use copy() or deepcopy() from the copy module to make shallow and deep copies. See the following article.

  • Shallow and deep copy in Python: copy(), deepcopy()

Related Categories

Related articles.

  • NumPy: arange() and linspace() to generate evenly spaced values
  • Chained comparison (a < x < b) in Python
  • pandas: Get first/last n rows of DataFrame with head() and tail()
  • pandas: Filter rows/columns by labels with filter()
  • Get the filename, directory, extension from a path string in Python
  • Sign function in Python (sign/signum/sgn, copysign)
  • How to flatten a list of lists in Python
  • None in Python
  • Create calendar as text, HTML, list in Python
  • NumPy: Insert elements, rows, and columns into an array with np.insert()
  • Shuffle a list, string, tuple in Python (random.shuffle, sample)
  • Add and update an item in a dictionary in Python
  • Cartesian product of lists in Python (itertools.product)
  • Remove a substring from a string in Python
  • pandas: Extract rows that contain specific strings from a DataFrame
  • Python »
  • 3.12.2 Documentation »
  • The Python Language Reference »
  • 7. Simple statements
  • Theme Auto Light Dark |

7. Simple statements ¶

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is:

7.1. Expression statements ¶

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a function that returns no meaningful result; in Python, procedures return the value None ). Other uses of expression statements are allowed and occasionally useful. The syntax for an expression statement is:

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None , it is converted to a string using the built-in repr() function and the resulting string is written to standard output on a line by itself (except if the result is None , so that procedure calls do not cause any output.)

7.2. Assignment statements ¶

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

(See section Primaries for the syntax definitions for attributeref , subscription , and slicing .)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy ).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as follows.

If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that target.

If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be an iterable with at least as many items as there are targets in the target list, minus one. The first items of the iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned to the starred target (the list can be empty).

Else: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

If the name does not occur in a global or nonlocal statement in the current code block: the name is bound to the object in the current local namespace.

Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by nonlocal , respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not necessarily AttributeError ).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator, the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a class attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

This description does not necessarily apply to descriptor attributes, such as properties created with property() .

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2] :

The specification for the *target feature.

7.2.1. Augmented assignment statements ¶

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed in-place , meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For example, a[i] += f(x) first looks-up a[i] , then it evaluates f(x) and performs the addition, and lastly, it writes the result back to a[i] .

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assignments.

7.2.2. Annotated assignment statements ¶

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement:

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution, if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations (where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target except for the last __setitem__() or __setattr__() call.

The proposal that added syntax for annotating the types of variables (including class variables and instance variables), instead of expressing them through comments.

The proposal that added the typing module to provide a standard syntax for type annotations that can be used in static analysis tools and IDEs.

Changed in version 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3. The assert statement ¶

Assert statements are a convenient way to insert debugging assertions into a program:

The simple form, assert expression , is equivalent to

The extended form, assert expression1, expression2 , is equivalent to

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when optimization is requested (command line option -O ). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4. The pass statement ¶

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed, for example:

7.5. The del statement ¶

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

7.6. The return statement ¶

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None ) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous generator function.

7.7. The yield statement ¶

A yield statement is semantically equivalent to a yield expression . The yield statement can be used to omit the parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

are equivalent to the yield expression statements

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8. The raise statement ¶

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the active exception . If there isn’t currently an active exception, a RuntimeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of BaseException . If it is a class, the exception instance will be obtained when needed by instantiating the class with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the __traceback__ attribute. You can create an exception and set your own traceback in one step using the with_traceback() exception method (which returns the same exception instance, with its traceback set to its argument), like so:

The from clause is used for exception chaining: if given, the second expression must be another exception class or instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception instance will be attached to the raised exception as the __cause__ attribute. If the raised exception is not handled, both exceptions will be printed:

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An exception may be handled when an except or finally clause, or a with statement, is used. The previous exception is then attached as the new exception’s __context__ attribute:

Exception chaining can be explicitly suppressed by specifying None in the from clause:

Additional information on exceptions can be found in section Exceptions , and information about handling exceptions is in section The try statement .

