• Java Arrays
  • Java Strings
  • Java Collection
  • Java 8 Tutorial
  • Java Multithreading
  • Java Exception Handling
  • Java Programs
  • Java Project
  • Java Collections Interview
  • Java Interview Questions
  • Spring Boot
  • Java Tutorial

Overview of Java

  • Introduction to Java
  • The Complete History of Java Programming Language
  • C++ vs Java vs Python
  • How to Download and Install Java for 64 bit machine?
  • Setting up the environment in Java
  • How to Download and Install Eclipse on Windows?
  • JDK in Java
  • How JVM Works - JVM Architecture?
  • Differences between JDK, JRE and JVM
  • Just In Time Compiler
  • Difference between JIT and JVM in Java
  • Difference between Byte Code and Machine Code
  • How is Java platform independent?

Basics of Java

  • Java Basic Syntax
  • Java Hello World Program
  • Java Data Types
  • Primitive data type vs. Object data type in Java with Examples
  • Java Identifiers

Operators in Java

  • Java Variables
  • Scope of Variables In Java

Wrapper Classes in Java

Input/output in java.

  • How to Take Input From User in Java?
  • Scanner Class in Java
  • Java.io.BufferedReader Class in Java
  • Difference Between Scanner and BufferedReader Class in Java
  • Ways to read input from console in Java
  • System.out.println in Java
  • Difference between print() and println() in Java
  • Formatted Output in Java using printf()
  • Fast I/O in Java in Competitive Programming

Flow Control in Java

  • Decision Making in Java (if, if-else, switch, break, continue, jump)
  • Java if statement with Examples
  • Java if-else
  • Java if-else-if ladder with Examples
  • Loops in Java
  • For Loop in Java
  • Java while loop with Examples
  • Java do-while loop with Examples
  • For-each loop in Java
  • Continue Statement in Java
  • Break statement in Java
  • Usage of Break keyword in Java
  • return keyword in Java
  • Java Arithmetic Operators with Examples
  • Java Unary Operator with Examples

Java Assignment Operators with Examples

  • Java Relational Operators with Examples
  • Java Logical Operators with Examples
  • Java Ternary Operator with Examples
  • Bitwise Operators in Java
  • Strings in Java
  • String class in Java
  • Java.lang.String class in Java | Set 2
  • Why Java Strings are Immutable?
  • StringBuffer class in Java
  • StringBuilder Class in Java with Examples
  • String vs StringBuilder vs StringBuffer in Java
  • StringTokenizer Class in Java
  • StringTokenizer Methods in Java with Examples | Set 2
  • StringJoiner Class in Java
  • Arrays in Java
  • Arrays class in Java
  • Multidimensional Arrays in Java
  • Different Ways To Declare And Initialize 2-D Array in Java
  • Jagged Array in Java
  • Final Arrays in Java
  • Reflection Array Class in Java
  • util.Arrays vs reflect.Array in Java with Examples

OOPS in Java

  • Object Oriented Programming (OOPs) Concept in Java
  • Why Java is not a purely Object-Oriented Language?
  • Classes and Objects in Java
  • Naming Conventions in Java
  • Java Methods

Access Modifiers in Java

  • Java Constructors
  • Four Main Object Oriented Programming Concepts of Java

Inheritance in Java

Abstraction in java, encapsulation in java, polymorphism in java, interfaces in java.

  • 'this' reference in Java
  • Inheritance and Constructors in Java
  • Java and Multiple Inheritance
  • Interfaces and Inheritance in Java
  • Association, Composition and Aggregation in Java
  • Comparison of Inheritance in C++ and Java
  • abstract keyword in java
  • Abstract Class in Java
  • Difference between Abstract Class and Interface in Java
  • Control Abstraction in Java with Examples
  • Difference Between Data Hiding and Abstraction in Java
  • Difference between Abstraction and Encapsulation in Java with Examples
  • Difference between Inheritance and Polymorphism
  • Dynamic Method Dispatch or Runtime Polymorphism in Java
  • Difference between Compile-time and Run-time Polymorphism in Java

Constructors in Java

  • Copy Constructor in Java
  • Constructor Overloading in Java
  • Constructor Chaining In Java with Examples
  • Private Constructors and Singleton Classes in Java

Methods in Java

  • Static methods vs Instance methods in Java
  • Abstract Method in Java with Examples
  • Overriding in Java
  • Method Overloading in Java
  • Difference Between Method Overloading and Method Overriding in Java
  • Differences between Interface and Class in Java
  • Functional Interfaces in Java
  • Nested Interface in Java
  • Marker interface in Java
  • Comparator Interface in Java with Examples
  • Need of Wrapper Classes in Java
  • Different Ways to Create the Instances of Wrapper Classes in Java
  • Character Class in Java
  • Java.Lang.Byte class in Java
  • Java.Lang.Short class in Java
  • Java.lang.Integer class in Java
  • Java.Lang.Long class in Java
  • Java.Lang.Float class in Java
  • Java.Lang.Double Class in Java
  • Java.lang.Boolean Class in Java
  • Autoboxing and Unboxing in Java
  • Type conversion in Java with Examples

Keywords in Java

  • Java Keywords
  • Important Keywords in Java
  • Super Keyword in Java
  • final Keyword in Java
  • static Keyword in Java
  • enum in Java
  • transient keyword in Java
  • volatile Keyword in Java
  • final, finally and finalize in Java
  • Public vs Protected vs Package vs Private Access Modifier in Java
  • Access and Non Access Modifiers in Java

Memory Allocation in Java

  • Java Memory Management
  • How are Java objects stored in memory?
  • Stack vs Heap Memory Allocation
  • How many types of memory areas are allocated by JVM?
  • Garbage Collection in Java
  • Types of JVM Garbage Collectors in Java with implementation details
  • Memory leaks in Java
  • Java Virtual Machine (JVM) Stack Area

Classes of Java

  • Understanding Classes and Objects in Java
  • Singleton Method Design Pattern in Java
  • Object Class in Java
  • Inner Class in Java
  • Throwable Class in Java with Examples

Packages in Java

  • Packages In Java
  • How to Create a Package in Java?
  • Java.util Package in Java
  • Java.lang package in Java
  • Java.io Package in Java
  • Java Collection Tutorial

