• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

The Definition of Random Assignment According to Psychology

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what are the benefits of random assignment

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

what are the benefits of random assignment

Materio / Getty Images

Random assignment refers to the use of chance procedures in psychology experiments to ensure that each participant has the same opportunity to be assigned to any given group in a study to eliminate any potential bias in the experiment at the outset. Participants are randomly assigned to different groups, such as the treatment group versus the control group. In clinical research, randomized clinical trials are known as the gold standard for meaningful results.

Simple random assignment techniques might involve tactics such as flipping a coin, drawing names out of a hat, rolling dice, or assigning random numbers to a list of participants. It is important to note that random assignment differs from random selection .

While random selection refers to how participants are randomly chosen from a target population as representatives of that population, random assignment refers to how those chosen participants are then assigned to experimental groups.

Random Assignment In Research

To determine if changes in one variable will cause changes in another variable, psychologists must perform an experiment. Random assignment is a critical part of the experimental design that helps ensure the reliability of the study outcomes.

Researchers often begin by forming a testable hypothesis predicting that one variable of interest will have some predictable impact on another variable.

The variable that the experimenters will manipulate in the experiment is known as the independent variable , while the variable that they will then measure for different outcomes is known as the dependent variable. While there are different ways to look at relationships between variables, an experiment is the best way to get a clear idea if there is a cause-and-effect relationship between two or more variables.

Once researchers have formulated a hypothesis, conducted background research, and chosen an experimental design, it is time to find participants for their experiment. How exactly do researchers decide who will be part of an experiment? As mentioned previously, this is often accomplished through something known as random selection.

Random Selection

In order to generalize the results of an experiment to a larger group, it is important to choose a sample that is representative of the qualities found in that population. For example, if the total population is 60% female and 40% male, then the sample should reflect those same percentages.

Choosing a representative sample is often accomplished by randomly picking people from the population to be participants in a study. Random selection means that everyone in the group stands an equal chance of being chosen to minimize any bias. Once a pool of participants has been selected, it is time to assign them to groups.

By randomly assigning the participants into groups, the experimenters can be fairly sure that each group will have the same characteristics before the independent variable is applied.

Participants might be randomly assigned to the control group , which does not receive the treatment in question. The control group may receive a placebo or receive the standard treatment. Participants may also be randomly assigned to the experimental group , which receives the treatment of interest. In larger studies, there can be multiple treatment groups for comparison.

There are simple methods of random assignment, like rolling the die. However, there are more complex techniques that involve random number generators to remove any human error.

There can also be random assignment to groups with pre-established rules or parameters. For example, if you want to have an equal number of men and women in each of your study groups, you might separate your sample into two groups (by sex) before randomly assigning each of those groups into the treatment group and control group.

Random assignment is essential because it increases the likelihood that the groups are the same at the outset. With all characteristics being equal between groups, other than the application of the independent variable, any differences found between group outcomes can be more confidently attributed to the effect of the intervention.

Example of Random Assignment

Imagine that a researcher is interested in learning whether or not drinking caffeinated beverages prior to an exam will improve test performance. After randomly selecting a pool of participants, each person is randomly assigned to either the control group or the experimental group.

The participants in the control group consume a placebo drink prior to the exam that does not contain any caffeine. Those in the experimental group, on the other hand, consume a caffeinated beverage before taking the test.

Participants in both groups then take the test, and the researcher compares the results to determine if the caffeinated beverage had any impact on test performance.

A Word From Verywell

Random assignment plays an important role in the psychology research process. Not only does this process help eliminate possible sources of bias, but it also makes it easier to generalize the results of a tested sample of participants to a larger population.

Random assignment helps ensure that members of each group in the experiment are the same, which means that the groups are also likely more representative of what is present in the larger population of interest. Through the use of this technique, psychology researchers are able to study complex phenomena and contribute to our understanding of the human mind and behavior.

Lin Y, Zhu M, Su Z. The pursuit of balance: An overview of covariate-adaptive randomization techniques in clinical trials . Contemp Clin Trials. 2015;45(Pt A):21-25. doi:10.1016/j.cct.2015.07.011

Sullivan L. Random assignment versus random selection . In: The SAGE Glossary of the Social and Behavioral Sciences. SAGE Publications, Inc.; 2009. doi:10.4135/9781412972024.n2108

Alferes VR. Methods of Randomization in Experimental Design . SAGE Publications, Inc.; 2012. doi:10.4135/9781452270012

Nestor PG, Schutt RK. Research Methods in Psychology: Investigating Human Behavior. (2nd Ed.). SAGE Publications, Inc.; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Random Assignment in Psychology: Definition & Examples

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

In psychology, random assignment refers to the practice of allocating participants to different experimental groups in a study in a completely unbiased way, ensuring each participant has an equal chance of being assigned to any group.

In experimental research, random assignment, or random placement, organizes participants from your sample into different groups using randomization. 

Random assignment uses chance procedures to ensure that each participant has an equal opportunity of being assigned to either a control or experimental group.

The control group does not receive the treatment in question, whereas the experimental group does receive the treatment.

When using random assignment, neither the researcher nor the participant can choose the group to which the participant is assigned. This ensures that any differences between and within the groups are not systematic at the onset of the study. 

In a study to test the success of a weight-loss program, investigators randomly assigned a pool of participants to one of two groups.

Group A participants participated in the weight-loss program for 10 weeks and took a class where they learned about the benefits of healthy eating and exercise.

Group B participants read a 200-page book that explains the benefits of weight loss. The investigator randomly assigned participants to one of the two groups.

The researchers found that those who participated in the program and took the class were more likely to lose weight than those in the other group that received only the book.

Importance 

Random assignment ensures that each group in the experiment is identical before applying the independent variable.

In experiments , researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. Random assignment increases the likelihood that the treatment groups are the same at the onset of a study.

Thus, any changes that result from the independent variable can be assumed to be a result of the treatment of interest. This is particularly important for eliminating sources of bias and strengthening the internal validity of an experiment.

Random assignment is the best method for inferring a causal relationship between a treatment and an outcome.

Random Selection vs. Random Assignment 

Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study.

On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. 

Random selection ensures that everyone in the population has an equal chance of being selected for the study. Once the pool of participants has been chosen, experimenters use random assignment to assign participants into groups. 

Random assignment is only used in between-subjects experimental designs, while random selection can be used in a variety of study designs.

Random Assignment vs Random Sampling

Random sampling refers to selecting participants from a population so that each individual has an equal chance of being chosen. This method enhances the representativeness of the sample.

Random assignment, on the other hand, is used in experimental designs once participants are selected. It involves allocating these participants to different experimental groups or conditions randomly.

This helps ensure that any differences in results across groups are due to manipulating the independent variable, not preexisting differences among participants.

When to Use Random Assignment

Random assignment is used in experiments with a between-groups or independent measures design.

In these research designs, researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables.

There is usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable at the onset of the study.

How to Use Random Assignment

There are a variety of ways to assign participants into study groups randomly. Here are a handful of popular methods: 

  • Random Number Generator : Give each member of the sample a unique number; use a computer program to randomly generate a number from the list for each group.
  • Lottery : Give each member of the sample a unique number. Place all numbers in a hat or bucket and draw numbers at random for each group.
  • Flipping a Coin : Flip a coin for each participant to decide if they will be in the control group or experimental group (this method can only be used when you have just two groups) 
  • Roll a Die : For each number on the list, roll a dice to decide which of the groups they will be in. For example, assume that rolling 1, 2, or 3 places them in a control group and rolling 3, 4, 5 lands them in an experimental group.

When is Random Assignment not used?

  • When it is not ethically permissible: Randomization is only ethical if the researcher has no evidence that one treatment is superior to the other or that one treatment might have harmful side effects. 
  • When answering non-causal questions : If the researcher is just interested in predicting the probability of an event, the causal relationship between the variables is not important and observational designs would be more suitable than random assignment. 
  • When studying the effect of variables that cannot be manipulated: Some risk factors cannot be manipulated and so it would not make any sense to study them in a randomized trial. For example, we cannot randomly assign participants into categories based on age, gender, or genetic factors.

Drawbacks of Random Assignment

While randomization assures an unbiased assignment of participants to groups, it does not guarantee the equality of these groups. There could still be extraneous variables that differ between groups or group differences that arise from chance. Additionally, there is still an element of luck with random assignments.

Thus, researchers can not produce perfectly equal groups for each specific study. Differences between the treatment group and control group might still exist, and the results of a randomized trial may sometimes be wrong, but this is absolutely okay.

Scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when data is aggregated in a meta-analysis.

Additionally, external validity (i.e., the extent to which the researcher can use the results of the study to generalize to the larger population) is compromised with random assignment.

Random assignment is challenging to implement outside of controlled laboratory conditions and might not represent what would happen in the real world at the population level. 

Random assignment can also be more costly than simple observational studies, where an investigator is just observing events without intervening with the population.

Randomization also can be time-consuming and challenging, especially when participants refuse to receive the assigned treatment or do not adhere to recommendations. 

What is the difference between random sampling and random assignment?

Random sampling refers to randomly selecting a sample of participants from a population. Random assignment refers to randomly assigning participants to treatment groups from the selected sample.

Does random assignment increase internal validity?

Yes, random assignment ensures that there are no systematic differences between the participants in each group, enhancing the study’s internal validity .

Does random assignment reduce sampling error?

Yes, with random assignment, participants have an equal chance of being assigned to either a control group or an experimental group, resulting in a sample that is, in theory, representative of the population.

Random assignment does not completely eliminate sampling error because a sample only approximates the population from which it is drawn. However, random sampling is a way to minimize sampling errors. 

When is random assignment not possible?

Random assignment is not possible when the experimenters cannot control the treatment or independent variable.

For example, if you want to compare how men and women perform on a test, you cannot randomly assign subjects to these groups.

Participants are not randomly assigned to different groups in this study, but instead assigned based on their characteristics.

Does random assignment eliminate confounding variables?

Yes, random assignment eliminates the influence of any confounding variables on the treatment because it distributes them at random among the study groups. Randomization invalidates any relationship between a confounding variable and the treatment.

Why is random assignment of participants to treatment conditions in an experiment used?

Random assignment is used to ensure that all groups are comparable at the start of a study. This allows researchers to conclude that the outcomes of the study can be attributed to the intervention at hand and to rule out alternative explanations for study results.

Further Reading

  • Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem .  Journal of Economic theory ,  100 (2), 295-328.
  • Krause, M. S., & Howard, K. I. (2003). What random assignment does and does not do .  Journal of Clinical Psychology ,  59 (7), 751-766.

Print Friendly, PDF & Email

Random Assignment in Psychology (Definition + 40 Examples)

practical psychology logo

Have you ever wondered how researchers discover new ways to help people learn, make decisions, or overcome challenges? A hidden hero in this adventure of discovery is a method called random assignment, a cornerstone in psychological research that helps scientists uncover the truths about the human mind and behavior.

Random Assignment is a process used in research where each participant has an equal chance of being placed in any group within the study. This technique is essential in experiments as it helps to eliminate biases, ensuring that the different groups being compared are similar in all important aspects.

By doing so, researchers can be confident that any differences observed are likely due to the variable being tested, rather than other factors.

In this article, we’ll explore the intriguing world of random assignment, diving into its history, principles, real-world examples, and the impact it has had on the field of psychology.

History of Random Assignment

two women in different conditions

Stepping back in time, we delve into the origins of random assignment, which finds its roots in the early 20th century.

The pioneering mind behind this innovative technique was Sir Ronald A. Fisher , a British statistician and biologist. Fisher introduced the concept of random assignment in the 1920s, aiming to improve the quality and reliability of experimental research .

His contributions laid the groundwork for the method's evolution and its widespread adoption in various fields, particularly in psychology.

Fisher’s groundbreaking work on random assignment was motivated by his desire to control for confounding variables – those pesky factors that could muddy the waters of research findings.

By assigning participants to different groups purely by chance, he realized that the influence of these confounding variables could be minimized, paving the way for more accurate and trustworthy results.

Early Studies Utilizing Random Assignment

Following Fisher's initial development, random assignment started to gain traction in the research community. Early studies adopting this methodology focused on a variety of topics, from agriculture (which was Fisher’s primary field of interest) to medicine and psychology.

The approach allowed researchers to draw stronger conclusions from their experiments, bolstering the development of new theories and practices.

One notable early study utilizing random assignment was conducted in the field of educational psychology. Researchers were keen to understand the impact of different teaching methods on student outcomes.

By randomly assigning students to various instructional approaches, they were able to isolate the effects of the teaching methods, leading to valuable insights and recommendations for educators.

Evolution of the Methodology

As the decades rolled on, random assignment continued to evolve and adapt to the changing landscape of research.

Advances in technology introduced new tools and techniques for implementing randomization, such as computerized random number generators, which offered greater precision and ease of use.

The application of random assignment expanded beyond the confines of the laboratory, finding its way into field studies and large-scale surveys.

Researchers across diverse disciplines embraced the methodology, recognizing its potential to enhance the validity of their findings and contribute to the advancement of knowledge.

From its humble beginnings in the early 20th century to its widespread use today, random assignment has proven to be a cornerstone of scientific inquiry.

Its development and evolution have played a pivotal role in shaping the landscape of psychological research, driving discoveries that have improved lives and deepened our understanding of the human experience.

Principles of Random Assignment

Delving into the heart of random assignment, we uncover the theories and principles that form its foundation.