Changed in version 3.3: None is now permitted as Y in raise X from Y .

Added the __suppress_context__ attribute to suppress automatic display of the exception context.

Changed in version 3.11: If the traceback of the active exception is modified in an except clause, a subsequent raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback it had when it was caught.

7.9. The break statement ¶

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break , the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the loop.

7.10. The continue statement ¶

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed before really starting the next loop cycle.

7.11. The import statement ¶

The basic import statement (no from clause) is executed in two steps:

find a module, loading and initializing it if necessary

define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system , which also describes the various types of packages and modules that can be imported, as well as all the hooks that can be used to customize the import system. Note that failures in this step may indicate either that the module could not be located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:

If the module name is followed by as , then the name following as is bound directly to the imported module.

If no other name is specified, and the module being imported is a top level module, the module’s name is bound in the local namespace as a reference to the imported module

If the module being imported is not a top level module, then the name of the top level package that contains the module is bound in the local namespace as a reference to the top level package. The imported module must be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

find the module specified in the from clause, loading and initializing it if necessary;

for each of the identifiers specified in the import clauses:

check if the imported module has an attribute by that name

if not, attempt to import a submodule with that name and then check the imported module again for that attribute

if the attribute is not found, ImportError is raised.

otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is present, otherwise using the attribute name

If the list of identifiers is replaced by a star ( '*' ), all public names defined in the module are bound in the local namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named __all__ ; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not begin with an underscore character ( '_' ). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to use it in class or function definitions will raise a SyntaxError .

When specifying what module to import you do not have to specify the absolute name of the module. When a module or package is contained within another package it is possible to make a relative import within the same top package without having to mention the package name. By using leading dots in the specified module or package after from you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means the current package where the module making the import exists. Two dots means up one package level. Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up importing pkg.mod . If you execute from ..subpkg2 import mod from within pkg.subpkg1 you will import pkg.subpkg2.mod . The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to be loaded.

Raises an auditing event import with arguments module , filename , sys.path , sys.meta_path , sys.path_hooks .

7.11.1. Future statements ¶

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

the module docstring (if any),

blank lines, and

other future statements.

The only feature that requires using the future statement is annotations (see PEP 563 ).

All historical features enabled by the future statement are still recognized by Python 3. The list includes absolute_import , division , generators , generator_stop , unicode_literals , print_function , nested_scopes and with_statement . They are all redundant because they are always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are often implemented by generating different code. It may even be the case that a new feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__ , described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled by optional arguments to compile() — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it will be in effect in the interactive session started after the script is executed.

The original proposal for the __future__ mechanism.

7.12. The global statement ¶

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global , although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or except clauses, or in a for target list, class definition, function definition, import statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global statement. In particular, a global statement contained in a string or code object supplied to the built-in exec() function does not affect the code block containing the function call, and code contained in such a string is unaffected by global statements in the code containing the function call. The same applies to the eval() and compile() functions.

7.13. The nonlocal statement ¶

When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a variable is used or assigned to prior to its nonlocal declaration in the scope.

The specification for the nonlocal statement.

Programmer’s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the note for the global statement.

7.14. The type statement ¶

The type statement declares a type alias, which is an instance of typing.TypeAliasType .

For example, the following statement creates a type alias:

This code is roughly equivalent to:

annotation-def indicates an annotation scope , which behaves mostly like a function, but with several small differences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but only when the value is accessed through the type alias’s __value__ attribute (see Lazy evaluation ). This allows the type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.

type is a soft keyword .

New in version 3.12.

Introduced the type statement and syntax for generic classes and functions.