Exception Handling in Java

  • Exceptions in Java
  • Types of Exception in Java with Examples
  • Checked vs Unchecked Exceptions in Java
  • Java Try Catch Block
  • Flow control in try catch finally in Java
  • throw and throws in Java
  • User-defined Custom Exception in Java
  • Chained Exceptions in Java
  • Null Pointer Exception In Java
  • Exception Handling with Method Overriding in Java
  • Multithreading in Java
  • Lifecycle and States of a Thread in Java
  • Java Thread Priority in Multithreading
  • Main thread in Java
  • Java.lang.Thread Class in Java
  • Runnable interface in Java
  • Naming a thread and fetching name of current thread in Java
  • What does start() function do in multithreading in Java?
  • Difference between Thread.start() and Thread.run() in Java
  • Thread.sleep() Method in Java With Examples
  • Synchronization in Java
  • Importance of Thread Synchronization in Java
  • Method and Block Synchronization in Java
  • Lock framework vs Thread synchronization in Java
  • Difference Between Atomic, Volatile and Synchronized in Java
  • Deadlock in Java Multithreading
  • Deadlock Prevention And Avoidance
  • Difference Between Lock and Monitor in Java Concurrency
  • Reentrant Lock in Java

File Handling in Java

  • Java.io.File Class in Java
  • Java Program to Create a New File
  • Different ways of Reading a text file in Java
  • Java Program to Write into a File
  • Delete a File Using Java
  • File Permissions in Java
  • FileWriter Class in Java
  • Java.io.FileDescriptor in Java
  • Java.io.RandomAccessFile Class Method | Set 1
  • Regular Expressions in Java
  • Regex Tutorial - How to write Regular Expressions?
  • Matcher pattern() method in Java with Examples
  • Pattern pattern() method in Java with Examples
  • Quantifiers in Java
  • java.lang.Character class methods | Set 1
  • Java IO : Input-output in Java with Examples
  • Java.io.Reader class in Java
  • Java.io.Writer Class in Java
  • Java.io.FileInputStream Class in Java
  • FileOutputStream in Java
  • Java.io.BufferedOutputStream class in Java
  • Java Networking
  • TCP/IP Model
  • User Datagram Protocol (UDP)
  • Differences between IPv4 and IPv6
  • Difference between Connection-oriented and Connection-less Services
  • Socket Programming in Java
  • java.net.ServerSocket Class in Java
  • URL Class in Java with Examples

JDBC - Java Database Connectivity

  • Introduction to JDBC (Java Database Connectivity)
  • JDBC Drivers
  • Establishing JDBC Connection in Java
  • Types of Statements in JDBC
  • JDBC Tutorial
  • Java 8 Features - Complete Tutorial

Operators constitute the basic building block of any programming language. Java too provides many types of operators which can be used according to the need to perform various calculations and functions, be it logical, arithmetic, relational, etc. They are classified based on the functionality they provide.

Types of Operators: 

  • Arithmetic Operators
  • Unary Operators
  • Assignment Operator
  • Relational Operators
  • Logical Operators
  • Ternary Operator
  • Bitwise Operators
  • Shift Operators

This article explains all that one needs to know regarding Assignment Operators. 

Assignment Operators

These operators are used to assign values to a variable. The left side operand of the assignment operator is a variable, and the right side operand of the assignment operator is a value. The value on the right side must be of the same data type of the operand on the left side. Otherwise, the compiler will raise an error. This means that the assignment operators have right to left associativity, i.e., the value given on the right-hand side of the operator is assigned to the variable on the left. Therefore, the right-hand side value must be declared before using it or should be a constant. The general format of the assignment operator is, 

Types of Assignment Operators in Java

The Assignment Operator is generally of two types. They are:

1. Simple Assignment Operator: The Simple Assignment Operator is used with the “=” sign where the left side consists of the operand and the right side consists of a value. The value of the right side must be of the same data type that has been defined on the left side.

2. Compound Assignment Operator: The Compound Operator is used where +,-,*, and / is used along with the = operator.

Let’s look at each of the assignment operators and how they operate: 

1. (=) operator: 

This is the most straightforward assignment operator, which is used to assign the value on the right to the variable on the left. This is the basic definition of an assignment operator and how it functions. 

Syntax:  

Example:  

2. (+=) operator: 

This operator is a compound of ‘+’ and ‘=’ operators. It operates by adding the current value of the variable on the left to the value on the right and then assigning the result to the operand on the left. 

Note: The compound assignment operator in Java performs implicit type casting. Let’s consider a scenario where x is an int variable with a value of 5. int x = 5; If you want to add the double value 4.5 to the integer variable x and print its value, there are two methods to achieve this: Method 1: x = x + 4.5 Method 2: x += 4.5 As per the previous example, you might think both of them are equal. But in reality, Method 1 will throw a runtime error stating the “i ncompatible types: possible lossy conversion from double to int “, Method 2 will run without any error and prints 9 as output.

Reason for the Above Calculation

Method 1 will result in a runtime error stating “incompatible types: possible lossy conversion from double to int.” The reason is that the addition of an int and a double results in a double value. Assigning this double value back to the int variable x requires an explicit type casting because it may result in a loss of precision. Without the explicit cast, the compiler throws an error. Method 2 will run without any error and print the value 9 as output. The compound assignment operator += performs an implicit type conversion, also known as an automatic narrowing primitive conversion from double to int . It is equivalent to x = (int) (x + 4.5) , where the result of the addition is explicitly cast to an int . The fractional part of the double value is truncated, and the resulting int value is assigned back to x . It is advisable to use Method 2 ( x += 4.5 ) to avoid runtime errors and to obtain the desired output.

Same automatic narrowing primitive conversion is applicable for other compound assignment operators as well, including -= , *= , /= , and %= .

3. (-=) operator: 

This operator is a compound of ‘-‘ and ‘=’ operators. It operates by subtracting the variable’s value on the right from the current value of the variable on the left and then assigning the result to the operand on the left. 

4. (*=) operator:

 This operator is a compound of ‘*’ and ‘=’ operators. It operates by multiplying the current value of the variable on the left to the value on the right and then assigning the result to the operand on the left. 

5. (/=) operator: 

This operator is a compound of ‘/’ and ‘=’ operators. It operates by dividing the current value of the variable on the left by the value on the right and then assigning the quotient to the operand on the left. 

6. (%=) operator: 

This operator is a compound of ‘%’ and ‘=’ operators. It operates by dividing the current value of the variable on the left by the value on the right and then assigning the remainder to the operand on the left. 

Please Login to comment...