The method is steeped in the basics of probability theory and statistical inference, ensuring that each participant has an equal chance of being placed in any group, thus fostering fair and unbiased results.

Basic Principles of Random Assignment

Understanding the core principles of random assignment is key to grasping its significance in research. There are three principles: equal probability of selection, reduction of bias, and ensuring representativeness.

The first principle, equal probability of selection , ensures that every participant has an identical chance of being assigned to any group in the study. This randomness is crucial as it mitigates the risk of bias and establishes a level playing field.

The second principle focuses on the reduction of bias . Random assignment acts as a safeguard, ensuring that the groups being compared are alike in all essential aspects before the experiment begins.

This similarity between groups allows researchers to attribute any differences observed in the outcomes directly to the independent variable being studied.

Lastly, ensuring representativeness is a vital principle. When participants are assigned randomly, the resulting groups are more likely to be representative of the larger population.

This characteristic is crucial for the generalizability of the study’s findings, allowing researchers to apply their insights broadly.

Theoretical Foundation

The theoretical foundation of random assignment lies in probability theory and statistical inference .

Probability theory deals with the likelihood of different outcomes, providing a mathematical framework for analyzing random phenomena. In the context of random assignment, it helps in ensuring that each participant has an equal chance of being placed in any group.

Statistical inference, on the other hand, allows researchers to draw conclusions about a population based on a sample of data drawn from that population. It is the mechanism through which the results of a study can be generalized to a broader context.

Random assignment enhances the reliability of statistical inferences by reducing biases and ensuring that the sample is representative.

Differentiating Random Assignment from Random Selection

It’s essential to distinguish between random assignment and random selection, as the two terms, while related, have distinct meanings in the realm of research.

Random assignment refers to how participants are placed into different groups in an experiment, aiming to control for confounding variables and help determine causes.

In contrast, random selection pertains to how individuals are chosen to participate in a study. This method is used to ensure that the sample of participants is representative of the larger population, which is vital for the external validity of the research.

While both methods are rooted in randomness and probability, they serve different purposes in the research process.

Understanding the theories, principles, and distinctions of random assignment illuminates its pivotal role in psychological research.

This method, anchored in probability theory and statistical inference, serves as a beacon of reliability, guiding researchers in their quest for knowledge and ensuring that their findings stand the test of validity and applicability.

Methodology of Random Assignment

woman sleeping with a brain monitor

Implementing random assignment in a study is a meticulous process that involves several crucial steps.

The initial step is participant selection, where individuals are chosen to partake in the study. This stage is critical to ensure that the pool of participants is diverse and representative of the population the study aims to generalize to.

Once the pool of participants has been established, the actual assignment process begins. In this step, each participant is allocated randomly to one of the groups in the study.

Researchers use various tools, such as random number generators or computerized methods, to ensure that this assignment is genuinely random and free from biases.

Monitoring and adjusting form the final step in the implementation of random assignment. Researchers need to continuously observe the groups to ensure that they remain comparable in all essential aspects throughout the study.

If any significant discrepancies arise, adjustments might be necessary to maintain the study’s integrity and validity.

Tools and Techniques Used

The evolution of technology has introduced a variety of tools and techniques to facilitate random assignment.

Random number generators, both manual and computerized, are commonly used to assign participants to different groups. These generators ensure that each individual has an equal chance of being placed in any group, upholding the principle of equal probability of selection.

In addition to random number generators, researchers often use specialized computer software designed for statistical analysis and experimental design.

These software programs offer advanced features that allow for precise and efficient random assignment, minimizing the risk of human error and enhancing the study’s reliability.

Ethical Considerations

The implementation of random assignment is not devoid of ethical considerations. Informed consent is a fundamental ethical principle that researchers must uphold.

Informed consent means that every participant should be fully informed about the nature of the study, the procedures involved, and any potential risks or benefits, ensuring that they voluntarily agree to participate.

Beyond informed consent, researchers must conduct a thorough risk and benefit analysis. The potential benefits of the study should outweigh any risks or harms to the participants.

Safeguarding the well-being of participants is paramount, and any study employing random assignment must adhere to established ethical guidelines and standards.

Conclusion of Methodology

The methodology of random assignment, while seemingly straightforward, is a multifaceted process that demands precision, fairness, and ethical integrity. From participant selection to assignment and monitoring, each step is crucial to ensure the validity of the study’s findings.

The tools and techniques employed, coupled with a steadfast commitment to ethical principles, underscore the significance of random assignment as a cornerstone of robust psychological research.

Benefits of Random Assignment in Psychological Research

The impact and importance of random assignment in psychological research cannot be overstated. It is fundamental for ensuring the study is accurate, allowing the researchers to determine if their study actually caused the results they saw, and making sure the findings can be applied to the real world.

Facilitating Causal Inferences

When participants are randomly assigned to different groups, researchers can be more confident that the observed effects are due to the independent variable being changed, and not other factors.

This ability to determine the cause is called causal inference .

This confidence allows for the drawing of causal relationships, which are foundational for theory development and application in psychology.

Ensuring Internal Validity

One of the foremost impacts of random assignment is its ability to enhance the internal validity of an experiment.

Internal validity refers to the extent to which a researcher can assert that changes in the dependent variable are solely due to manipulations of the independent variable , and not due to confounding variables.

By ensuring that each participant has an equal chance of being in any condition of the experiment, random assignment helps control for participant characteristics that could otherwise complicate the results.

Enhancing Generalizability

Beyond internal validity, random assignment also plays a crucial role in enhancing the generalizability of research findings.

When done correctly, it ensures that the sample groups are representative of the larger population, so can allow researchers to apply their findings more broadly.

This representative nature is essential for the practical application of research, impacting policy, interventions, and psychological therapies.

Limitations of Random Assignment

Potential for implementation issues.

While the principles of random assignment are robust, the method can face implementation issues.

One of the most common problems is logistical constraints. Some studies, due to their nature or the specific population being studied, find it challenging to implement random assignment effectively.

For instance, in educational settings, logistical issues such as class schedules and school policies might stop the random allocation of students to different teaching methods .

Ethical Dilemmas

Random assignment, while methodologically sound, can also present ethical dilemmas.

In some cases, withholding a potentially beneficial treatment from one of the groups of participants can raise serious ethical questions, especially in medical or clinical research where participants' well-being might be directly affected.

Researchers must navigate these ethical waters carefully, balancing the pursuit of knowledge with the well-being of participants.

Generalizability Concerns

Even when implemented correctly, random assignment does not always guarantee generalizable results.

The types of people in the participant pool, the specific context of the study, and the nature of the variables being studied can all influence the extent to which the findings can be applied to the broader population.

Researchers must be cautious in making broad generalizations from studies, even those employing strict random assignment.

Practical and Real-World Limitations

In the real world, many variables cannot be manipulated for ethical or practical reasons, limiting the applicability of random assignment.

For instance, researchers cannot randomly assign individuals to different levels of intelligence, socioeconomic status, or cultural backgrounds.

This limitation necessitates the use of other research designs, such as correlational or observational studies , when exploring relationships involving such variables.

Response to Critiques

In response to these critiques, people in favor of random assignment argue that the method, despite its limitations, remains one of the most reliable ways to establish cause and effect in experimental research.

They acknowledge the challenges and ethical considerations but emphasize the rigorous frameworks in place to address them.

The ongoing discussion around the limitations and critiques of random assignment contributes to the evolution of the method, making sure it is continuously relevant and applicable in psychological research.

While random assignment is a powerful tool in experimental research, it is not without its critiques and limitations. Implementation issues, ethical dilemmas, generalizability concerns, and real-world limitations can pose significant challenges.

However, the continued discourse and refinement around these issues underline the method's enduring significance in the pursuit of knowledge in psychology.

By being careful with how we do things and doing what's right, random assignment stays a really important part of studying how people act and think.

Real-World Applications and Examples

man on a treadmill

Random assignment has been employed in many studies across various fields of psychology, leading to significant discoveries and advancements.

Here are some real-world applications and examples illustrating the diversity and impact of this method:

  • Medicine and Health Psychology: Randomized Controlled Trials (RCTs) are the gold standard in medical research. In these studies, participants are randomly assigned to either the treatment or control group to test the efficacy of new medications or interventions.
  • Educational Psychology: Studies in this field have used random assignment to explore the effects of different teaching methods, classroom environments, and educational technologies on student learning and outcomes.
  • Cognitive Psychology: Researchers have employed random assignment to investigate various aspects of human cognition, including memory, attention, and problem-solving, leading to a deeper understanding of how the mind works.
  • Social Psychology: Random assignment has been instrumental in studying social phenomena, such as conformity, aggression, and prosocial behavior, shedding light on the intricate dynamics of human interaction.

Let's get into some specific examples. You'll need to know one term though, and that is "control group." A control group is a set of participants in a study who do not receive the treatment or intervention being tested , serving as a baseline to compare with the group that does, in order to assess the effectiveness of the treatment.

  • Smoking Cessation Study: Researchers used random assignment to put participants into two groups. One group received a new anti-smoking program, while the other did not. This helped determine if the program was effective in helping people quit smoking.
  • Math Tutoring Program: A study on students used random assignment to place them into two groups. One group received additional math tutoring, while the other continued with regular classes, to see if the extra help improved their grades.
  • Exercise and Mental Health: Adults were randomly assigned to either an exercise group or a control group to study the impact of physical activity on mental health and mood.
  • Diet and Weight Loss: A study randomly assigned participants to different diet plans to compare their effectiveness in promoting weight loss and improving health markers.
  • Sleep and Learning: Researchers randomly assigned students to either a sleep extension group or a regular sleep group to study the impact of sleep on learning and memory.
  • Classroom Seating Arrangement: Teachers used random assignment to place students in different seating arrangements to examine the effect on focus and academic performance.
  • Music and Productivity: Employees were randomly assigned to listen to music or work in silence to investigate the effect of music on workplace productivity.
  • Medication for ADHD: Children with ADHD were randomly assigned to receive either medication, behavioral therapy, or a placebo to compare treatment effectiveness.
  • Mindfulness Meditation for Stress: Adults were randomly assigned to a mindfulness meditation group or a waitlist control group to study the impact on stress levels.
  • Video Games and Aggression: A study randomly assigned participants to play either violent or non-violent video games and then measured their aggression levels.
  • Online Learning Platforms: Students were randomly assigned to use different online learning platforms to evaluate their effectiveness in enhancing learning outcomes.
  • Hand Sanitizers in Schools: Schools were randomly assigned to use hand sanitizers or not to study the impact on student illness and absenteeism.
  • Caffeine and Alertness: Participants were randomly assigned to consume caffeinated or decaffeinated beverages to measure the effects on alertness and cognitive performance.
  • Green Spaces and Well-being: Neighborhoods were randomly assigned to receive green space interventions to study the impact on residents’ well-being and community connections.
  • Pet Therapy for Hospital Patients: Patients were randomly assigned to receive pet therapy or standard care to assess the impact on recovery and mood.
  • Yoga for Chronic Pain: Individuals with chronic pain were randomly assigned to a yoga intervention group or a control group to study the effect on pain levels and quality of life.
  • Flu Vaccines Effectiveness: Different groups of people were randomly assigned to receive either the flu vaccine or a placebo to determine the vaccine’s effectiveness.
  • Reading Strategies for Dyslexia: Children with dyslexia were randomly assigned to different reading intervention strategies to compare their effectiveness.
  • Physical Environment and Creativity: Participants were randomly assigned to different room setups to study the impact of physical environment on creative thinking.
  • Laughter Therapy for Depression: Individuals with depression were randomly assigned to laughter therapy sessions or control groups to assess the impact on mood.
  • Financial Incentives for Exercise: Participants were randomly assigned to receive financial incentives for exercising to study the impact on physical activity levels.
  • Art Therapy for Anxiety: Individuals with anxiety were randomly assigned to art therapy sessions or a waitlist control group to measure the effect on anxiety levels.
  • Natural Light in Offices: Employees were randomly assigned to workspaces with natural or artificial light to study the impact on productivity and job satisfaction.
  • School Start Times and Academic Performance: Schools were randomly assigned different start times to study the effect on student academic performance and well-being.
  • Horticulture Therapy for Seniors: Older adults were randomly assigned to participate in horticulture therapy or traditional activities to study the impact on cognitive function and life satisfaction.
  • Hydration and Cognitive Function: Participants were randomly assigned to different hydration levels to measure the impact on cognitive function and alertness.
  • Intergenerational Programs: Seniors and young people were randomly assigned to intergenerational programs to study the effects on well-being and cross-generational understanding.
  • Therapeutic Horseback Riding for Autism: Children with autism were randomly assigned to therapeutic horseback riding or traditional therapy to study the impact on social communication skills.
  • Active Commuting and Health: Employees were randomly assigned to active commuting (cycling, walking) or passive commuting to study the effect on physical health.
  • Mindful Eating for Weight Management: Individuals were randomly assigned to mindful eating workshops or control groups to study the impact on weight management and eating habits.
  • Noise Levels and Learning: Students were randomly assigned to classrooms with different noise levels to study the effect on learning and concentration.
  • Bilingual Education Methods: Schools were randomly assigned different bilingual education methods to compare their effectiveness in language acquisition.
  • Outdoor Play and Child Development: Children were randomly assigned to different amounts of outdoor playtime to study the impact on physical and cognitive development.
  • Social Media Detox: Participants were randomly assigned to a social media detox or regular usage to study the impact on mental health and well-being.
  • Therapeutic Writing for Trauma Survivors: Individuals who experienced trauma were randomly assigned to therapeutic writing sessions or control groups to study the impact on psychological well-being.
  • Mentoring Programs for At-risk Youth: At-risk youth were randomly assigned to mentoring programs or control groups to assess the impact on academic achievement and behavior.
  • Dance Therapy for Parkinson’s Disease: Individuals with Parkinson’s disease were randomly assigned to dance therapy or traditional exercise to study the effect on motor function and quality of life.
  • Aquaponics in Schools: Schools were randomly assigned to implement aquaponics programs to study the impact on student engagement and environmental awareness.
  • Virtual Reality for Phobia Treatment: Individuals with phobias were randomly assigned to virtual reality exposure therapy or traditional therapy to compare effectiveness.
  • Gardening and Mental Health: Participants were randomly assigned to engage in gardening or other leisure activities to study the impact on mental health and stress reduction.