Table of Contents

  • 7.1. Expression statements
  • 7.2.1. Augmented assignment statements
  • 7.2.2. Annotated assignment statements
  • 7.3. The assert statement
  • 7.4. The pass statement
  • 7.5. The del statement
  • 7.6. The return statement
  • 7.7. The yield statement
  • 7.8. The raise statement
  • 7.9. The break statement
  • 7.10. The continue statement
  • 7.11.1. Future statements
  • 7.12. The global statement
  • 7.13. The nonlocal statement
  • 7.14. The type statement

Previous topic

6. Expressions

8. Compound statements

  • Report a Bug
  • Show Source
  • Free Python 3 Tutorial
  • Control Flow
  • Exception Handling
  • Python Programs
  • Python Projects
  • Python Interview Questions
  • Python Database
  • Data Science With Python
  • Machine Learning with Python
  • Solve Coding Problems
  • How to perform modulo with negative values in Python?
  • Python - Iterate through list without using the increment variable
  • How to install Python Pycharm on Windows?
  • Working with Binary Data in Python
  • Primary and secondary prompt in Python
  • Python Docstrings
  • Understanding the Execution of Python Program
  • is keyword in Python
  • Difference between continue and pass statements in Python
  • break, continue and pass in Python
  • Indentation in Python
  • Use of nonlocal vs use of global keyword in Python
  • Python assert keyword
  • Difference between Yield and Return in Python
  • Variables under the hood in Python
  • Is Python call by reference or call by value
  • Context Variables in Python
  • Python Scope of Variables
  • Internal working of Python

Different Forms of Assignment Statements in Python

We use Python assignment statements to assign objects to names. The target of an assignment statement is written on the left side of the equal sign (=), and the object on the right can be an arbitrary expression that computes an object.

There are some important properties of assignment in Python :-

  • Assignment creates object references instead of copying the objects.
  • Python creates a variable name the first time when they are assigned a value.
  • Names must be assigned before being referenced.
  • There are some operations that perform assignments implicitly.

Assignment statement forms :-

1. Basic form:

This form is the most common form.

2. Tuple assignment:

When we code a tuple on the left side of the =, Python pairs objects on the right side with targets on the left by position and assigns them from left to right. Therefore, the values of x and y are 50 and 100 respectively.

3. List assignment:

This works in the same way as the tuple assignment.

4. Sequence assignment:

In recent version of Python, tuple and list assignment have been generalized into instances of what we now call sequence assignment – any sequence of names can be assigned to any sequence of values, and Python assigns the items one at a time by position.

5. Extended Sequence unpacking:

It allows us to be more flexible in how we select portions of a sequence to assign.

Here, p is matched with the first character in the string on the right and q with the rest. The starred name (*q) is assigned a list, which collects all items in the sequence not assigned to other names.

This is especially handy for a common coding pattern such as splitting a sequence and accessing its front and rest part.

6. Multiple- target assignment:

In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left.

7. Augmented assignment :

The augmented assignment is a shorthand assignment that combines an expression and an assignment.

There are several other augmented assignment forms:

Please Login to comment...

  • python-basics
  • WhatsApp To Launch New App Lock Feature
  • Top Design Resources for Icons
  • Node.js 21 is here: What’s new
  • Zoom: World’s Most Innovative Companies of 2024
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Python Tutorial

File handling, python modules, python numpy, python pandas, python matplotlib, python scipy, machine learning, python mysql, python mongodb, python reference, module reference, python how to, python examples, python assignment operators.

Assignment operators are used to assign values to variables:

Related Pages

Get Certified

COLOR PICKER

colorpicker

Report Error

If you want to report an error, or if you want to make a suggestion, do not hesitate to send us an e-mail:

[email protected]

Top Tutorials

Top references, top examples, get certified.

assignment in python variables

Hiring? Flexiple helps you build your dream team of  developers   and  designers .

Python Operators

Harsh Pandey

Harsh Pandey

Last updated on 19 Mar 2024

Python, one of the most popular programming languages today, is known for its simplicity and readability. One fundamental aspect of Python that contributes to its ease of use is its operators. Operators are the constructs which can manipulate the value of operands. In this blog, we'll explore the different types of operators available in Python and their applications.