  • Java-Operators
  • 10 Best HuggingChat Alternatives and Competitors
  • Best Free Android Apps for Podcast Listening
  • Google AI Model: Predicts Floods 7 Days in Advance
  • Who is Devika AI? India's 'AI coder', an alternative to Devin AI
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

java assignment return value

  • Table of Contents
  • Course Home
  • Assignments
  • Peer Instruction (Instructor)
  • Peer Instruction (Student)
  • Change Course
  • Instructor's Page
  • Progress Page
  • Edit Profile
  • Change Password
  • Scratch ActiveCode
  • Scratch Activecode
  • Instructors Guide
  • About Runestone
  • Report A Problem
  • 1.1 Preface
  • 1.2 Why Programming? Why Java?
  • 1.3 Variables and Data Types
  • 1.4 Expressions and Assignment Statements
  • 1.5 Compound Assignment Operators
  • 1.6 Casting and Ranges of Variables
  • 1.7 Java Development Environments (optional)
  • 1.8 Unit 1 Summary
  • 1.9 Unit 1 Mixed Up Code Practice
  • 1.10 Unit 1 Coding Practice
  • 1.11 Multiple Choice Exercises
  • 1.12 Lesson Workspace
  • 1.3. Variables and Data Types" data-toggle="tooltip">
  • 1.5. Compound Assignment Operators' data-toggle="tooltip" >

1.4. Expressions and Assignment Statements ¶

In this lesson, you will learn about assignment statements and expressions that contain math operators and variables.

1.4.1. Assignment Statements ¶

Remember that a variable holds a value that can change or vary. Assignment statements initialize or change the value stored in a variable using the assignment operator = . An assignment statement always has a single variable on the left hand side of the = sign. The value of the expression on the right hand side of the = sign (which can contain math operators and other variables) is copied into the memory location of the variable on the left hand side.

Assignment statement

Figure 1: Assignment Statement (variable = expression) ¶

Instead of saying equals for the = operator in an assignment statement, say “gets” or “is assigned” to remember that the variable on the left hand side gets or is assigned the value on the right. In the figure above, score is assigned the value of 10 times points (which is another variable) plus 5.

The following video by Dr. Colleen Lewis shows how variables can change values in memory using assignment statements.

As we saw in the video, we can set one variable to a copy of the value of another variable like y = x;. This won’t change the value of the variable that you are copying from.

coding exercise

Click on the Show CodeLens button to step through the code and see how the values of the variables change.

The program is supposed to figure out the total money value given the number of dimes, quarters and nickels. There is an error in the calculation of the total. Fix the error to compute the correct amount.

Calculate and print the total pay given the weekly salary and the number of weeks worked. Use string concatenation with the totalPay variable to produce the output Total Pay = $3000 . Don’t hardcode the number 3000 in your print statement.

exercise

Assume you have a package with a given height 3 inches and width 5 inches. If the package is rotated 90 degrees, you should swap the values for the height and width. The code below makes an attempt to swap the values stored in two variables h and w, which represent height and width. Variable h should end up with w’s initial value of 5 and w should get h’s initial value of 3. Unfortunately this code has an error and does not work. Use the CodeLens to step through the code to understand why it fails to swap the values in h and w.

1-4-7: Explain in your own words why the ErrorSwap program code does not swap the values stored in h and w.

Swapping two variables requires a third variable. Before assigning h = w , you need to store the original value of h in the temporary variable. In the mixed up programs below, drag the blocks to the right to put them in the right order.

The following has the correct code that uses a third variable named “temp” to swap the values in h and w.

The code is mixed up and contains one extra block which is not needed in a correct solution. Drag the needed blocks from the left into the correct order on the right, then check your solution. You will be told if any of the blocks are in the wrong order or if you need to remove one or more blocks.

After three incorrect attempts you will be able to use the Help Me button to make the problem easier.

Fix the code below to perform a correct swap of h and w. You need to add a new variable named temp to use for the swap.

1.4.2. Incrementing the value of a variable ¶

If you use a variable to keep score you would probably increment it (add one to the current value) whenever score should go up. You can do this by setting the variable to the current value of the variable plus one (score = score + 1) as shown below. The formula looks a little crazy in math class, but it makes sense in coding because the variable on the left is set to the value of the arithmetic expression on the right. So, the score variable is set to the previous value of score + 1.

Click on the Show CodeLens button to step through the code and see how the score value changes.

1-4-11: What is the value of b after the following code executes?

  • It sets the value for the variable on the left to the value from evaluating the right side. What is 5 * 2?
  • Correct. 5 * 2 is 10.

1-4-12: What are the values of x, y, and z after the following code executes?

  • x = 0, y = 1, z = 2
  • These are the initial values in the variable, but the values are changed.
  • x = 1, y = 2, z = 3
  • x changes to y's initial value, y's value is doubled, and z is set to 3
  • x = 2, y = 2, z = 3
  • Remember that the equal sign doesn't mean that the two sides are equal. It sets the value for the variable on the left to the value from evaluating the right side.
  • x = 1, y = 0, z = 3

1.4.3. Operators ¶

Java uses the standard mathematical operators for addition ( + ), subtraction ( - ), multiplication ( * ), and division ( / ). Arithmetic expressions can be of type int or double. An arithmetic operation that uses two int values will evaluate to an int value. An arithmetic operation that uses at least one double value will evaluate to a double value. (You may have noticed that + was also used to put text together in the input program above – more on this when we talk about strings.)

Java uses the operator == to test if the value on the left is equal to the value on the right and != to test if two items are not equal. Don’t get one equal sign = confused with two equal signs == ! They mean different things in Java. One equal sign is used to assign a value to a variable. Two equal signs are used to test a variable to see if it is a certain value and that returns true or false as you’ll see below. Use == and != only with int values and not doubles because double values are an approximation and 3.3333 will not equal 3.3334 even though they are very close.

Run the code below to see all the operators in action. Do all of those operators do what you expected? What about 2 / 3 ? Isn’t surprising that it prints 0 ? See the note below.

When Java sees you doing integer division (or any operation with integers) it assumes you want an integer result so it throws away anything after the decimal point in the answer, essentially rounding down the answer to a whole number. If you need a double answer, you should make at least one of the values in the expression a double like 2.0.

With division, another thing to watch out for is dividing by 0. An attempt to divide an integer by zero will result in an ArithmeticException error message. Try it in one of the active code windows above.

Operators can be used to create compound expressions with more than one operator. You can either use a literal value which is a fixed value like 2, or variables in them. When compound expressions are evaluated, operator precedence rules are used, so that *, /, and % are done before + and -. However, anything in parentheses is done first. It doesn’t hurt to put in extra parentheses if you are unsure as to what will be done first.

In the example below, try to guess what it will print out and then run it to see if you are right. Remember to consider operator precedence .

1-4-15: Consider the following code segment. Be careful about integer division.

What is printed when the code segment is executed?