Each of these studies exemplifies how random assignment is utilized in various fields and settings, shedding light on the multitude of ways it can be applied to glean valuable insights and knowledge.

Real-world Impact of Random Assignment

old lady gardening

Random assignment is like a key tool in the world of learning about people's minds and behaviors. It’s super important and helps in many different areas of our everyday lives. It helps make better rules, creates new ways to help people, and is used in lots of different fields.

Health and Medicine

In health and medicine, random assignment has helped doctors and scientists make lots of discoveries. It’s a big part of tests that help create new medicines and treatments.

By putting people into different groups by chance, scientists can really see if a medicine works.

This has led to new ways to help people with all sorts of health problems, like diabetes, heart disease, and mental health issues like depression and anxiety.

Schools and education have also learned a lot from random assignment. Researchers have used it to look at different ways of teaching, what kind of classrooms are best, and how technology can help learning.

This knowledge has helped make better school rules, develop what we learn in school, and find the best ways to teach students of all ages and backgrounds.

Workplace and Organizational Behavior

Random assignment helps us understand how people act at work and what makes a workplace good or bad.

Studies have looked at different kinds of workplaces, how bosses should act, and how teams should be put together. This has helped companies make better rules and create places to work that are helpful and make people happy.

Environmental and Social Changes

Random assignment is also used to see how changes in the community and environment affect people. Studies have looked at community projects, changes to the environment, and social programs to see how they help or hurt people’s well-being.

This has led to better community projects, efforts to protect the environment, and programs to help people in society.

Technology and Human Interaction

In our world where technology is always changing, studies with random assignment help us see how tech like social media, virtual reality, and online stuff affect how we act and feel.

This has helped make better and safer technology and rules about using it so that everyone can benefit.

The effects of random assignment go far and wide, way beyond just a science lab. It helps us understand lots of different things, leads to new and improved ways to do things, and really makes a difference in the world around us.

From making healthcare and schools better to creating positive changes in communities and the environment, the real-world impact of random assignment shows just how important it is in helping us learn and make the world a better place.

So, what have we learned? Random assignment is like a super tool in learning about how people think and act. It's like a detective helping us find clues and solve mysteries in many parts of our lives.

From creating new medicines to helping kids learn better in school, and from making workplaces happier to protecting the environment, it’s got a big job!

This method isn’t just something scientists use in labs; it reaches out and touches our everyday lives. It helps make positive changes and teaches us valuable lessons.

Whether we are talking about technology, health, education, or the environment, random assignment is there, working behind the scenes, making things better and safer for all of us.

In the end, the simple act of putting people into groups by chance helps us make big discoveries and improvements. It’s like throwing a small stone into a pond and watching the ripples spread out far and wide.

Thanks to random assignment, we are always learning, growing, and finding new ways to make our world a happier and healthier place for everyone!

Related posts:

  • 19+ Experimental Design Examples (Methods + Types)
  • Cluster Sampling vs Stratified Sampling
  • 41+ White Collar Job Examples (Salary + Path)
  • 47+ Blue Collar Job Examples (Salary + Path)
  • McDonaldization of Society (Definition + Examples)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Purpose and Limitations of Random Assignment

In an experimental study, random assignment is a process by which participants are assigned, with the same chance, to either a treatment or a control group. The goal is to assure an unbiased assignment of participants to treatment options.

Random assignment is considered the gold standard for achieving comparability across study groups, and therefore is the best method for inferring a causal relationship between a treatment (or intervention or risk factor) and an outcome.

Representation of random assignment in an experimental study

Random assignment of participants produces comparable groups regarding the participants’ initial characteristics, thereby any difference detected in the end between the treatment and the control group will be due to the effect of the treatment alone.

How does random assignment produce comparable groups?

1. random assignment prevents selection bias.

Randomization works by removing the researcher’s and the participant’s influence on the treatment allocation. So the allocation can no longer be biased since it is done at random, i.e. in a non-predictable way.

This is in contrast with the real world, where for example, the sickest people are more likely to receive the treatment.

2. Random assignment prevents confounding

A confounding variable is one that is associated with both the intervention and the outcome, and thus can affect the outcome in 2 ways:

Causal diagram representing how confounding works

Either directly:

Direct influence of confounding on the outcome

Or indirectly through the treatment:

Indirect influence of confounding on the outcome

This indirect relationship between the confounding variable and the outcome can cause the treatment to appear to have an influence on the outcome while in reality the treatment is just a mediator of that effect (as it happens to be on the causal pathway between the confounder and the outcome).

Random assignment eliminates the influence of the confounding variables on the treatment since it distributes them at random between the study groups, therefore, ruling out this alternative path or explanation of the outcome.

How random assignment protects from confounding

3. Random assignment also eliminates other threats to internal validity

By distributing all threats (known and unknown) at random between study groups, participants in both the treatment and the control group become equally subject to the effect of any threat to validity. Therefore, comparing the outcome between the 2 groups will bypass the effect of these threats and will only reflect the effect of the treatment on the outcome.

These threats include:

  • History: This is any event that co-occurs with the treatment and can affect the outcome.
  • Maturation: This is the effect of time on the study participants (e.g. participants becoming wiser, hungrier, or more stressed with time) which might influence the outcome.
  • Regression to the mean: This happens when the participants’ outcome score is exceptionally good on a pre-treatment measurement, so the post-treatment measurement scores will naturally regress toward the mean — in simple terms, regression happens since an exceptional performance is hard to maintain. This effect can bias the study since it represents an alternative explanation of the outcome.

Note that randomization does not prevent these effects from happening, it just allows us to control them by reducing their risk of being associated with the treatment.

What if random assignment produced unequal groups?

Question: What should you do if after randomly assigning participants, it turned out that the 2 groups still differ in participants’ characteristics? More precisely, what if randomization accidentally did not balance risk factors that can be alternative explanations between the 2 groups? (For example, if one group includes more male participants, or sicker, or older people than the other group).

Short answer: This is perfectly normal, since randomization only assures an unbiased assignment of participants to groups, i.e. it produces comparable groups, but it does not guarantee the equality of these groups.

A more complete answer: Randomization will not and cannot create 2 equal groups regarding each and every characteristic. This is because when dealing with randomization there is still an element of luck. If you want 2 perfectly equal groups, you better match them manually as is done in a matched pairs design (for more information see my article on matched pairs design ).

This is similar to throwing a die: If you throw it 10 times, the chance of getting a specific outcome will not be 1/6. But it will approach 1/6 if you repeat the experiment a very large number of times and calculate the average number of times the specific outcome turned up.

So randomization will not produce perfectly equal groups for each specific study, especially if the study has a small sample size. But do not forget that scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when a meta-analysis aggregates the results of a large number of randomized studies.

So for each individual study, differences between the treatment and control group will exist and will influence the study results. This means that the results of a randomized trial will sometimes be wrong, and this is absolutely okay.

BOTTOM LINE:

Although the results of a particular randomized study are unbiased, they will still be affected by a sampling error due to chance. But the real benefit of random assignment will be when data is aggregated in a meta-analysis.

Limitations of random assignment

Randomized designs can suffer from:

1. Ethical issues:

Randomization is ethical only if the researcher has no evidence that one treatment is superior to the other.

Also, it would be unethical to randomly assign participants to harmful exposures such as smoking or dangerous chemicals.

2. Low external validity:

With random assignment, external validity (i.e. the generalizability of the study results) is compromised because the results of a study that uses random assignment represent what would happen under “ideal” experimental conditions, which is in general very different from what happens at the population level.

In the real world, people who take the treatment might be very different from those who don’t – so the assignment of participants is not a random event, but rather under the influence of all sort of external factors.

External validity can be also jeopardized in cases where not all participants are eligible or willing to accept the terms of the study.

3. Higher cost of implementation:

An experimental design with random assignment is typically more expensive than observational studies where the investigator’s role is just to observe events without intervening.

Experimental designs also typically take a lot of time to implement, and therefore are less practical when a quick answer is needed.

4. Impracticality when answering non-causal questions:

A randomized trial is our best bet when the question is to find the causal effect of a treatment or a risk factor.

Sometimes however, the researcher is just interested in predicting the probability of an event or a disease given some risk factors. In this case, the causal relationship between these variables is not important, making observational designs more suitable for such problems.

5. Impracticality when studying the effect of variables that cannot be manipulated:

The usual objective of studying the effects of risk factors is to propose recommendations that involve changing the level of exposure to these factors.

However, some risk factors cannot be manipulated, and so it does not make any sense to study them in a randomized trial. For example it would be impossible to randomly assign participants to age categories, gender, or genetic factors.

6. Difficulty to control participants:

These difficulties include:

  • Participants refusing to receive the assigned treatment.
  • Participants not adhering to recommendations.
  • Differential loss to follow-up between those who receive the treatment and those who don’t.

All of these issues might occur in a randomized trial, but might not affect an observational study.

  • Shadish WR, Cook TD, Campbell DT. Experimental and Quasi-Experimental Designs for Generalized Causal Inference . 2nd edition. Cengage Learning; 2001.
  • Friedman LM, Furberg CD, DeMets DL, Reboussin DM, Granger CB. Fundamentals of Clinical Trials . 5th ed. 2015 edition. Springer; 2015.

Further reading

  • Posttest-Only Control Group Design
  • Pretest-Posttest Control Group Design
  • Randomized Block Design
  • Yale Directories

Institution for Social and Policy Studies

Advancing research • shaping policy • developing leaders, why randomize.

About Randomized Field Experiments Randomized field experiments allow researchers to scientifically measure the impact of an intervention on a particular outcome of interest.

What is a randomized field experiment? In a randomized experiment, a study sample is divided into one group that will receive the intervention being studied (the treatment group) and another group that will not receive the intervention (the control group). For instance, a study sample might consist of all registered voters in a particular city. This sample will then be randomly divided into treatment and control groups. Perhaps 40% of the sample will be on a campaign’s Get-Out-the-Vote (GOTV) mailing list and the other 60% of the sample will not receive the GOTV mailings. The outcome measured –voter turnout– can then be compared in the two groups. The difference in turnout will reflect the effectiveness of the intervention.

What does random assignment mean? The key to randomized experimental research design is in the random assignment of study subjects – for example, individual voters, precincts, media markets or some other group – into treatment or control groups. Randomization has a very specific meaning in this context. It does not refer to haphazard or casual choosing of some and not others. Randomization in this context means that care is taken to ensure that no pattern exists between the assignment of subjects into groups and any characteristics of those subjects. Every subject is as likely as any other to be assigned to the treatment (or control) group. Randomization is generally achieved by employing a computer program containing a random number generator. Randomization procedures differ based upon the research design of the experiment. Individuals or groups may be randomly assigned to treatment or control groups. Some research designs stratify subjects by geographic, demographic or other factors prior to random assignment in order to maximize the statistical power of the estimated effect of the treatment (e.g., GOTV intervention). Information about the randomization procedure is included in each experiment summary on the site.

What are the advantages of randomized experimental designs? Randomized experimental design yields the most accurate analysis of the effect of an intervention (e.g., a voter mobilization phone drive or a visit from a GOTV canvasser, on voter behavior). By randomly assigning subjects to be in the group that receives the treatment or to be in the control group, researchers can measure the effect of the mobilization method regardless of other factors that may make some people or groups more likely to participate in the political process. To provide a simple example, say we are testing the effectiveness of a voter education program on high school seniors. If we allow students from the class to volunteer to participate in the program, and we then compare the volunteers’ voting behavior against those who did not participate, our results will reflect something other than the effects of the voter education intervention. This is because there are, no doubt, qualities about those volunteers that make them different from students who do not volunteer. And, most important for our work, those differences may very well correlate with propensity to vote. Instead of letting students self-select, or even letting teachers select students (as teachers may have biases in who they choose), we could randomly assign all students in a given class to be in either a treatment or control group. This would ensure that those in the treatment and control groups differ solely due to chance. The value of randomization may also be seen in the use of walk lists for door-to-door canvassers. If canvassers choose which houses they will go to and which they will skip, they may choose houses that seem more inviting or they may choose houses that are placed closely together rather than those that are more spread out. These differences could conceivably correlate with voter turnout. Or if house numbers are chosen by selecting those on the first half of a ten page list, they may be clustered in neighborhoods that differ in important ways from neighborhoods in the second half of the list. Random assignment controls for both known and unknown variables that can creep in with other selection processes to confound analyses. Randomized experimental design is a powerful tool for drawing valid inferences about cause and effect. The use of randomized experimental design should allow a degree of certainty that the research findings cited in studies that employ this methodology reflect the effects of the interventions being measured and not some other underlying variable or variables.