What Are Python Operators?

Operators in Python are special symbols or keywords that are used to perform operations on one or more operands. An operand can be a value, a variable, or an expression. Operators are the building blocks of Python programs and are used to perform tasks like arithmetic calculations, logical comparisons, and memory operations.

Types Of Python Operators

The various types of operators in python are:

  • Arithmetic Operators
  • Comparison Operators
  • Logical Operators
  • Bitwise Operators
  • Assignment Operators
  • Identity Operators and Membership Operators

Arithmetic Operators In Python

Arithmetic operators in Python are used to perform basic mathematical operations and are fundamental to any kind of numerical manipulation in Python programming. These operators include addition (+), subtraction (-), multiplication (*), division (/), modulus (%), exponentiation (**), and floor division (//).

  • Addition (+) Adds two operands. For example. result = 3 + 2 print(result) # Output: 5
  • Subtraction (-) Subtracts the right operand from the left operand. result = 5 - 3 print(result) # Output: 2
  • Multiplication (*) Multiplies two operands. result = 4 * 3 print(result) # Output: 12
  • Division (/) Divides the left operand by the right operand. The result is a floating-point number. result = 8 / 2 print(result) # Output: 4.0
  • Modulus (%) Returns the remainder of the division. result = 5 % 2 print(result) # Output: 1
  • Exponentiation (**) Raises the first operand to the power of the second operand. result = 3 ** 2 print(result) # Output: 9
  • Floor Division (//) Performs division but discards the fractional part, returning an integer result. result = 7 // 2 print(result) # Output: 3

Understanding these arithmetic operators is essential for anyone beginning with Python, as they are used widely in various types of numerical calculations and data manipulation tasks.

Comparison Operators In Python

Comparison operators in Python are used to compare values. They evaluate to either True or False based on the condition. These operators are essential in decision-making processes in Python scripts.

  • Equal to (==) Checks if the values of two operands are equal. print(5 == 5) # Output: True print(5 == 3) # Output: False
  • Not Equal to (!=) Checks if the values of two operands are not equal. print(5 != 3) # Output: True print(5 != 5) # Output: False
  • Greater than (>) Checks if the value of the left operand is greater than the right operand. print(5 > 3) # Output: True print(3 > 5) # Output: False
  • Less than (<) Checks if the value of the left operand is less than the right operand. print(3 < 5) # Output: True print(5 < 3) # Output: False
  • Greater than or Equal to (>=) Checks if the left operand is greater than or equal to the right operand. print(5 >= 5) # Output: True print(4 >= 5) # Output: False
  • Less than or Equal to (<=) Checks if the left operand is less than or equal to the right operand. print(3 <= 5) # Output: True print(5 <= 3) # Output: False

Understanding these comparison operators is crucial for controlling the flow of a Python program, as they are commonly used in conditional statements and loops to evaluate conditions and make decisions.

Logical Operators In Python

Logical operators in Python are used to combine conditional statements, and they are fundamental in controlling the flow of logic in Python code. These operators include and, or, and not, each serving a specific purpose in evaluating conditions.

  • and Operator The and operator returns True if both the operands (conditions) are true. print((5 > 3) and (5 > 4)) # Output: True print((5 > 3) and (5 < 4)) # Output: False
  • or Operator The or operator returns True if at least one of the operands is true. print((5 > 3) or (5 < 4)) # Output: True print((5 < 3) or (5 < 4)) # Output: False
  • not Operator The not operator reverses the result of the condition. It returns True if the condition is false and vice versa. print(not(5 > 3)) # Output: False print(not(5 < 3)) # Output: True

Logical operators are integral in Python for building complex logical expressions, making them essential in decision-making structures like if-else statements and loops.

Bitwise Operators In Python

Bitwise operators in Python are used to perform operations on binary numbers at the bit level. These operators are essential for manipulating individual bits and performing bit-by-bit operations.