  • 0.666666666666667
  • Don't forget that division and multiplication will be done first due to operator precedence.
  • Yes, this is equivalent to (5 + ((a/b)*c) - 1).
  • Don't forget that division and multiplication will be done first due to operator precedence, and that an int/int gives an int result where it is rounded down to the nearest int.

1-4-16: Consider the following code segment.

What is the value of the expression?

  • Dividing an integer by an integer results in an integer
  • Correct. Dividing an integer by an integer results in an integer
  • The value 5.5 will be rounded down to 5

1-4-17: Consider the following code segment.

  • Correct. Dividing a double by an integer results in a double
  • Dividing a double by an integer results in a double

1-4-18: Consider the following code segment.

  • Correct. Dividing an integer by an double results in a double
  • Dividing an integer by an double results in a double

1.4.4. The Modulo Operator ¶

The percent sign operator ( % ) is the mod (modulo) or remainder operator. The mod operator ( x % y ) returns the remainder after you divide x (first number) by y (second number) so 5 % 2 will return 1 since 2 goes into 5 two times with a remainder of 1. Remember long division when you had to specify how many times one number went into another evenly and the remainder? That remainder is what is returned by the modulo operator.

../_images/mod-py.png

Figure 2: Long division showing the whole number result and the remainder ¶

In the example below, try to guess what it will print out and then run it to see if you are right.

The result of x % y when x is smaller than y is always x . The value y can’t go into x at all (goes in 0 times), since x is smaller than y , so the result is just x . So if you see 2 % 3 the result is 2 .

1-4-21: What is the result of 158 % 10?

  • This would be the result of 158 divided by 10. modulo gives you the remainder.
  • modulo gives you the remainder after the division.
  • When you divide 158 by 10 you get a remainder of 8.

1-4-22: What is the result of 3 % 8?

  • 8 goes into 3 no times so the remainder is 3. The remainder of a smaller number divided by a larger number is always the smaller number!
  • This would be the remainder if the question was 8 % 3 but here we are asking for the reminder after we divide 3 by 8.
  • What is the remainder after you divide 3 by 8?

1.4.5. FlowCharting ¶

Assume you have 16 pieces of pizza and 5 people. If everyone gets the same number of slices, how many slices does each person get? Are there any leftover pieces?

In industry, a flowchart is used to describe a process through symbols and text. A flowchart usually does not show variable declarations, but it can show assignment statements (drawn as rectangle) and output statements (drawn as rhomboid).

The flowchart in figure 3 shows a process to compute the fair distribution of pizza slices among a number of people. The process relies on integer division to determine slices per person, and the mod operator to determine remaining slices.

Flow Chart

Figure 3: Example Flow Chart ¶

A flowchart shows pseudo-code, which is like Java but not exactly the same. Syntactic details like semi-colons are omitted, and input and output is described in abstract terms.

Complete the program based on the process shown in the Figure 3 flowchart. Note the first line of code declares all 4 variables as type int. Add assignment statements and print statements to compute and print the slices per person and leftover slices. Use System.out.println for output.

1.4.6. Storing User Input in Variables ¶

Variables are a powerful abstraction in programming because the same algorithm can be used with different input values saved in variables.

Program input and output

Figure 4: Program input and output ¶

A Java program can ask the user to type in one or more values. The Java class Scanner is used to read from the keyboard input stream, which is referenced by System.in . Normally the keyboard input is typed into a console window, but since this is running in a browser you will type in a small textbox window displayed below the code. The code below shows an example of prompting the user to enter a name and then printing a greeting. The code String name = scan.nextLine() gets the string value you enter as program input and then stores the value in a variable.

Run the program a few times, typing in a different name. The code works for any name: behold, the power of variables!

Run this program to read in a name from the input stream. You can type a different name in the input window shown below the code.

Try stepping through the code with the CodeLens tool to see how the name variable is assigned to the value read by the scanner. You will have to click “Hide CodeLens” and then “Show in CodeLens” to enter a different name for input.

The Scanner class has several useful methods for reading user input. A token is a sequence of characters separated by white space.

Run this program to read in an integer from the input stream. You can type a different integer value in the input window shown below the code.

A rhomboid (slanted rectangle) is used in a flowchart to depict data flowing into and out of a program. The previous flowchart in Figure 3 used a rhomboid to indicate program output. A rhomboid is also used to denote reading a value from the input stream.

Flow Chart

Figure 5: Flow Chart Reading User Input ¶

Figure 5 contains an updated version of the pizza calculator process. The first two steps have been altered to initialize the pizzaSlices and numPeople variables by reading two values from the input stream. In Java this will be done using a Scanner object and reading from System.in.

Complete the program based on the process shown in the Figure 5 flowchart. The program should scan two integer values to initialize pizzaSlices and numPeople. Run the program a few times to experiment with different values for input. What happens if you enter 0 for the number of people? The program will bomb due to division by zero! We will see how to prevent this in a later lesson.

The program below reads two integer values from the input stream and attempts to print the sum. Unfortunately there is a problem with the last line of code that prints the sum.

Run the program and look at the result. When the input is 5 and 7 , the output is Sum is 57 . Both of the + operators in the print statement are performing string concatenation. While the first + operator should perform string concatenation, the second + operator should perform addition. You can force the second + operator to perform addition by putting the arithmetic expression in parentheses ( num1 + num2 ) .

More information on using the Scanner class can be found here https://www.w3schools.com/java/java_user_input.asp

1.4.7. Programming Challenge : Dog Years ¶

In this programming challenge, you will calculate your age, and your pet’s age from your birthdates, and your pet’s age in dog years. In the code below, type in the current year, the year you were born, the year your dog or cat was born (if you don’t have one, make one up!) in the variables below. Then write formulas in assignment statements to calculate how old you are, how old your dog or cat is, and how old they are in dog years which is 7 times a human year. Finally, print it all out.

Calculate your age and your pet’s age from the birthdates, and then your pet’s age in dog years. If you want an extra challenge, try reading the values using a Scanner.

1.4.8. Summary ¶

Arithmetic expressions include expressions of type int and double.

The arithmetic operators consist of +, -, * , /, and % (modulo for the remainder in division).

An arithmetic operation that uses two int values will evaluate to an int value. With integer division, any decimal part in the result will be thrown away, essentially rounding down the answer to a whole number.

An arithmetic operation that uses at least one double value will evaluate to a double value.

Operators can be used to construct compound expressions.

During evaluation, operands are associated with operators according to operator precedence to determine how they are grouped. (*, /, % have precedence over + and -, unless parentheses are used to group those.)

An attempt to divide an integer by zero will result in an ArithmeticException to occur.