Protection of Random Assignment

  • First Online: 14 October 2021

Cite this chapter

what are the benefits of random assignment

  • Lynda H. Powell 4 ,
  • Peter G. Kaufmann 5 &
  • Kenneth E. Freedland 6  

518 Accesses

Existence of an alternative explanation for the benefit of a treatment is a confounder. It is a nuisance “passenger” variable that rides along with treatment and undermines the ability to make causal inferences. This chapter focuses on why random assignment is so powerful and should be protected. It presents a history of attempts to answer the question of whether or not a treatment works, and the arrival at random assignment as the best way to make causal inferences about the benefits of a treatment. It defines confounding as an error of interpretation and the essential role of avoiding it by protecting the random assignment. It then goes on to illustrate ways to protect random assignment in the design, conduct, and analyses of a trial, with particular attention to the central role of identifying a patient-centered target population, recruiting it, retaining it, and insuring that all randomized participants are included in the evaluation of trial results.

“Daniel and his three companions were young Israelites who were taken to serve in the palace of the king of Babylon because they were of noble royal family, without physical defect, handsome, versed in wisdom, and competent. Daniel determined he would not defile himself with the King’s food or wine. He asked the overseer: ‘Please test us for 10 days and let us be given some vegetables to eat and water to drink. Then let our appearance be compared to the appearance of youths who are eating the King’s choice food.’ At the end of 10 days, their appearance seemed better and they were fatter than any of the youths who had been eating the King’s food. So the overseer let them continue to eat vegetables and drink water instead of what the king provided.” Bible, Old Testament, Book of Daniel 1:16

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bull JP (1959) The historical development of clinical therapeutic trials. J Chron Dis 10:218–248

PubMed   Google Scholar  

Armitage P (1982) The role of randomization in clinical trials. Stat Med 1:345–352

Van Helmont JB (1662) Oriatrike or Physik Refined. In Debus AG (1968) The chemical dream of the renaissance. Heffer, London

Google Scholar  

Peirce CS, Jastrow J (1884) Fifth memoir: on small differences of sensation. Ntl Acad Sci 3:73–83

Yule G (1924) The function of statistical method in scientific investigation. Industrial Health Research Board Report 28. His Majesty’s Stationery Office, London

Eliot MM (1925) The control of rickets: preliminary discussion of the demonstration in New Haven. JAMA 85:656–663

Hill AB (1952) The clinical trial. New Engl J Med 247:113–119

Hill AB (1953) Observation and experiment. New Engl J Med 248:995–1001

Sinclair HM (1951) Nutritional surveys of population groups. New Engl J Med 245:39–47

Mill JS (1843) A system of logic ratiocinative and inductive. Being a connected view of the principles of evidence and the methods of scientific investigation. Book I. In Robson JM (ed). The collected works of John Stuart Mill (1974). University of Toronto Press, Toronto

Hill AB (1965) The environment and disease: association or causation. Proc Roy Soc Med 58:295–300

Wang D, Bakhai A (2006) Clinical trials: a practical guide to design, analysis, and reporting. Remedica, London

Domanski M, McKinlay S (2009) Successful randomized trials. A handbook for the 21st century. Lippincott Williams & Wilkins, Philadelphia

Friedman LM, Furberg CD, DeMets D, Reboussin DH, Granger CB (2015) Fundamentals of clinical trials, 5th edn. Springer, Cham

Rothman KJ, Greenland S, Lash TL (2008) Modern epidemiology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

Szklo M, Nieto FJ (2019) Epidemiology: beyond the basics, 4th edn. Jones & Bartlett Learning, Burlington

Hennekens CH, Buring JE, Mayrent SL (1987) Epidemiology in medicine. Little Brown, Boston

Susser M (1973) Causal thinking in the health sciences: Concepts and strategies of epidemiology. Oxford University Press, New York

Fisher RA (1951) The design of experiments, 6th edn. Hafner, New York

Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin, Boston

Byar DP, Simon RM, Friedewald WT, Schlesselman JJ, DeMets D, Ellenberg JH, Gail MH, Ware JH (1976) Randomized clinical trials--perspectives on some recent ideas. N Engl J Med 295:74–80

Moher D, Hopewell S, Schulz KF, Montori V, Gotzche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869. https://doi.org/10.1136/bmj.c869

Mosteller F, Gilbert JP, McPeek B (1980) Reporting standards and research strategies for controlled trials. Control Clin Trials 1:37–58

Schulz KF, Chalmers I, Hayes RJ, Altman DG (1995) Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 273:408–412

CONSORT Group (2010) CONSORT checklist. www.consort-statement.org

Schulz KF, Altman DG, Moher D, CONSORT Group (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med 152:726–732

Zwarenstein M, Treweek S, Gagnier JJ, Altman DG, Tunis S, Haynes B, Oxman AD, Moher D, and for the CONSORT and Pragmatic Trials in Healthcare (Practihc) groups (2008) Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ 337:a2390. https://doi.org/10.1136/bmj.a2390

Schulz KF (1995) Subverting randomization in controlled trials. JAMA 274:1456–1458

Kraemer HC (2015) A source of false findings in published research studies: adjusting for covariates. JAMA Psychiatry 72:961–962

Pocock SJ, Assmann SE, Enos LE, Kasten LE (2002) Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat Med 21:2917–2930

Schulz KF, Grimes DA, Altman DG, Hayes RJ (1996) Blinding and exclusions after allocation in randomised controlled trials: survey of published parallel group trials in obstetrics and gynaecology. BMJ 312:742–744

PubMed   PubMed Central   Google Scholar  

Detry MA, Lewis RJ (2014) The intention-to-treat principle: how to assess the true effect of choosing a medical treatment. JAMA 312:85–86

Freedman B (1987) Equipoise and the ethics of clinical research. N Eng J Med 317:141–145

Green SB, Byar DP (1984) Using observational data from registries to compare treatments: the fallacy of omnimetrics. Stat Med 3:361–373

Hollon SD, Wampold BE (2009) Are randomized controlled trials relevant to clinical practice? Can J Psychiatry 54:637–643

Cook TD, Campbell DT (1979) Quasi-experimentation: Design and analysis issues for field settings. Houghton Mifflin, Boston

Glasgow RE, Lichtenstein E, Marcus AC (2003) Why don’t we see more translation of health promotion research to practice? Rethinking the efficacy-to-effectiveness transition. Am J Public Health 93:1261–1267

Areán PA, Kraemer HC (2013) High-quality psychotherapy research: From conception to piloting to national trials. Oxford University Press, New York

Brownell KD, Wadden TA (1992) Etiology and treatment of obesity: understanding a serious, prevalent, and refractory disorder. J Consult Clin Psychol 60:505–517

Prochaska JO, DiClemente CC, Norcross JC (1992) In search of how people change: Applications to addictive behaviors. Am Psychol 47:1102–1114

Hall SM, Tsoh JY, Prochaska JJ, Eisendrath S, Rossi JS, Redding CA, Rosen AB, Meisner M, Humfleet GL, Gorecki JA (2006) Treatment for cigarette smoking among depressed mental health outpatients: a randomized clinical trial. Am J Public Health 96:1808–1814

Prochaska JJ, Hall SE, Delucchi K, Hall SM (2014) Efficacy of initiating tobacco dependence treatment in inpatient psychiatry: a randomized controlled trial. Am J Public Health 104:1557–1565

Prochaska JJ, Hall SE, Hall SM (2009) Stage-tailored tobacco cessation treatment in inpatient psychiatry. Psychiatr Serv 60:848. https://doi:10.1176/appi.ps.60.6.848

Prochaska JJ, Velicer WF, Prochaska JO, Delucchi K, Hall SM (2006) Comparing intervention outcomes in smokers treated for single versus multiple behavioral risks. Health Psychol 25:380–388

The Steering Committee of the Physicians Health Study Research Group (1988) Preliminary report: findings from the aspirin component of the ongoing Physicians’ Health Study. N Engl J Med 318:262–264

Coronary Drug Project Research Group (1980) Influence of adherence to treatment and response of cholesterol on mortality in the Coronary Drug Project. N Engl J Med 303:1038–1041

Adamson J, Cockayne S, Puffer S, Torgerson DJ (2006) Review of randomised trials using the post-randomised consent (Zelen’s) design. Contemp Clin Trials 27:305–319

Fabricatore AN, Wadden TA, Moore RH, Butryn ML, Gravallese EA, Erondu NE, Heymsfield SB, Nguyen AM (2009) Attrition from randomized controlled trials of pharmacological weight loss agents: a systematic review and analysis. Obes Rev 10:333–341

Lang JM (1990) The use of a run-in to enhance compliance. Stat Med 9:87–93

Kong W, Langlois MF, Kamga-Ngandé C, Gagnon C, Brown C, Baillargeon JP (2010) Predictors of success to weight-loss intervention program in individuals at high risk for type 2 diabetes. Diabetes Res Clin Pract 90:147–153

Teixeira PJ, Going SB, Houtkooper LB, Cussler EC, Metcalfe LL, Blew RM, Sardinha LB, Lohman TG (2004) Pretreatment predictors of attrition and successful weight management in women. Int J Obes Relat Metab Disord 28:1124–1133

Czajkowski SM, Powell LH, Adler N, Naar-King S, Reynolds KD, Hunter CM, Laraia B, Olster DH, Perna FM, Peterson JC, Epel E, Boyington JE, Charlson ME (2015) From ideas to efficacy: the ORBIT model for developing behavioral treatments for chronic diseases. Health Psychol 34:971–982

Bailey JV, Pavlou M, Copas A, McCarthy OL, Carswell K, Rait G, Hart G, Nazareth I, Free CJ, French R, Murray E (2013) The Sexunzipped trial: optimizing the design of online randomized controlled trials. J Med Internet Res 15:e278. https://doi.org/10.2196/jmir.2668

Boyd A, Tilling K, Cornish R, Davies A, Humphries K, Macleod J (2015) Professionally designed information materials and telephone reminders improved consent response rates: evidence from an RCT nested within a cohort study. J Clin Epidemiol 68:877–887

Dickson S, Logan J, Hagen S, Stark D, Glazener C, McDonald AM, McPherson G (2013) Reflecting on the methodological challenges of recruiting to a United Kingdom-wide, multi-centre, randomised controlled trial in gynaecology outpatient settings. Trials 14:389. https://doi.org/10.1186/1745-6215-14-389

Gupta A, Calfas KJ, Marshall SJ, Robinson TN, Rock CL, Huang JS, Epstein-Corbin M, Servetas C, Donohue MC, Norman GJ, Raab F, Merchant G, Fowler JH, Griswold WG, Fogg BJ, Patrick K (2015) Clinical trial management of participant recruitment, enrollment, engagement, and retention in the SMART study using a Marketing and Information Technology (MARKIT) model. Contemp Clin Trials 42:185–195

Hadidi N, Buckwalter K, Lindquist R, Rangen C (2012) Lessons learned in recruitment and retention of stroke survivors. J Neurosci Nurs 44:105–110

Hartlieb KB, Jacques-Tiura AJ, Naar-King S, Ellis DA, Jen KL, Marshall S (2015) Recruitment strategies and the retention of obese urban racial/ethnic minority adolescents in clinical trials: the FIT families project, Michigan, 2010–2014. Prev Chronic Dis 12:E22. https://doi.org/10.5888/pcd12.140409

Johnson DA, Joosten YA, Wilkins CH, Shibao CA (2015) Case study. Community engagement and clinical trial success: outreach to African American women. Clin Transl Sci 8:388–390

Blake K, Holbrook JT, Antal H, Shade D, Bunnell HT, McCahan SM, Wise RA, Pennington C, Garfinkel P, Wysocki T (2015) Use of mobile devices and the internet for multimedia informed consent delivery and data entry in a pediatric asthma trial: study design and rationale. Contemp Clin Trials 42:105–118

Cermak SA, Stein Duker LI, Williams ME, Lane CJ, Dawson ME, Borreson AE, Polido JC (2015) Feasibility of a sensory-adapted dental environment for children with autism. Am J Occup Ther 69:6903220020. https://doi.org/10.5014/ajot.2015.013714

Giuffrida A, Torgerson DJ (1997) Should we pay the patient? Review of financial incentives to enhance patient compliance. BMJ 315:703–707

Brown SD, Lee K, Schoffman DE, King AC, Crawley LM, Kiernan M (2012) Minority recruitment into clinical trials: experimental findings and practical implications. Contemp Clin Trials 33:620–623

Kiernan M, Phillips K, Fair JM, King AC (2000) Using direct mail to recruit Hispanic adults into a dietary intervention: an experimental study. Ann Behav Med 22:89–93

Batliner T, Fehringer KA, Tiwari T, Henderson WG, Wilson A, Brega AG, Albino J (2014) Motivational interviewing with American Indian mothers to prevent early childhood caries: study design and methodology of a randomized control trial. Trials 15:125. https://doi.org/10.1186/1745-6215-15-125

Article   PubMed   PubMed Central   Google Scholar  

Clark F, Pyatak EA, Carlson M, Blanche E, Vigen C, Hay J, Mallinson T, Blanchard J, Unger JB, Garber SL, Diaz J, Florindez L, Atkins M, Rubayi S, Azen SP, PUPS Study Group (2014) Implementing trials of complex interventions in community settings: the USC-Rancho Los Amigos Pressure Ulcer Prevention Study (PUPS). Clin Trials 11:218–229