  • AND Operator (&) The & operator performs a bitwise AND, where each bit of the output is 1 if both corresponding bits of the operand are 1. print(5 & 3) # Output: 1
  • OR Operator (|) The | operator performs a bitwise OR, where each bit of the output is 1 if at least one of the corresponding bits of the operands is 1. print(5 | 3) # Output: 7
  • XOR Operator (^) The ^ operator performs a bitwise XOR, where each bit of the output is 1 if the corresponding bits of the operands are different. print(5 ^ 3) # Output: 6
  • NOT Operator (~) The ~ operator performs a bitwise NOT, inverting each bit of the number. print(~5) # Output: -6
  • Shift Operators Left Shift (<<): Shifts the bits of the number to the left and fills 0 on voids left as a result. The left operand specifies the value to be shifted, and the right operand specifies the number of positions to shift. print(5 << 1) # Output: 10 Right Shift (>>): Shifts the bits of the number to the right. The left operand specifies the value to be shifted, and the right operand specifies the number of positions to shift. print(5 >> 1) # Output: 2

Bitwise operators are particularly useful in low-level programming, such as device driver writing or protocol development, where manipulation of data at the bit level is crucial.

Assignment Operator In Python

Assignment operators in Python are used to assign values to variables. These operators make the code more concise and improve its readability by combining arithmetic operations with assignment.

  • The Basic Assignment Operator (=) The = operator assigns the value on the right to the variable on the left. x = 10 print(x) # Output: 10
  • Compound Assignment Operators These operators combine assignment with other operations. Add and Assign (+=): Adds the right operand to the left operand and assigns the result to the left operand. x = 5 x += 3 # Same as x = x + 3 print(x) # Output: 8 Subtract and Assign (-=): Subtracts the right operand from the left operand and assigns the result to the left operand. x = 5 x -= 3 # Same as x = x - 3 print(x) # Output: 2 Multiply and Assign (*=): Multiplies the right operand with the left operand and assigns the result to the left operand. x = 5 x *= 3 # Same as x = x * 3 print(x) # Output: 15 Divide and Assign (/=): Divides the left operand by the right operand and assigns the result to the left operand. x = 10 x /= 2 # Same as x = x / 2 print(x) # Output: 5.0

Assignment operators are essential in Python for variable manipulation, simplifying expressions, and making code more efficient and easier to understand.

Identity Operators And Membership Operators In Python

Identity and Membership operators in Python are used to compare the identity of objects and check for membership within data structures, respectively.

Identity Operators

Identity operators compare the memory locations of two objects. There are two identity operators in Python: is and is not.

  • is: Evaluates to true if the variables on either side of the operator point to the same object. x = ["apple", "banana"] y = x print(x is y) # Output: True
  • is not: Evaluates to true if the variables on either side of the operator do not point to the same object. x = ["apple", "banana"] y = ["apple", "banana"] print(x is not y) # Output: True

Membership Operators

Membership operators test if a sequence is presented in an object. The two membership operators in Python are in and not in.

  • in: Returns True if a sequence with the specified value is present in the object. x = ["apple", "banana"] print("banana" in x) # Output: True
  • not in: Returns True if a sequence with the specified value is not present in the object. print("cherry" not in x) # Output: True

Identity and Membership operators are crucial in Python for validating the identity of objects and checking for the presence of elements within various data structures like lists, tuples, and strings. They are widely used in conditional statements and loops to enhance the logic and functionality of Python scripts.

Operators in Python are essential for performing various operations on data. Understanding these operators and their applications is crucial for anyone looking to master Python programming. Whether it's for data manipulation, arithmetic calculations, or logical comparisons, Python operators provide a simple yet powerful tool for developers.

Work with top startups & companies. Get paid on time.

Try a top quality developer for 7 days. pay only if satisfied..

// Find jobs by category

You've got the vision, we help you create the best squad. Pick from our highly skilled lineup of the best independent engineers in the world.