The assignment operator (=) allows a program to initialize or change the value stored in a variable. The value of the expression on the right is stored in the variable on the left.

During execution, expressions are evaluated to produce a single value.

The value of an expression has a type based on the evaluation of the expression.

The Java Tutorials have been written for JDK 8. Examples and practices described in this page don't take advantage of improvements introduced in later releases and might use technology no longer available. See Java Language Changes for a summary of updated language features in Java SE 9 and subsequent releases. See JDK Release Notes for information about new features, enhancements, and removed or deprecated options for all JDK releases.

Returning a Value from a Method

A method returns to the code that invoked it when it

  • completes all the statements in the method,
  • reaches a return statement, or
  • throws an exception (covered later),

whichever occurs first.

You declare a method's return type in its method declaration. Within the body of the method, you use the return statement to return the value.

Any method declared void doesn't return a value. It does not need to contain a return statement, but it may do so. In such a case, a return statement can be used to branch out of a control flow block and exit the method and is simply used like this:

If you try to return a value from a method that is declared void , you will get a compiler error.

Any method that is not declared void must contain a return statement with a corresponding return value, like this:

The data type of the return value must match the method's declared return type; you can't return an integer value from a method declared to return a boolean.

The getArea() method in the Rectangle Rectangle class that was discussed in the sections on objects returns an integer:

This method returns the integer that the expression width*height evaluates to.

The getArea method returns a primitive type. A method can also return a reference type. For example, in a program to manipulate Bicycle objects, we might have a method like this:

Returning a Class or Interface

If this section confuses you, skip it and return to it after you have finished the lesson on interfaces and inheritance.

When a method uses a class name as its return type, such as whosFastest does, the class of the type of the returned object must be either a subclass of, or the exact class of, the return type. Suppose that you have a class hierarchy in which ImaginaryNumber is a subclass of java.lang.Number , which is in turn a subclass of Object , as illustrated in the following figure .

The class hierarchy for ImaginaryNumber

Now suppose that you have a method declared to return a Number :

The returnANumber method can return an ImaginaryNumber but not an Object . ImaginaryNumber is a Number because it's a subclass of Number . However, an Object is not necessarily a Number — it could be a String or another type.

You can override a method and define it to return a subclass of the original method, like this:

This technique, called covariant return type , means that the return type is allowed to vary in the same direction as the subclass.

About Oracle | Contact Us | Legal Notices | Terms of Use | Your Privacy Rights

Copyright © 1995, 2022 Oracle and/or its affiliates. All rights reserved.

  • Enterprise Java
  • Web-based Java
  • Data & Java
  • Project Management
  • Visual Basic
  • Ruby / Rails
  • Java Mobile
  • Architecture & Design
  • Open Source
  • Web Services

Developer.com

Developer.com content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More .

Java Programming tutorials

Java provides many types of operators to perform a variety of calculations and functions, such as logical , arithmetic , relational , and others. With so many operators to choose from, it helps to group them based on the type of functionality they provide. This programming tutorial will focus on Java’s numerous a ssignment operators.

Before we begin, however, you may want to bookmark our other tutorials on Java operators, which include:

  • Arithmetic Operators
  • Comparison Operators
  • Conditional Operators
  • Logical Operators
  • Bitwise and Shift Operators

Assignment Operators in Java

As the name conveys, assignment operators are used to assign values to a variable using the following syntax:

The left side operand of the assignment operator must be a variable, whereas the right side operand of the assignment operator may be a literal value or another variable. Moreover, the value or variable on the right side must be of the same data type of the operand on the left side. Otherwise, the compiler will raise an error. Assignment operators have a right to left associativity in that the value given on the right-hand side of the operator is assigned to the variable on the left. Therefore, the right-hand side variable must be declared before assignment.

You can learn more about variables in our programming tutorial: Working with Java Variables .

Types of Assignment Operators in Java

Java assignment operators are classified into two types: simple and compound .

The Simple assignment operator is the equals ( = ) sign, which is the most straightforward of the bunch. It simply assigns the value or variable on the right to the variable on the left.

Compound operators are comprised of both an arithmetic, bitwise, or shift operator in addition to the equals ( = ) sign.

Equals Operator (=) Java Example

First, let’s learn to use the one-and-only simple assignment operator – the Equals ( = ) operator – with the help of a Java program. It includes two assignments: a literal value to num1 and the num1 variable to num2 , after which both are printed to the console to show that the values have been assigned to the numbers:

The += Operator Java Example

A compound of the + and = operators, the += adds the current value of the variable on the left to the value on the right before assigning the result to the operand on the left. Here is some sample code to demonstrate how to use the += operator in Java:

The -= Operator Java Example

Made up of the – and = operators, the -= first subtracts the variable’s value on the right from the current value of the variable on the left before assigning the result to the operand on the left. We can see it at work below in the following code example showing how to decrement in Java using the -= operator:

The *= Operator Java Example

This Java operator is comprised of the * and = operators. It operates by multiplying the current value of the variable on the left to the value on the right and then assigning the result to the operand on the left. Here’s a program that shows the *= operator in action:

The /= Operator Java Example

A combination of the / and = operators, the /= Operator divides the current value of the variable on the left by the value on the right and then assigns the quotient to the operand on the left. Here is some example code showing how to use the  /= operator in Java:

%= Operator Java Example

The %= operator includes both the % and = operators. As seen in the program below, it divides the current value of the variable on the left by the value on the right and then assigns the remainder to the operand on the left:

Compound Bitwise and Shift Operators in Java

The Bitwise and Shift Operators that we just recently covered can also be utilized in compound form as seen in the list below:

  • &= – Compound bitwise Assignment operator.
  • ^= – Compound bitwise ^ assignment operator.
  • >>= – Compound right shift assignment operator.
  • >>>= – Compound right shift filled 0 assignment operator.
  • <<= – Compound left shift assignment operator.

The following program demonstrates the working of all the Compound Bitwise and Shift Operators :

Final Thoughts on Java Assignment Operators

This programming tutorial presented an overview of Java’s simple and compound assignment Operators. An essential building block to any programming language, developers would be unable to store any data in their programs without them. Though not quite as indispensable as the equals operator, compound operators are great time savers, allowing you to perform arithmetic and bitwise operations and assignment in a single line of code.

Read more Java programming tutorials and guides to software development .

Get the Free Newsletter!

Subscribe to Developer Insider for top news, trends & analysis

Latest Posts

What is the role of a project manager in software development, how to use optional in java, overview of the jad methodology, microsoft project tips and tricks, how to become a project manager in 2023, related stories, understanding types of thread synchronization errors in java, understanding memory consistency in java threads.