Cruz TH, Davis SM, FitzGerald CA, Canaca GF, Keane PC (2014) Engagement, recruitment, and retention in a trans-community, randomized controlled trial for the prevention of obesity in rural American Indian and Hispanic children. J Prim Prev 35:135–149

Jimenez DE, Reynolds CF 3rd, Alegría M, Harvey P, Bartels SJ (2015) The Happy Older Latinos are Active (HOLA) health promotion and prevention study: study protocol for a pilot randomized controlled trial. Trials 6:579. https://doi.org/10.1186/s13063-015-1113-3

Koziol-McLain J, Vandal AC, Nada-Raja S, Wilson D, Glass NE, Eden KB, McLean C, Dobbs T, Case J (2015) A web-based intervention for abused women: the New Zealand isafe randomised controlled trial protocol. BMC Public Health 15:56. https://doi.org/10.1186/s12889-015-1395-0

Bakari M, Munseri P, Francis J, Aris E, Moshiro C, Siyame D, Janabi M, Ngatoluwa M, Aboud S, Lyamuya E, Sandström E, Mhalu F (2013) Experiences on recruitment and retention of volunteers in the first HIV vaccine trial in Dar es Salam, Tanzania - the phase I/II HIVIS 03 trial. BMC Public Health 13:1149. https://doi.org/10.1186/1471-2458-13-1149

Goldberg JH, Kiernan M (2005) Innovative techniques to address retention in a behavioral weight-loss trial. Health Educ Res 20:439–447

National Commission for the Protection of Human Subjects of Biomedical Behavioral Research (1978) The Belmont report: ethical principles and guidelines for the protection of human subjects of research. ERIC Clearinghouse, Bethesda

Moseley JB, O’Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH, Hollingsworth JC, Ashton CM, Wray NP (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 347:81–88

Hays JL, Hunt JR, Hubbell FA, Anderson GL, Limacher MC, Allen C, Rossouw JE (2003) The Women’s Health Initiative recruitment methods and results. Ann Epidemiol 13:S18–S77

Kaptchuk TJ, Friedlander E, Kelley JM, Sanchez MN, Kokkotou E, Singer JP, Kowalczykowski M, Miller FG, Kirsch I, Lembo AJ (2010) Placebos without deception: a randomized controlled trial in irritable bowel syndrome. PLoS One 5:e15591. https://doi.org/10.1371/journal.pone.0015591

Crichton GE, Howe PR, Buckley JD, Coates AM, Murphy KJ, Bryan J (2012) Long-term dietary intervention trials: critical issues and challenges. Trials 13:111. https://doi.org/10.1186/1745-6215-13-111

Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB (2013) Designing clinical research, 4th edn. Lippincott Williams & Wilkins, Philadelphia

Siddiqi AE, Sikorskii A, Given CW, Given B (2008) Early participant attrition from clinical trials: role of trial design and logistics. Clin Trials 5:328–335

Idoko OT, Owolabi OA, Odutola AA, Ogundare O, Worwui A, Saidu Y, Smith-Sanneh A, Tunkara A, Sey G, Sanyang A, Mendy P, Ota MO (2014) Lessons in participant retention in the course of a randomized controlled clinical trial. BMC Res Notes 7:706. https://doi.org/10.1186/1756-0500-7-706

Rucker-Whitaker C, Flynn KJ, Kravitz G, Eaton C, Calvin JE, Powell LH (2006) Understanding African-American participation in a behavioral intervention: results from focus groups. Contemp Clin Trials 27:274–286

Gross D, Fogg L (2004) A critical analysis of the intent-to-treat principle in prevention research. J Primary Prevention 25:475–489

Feinstein AR (1991) Intent-to-treat policy for analyzing randomized trials: statistical distortions and neglected clinical challenges. In: Cramer JA, Spilker B (eds) Patient compliance in medical practice and clinical trials. Raven, New York

Sheiner LB, Rubin DB (1995) Intention-to-treat analysis and the goals of clinical trials. Clin Pharmacol Ther 57:6–15

Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

Diabetes Prevention Program Research Group (1999) The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes. Diabetes Care 22:623–634

Diabetes Prevention Program Research Group (2000) The Diabetes Prevention Program: baseline characteristics of the randomized cohort. Diabetes Care 23:1619–1629

Frasure-Smith N, Prince R (1985) The Ischemic Heart Disease Life Stress Monitoring Program. Impact on mortality. Psychosom Med 47:431–445

Frasure-Smith N, Prince R (1989) Long-term follow-up of the Ischemic Heart Disease Life Stress Monitoring Program. Psychosom Med 51:485–513

Powell LH (1989) Unanswered questions in the Ischemic Heart Disease Life Stress Monitoring Program. Psychosom Med 51:479–484

Frasure-Smith N, Lespérance F, Prince RH, Verrier P, Garber RA, Juneau M, Wolfson C, Bourassa MG (1997) Randomised trial of home-based psychosocial nursing intervention for patients recovering from myocardial infarction. Lancet 350:473–479

O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, Leifer ES, Kraus WE, Kitzman DW, Blumenthal JA, Rendall DS, Miller NH, Fleg JL, Schulman KA, McKelvie RS, Zannad F, Piña IL, HF-ACTION Investigators (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301:1439–1450

Keteyian SJ, Leifer ES, Houston-Miller N, Kraus WE, Brawner CA, O’Connor CM, Whellan DJ, Cooper LS, Fleg JL, Kitzman DW, Cohen-Solal A, Blumenthal JA, Rendall DS, Piña IL, HF-ACTION Investigators (2012) Relation between volume of exercise and clinical outcomes in patients with heart failure. J Am Coll Cardiol 60:1899–1905

Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL, American College of Cardiology Foundation, American Heart Association Task Force on Practice Guidelines (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147–e239

Centers for Medicare and Medicaid Services (2014) Decision memo for cardiac rehabilitation programs - chronic heart failure (CAG-00437N). US Department of Health & Human Services. http://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?

McCambridge J, Kypri K, Elbourne D (2014) In randomization we trust? There are overlooked problems in experimenting with people in behavioral intervention trials. J Clin Epidemiol 67:247–253

Ashley EA (2015) The precision medicine initiative: a new national effort. JAMA 313:2019–2020

Khoury MJ, Evans JP (2015) A public health perspective on a national precision medicine cohort: balancing long-term knowledge generation with early health benefit. JAMA 313:2117–2118

Ma J, Rosas LG, Lv N (2016) Precision lifestyle medicine: a new frontier in the science of behavior change and population health. Am J Prev Med 50:395–397

Brewin CR, Bradley C (1989) Patient preferences and randomised clinical trials. Br Med J 299:313–315

Download references

Author information

Authors and affiliations.

Department of Preventive Medicine, Rush University Medical Center, Chicago, IL, USA

Lynda H. Powell

College of Nursing, Villanova University, Villanova, PA, USA

Peter G. Kaufmann

Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA

Kenneth E. Freedland

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Powell, L.H., Kaufmann, P.G., Freedland, K.E. (2021). Protection of Random Assignment. In: Behavioral Clinical Trials for Chronic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-39330-4_8

Download citation

DOI : https://doi.org/10.1007/978-3-030-39330-4_8

Published : 14 October 2021

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-39328-1

Online ISBN : 978-3-030-39330-4

eBook Packages : Behavioral Science and Psychology Behavioral Science and Psychology (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Department of Health & Human Services

Module 3: Elements of Research - Section 5

Module 1

Section 5: Random Assignment

Flipping a coin

The benefit of using random assignment is that it "evens the playing field." This means that the groups will differ only in the program or treatment to which they are assigned. If both groups are equivalent except for the program or treatment that they receive, then any change that is observed after comparing information collected about individuals at the beginning of the study and again at the end of the study can be attributed to the program or treatment. This way, the researcher has more confidence that any changes that might have occurred are due to the treatment under study and not to the characteristics of the group.

Eligible people. Random assignment to an intervention: Intervention A, Intervention B, Intervention C

Definition : Random assignment is a procedure used in experiments to create study groups with similar characteristics so that the groups are equivalent at the beginning of the study.

Case Example for Random Assignment

In a study to help individuals quit smoking, investigators randomly assigned participants to one of two groups. In Group A, participants took a class to quit smoking. The classes took place each week for 10-weeks and included information about the benefits of quitting smoking. In addition, participants in the class received strong social support from mentors or "buddies." In the Group B, participants read a 3-page pamphlet created by the American Cancer Association that explains the benefits of quitting smoking. The investigator randomly assigned participants to one of the two groups. It was found that those who participated in the class and received support from their buddies were more likely to quit smoking compared to those in the other group that received only the pamphlet.

PDF

Email Updates

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Clin Orthop Surg
  • v.6(1); 2014 Mar

Logo of clinorsurg

How to Do Random Allocation (Randomization)

Jeehyoung kim.

Department of Orthopedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Korea.

Wonshik Shin

To explain the concept and procedure of random allocation as used in a randomized controlled study.

We explain the general concept of random allocation and demonstrate how to perform the procedure easily and how to report it in a paper.

Randomized controlled trials (RCT) are known as the best method to prove causality in spite of various limitations. Random allocation is a technique that chooses individuals for treatment groups and control groups entirely by chance with no regard to the will of researchers or patients' condition and preference. This allows researchers to control all known and unknown factors that may affect results in treatment groups and control groups.

Allocation concealment is a technique used to prevent selection bias by concealing the allocation sequence from those assigning participants to intervention groups, until the moment of assignment. Allocation concealment prevents researchers from influencing which participants are assigned to a given intervention group. This process must be included in the experiment for the success of any RCT.

Blinding refers to keeping trial participants, health care providers, assessors or data collectors unaware of the assigned intervention, so that they will not be influenced by that knowledge. This process is conducted to minimize possible bias in implementation, dropouts, measurements, etc. Blinding is not always feasible for RCT but should be implemented if possible.

Randomization, allocation concealment and blinding should be well implemented and should be described in the paper.

On the other hand, many researchers are still unfamiliar with how to do randomization, and it has been shown that there are problems in many studies with the accurate performance of the randomization and that some studies are reporting incorrect results. So, we will introduce the recommended way of using statistical methods for a randomized controlled study and show how to report the results properly.

CATEGORIES OF RANDOMIZATION

Simple randomization.

The easiest method is simple randomization. If you assign subjects into two groups A and B, you assign subjects to each group purely randomly for every assignment. Even though this is the most basic way, if the total number of samples is small, sample numbers are likely to be assigned unequally. For this reason, we recommend you to use this method when the total number of samples is more than 100.

Block Randomization

We can create a block to assign sample numbers equally to each group and assign the block.

If we specify two in one block (the so-called block size is two), we can make two possible sequences of AB and BA. When we randomize them, the same sample numbers can be assigned to each group. If the block size is four, we can make six possible sequences; these are AABB, ABAB, ABBA, BAAB, BABA, BBAA, and we randomize them.

However, there is a disadvantage in that the executer can predict the next assignment. We can easily know the fact that B comes after A if the block size is two and if the block size is four; we can predict what every 4th sample is. This is discordant with the principle of randomization. To solve this problem, the allocator must hide the block size from the executer and use randomly mixed block sizes. For example, the block size can be two, four, and six.

Stratified Randomization

Randomization is important because it is almost the only way to assign all the other variables equally except for the factor (A and B) in which we are interested. However, some very important confounding variables can often be assigned unequally to the two groups. This possibility increases when the number of samples is smaller, and we can stratify the variables and assign the two groups equally in this case.

For example, if the smoking status is very important, what will you do? First, we have two methods of randomization that we learned previously. There are two randomly assigned separate sequences for smokers and non-smokers. Smokers are assigned to the smoker's sequences, and non-smokers are assigned to the non-smoker's sequences. Therefore, both smokers and non-smokers groups will be placed equally with the same numbers.

So we can use 'simple randomization with/without stratification' or 'block randomization with/without stratification.' However, if there are multiple stratified variables, it is difficult to place samples in both groups equally with the same numbers. Usually two or fewer stratified variables are recommended.

EXAMPLES OF RANDOMIZATION

Although there are websites or common programs for randomization, let us use an Excel file. Download the attached file in http://cafe.naver.com/easy2know/6427 . It is in a 'Read-only' state, but there is no limit in function; it is in the 'Read-only' state only to prevent accidental modification.

Due to the nature of Excel, if there is a change, it creates a new random number accordingly. If we input any number instead of '2' in the orange-colored cell and click the 'enter key,' it creates new random sequences ( Fig. 1 ). The sequences are the result of simple randomization. The numbers in the right column show the numbers of the total sample. Basically the numbers are up to 1,000, but if you need to, you can extend the numbers with the AutoFill function in Excel.

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g001.jpg

Simple randomization sheet.

Fig. 2 shows an example of randomization when the block size is four. Also, there are numbers of the total samples in the right column.

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g002.jpg

An example of randomization when the block size is four.

Fig. 3 shows an example of block randomization when the block size is two and four. Total eight kinds of blocks inside of the red-dotted line are assigned at random. The left column is for allocation and the right column is for the total sample size.

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g003.jpg

Block randomization when the block size is two and four. Total eight blocks in the red-dotted line are assigned at random. The left column is for allocation and the right column is for the total sample size.

By the way, www.randomization.com can do block randomization for up to four kinds of block sizes and it is very easy to perform as well. Fig. 4 shows the general features and an example.

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g004.jpg

www.randomization.com can do block randomization more easily. In this figure, the block size is 2, 4, and 6 when the total samples are 88.