  • Ruby on Rails
  • Elasticsearch
  • Google Cloud
  • React Native
  • Contact Details
  • 2093, Philadelphia Pike, DE 19703, Claymont
  • [email protected]
  • Explore jobs
  • We are Hiring!
  • Write for us
  • 2093, Philadelphia Pike DE 19703, Claymont

Copyright @ 2024 Flexiple Inc

My first coding assignment in Python

I am having major issues with a simple assignment for school. I need to know what is wrong with this code. Error: File “/home/runner/work/9780357880876_pld-10e-python-145ba7d2-9f0b-4116-afd3-3be7dea0c8ae/9780357880876_pld-10e-python-145ba7d2-9f0b-4116-afd3-3be7dea0c8ae/Programming.py”, line 1 $ python /workspaces/9780357880876-pld-10e-python-145ba7d2-9f0b-4116-afd3-3be7dea0c8ae/chapter1/ex01/student/Programming.py ^ SyntaxError: invalid decimal literal

Timestamp: 2024-03-23 21:23:35.469897

Task 2: Modify the Python program so it prints two lines of output. Add a second output statement that displays That’s awesome!. Execute the program.

An example of the program is shown below:

I’m learning how to program in Python. That’s awesome!

I tried to refresh in order to obtain the original task in the terminal area, but it didn’t work for me

Open the file in your editor or IDE and look at line 1 of the file. Is it valid python code?

My guess is that /home/runner/work/9780357880876_pld-10e-python-145ba7d2-9f0b-4116-afd3-3be7dea0c8ae/9780357880876_pld-10e-python-145ba7d2-9f0b-4116-afd3-3be7dea0c8ae/Programming.py contains the text

If so then that looks like the start of a tutorial and not the python code itself.

When pasting code and output here use the </> button that will include the text as pre-formmmated text like this:

Please start by reading the pinned thread in order to understand how to make code show up with proper formatting. It’s important to view the code with a monospace font and the proper indentation. The forum software doesn’t know it’s code unless you mark it up, and the result can’t be properly read or understood.

Next, make sure to use complete English sentences in order to explain clearly what steps you take in order to try creating and running the program. We need to be able to understand what parts are code that you typed; what parts are your understanding of the actions you’re taking; what parts are what the assignment says; and what parts are things that you see on the screen (aside from what you actually typed).

It’s especially important to understand the environment that you used to try to write the code. For example, did you open a text editor and start writing code in a new file? Did you use the interactive Python prompt (by running python in a command window)? Are you using an IDE (a program for editing code - such as IDLE, which comes with Python, or PyCharm, or VSCode, or Spyder, etc.? Which one?)? Something else?

thank you so much!

Screenshot 2024-03-24 150722

Well, first and foremost thing: never, ever post screenshots of your program. If you are asking about your program, please post the program, not an image of it.

:frowning:

Also, when we are at posting your program: you have also do it in a specific way. Unfortunately the way of how this forum software works requires from you to post it this way:

Place your code between → ``` ← these three backticks (If you can’t find them on your keyboard, just copy them from my post). The backticks must appear alone in a line above and below your code. Like this way:

``` #your code goes there ``` which will result in rendering your code like this:

This is especially important as (you may not know it yet) in Python indentation serves as a part of Python’s grammar so it is crucial for your code to include them. If you post your code without these backticks the software of this forum will mangle your code making it to us as much unusable as if you were post the screenshot again.

:smiley:

@FelixLeg Do you find the pinned topic about formatting lacking? Maybe suggest an improvement then.

Your code looks ok to me in the screenshot. (Though we would normally put each print() on its own line. Not required, just conventional.)

Maybe your error in the right half of the screen is out of date? Do you need to press some “Run code” button?

But the real test for us is running it, and for that the easiest thing is if the code is in your post as text, not as a screenshot.

Please show your code inline as text between code fences. There’s a </> button in the compose bar for making these. Copy/paste the text of the code into that section. The same for error messages.

Cheers, Cameron Simpson [email protected]

Related Topics

IMAGES

  1. Python Variable (Assign value, string Display, multiple Variables & Rules)

    assignment in python variables

  2. Variable Types in Python

    assignment in python variables

  3. #12 Python Tutorial for Beginners

    assignment in python variables

  4. Variable Assignment in Python

    assignment in python variables

  5. #5 Variables, Assignment statements in Python || Python Course 2020

    assignment in python variables

  6. Python Variables and Data Types

    assignment in python variables

VIDEO

  1. Python Variables

  2. Methods in Python

  3. 6 Python Course For Non Programmers Variables Reassignment Values and Display multiple items in p

  4. writing a python program to know all variables types 51dayschallenge @day4 #pythontutorial #coding

  5. Python variables

  6. Python variables and data types explained. Learn Python basics with this this tutorial for beginners

COMMENTS

  1. Variables in Python

    In Python, variables need not be declared or defined in advance, as is the case in many other programming languages. To create a variable, you just assign it a value and then start using it. Assignment is done with a single equals sign ( = ): Python. >>> n = 300. This is read or interpreted as " n is assigned the value 300 .".

  2. Python's Assignment Operator: Write Robust Assignments

    Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal—or an expression that evaluates to a value. To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object.

  3. Variables and Assignment

    Variables and Assignment¶. When programming, it is useful to be able to store information in variables. A variable is a string of characters and numbers associated with a piece of information. The assignment operator, denoted by the "=" symbol, is the operator that is used to assign values to variables in Python.The line x=1 takes the known value, 1, and assigns that value to the variable ...

  4. Variable Assignment

    Variables in PythonMartin Breuss 06:29. Think of a variable as a name attached to a particular object. In Python, variables need not be declared or defined in advance, as is the case in many other programming languages. To create a variable, you just assign it a value and then start using it. Assignment is done with a single equals sign ( = ).

  5. Python Variable Assignment. Explaining One Of The Most Fundamental

    Python supports numbers, strings, sets, lists, tuples, and dictionaries. These are the standard data types. I will explain each of them in detail. Declare And Assign Value To Variable. Assignment sets a value to a variable. To assign variable a value, use the equals sign (=) myFirstVariable = 1 mySecondVariable = 2 myFirstVariable = "Hello You"

  6. Python Variables and Assignment

    A Python variable is a named bit of computer memory, keeping track of a value as the code runs. A variable is created with an "assignment" equal sign =, with the variable's name on the left and the value it should store on the right: x = 42. In the computer's memory, each variable is like a box, identified by the name of the variable.

  7. Variables & Assignment

    As such, we can utilize variables, say name and grade, to serve as placeholders for this information. In this subsection, we will demonstrate how to define variables in Python. In Python, the = symbol represents the "assignment" operator. The variable goes to the left of =, and the object that is being assigned to the variable goes to the ...

  8. Python Variables

    Variable Assignment in Python. Python variables are created when a value is assigned to them using the equals sign (=) operator. For example, the following code snippet assigns the integer value 5 to the variable x: x = 5. From this point forward, whenever x is referenced in the code, it will have the value 5.

  9. How To Use Assignment Expressions in Python

    For example, assignment expressions using the := syntax allow variables to be assigned inside of if statements, which can often produce shorter and more compact sections of Python code by eliminating variable assignments in lines preceding or following the if statement. In this tutorial, you will use assignment expressions in several examples ...

  10. Variables, Expressions, and Assignments