Developer.com

1.7 Java | Assignment Statements & Expressions

An assignment statement designates a value for a variable. An assignment statement can be used as an expression in Java.

After a variable is declared, you can assign a value to it by using an assignment statement . In Java, the equal sign = is used as the assignment operator . The syntax for assignment statements is as follows:

An expression represents a computation involving values, variables, and operators that, when taking them together, evaluates to a value. For example, consider the following code:

You can use a variable in an expression. A variable can also be used on both sides of the =  operator. For example:

In the above assignment statement, the result of x + 1  is assigned to the variable x . Let’s say that x is 1 before the statement is executed, and so becomes 2 after the statement execution.

To assign a value to a variable, you must place the variable name to the left of the assignment operator. Thus the following statement is wrong:

Note that the math equation  x = 2 * x + 1  ≠ the Java expression x = 2 * x + 1

Java Assignment Statement vs Assignment Expression

Which is equivalent to:

And this statement

is equivalent to:

Note: The data type of a variable on the left must be compatible with the data type of a value on the right. For example, int x = 1.0 would be illegal, because the data type of x is int (integer) and does not accept the double value 1.0 without Type Casting .

◄◄◄BACK | NEXT►►►

What's Your Opinion? Cancel reply

Enhance your Brain

Subscribe to Receive Free Bio Hacking, Nootropic, and Health Information

HTML for Simple Website Customization My Personal Web Customization Personal Insights

DISCLAIMER | Sitemap | ◘

SponserImageUCD

HTML for Simple Website Customization My Personal Web Customization Personal Insights SEO Checklist Publishing Checklist My Tools

Top Posts & Pages

7. VbScript | Do Loop

Live Training, Prepare for Interviews, and Get Hired

01 Career Opportunities

  • Java Developer Salary
  • Top 50 Java Interview Questions and Answers

02 Beginner

  • Best Java Developer Roadmap 2024
  • Hierarchical Inheritance in Java
  • Arithmetic operators in Java
  • Unary operator in Java
  • Ternary Operator in Java
  • Relational operators in Java

Assignment operator in Java

  • Logical operators in Java
  • Single Inheritance in Java
  • Primitive Data Types in Java
  • Multiple Inheritance in Java
  • Hybrid Inheritance in Java
  • Parameterized Constructor in Java
  • Constructor Chaining in Java
  • Constructor Overloading in Java
  • What are Copy Constructors In Java? Explore Types,Examples & Use
  • What is a Bitwise Operator in Java? Type, Example and More
  • Top 10 Reasons to know why Java is Important?
  • What is Java? A Beginners Guide to Java
  • Differences between JDK, JRE, and JVM: Java Toolkit
  • Variables in Java: Local, Instance and Static Variables
  • Data Types in Java - Primitive and Non-Primitive Data Types
  • Conditional Statements in Java: If, If-Else and Switch Statement
  • What are Operators in Java - Types of Operators in Java ( With Examples )
  • Java VS Python
  • Looping Statements in Java - For, While, Do-While Loop in Java
  • Jump Statements in JAVA - Types of Statements in JAVA (With Examples)
  • Java Arrays: Single Dimensional and Multi-Dimensional Arrays
  • What is String in Java - Java String Types and Methods (With Examples)

03 Intermediate

  • OOPs Concepts in Java: Encapsulation, Abstraction, Inheritance, Polymorphism
  • Access Modifiers in Java: Default, Private, Public, Protected
  • What is Class in Java? - Objects and Classes in Java {Explained}
  • Constructors in Java: Types of Constructors with Examples
  • Polymorphism in Java: Compile time and Runtime Polymorphism
  • Abstraction in Java: Concepts, Examples, and Usage
  • What is Inheritance in Java: Types of Inheritance in Java
  • Exception handling in Java: Try, Catch, Finally, Throw and Throws

04 Training Programs

  • Java Programming Course
  • C++ Programming Course
  • MERN: Full-Stack Web Developer Certification Training
  • Data Structures and Algorithms Training
  • Assignment Operator In Ja..

Assignment operator in Java

Java Programming For Beginners Free Course

Assignment operators in java: an overview.

We already discussed the Types of Operators in the previous tutorial Java. In this Java tutorial , we will delve into the different types of assignment operators in Java, and their syntax, and provide examples for better understanding. Because Java is a flexible and widely used programming language. Assignment operators play a crucial role in manipulating and assigning values to variables. To further enhance your understanding and application of Java assignment operator's concepts, consider enrolling in the best Java Certification Course .

What are the Assignment Operators in Java?

Assignment operators in Java are used to assign values to variables . They are classified into two main types: simple assignment operator and compound assignment operator.

The general syntax for a simple assignment statement is:

And for a compound assignment statement:

Read More - Advanced Java Interview Questions

Types of Assignment Operators in Java

  • Simple Assignment Operator: The Simple Assignment Operator is used with the "=" sign, where the operand is on the left side and the value is on the right. The right-side value must be of the same data type as that defined on the left side.
  • Compound Assignment Operator:  Compound assignment operators combine arithmetic operations with assignments. They provide a concise way to perform an operation and assign the result to the variable in one step. The Compound Operator is utilized when +,-,*, and / are used in conjunction with the = operator.

1. Simple Assignment Operator (=):

The equal sign (=) is the basic assignment operator in Java. It is used to assign the value on the right-hand side to the variable on the left-hand side.

Explanation

2. addition assignment operator (+=) :, 3. subtraction operator (-=):, 4. multiplication operator (*=):.

Read More - Java Developer Salary

5. Division Operator (/=):

6. modulus assignment operator (%=):, example of assignment operator in java.

Let's look at a few examples in our Java Playground to illustrate the usage of assignment operators in Java:

  • Unary Operator in Java
  • Arithmetic Operators in Java
  • Relational Operators in Java
  • Logical Operators in Java

Q1. Can I use multiple assignment operators in a single statement?

Q2. are there any other compound assignment operators in java, q3. how many types of assignment operators.

  • 1. (=) operator
  • 1. (+=) operator
  • 2. (-=) operator
  • 3. (*=) operator
  • 4. (/=) operator
  • 5. (%=) operator

About Author

Author image

We use cookies to make interactions with our websites and services easy and meaningful. Please read our Privacy Policy for more details.

Java Tutorial

Java methods, java classes, java file handling, java how to, java reference, java examples, java operators.