THE REALITY OF THE RANDOMIZATION PROCEDURE

How to implement these techniques can vary by each trial. The following is only one of the examples of how these can be implemented in real trial. You may change the details of the example for your experiment. Figures of randomization and allocation concealment can also be adjusted to your needs ( Fig. 5 ).

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g005.jpg

The reality of the randomization procedure.

Random Allocation

An independent researcher makes random allocation cards using computer-generated random numbers. He keeps the original random allocation sequences in an inaccessible third place and works with a copy. Since the executers can get confused with the original coding of A and B later, the allocator should record exactly what these codes mean to avoid further confusion.

When the purpose of the study is a surgical procedure, instead of using A and B, different names that distinguish exactly between the surgical procedures should be used (for example, 'the anterior approach' and 'the posterior approach'). It is convenient to reproduce the contents of the Excel file to a Word file, and enlarge the text font after replacing A with 'the anterior approach' (page break) and B with 'the posterior approach' (page break). Next, you print it out and put each of the sheets one by one into each envelope ( Fig. 6 ).

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g006.jpg

MS word can replace A and B with a specific treatment name easily.

Here in Fig. 6 , '^m' is a special character for manual page break. After setting it as shown, you click 'all change' and print it out. Then we can get it printed per sheet. The inside of the envelope should not be visible from the outside, and it has to be printed out for each one and put in an envelope after being folded several times. In some papers, even aluminum foil was used to hide the print to prevent it from being read with a flash of light.

There are serial numbers on the outside of the envelopes. Input date, time, patient ID, results after the procedure, etc. usually will be recorded on the envelope or another sheet inside of the envelope, also.

Drug Preparation

An independent nurse (researcher) prepares syringes with "drug A" and "drug B" and puts them into envelopes according to the allocation orders. These syringes cannot be distinguished because they contain the same colored liquid with the same volume. Or pills or tablets with the same color and shape (placebo) will be put into the envelopes according to the allocation orders.

In the case of surgical treatment, an independent researcher prepares the envelopes, including writing the treatment name on a sheet of paper inside it. In the operation room, another independent nurse (researcher) opens the envelope and informs the doctor to do the treatment that is written on the paper in the envelope.

Another independent nurse injects the drug or the doctor performs the operation according to the order. The patient's ID, date, time and other information are recorded on each envelope. The nurse and the patient would not know what drugs are injected (double blinded). The doctor knows the treatment and the patient does not know it (one blinded). The preparer retrieves the envelopes and checks to see if the operation (and injection) was done as planned.

In the case of broken or lost syringes, the preparer figures out what the number of the envelope it is and replaces the envelope with the same drug according to the allocation.

The envelopes should be opened just before the injection or operation. For example, when a patient comes, an envelope is opened; however, if this does not meet the criteria for the performance of the study, this can be cancelled. Also, if the operator finds out before an operation the tool that is to be inserted, it is impossible to get the operation as planned. For example, even though plate A was assigned to be used, if the patient was indicated to have some other surgery because of infection or severe osteoporosis, you will waste an envelope and it will cause confusion as well as violate the randomization. All these cases should be mentioned as inclusion criteria and exclusion criteria in advance. To avoid this, the envelopes should be opened just before the operation or injection if possible.

However, in cases where the operation tool is so big that two tools cannot be prepared at the same time, or the preparation takes a lot of money (robotic surgery, etc.) or time (liver transplantation, etc.), the envelopes can be opened in advance.

Also, although you open an envelope and choose the procedure that you see, other conditions that affect the outcome can occur. For example, the patient could be admitted to the intensive care unit for medical problems after treatment, or may not get enough rehabilitation treatment for some other reasons.

In this case, it is an important issue whether to consider this as a follow-up loss or exclude this case from the study. We can deal with this issue by focusing on intention-to-treat analysis and per-protocol analysis. We will study this later when we get a chance.

Survey Results

After a period of time, another independent researcher measures the patient's outcome. He does not know the allocation. That is another blinding, so triple blinding is recommended if possible.

Another independent researcher who was not involved in any stage of these procedures will do the statistical analysis (sometimes a statistician). He even does not know the treatment name because the treatment name is hidden, as in A and B.

REPORTING OF RANDOMIZATION METHODS

From 1988 to 2000, 72 of 2,468 papers (2.9%) in the Journal of Born and Joint Surgery were RCTs. 1) It has been suggested that in some of the papers, randomization was not completely done or the result was not properly reported. According to the analysis of RCTs using painkillers from the January issue in 1966 to the June issue in 2006, 23.9% of the papers were inadequate in terms of the randomization. 2) It would be helpful to see a CONSORT checklist and examples. The following were used in the actual papers and extracted from examples in the CONSORT ( http://www.consort-statement.org ).

Sequence Generation

"Independent pharmacists dispensed either active or placebo inhalers according to a computer generated randomization list."

"For allocation of the participants, a computer-generated list of random numbers was used."

Type of Randomization

"Randomization sequence was created using Stata 9.0 (StataCorp, College Station, TX, USA) statistical software and was stratified by center with a 1:1 allocation using random block sizes of 2, 4, and 6."

"Participants were randomly assigned following simple randomization procedures (computerized random numbers) to 1 of 2 treatment groups."

We can apply the above examples to our case as follows: Randomization sequence was created using Excel 2007 (Microsoft, Redmond, WA, USA) with a 1:1 allocation using random block sizes of 2 and 4 by an independent doctor. In this way, sequence generation and type of randomization can be expressed at the same time.

Allocation Concealment Mechanism

"The doxycycline and placebo were in capsule form and identical in appearance. They were pre-packed in bottles and consecutively numbered for each woman according to the randomization schedule. Each woman was assigned an order number and received the capsules in the corresponding pre-packed bottle."

"The allocation sequence was concealed from the researcher (JR) enrolling and assessing participants in sequentially numbered, opaque, sealed and stapled envelopes. Aluminum foil inside the envelope was used to render the envelope impermeable to intense light. To prevent subversion of the allocation sequence, the name and date of birth of the participant was written on the envelope and a video tape made of the sealed envelope with participant details visible. Carbon paper inside the envelope transferred the information onto the allocation card inside the envelope and a second researcher (CC) later viewed video tapes to ensure envelopes were still sealed when participants' names were written on them. Corresponding envelopes were opened only after the enrolled participants completed all baseline assessments and it was time to allocate the intervention."

The second example was described in great detail, and we can guess how important the randomization and concealment were.

Who Generated the Allocation Sequence, Who Enrolled Participants, and Who Assigned Participants to Interventions?

"Determination of whether a patient would be treated by streptomycin and bed-rest (S case) or by bed-rest alone (C case) was made by reference to a statistical series based on random sampling numbers drawn up for each sex at each center by Professor Bradford Hill (this means that the stratification was done by sex and center); the details of the series were unknown to any of the investigators or to the coordinator. After acceptance of a patient by the panel, and before admission to the streptomycin center, the appropriate numbered envelope was opened at the central office; the card inside told, if the patient was to be an S or a C case, and this information was then given to the medical officer of the center."

"Details of the allocated group were given on colored cards contained in sequentially numbered, opaque, sealed envelopes. These were prepared at the NPEU and kept in an agreed location on each ward. Randomization took place at the end of the 2nd stage of labor when the midwife considered a vaginal birth was imminent. To enter a woman into the study, the midwife opened the next consecutively numbered envelope."

"Block randomization was by a computer generated random number list prepared by an investigator with no clinical involvement in the trial. We stratified by admission for an oncology related procedure. After the research nurse had obtained the patient's consent, she telephoned a contact who was independent of the recruitment process for allocation consignment."

If Done, Who Was Blinded after Assignment to Interventions and How

"Whereas patients and physicians allocated to the intervention group were aware of the allocated arm, outcome assessors and data analysts were kept blinded to the allocation."

"Blinding and equipoise were strictly maintained by emphasizing to intervention staff and participants that each diet adheres to healthy principles, and each of them is advocated by certain experts to be superior for long-term weight-loss. Except for the interventionists (dieticians and behavioral psychologists), investigators and staff were kept blind to diet assignment of the participants. The trial adhered to established procedures to maintain separation between staff that take outcome measurements and staff that deliver the intervention. Staffs who obtained outcome measurements were not informed of the diet group assignment. Intervention staffs, dieticians and behavioral psychologists who delivered the intervention did not take outcome measurements. All investigators, staffs, and participants were kept masked to outcome measurements and trial results."

In short, in a paper, we have to report who was kept blinded. In the case of physical therapy or surgery, keeping the surgeon blinded would be difficult or even impossible; however, blinding is possible for the person who measures the outcome. Anyhow, all individuals who were kept blinded must be described in the report.

WEBSITES AND SYSTEMS HELPING THESE PROCEDURES

To help with all the procedures of a fully qualified RCT, the following systems including electronic case report forms (eCRFs) are available for researchers.

iCReaT (clinical research and trial management system) in Korea Centers for Disease Control & Prevention (KCDC; http://icreat.nih.go.kr ): free for pre-educated and qualified researchers; there are regular education programs once a month, and some hospitals (for example, Severance Hospital) have their own educational programs. An English version will be available soon for non-Korean researchers.

MRCC ( https://mrcc.snuh.org ): for Seoul National University Hospital only. It is relatively inexpensive and includes statistical counseling.

Velos ( http://eresearch.ncc.re.kr ): a world-famous system and very expensive; it is available at National Cancer Center in Korea ( http://ncc.re.kr/crcc/ ).

eCRFs are very convenient as well as helpful to improve the quality of research and their advantages are summarized in the table ( Table 1 ).

Comparisons between Paper CRFs and e-CRFs of Web-based Clinical Research Management System

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-i001.jpg

CRF: case report form.

In RCT, random assignment is important and performing it is easy if you know how to do it. Besides the practice of randomization, correct reporting of the randomization process is also important and it should be done very accurately.

No potential conflict of interest relevant to this article was reported.

Statology

Statistics Made Easy

Random Selection vs. Random Assignment

Random selection and random assignment  are two techniques in statistics that are commonly used, but are commonly confused.

Random selection  refers to the process of randomly selecting individuals from a population to be involved in a study.

Random assignment  refers to the process of randomly  assigning  the individuals in a study to either a treatment group or a control group.

You can think of random selection as the process you use to “get” the individuals in a study and you can think of random assignment as what you “do” with those individuals once they’re selected to be part of the study.

The Importance of Random Selection and Random Assignment

When a study uses  random selection , it selects individuals from a population using some random process. For example, if some population has 1,000 individuals then we might use a computer to randomly select 100 of those individuals from a database. This means that each individual is equally likely to be selected to be part of the study, which increases the chances that we will obtain a representative sample – a sample that has similar characteristics to the overall population.

By using a representative sample in our study, we’re able to generalize the findings of our study to the population. In statistical terms, this is referred to as having  external validity – it’s valid to externalize our findings to the overall population.

When a study uses  random assignment , it randomly assigns individuals to either a treatment group or a control group. For example, if we have 100 individuals in a study then we might use a random number generator to randomly assign 50 individuals to a control group and 50 individuals to a treatment group.

By using random assignment, we increase the chances that the two groups will have roughly similar characteristics, which means that any difference we observe between the two groups can be attributed to the treatment. This means the study has  internal validity  – it’s valid to attribute any differences between the groups to the treatment itself as opposed to differences between the individuals in the groups.

Examples of Random Selection and Random Assignment

It’s possible for a study to use both random selection and random assignment, or just one of these techniques, or neither technique. A strong study is one that uses both techniques.

The following examples show how a study could use both, one, or neither of these techniques, along with the effects of doing so.

Example 1: Using both Random Selection and Random Assignment

Study:  Researchers want to know whether a new diet leads to more weight loss than a standard diet in a certain community of 10,000 people. They recruit 100 individuals to be in the study by using a computer to randomly select 100 names from a database. Once they have the 100 individuals, they once again use a computer to randomly assign 50 of the individuals to a control group (e.g. stick with their standard diet) and 50 individuals to a treatment group (e.g. follow the new diet). They record the total weight loss of each individual after one month.

Random selection vs. random assignment

Results:  The researchers used random selection to obtain their sample and random assignment when putting individuals in either a treatment or control group. By doing so, they’re able to generalize the findings from the study to the overall population  and  they’re able to attribute any differences in average weight loss between the two groups to the new diet.

Example 2: Using only Random Selection

Study:  Researchers want to know whether a new diet leads to more weight loss than a standard diet in a certain community of 10,000 people. They recruit 100 individuals to be in the study by using a computer to randomly select 100 names from a database. However, they decide to assign individuals to groups based solely on gender. Females are assigned to the control group and males are assigned to the treatment group. They record the total weight loss of each individual after one month.

Random assignment vs. random selection in statistics

Results:  The researchers used random selection to obtain their sample, but they did not use random assignment when putting individuals in either a treatment or control group. Instead, they used a specific factor – gender – to decide which group to assign individuals to. By doing this, they’re able to generalize the findings from the study to the overall population but they are  not  able to attribute any differences in average weight loss between the two groups to the new diet. The internal validity of the study has been compromised because the difference in weight loss could actually just be due to gender, rather than the new diet.

Example 3: Using only Random Assignment

Study:  Researchers want to know whether a new diet leads to more weight loss than a standard diet in a certain community of 10,000 people. They recruit 100 males athletes to be in the study. Then, they use a computer program to randomly assign 50 of the male athletes to a control group and 50 to the treatment group. They record the total weight loss of each individual after one month.