    Variables, Expressions, and Assignments 1 # Introduction # In this chapter, we introduce some of the main building blocks needed to create programs-that is, variables, expressions, and assignments. ... Later in the course, you will have to work with Python projects for the assignments, in order to get acquainted with another way of interacing ...

  11. Python Variables

    Assigning a value to a variable in Python is an easy process. You simply use the equal sign = as an assignment operator, followed by the value you want to assign to the variable. Here's an example: country = "United States". year_founded = 1776. In this example, we've created two variables: country and year_founded.

  12. Variables & the assignment operator, `=` · python-intro

    More assignment operators. Along with the standard assignment operator, =, Python has additional extensions that provide shorthand ways to assign values into a variable. For example (rhs = right hand side) +=: add the rhs to the variable; a += 10 is the same as a = a + 10 *=: multiply rhs by the variable; a *= 2 is the same as a = a * 2

  13. Assignment Operators in Python

    Operators are used to perform operations on values and variables. These are the special symbols that carry out arithmetic, logical, bitwise computations. The value the operator operates on is known as Operand. Here, we will cover Assignment Operators in Python. So, Assignment Operators are used to assigning values to variables.

  14. PEP 572

    Unparenthesized assignment expressions are prohibited for the value of a keyword argument in a call. Example: foo(x = y := f(x)) # INVALID foo(x=(y := f(x))) # Valid, though probably confusing. This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

  15. Multiple assignment in Python: Assign multiple values or the same value

    For more information on using * and assigning elements of a tuple and list to multiple variables, see the following article. Unpack a tuple and list in Python; You can also swap the values of multiple variables in the same way. See the following article for details: Swap values in a list or values of variables in Python

  16. 7. Simple statements

    Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are 'simultaneous' (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

  17. Python Variables

    Python Variables. Python Variable is containers that store values. Python is not "statically typed". We do not need to declare variables before using them or declare their type. A variable is created the moment we first assign a value to it. A Python variable is a name given to a memory location. It is the basic unit of storage in a program.

  18. Python Variables

    Python has no command for declaring a variable. A variable is created the moment you first assign a value to it. Example. x = 5. y = "John". print (x) print (y) Try it Yourself ». Variables do not need to be declared with any particular type, and can even change type after they have been set.

  19. Different Forms of Assignment Statements in Python

    Assignment creates object references instead of copying the objects. Python creates a variable name the first time when they are assigned a value. Names must be assigned before being referenced. There are some operations that perform assignments implicitly. Assignment statement forms :- 1. Basic form:

  20. Python Assignment Operators

    Python Assignment Operators. Assignment operators are used to assign values to variables: Operator. Example. Same As. Try it. =. x = 5. x = 5.

  21. Python Variable assignment in a for loop

    print(x) (Note I expanded x += 3 to x = x + 3 to increase visibility for the name accesses - read and write.) First, you bind the list [1, 2, 3] to the name a. Then, you iterate over the list. During each iteration, the value is bound to the name x in the current scope. Your assignment then assigns another value to x.

  22. Why variable assignment behaves differently in Python?

    Integers are not mutable.So the only way to change a variable that is assigned to an integer is through assignment. When you assign m=n, m is assigned to the same address that n currently is assigned. Both m and n refer to the address of the integer 1.m will continue to point to 1 even if n is assigned to a different value be it an integer or something else entirely.

  23. Best Practices for Variable Assignments in Python

    Source: Internet. Variables are the building blocks of any program, allowing you to store and manipulate data. However, writing clean and maintainable code in Python goes beyond just using ...

  24. Python Operators

    Assignment operators in Python are used to assign values to variables. These operators make the code more concise and improve its readability by combining arithmetic operations with assignment. The Basic Assignment Operator (=) The = operator assigns the value on the right to the variable on the left. x = 10 print(x) # Output: 10

  25. Operators: What Role Do They Play in Programming?

    In Python, operators are symbols that perform specific tasks. The operator you choose for any operation changes the results, allowing you to manipulate operands' values. ... If you have programming experience and want to brush up on operators, complete a Guided Project like JavaScript Variables and Assignment Operators on Coursera Project ...

  26. My first coding assignment in Python

    Please start by reading the pinned thread in order to understand how to make code show up with proper formatting. It's important to view the code with a monospace font and the proper indentation. The forum software doesn't know it's code unless you mark it up, and the result can't be properly read or understood.