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Try it Yourself »

Although the + operator is often used to add together two values, like in the example above, it can also be used to add together a variable and a value, or a variable and another variable:

Java divides the operators into the following groups:

  • Arithmetic operators
  • Assignment operators
  • Comparison operators
  • Logical operators
  • Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

Advertisement

Java Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator ( = ) to assign the value 10 to a variable called x :

The addition assignment operator ( += ) adds a value to a variable:

A list of all assignment operators:

Java Comparison Operators

Comparison operators are used to compare two values (or variables). This is important in programming, because it helps us to find answers and make decisions.

The return value of a comparison is either true or false . These values are known as Boolean values , and you will learn more about them in the Booleans and If..Else chapter.

In the following example, we use the greater than operator ( > ) to find out if 5 is greater than 3:

Java Logical Operators

You can also test for true or false values with logical operators.

Logical operators are used to determine the logic between variables or values:

Java Bitwise Operators

Bitwise operators are used to perform binary logic with the bits of an integer or long integer.

Note: The Bitwise examples above use 4-bit unsigned examples, but Java uses 32-bit signed integers and 64-bit signed long integers. Because of this, in Java, ~5 will not return 10. It will return -6. ~00000000000000000000000000000101 will return 11111111111111111111111111111010

In Java, 9 >> 1 will not return 12. It will return 4. 00000000000000000000000000001001 >> 1 will return 00000000000000000000000000000100

Test Yourself With Exercises

Multiply 10 with 5 , and print the result.

Start the Exercise

Get Certified

COLOR PICKER

colorpicker

Report Error

If you want to report an error, or if you want to make a suggestion, do not hesitate to send us an e-mail:

[email protected]

Top Tutorials

Top references, top examples, get certified.

Video Materials

Lastly, one of the most useful things we can do with methods in our code is return a value from a method. This allows us to use a method to perform an action or calculation that results in a single value that we can use elsewhere in our code. We can even use these method calls just like we use variables in other arithmetic expressions. Let’s take a look at how that works.

Returning a Value

To return a value from a method in Java, we use the special keyword return , followed by an expression representing the value we’d like to return. We must also declare the type of that value in our method declaration, taking the place of the void keyword we’ve been using up to this point.

Here’s an example program showing how to use the return keyword and store that returned value in a variable.

Let’s review this program carefully to see what parts of the program are important for returning a value:

  • First, instead of void , we use the keyword int in the declaration of our last() method, static int last(int ... items) . This is because the method must return a value with the type int .
  • Inside of the method, we see two instances of the return keyword. Each instance is followed by a value or expression that results in an integer, which is then returned from the method. As soon as the method reaches a return keyword, it immediately stops executing and returns that value. So, if the items variable length parameter is empty, the method will return $-1$. Otherwise, it will return the last item in the items parameter.
  • In the main() method, we see that we’ve included the method call to last() on the right-hand side of a variable assignment statement. So, once we reach that line of code, the program will call the last() method and store the returned value in the returnValue variable in main()

Compiler Messages

The Java compiler is a very crucial part of making sure that each method we create returns a value correctly. When we compile our code, the compiler checks to make sure that each method that includes a return type other than void will return a value along all code paths. That means that if one branch of an If-Else statement returns a value, then either the other branch or code below it should also return a value.

In addition, it will make sure that the type of the value returned matches the type that is expected by the method’s declaration.

Finally, just like every other variable assignment in Java, when we store the result of a method call in a variable, Java will also make sure that the variable storing the value has a type that is compatible with the type being returned from the method.

So, if we receive error messages from the Java compiler regarding invalid return types or values in our methods, we’ll need to carefully check our code to make sure we aren’t violating one of those rules.

Last modified by: Russell Feldhausen Jul 17, 2023

Assignments don't return value

Just curious why? I can live with the language design decision, but it seems to often force me to create a local variable which is verbose when all I want to do is set a class variable and return it. If I return the class variable instead, there could be some threading issues that the return value is different then what I just set. I think even smalltalk allowed a set on the last line which was returned.

I might be wrong about the reason but I think that the kotlin designers don’t like assignments within other expressions

They lifted that restriction for when expressions but AFAIK this is a specia case. Maybe return could be another special case.

According to Kotlin In Action (by members of the Kotlin development team), having assignments become statements

helps avoid confusion between comparisons and assignments, which is a common source of mistakes.

In my experience, the most common source of confusion is in if (…) and while (…) conditions.⠀In particular, it’s far too easy to type = when you mean == .⠀In languages like C, where any type of value can be a condition, that’s quite likely not to generate a compile error, but instead to assign something unexpectedly, and then test whether the value assigned was non-zero — which is highly likely to cause a bug.

In fact, it’s a common enough problem that at least two coding conventions have arisen to try to avoid it.⠀(It’s common to compare a variable with a constant, and in those case swapping them to put the constant first and the variable second will usually generate a compile error if you omit the second = symbol — at the cost of making the code harder to read. Also, you can signal to some compilers and other tools that you intend an assignment by enclosing it in a second set of parens; those tools can then give a warning or error if they find an assignment in only one set.)

Java is a bit safer in that regard, as it requires conditions to be boolean values.⠀But it’s still possible to hit the bug, if the value being compared is a boolean.⠀By disallowing assignments in conditions, Kotlin is completely free from it.

There’s also the issue of readability generally.⠀Embedding an assignment within a complex expression can be tempting, as it can avoid a some duplication or a temporary variable — but it can be very hard to read.⠀Kotlin pretty much forces you to rearrange the code into an order that’s more straightforward (if perhaps slightly longer).

(There are, of course, ways around this; in particular, you can embed an assignment in an also{…} call within an expression to get much the same effect.⠀That’s still hard to read, though the braces may make it slightly more obvious.⠀And the .also{…} isn’t something you can get from a simple typo!)

A very special case, AIUI: it needs to be of the form when (var myVar = … ) — so the assignment needs to be at the start of the condition, at the top level (i.e. not within parens or braces), and preceded by var (which would otherwise be invalid within an expression).

That’s clear to the reader, has no ambiguity or risk of unexpected effects, and prevents many of the more, er, creative uses of assignment in expressions.

(Of course, if the C family of languages had inherited the Pascal style of operator, i.e. = for equality and := for assignment, things might be rather clearer and we might not be stuck with such workarounds — nor with abominations such as === operators!⠀But hindsight is always, er, 2020…)

Another reason is that in function calls, assignment expressions would be indistinguishable from passing named parameters, e.g.

I learned something. Thanks!

In functional style, creating a variable is usually not the right approach. For example I would probably consider doing something like:

I’ll add my two cents on this as well: Although you can use other ways of avoiding the local variable, make sure you pause to consider if it adds value to have the named variable included.