Random assignment vs. random selection example

Results:  The researchers did not use random selection to obtain their sample since they specifically chose 100 male athletes. Because of this, their sample is not representative of the overall population so their external validity is compromised – they will not be able to generalize the findings from the study to the overall population. However, they did use random assignment, which means they can attribute any difference in weight loss to the new diet.

Example 4: Using Neither Technique

Study:  Researchers want to know whether a new diet leads to more weight loss than a standard diet in a certain community of 10,000 people. They recruit 50 males athletes and 50 female athletes to be in the study. Then, they assign all of the female athletes to the control group and all of the male athletes to the treatment group. They record the total weight loss of each individual after one month.

Random selection vs. random assignment

Results:  The researchers did not use random selection to obtain their sample since they specifically chose 100 athletes. Because of this, their sample is not representative of the overall population so their external validity is compromised – they will not be able to generalize the findings from the study to the overall population. Also, they split individuals into groups based on gender rather than using random assignment, which means their internal validity is also compromised – differences in weight loss might be due to gender rather than the diet.

Featured Posts

5 Statistical Biases to Avoid

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

5.5 – Importance of randomization in experimental design

Introduction.

  • Demonstrate the benefits of random sampling as a method to control for extraneous factors

What about observational studies? How does randomization work?

Chapter 5 contents.

If the goal of the research is to make general, evidenced-based statements about causes of disease or other conditions of concern to the researcher, then how the subjects are selected for study directly impacts our ability to make generalizable conclusions . The most important concept to learn about inference in statistical science is that your sample of subjects upon which all measurements and treatments are conducted, ideally should be a random selection of individuals from a well-defined reference population.

The primary benefit of random sampling is that it strengthens our confidence in the links between cause and effect. Often after an intervention trial is complete, differences among the treatment groups will be observed. Groups of subjects who participated in sixteen weeks of “vigorous” aerobic exercise training show reduced systolic blood pressure compared to those subjects who engaged in light exercise for the same period of time (Cox et al 1996). But how do we know that exercise training caused the difference in blood pressure between the two treatment groups? Couldn’t the differences be explained by chance differences in the subjects? Age, body mass index (BMI), over all health, family history, etc.?

How can we account for these additional differences among the subjects? If you are thinking like an experimental biologist, then the word “control” is likely coming to the foreground. Why not design a study in which all 60 subjects are the same age, the same BMI, the same general health, the same family … history…? Hmm. That does not work. Even if you decide to control age, BMI, and general health categories, you can imagine the increased effort and cost to the project in trying to recruit subjects based on such narrow criteria. So, control per se is not the general answer.

If done properly, random sampling makes these alternative explanations less likely. Random sampling implies that other factors that may causally contribute to differences in the measured outcome, but themselves are not measured or included as a focus of the research study, should be the same, on average, among our different treatment groups. The practical benefits of proper random sampling is that recruiting subjects gets easier — fewer subjects will be needed because you are not trying to control dozens of factors that may (or may not!) contribute to differences in your outcome variable. The downside to random sampling is that the variability of the outcomes within your treatment groups will tends to increase. As we will see when we get to statistical inference, large variability within groups will make it less likely that any statistical difference between the treatment groups will be observed.

Demonstrate the benefits of random sampling as a method to control for extraneous factors.

The study reported by Cox et al included 60 obese men between the ages of 20 and 50. A reasonable experimental design decision would suggest that the 60 subjects be split into the two treatment groups such that both groups had 30 subjects for a balanced design. Subjects who met all of the research criteria and who had signed the informed consent agreement are to be placed into the treatment groups and there are many ways that group assignment could be accomplished. One possibility, the researchers could assign the first 30 people that came into the lab to the Vigorous exercise group and the remaining 30 then would be assigned to the Light exercise group. Intuitively I think we would all agree that this is a suspect way to design an experiment, but more importantly, why shouldn’t you use this convenient method?

Just for arguments sake, imagine that their subjects came in one at a time, and, coincidentally, they did so by age. The first person was age 21, the second was 22, and so on up to the 30th person who was 50. Then, the next group came in, again, coincidentally in order of ascending age. If you calculate the simple average age for each group you will find that they are identical (35.5 years). On the surface, this looks like we have controlled for age: both treatment groups have subjects that are the same age. A second option is to sort the subjects into the two treatment groups so that a 21 year old is in Group A, and the other 21 year old is in Group B, and so on. Again, the average age of Group A subjects and of Group B subjects would be the same and therefore controlled with respect to any covariation between age and change in blood pressure. However, there are other variables that may covary with blood pressure, and by controlling one, we would need to control the others. Randomization provides a better way.

I will demonstrate how randomization tends to distribute the values in such a way that the groups will not differ appreciably for the nuisance variables like age and BMI differences and, by extension, any other covariable. The R work is attached following the Reading list. The take-home message: After randomly selecting subjects for assignment to the treatment groups, the apparent differences between Group A and Group B for both age and BMI are substantially diminished. No attempt to match by age and by BMI is necessary. The numbers are shown in the table and then in two graphics (Fig. 1, Fig. 2) derived from the table.

Table 1. Mean age and BMI for subjects in two treatment groups A and B where subjects were assigned randomly or by convenience to treatment groups.

Just for emphasis, the means from Table 1 are presented in the next two figures (Fig. 1 and Fig. 2).

Figure 6. Age of subjects by groups (A = blue, B = red) with and without randomized assignment of subjects to treatment groups

Figure 1. Age of subjects by groups (A = blue, B = red) with and without randomized assignment of subjects to treatment groups

Figure 7. BMI of subjects by groups (A = blue, B = red) with and without randomized assignment of subjects to treatment groups

Figure 2. BMI of subjects by groups (A = blue, B = red) with and without randomized assignment of subjects to treatment groups

Note that the apparent difference between A and B for BMI disappear once proper randomization of subjects was accomplished. In conclusion, a random sample is an approach to experimental design that helps to reduce the influence other factors may have on the outcome variable (e.g., change in blood pressure after 16 weeks of exercise). In principle, randomization should protect a project because, on average, these influences will be represented randomly for the two groups of individuals. This reasoning extends to unmeasured and unknown causal factors as well.

This discussion was illustrated by random assignment of subjects to treatment groups. The same logic applies to how to select subjects from a population. If the sampling is large enough, then a random sample of subjects will tend to be representative of the variability of the outcome variable for the population and representative also of the additional and unmeasured cofactors that may contribute to the variability of the outcome variable.

However, if you do cannot obtain a random sample, then conclusions reached may be sample-specific, biased . …perhaps the group of individuals that likes to exercise on treadmills just happens to have a higher cardiac output because they are larger than the individuals that like to exercise on bicycles. This nonrandom sample will bias your results and can lead to incorrect interpretation of results. Random sampling is CRUCIAL in epidemiology, opinion survey work, most aspects of health, drug studies, medical work with human subjects. It’s difficult and very costly to do… so most surveys you hear about, especially polls reported from Internet sites, are NOT conducted using random sampling (included in the catch-all term “ probability sampling “)!! As an aside, most opinion survey work involves complex sample designs involving some form of geographic clustering (e.g., all phone numbers in a city, random sample among neighborhoods).

Random sampling is the ideal if generalizations are to be made about data, but strictly random sampling is not appropriate for all kinds of studies. Consider the question of whether or not EMF exposure is a risk factor for developing cancer (Pool 1990). These kinds of studies are observational: at least in principle, we wouldn’t expect that housing and therefore exposure to EMF is manipulated (cf. discussion Walker 2009). Thus, epidemiologists will look for patterns: if EMF exposure is linked to cancer, then more cases of cancer should occur near EMF sources compared to areas distant from EMF sources. Thus, the hypothesis is that an association between EMF exposure and cancer occurs non-randomly, whereas cancers occurring in people not exposed to EMF are random. Unfortunately, clusters can occur even if the process that generates the data is random.

Compare Graph A and Graph B (Fig. 3). One of the graphs resulted from a random process and the other was generated by a non-random process . Note that the claim can be rephrased about the probability that each grid has a point, e.g., it’s like Heads/Tails of 16 tosses of a coin. We can see clusters of points in Graph B; Graph A lacks obvious clusters of points — there is a point in each of the 16 cells of the grid. Although both patterns could be random, the correct answer in this case is Graph B.

Figure 8. An example of clustering resulting from a random sampling process (Graph B). In contrast, Graph A was generated so that a point was located within each grid.

Figure 3. An example of clustering resulting from a random sampling process (Graph B). In contrast, Graph A was generated so that a point was located within each grid.

The graphic below shows the transmission grid in the continental United States (Fig. 4). How would one design a random sampling scheme overlaid against the obviously heterogeneous distribution of the grid itself? If a random sample was drawn, chances are good that no population would be near a grid in many of the western states, but in contrast, the likelihood would increase in the eastern portion of the United States where the population and therefore transmission grid is more densely placed.

Open Infrastructure map, https://openinframap.org/#3/24.61/-101.16

Figure 4. Map of electrical transmission grid for continental United States of America. Image source https://openinframap.org/#3/24.61/-101.16

For example, you want to test whether or not EMF affects human health, and your particular interest is in whether or not there exists a relationship between living close to high voltage towers or transfer stations and brain cancer. How does one design a study, keeping in mind the importance of randomization for our ability to generalize and assign causation?  This is a part of epidemiology which strives to detect whether clusters of disease are related to some environmental source. It is an extremely difficult challenge. For the record, no clear link to EMF and cancer has been found, but reports do appear from time to time (e.g., report on a cluster of breast cancer in men working in office adjacent to high EMF, Milham 2004).

1. I claimed that Graph B in Figure 8 was generated by a random process while Graph B was not. The results are: Graph A, each cell in the grid has a point; In graph B, ten cells have at least one point, six cells are empty. Which probability _____ distribution applies? A. beta B. binomial C. normal D. poisson

2. True or False. If sample with replacement is used, a subject may be included more than once.

3. Use the sample() with and without replacement on the object (see help with R below)

a) set of 3

b) set of 4

4. Confirm the claim by calculating the probability of Graph A result vs Graph B result (see R script below).

Code you type is shown in red; responses or output from R are shown in blue. Recall that statements preceded by the hash # are comments and are not read by R (i.e., no need for you tp type them).

First, create some variables. Vectors aa and bb contain my two age sequences.

Second, append vector bb to the end of vector aa

Third, get the average age for the first group (the aa sequence)  and for the second group (the bb sequence). Lots of ways to do this, I made a two subsets from the combined age variable; could have just as easily taken the mean of aa and the mean of bb (same thing!).

Fourth, start building a data frame, then sort it by age. Will be adding additional variables to this data frame

Fifth, divide the variable again into two subsets of 30 and get the averages

Sixth, create an index variable, random order without replacement

Add the new variable to our existing data frame, then print it to check that all is well

Seventh, select for our first treatment group the first 30 subjects from the randomized index. There are again other ways to do this, but sorting on the index variable means that the subject order will be change too.

Print the new data frame to confirm that the sorting worked. It did. we can see that the rows have been sorted by ascending order based on the index variable.

Eighth, create our new treatment groups, again of n = 30 each, then get the means ages for each group.

Get the minimum and maximum values for the groups

Ninth, create a BMI variable drawn from a normal distribution with coefficient of variation equal to 20%. The first group with we will call cc

The second group called dd

Create a new variable called BMI by joining cc and dd

Add the BMI variable to our data frame.

Tenth, repeat our protocol from before: Set up two groups each with 30 subjects, calculate the means for the variables and then sort by the random index and get the new group means.

All we did was confirm that the unsorted groups had mean BMI of around 27.5 and 37.5 respectively. Now, proceed to sort by the random index variable. Go ahead and create a new data frame

Get the means of the new groups

That’s all of the work!

  • The basics explained
  • Experiments
  • Experimental and Sampling units
  • Replication, Bias, and Nuisance Variables
  • Clinical trials
  • Importance of randomization in experimental design
  • Sampling from Populations
  • References and suggested readings

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Random Assignment in Experiments | Introduction & Examples

Random Assignment in Experiments | Introduction & Examples

Published on 6 May 2022 by Pritha Bhandari . Revised on 13 February 2023.

In experimental research, random assignment is a way of placing participants from your sample into different treatment groups using randomisation.

With simple random assignment, every member of the sample has a known or equal chance of being placed in a control group or an experimental group. Studies that use simple random assignment are also called completely randomised designs .

Random assignment is a key part of experimental design . It helps you ensure that all groups are comparable at the start of a study: any differences between them are due to random factors.

Table of contents

Why does random assignment matter, random sampling vs random assignment, how do you use random assignment, when is random assignment not used, frequently asked questions about random assignment.

Random assignment is an important part of control in experimental research, because it helps strengthen the internal validity of an experiment.

In experiments, researchers manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. To do so, they often use different levels of an independent variable for different groups of participants.

This is called a between-groups or independent measures design.

You use three groups of participants that are each given a different level of the independent variable:

  • A control group that’s given a placebo (no dosage)
  • An experimental group that’s given a low dosage
  • A second experimental group that’s given a high dosage

Random assignment to helps you make sure that the treatment groups don’t differ in systematic or biased ways at the start of the experiment.

If you don’t use random assignment, you may not be able to rule out alternative explanations for your results.

  • Participants recruited from pubs are placed in the control group
  • Participants recruited from local community centres are placed in the low-dosage experimental group
  • Participants recruited from gyms are placed in the high-dosage group

With this type of assignment, it’s hard to tell whether the participant characteristics are the same across all groups at the start of the study. Gym users may tend to engage in more healthy behaviours than people who frequent pubs or community centres, and this would introduce a healthy user bias in your study.