A lot of times, the single extra line gives you more clarity–even if it only serves to name that value.

Related Topics

Javatpoint Logo

Java Tutorial

Control statements, java object class, java inheritance, java polymorphism, java abstraction, java encapsulation, java oops misc.

JavaTpoint

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Interview Questions

Company Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Computer Network

Compiler Design tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

IMAGES

  1. Java Methods with Return Values

    java assignment return value

  2. Java

    java assignment return value

  3. Java Methods Return Statements

    java assignment return value

  4. How To Write A Method In Java

    java assignment return value

  5. Example Java method that return values

    java assignment return value

  6. [Java] Java methods with return value

    java assignment return value

VIDEO

  1. Java

  2. Assignment operators in java

  3. #20. Assignment Operators in Java

  4. #18 : How to reverse a number in java

  5. NPTEL Programming In Java WEEK 6 ASSIGNMENT ANSWERS

  6. Return Statement in Java

COMMENTS

  1. What does an assignment expression evaluate to in Java?

    The assignment operator in Java evaluates to the assigned value (like it does in, e.g., c ). So here, readLine() will be executed, and its return value stored in line. That stored value is then checked against null, and if it's null then the loop will terminate. edited Jun 3, 2021 at 14:55. Michael.

  2. confused with return value of assignment operation in java

    1 Answer. You've got it right. The operator precedence rules make sure that first the == operator is evaluated. That's b1==false, yielding true. After that, the assigned is executed, setting b2 to true. Finally, the assignment operator returns the value as b2, which is evaluated by the if statement. Java usually evaluates the terms from the ...

  3. Java Assignment Operators with Examples

    variable operator value; Types of Assignment Operators in Java. The Assignment Operator is generally of two types. They are: 1. Simple Assignment Operator: The Simple Assignment Operator is used with the "=" sign where the left side consists of the operand and the right side consists of a value. The value of the right side must be of the same data type that has been defined on the left side.

  4. What is the benefit of having the assignment operator return a value?

    Generally speaking, no. The idea of having the value of an assignment expression be the value that was assigned means that we have an expression which may be used for both its side effect and its value, and that is considered by many to be confusing. Common usages are typically to make expressions compact: x = y = z;

  5. Assignment, Arithmetic, and Unary Operators (The Java™ Tutorials

    The Java Tutorials have been written for JDK 8. Examples and practices described in this page don't take advantage of improvements introduced in later releases and might use technology no longer available. See Java Language Changes for a summary of updated language features in Java SE 9 and subsequent releases.

  6. Java Compound Operators

    Compound Assignment Operators. An assignment operator is a binary operator that assigns the result of the right-hand side to the variable on the left-hand side. The simplest is the "=" assignment operator: int x = 5; This statement declares a new variable x, assigns x the value of 5 and returns 5. Compound Assignment Operators are a shorter ...

  7. 1.4. Expressions and Assignment Statements

    1.4.1. Assignment Statements ¶. Remember that a variable holds a value that can change or vary. Assignment statements initialize or change the value stored in a variable using the assignment operator =. An assignment statement always has a single variable on the left hand side of the = sign. The value of the expression on the right hand side ...

  8. Returning a Value from a Method (The Java™ Tutorials

    Within the body of the method, you use the return statement to return the value. Any method declared void doesn't return a value. It does not need to contain a return statement, but it may do so. In such a case, a return statement can be used to branch out of a control flow block and exit the method and is simply used like this:

  9. Assignment Operators in Java with Examples

    No, Java doesn't support operator overloading. C++ allows operator overloading. This is covered in the C++ vs Java post. What does an assignment return in Java? An assignment operator return the value specified by the left operand after the assignment. The type of the return value is the type of the left operand. For Example:

  10. Java Assignment Operators

    Java assignment operators are classified into two types: simple and compound. The Simple assignment operator is the equals ( =) sign, which is the most straightforward of the bunch. It simply assigns the value or variable on the right to the variable on the left. Compound operators are comprised of both an arithmetic, bitwise, or shift operator ...

  11. 1.7 Java

    An assignment statement designates a value for a variable. An assignment statement can be used as an expression in Java. After a variable is declared, you can assign a value to it by using an assignment statement. In Java, the equal sign = is used as the assignment operator. The syntax for assignment statements is as follows: variable ...

  12. Assignment operator in Java

    Read More - Advanced Java Interview Questions Types of Assignment Operators in Java. Simple Assignment Operator: The Simple Assignment Operator is used with the "=" sign, where the operand is on the left side and the value is on the right. The right-side value must be of the same data type as that defined on the left side.; Compound Assignment Operator: Compound assignment operators combine ...

  13. Java Operators

    Java Assignment Operators. Assignment operators are used to assign values to variables. In the example below, ... The return value of a comparison is either true or false. These values are known as Boolean values, and you will learn more about them in the Booleans and If..Else chapter.

  14. Java Assignment operators

    The Java Assignment operators are used to assign the values to the declared variables. The equals ( = ) operator is the most commonly used Java assignment operator. For example: int i = 25; The table below displays all the assignment operators in the Java programming language. Operators.

  15. Types of Assignment Operators in Java

    To assign a value to a variable, use the basic assignment operator (=). It is the most fundamental assignment operator in Java. It assigns the value on the right side of the operator to the variable on the left side. Example: int x = 10; int x = 10; In the above example, the variable x is assigned the value 10.

  16. Return :: CC 210 Textbook

    Returning a Value. To return a value from a method in Java, we use the special keyword return, followed by an expression representing the value we'd like to return. ... Finally, just like every other variable assignment in Java, when we store the result of a method call in a variable, Java will also make sure that the variable storing the ...

  17. Assignments don't return value

    Java is a bit safer in that regard, as it requires conditions to be boolean values.⠀But it's still possible to hit the bug, if the value being compared is a boolean.⠀By disallowing assignments in conditions, Kotlin is completely free from it.

  18. Return Statement in Java

    In Java, every method is declared with a return type such as int, float, double, string, etc. These return types required a return statement at the end of the method. A return keyword is used for returning the resulted value. The void return type doesn't require any return statement. If we try to return a value from a void method, the compiler ...

  19. java

    Hence, creating the variable and assigning the value would be pointless, for you would not be able to use it. Variables exist only in the scope they were created. Since you are assigning the value to use it afterwards, consider the scope where you are creating the varible so that it may be used where needed.

  20. java

    In other contexts, the result of an assignment expression is the value that is assigned to the variable, so you can do things like. String someName = "Tom"; System.out.println(someName = "John"); and it will print John to the console, as well as assign "John" to someName.