Although random assignment helps even out baseline differences between groups, it doesn’t always make them completely equivalent. There may still be extraneous variables that differ between groups, and there will always be some group differences that arise from chance.

Most of the time, the random variation between groups is low, and, therefore, it’s acceptable for further analysis. This is especially true when you have a large sample. In general, you should always use random assignment in experiments when it is ethically possible and makes sense for your study topic.

Prevent plagiarism, run a free check.

Random sampling and random assignment are both important concepts in research, but it’s important to understand the difference between them.

Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups.

While random sampling is used in many types of studies, random assignment is only used in between-subjects experimental designs.

Some studies use both random sampling and random assignment, while others use only one or the other.

Random sample vs random assignment

Random sampling enhances the external validity or generalisability of your results, because it helps to ensure that your sample is unbiased and representative of the whole population. This allows you to make stronger statistical inferences .

You use a simple random sample to collect data. Because you have access to the whole population (all employees), you can assign all 8,000 employees a number and use a random number generator to select 300 employees. These 300 employees are your full sample.

Random assignment enhances the internal validity of the study, because it ensures that there are no systematic differences between the participants in each group. This helps you conclude that the outcomes can be attributed to the independent variable .

  • A control group that receives no intervention
  • An experimental group that has a remote team-building intervention every week for a month

You use random assignment to place participants into the control or experimental group. To do so, you take your list of participants and assign each participant a number. Again, you use a random number generator to place each participant in one of the two groups.

To use simple random assignment, you start by giving every member of the sample a unique number. Then, you can use computer programs or manual methods to randomly assign each participant to a group.

  • Random number generator: Use a computer program to generate random numbers from the list for each group.
  • Lottery method: Place all numbers individually into a hat or a bucket, and draw numbers at random for each group.
  • Flip a coin: When you only have two groups, for each number on the list, flip a coin to decide if they’ll be in the control or the experimental group.
  • Use a dice: When you have three groups, for each number on the list, roll a die to decide which of the groups they will be in. For example, assume that rolling 1 or 2 lands them in a control group; 3 or 4 in an experimental group; and 5 or 6 in a second control or experimental group.

This type of random assignment is the most powerful method of placing participants in conditions, because each individual has an equal chance of being placed in any one of your treatment groups.

Random assignment in block designs

In more complicated experimental designs, random assignment is only used after participants are grouped into blocks based on some characteristic (e.g., test score or demographic variable). These groupings mean that you need a larger sample to achieve high statistical power .

For example, a randomised block design involves placing participants into blocks based on a shared characteristic (e.g., college students vs graduates), and then using random assignment within each block to assign participants to every treatment condition. This helps you assess whether the characteristic affects the outcomes of your treatment.

In an experimental matched design , you use blocking and then match up individual participants from each block based on specific characteristics. Within each matched pair or group, you randomly assign each participant to one of the conditions in the experiment and compare their outcomes.

Sometimes, it’s not relevant or ethical to use simple random assignment, so groups are assigned in a different way.

When comparing different groups

Sometimes, differences between participants are the main focus of a study, for example, when comparing children and adults or people with and without health conditions. Participants are not randomly assigned to different groups, but instead assigned based on their characteristics.

In this type of study, the characteristic of interest (e.g., gender) is an independent variable, and the groups differ based on the different levels (e.g., men, women). All participants are tested the same way, and then their group-level outcomes are compared.

When it’s not ethically permissible

When studying unhealthy or dangerous behaviours, it’s not possible to use random assignment. For example, if you’re studying heavy drinkers and social drinkers, it’s unethical to randomly assign participants to one of the two groups and ask them to drink large amounts of alcohol for your experiment.

When you can’t assign participants to groups, you can also conduct a quasi-experimental study . In a quasi-experiment, you study the outcomes of pre-existing groups who receive treatments that you may not have any control over (e.g., heavy drinkers and social drinkers).

These groups aren’t randomly assigned, but may be considered comparable when some other variables (e.g., age or socioeconomic status) are controlled for.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, February 13). Random Assignment in Experiments | Introduction & Examples. Scribbr. Retrieved 29 April 2024, from https://www.scribbr.co.uk/research-methods/random-assignment-experiments/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, control groups and treatment groups | uses & examples.

Vittana.org

17 Advantages and Disadvantages of Random Sampling

The goal of random sampling is simple. It helps researchers avoid an unconscious bias they may have that would be reflected in the data they are collecting. This advantage, however, is offset by the fact that random sampling prevents researchers from being able to use any prior information they may have collected.

This means random sampling allows for unbiased estimates to be created, but at the cost of efficiency within the research process.

Here are some of the additional advantages and disadvantages of random sampling that worth considering.

What Are the Advantages of Random Sampling?

1. It offers a chance to perform data analysis that has less risk of carrying an error. Random sampling allows researchers to perform an analysis of the data that is collected with a lower margin of error. This is allowed because the sampling occurs within specific boundaries that dictate the sampling process. Because the whole process is randomized, the random sample reflects the entire population and this allows the data to provide accurate insights into specific subject matters.

2. There is an equal chance of selection. Random sampling allows everyone or everything within a defined region to have an equal chance of being selected. This helps to create more accuracy within the data collected because everyone and everything has a 50/50 opportunity. It is a process that builds an inherent “fairness” into the research being conducted because no previous information about the individuals or items involved are included in the data collection process.

3. It requires less knowledge to complete the research. A researcher does not need to have specific knowledge about the data being collected to be effective at their job. Researchers could ask someone who they prefer to be the next President of the United States without knowing anything about US political structures. In random sampling, a question is asked and then answered. An item is reviewed for a specific feature. If the researcher can perform that task and collect the data, then they’ve done their job.

4. It is the simplest form of data collection. This type of research involves basic observation and recording skills. It requires no basic skills out of the population base or the items being researched. It also removes any classification errors that may be involved if other forms of data collection were being used. Although the simplicity can cause some unintended problems when a sample is not a genuine reflection of the average population being reviewed, the data collected is generally reliable and accurate.

5. Multiple types of randomness can be included to reduce researcher bias. There are two common approaches that are used for random sampling to limit any potential bias in the data. The first is a lottery method, which involves having a population group drawing to see who will be included and who will not. Researchers can also use random numbers that are assigned to specific individuals and then have a random collection of those number selected to be part of the project.

6. It is easier to form sample groups. Because random sampling takes a few from a large population, the ease of forming a sample group out of the larger frame is incredibly easy. This makes it possible to begin the process of data collection faster than other forms of data collection may allow.

7. Findings can be applied to the entire population base. Because of the processes that allow for random sampling, the data collected can produce results for the larger frame because there is such little relevance of bias within the findings. The generalized representation that is present allows for research findings to be equally generalized.

What Are the Disadvantages of Random Sampling?

1. No additional knowledge is taken into consideration. Although random sampling removes an unconscious bias that exists, it does not remove an intentional bias from the process. Researchers can choose regions for random sampling where they believe specific results can be obtained to support their own personal bias. No additional knowledge is given consideration from the random sampling, but the additional knowledge offered by the researcher gathering the data is not always removed.

2. It is a complex and time-consuming method of research. With random sampling, every person or thing must be individually interviewed or reviewed so that the data can be properly collected. When individuals are in groups, their answers tend to be influenced by the answers of others. This means a researcher must work with every individual on a 1-on-1 basis. This requires more resources, reduces efficiencies, and takes more time than other research methods when it is done correctly.

3. Researchers are required to have experience and a high skill level. A researcher may not be required to have specific knowledge to conduct random sampling successfully, but they do need to be experienced in the process of data collection. There must be an awareness by the researcher when conducting 1-on-1 interviews that the data being offered is accurate or not. A high skill level is required of the researcher so they can separate accurate data that has been collected from inaccurate data. If that skill is not present, the accuracy of the conclusions produced by the offered data may be brought into question.

4. There is an added monetary cost to the process. Because the research must happen at the individual level, there is an added monetary cost to random sampling when compared to other data collection methods. There is an added time cost that must be included with the research process as well. The results, when collected accurately, can be highly beneficial to those who are going to use the data, but the monetary cost of the research may outweigh the actual gains that can be obtained from solutions created from the data.

5. No guarantee that the results will be universal is offered. Random sampling is designed to be a representation of a community or demographic, but there is no guarantee that the data collected is reflective of the community on average. In US politics, a random sample might collect 6 Democrats, 3 Republicans, and 1 Independents, though the actual population base might be 6 Republicans, 3 Democrats, and 1 Independent for every 10 people in the community. Asking who they want to be their President would likely have a Democratic candidate in the lead when the whole community would likely prefer the Republican.

6. It requires population grouping to be effective. If the population being surveyed is diverse in its character and content, or it is widely dispersed, then the information collected may not serve as an accurate representation of the entire population. These issues also make it difficult to contact specific groups or people to have them included in the research or to properly catalog the data so that it can serve its purpose.

7. It is easy to get the data wrong just as it is easy to get right. The application of random sampling is only effective when all potential respondents are included within the large sampling frame. Everyone or everything that is within the demographic or group being analyzed must be included for the random sampling to be accurate. If the sampling frame is exclusionary, even in a way that is unintended, then the effectiveness of the data can be called into question and the results can no longer be generalized to the larger group.

8. A large sample size is mandatory. For random sampling to work, there must be a large population group from which sampling can take place. It would be possible to draw conclusions for 1,000 people by including a random sample of 50. It would not be possible to draw conclusions for 10 people by randomly selecting two people. A large sample size is always necessary, but some demographics or groups may not have a large enough frame to support the methodology offered by random sampling.

9. A sample size that is too large is also problematic. Since every member is given an equal chance at participation through random sampling, a population size that is too large can be just as problematic as a population size that is too small. Larger populations require larger frames that still demand accuracy, which means errors can creep into the data as the size of the frame increases.

10. The quality of the data is reliant on the quality of the researcher. This potential negative is especially true when the data being collected comes through face-to-face interviews. A poor interviewer would collect less data than an experienced interviewer. An interviewer who refuses to stick to a script of questions and decides to freelance on follow-ups may create biased data through their efforts. Poor research methods will always result in poor data.

The advantages and disadvantages of random sampling show that it can be quite effective when it is performed correctly. Random sampling removes an unconscious bias while creating data that can be analyzed to benefit the general demographic or population group being studied. If controls can be in place to remove purposeful manipulation of the data and compensate for the other potential negatives present, then random sampling is an effective form of research.

IMAGES

  1. Introduction to Random Assignment -Voxco

    what are the benefits of random assignment

  2. The Definition of Random Assignment In Psychology

    what are the benefits of random assignment

  3. Random Assignment in Experiments

    what are the benefits of random assignment

  4. What is random assignment? (6 of 11)

    what are the benefits of random assignment

  5. Random Assignment ~ A Simple Introduction with Examples

    what are the benefits of random assignment

  6. Simple Random Sample

    what are the benefits of random assignment

VIDEO

  1. Momentus: A Conversation with Ruth Connell!

  2. random sampling & assignment

  3. RANDOM ASSIGNMENT

  4. Random Assignment

  5. Random Processes 1: General Introduction to Random Process, Ensemble, Sample Function

  6. Empowering FEGLI Participants Unlocking the Ability to Assign Your Life Insurance

COMMENTS

  1. The Definition of Random Assignment In Psychology

    Random assignment refers to the use of chance procedures in psychology experiments to ensure that each participant has the same opportunity to be assigned to any given group in a study to eliminate any potential bias in the experiment at the outset. Participants are randomly assigned to different groups, such as the treatment group versus the control group.

  2. Random Assignment in Psychology: Definition & Examples

    Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study. On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. Random selection ensures that everyone in the population has an equal ...

  3. Random Assignment in Experiments

    Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups. While random sampling is used in many types of studies, random assignment is only used ...

  4. Elements of Research : Random Assignment

    The benefit of using random assignment is that it "evens the playing field." This means that the groups will differ only in the program or treatment to which they are assigned. If both groups are equivalent except for the program or treatment that they receive, then any change that is observed after comparing information collected about ...

  5. Random Assignment in Psychology (Definition + 40 Examples)

    Benefits of Random Assignment in Psychological Research. The impact and importance of random assignment in psychological research cannot be overstated. It is fundamental for ensuring the study is accurate, allowing the researchers to determine if their study actually caused the results they saw, and making sure the findings can be applied to ...

  6. Purpose and Limitations of Random Assignment

    1. Random assignment prevents selection bias. Randomization works by removing the researcher's and the participant's influence on the treatment allocation. So the allocation can no longer be biased since it is done at random, i.e. in a non-predictable way. This is in contrast with the real world, where for example, the sickest people are ...

  7. Random assignment

    Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., ... Benefits of random assignment. Imagine an experiment in which the participants are not randomly assigned; perhaps the first 10 people to arrive are assigned to the Experimental ...

  8. Random Assignment in Experiments

    Random assignment helps you separation causation from correlation and rule out confounding variables. As a critical component of the scientific method, experiments typically set up contrasts between a control group and one or more treatment groups. The idea is to determine whether the effect, which is the difference between a treatment group ...

  9. Random sampling vs. random assignment (scope of inference)

    Random sampling vs. random assignment (scope of inference) Google Classroom. Hilary wants to determine if any relationship exists between Vitamin D and blood pressure. She is considering using one of a few different designs for her study. Determine what type of conclusions can be drawn from each study design.

  10. Why randomize?

    Random assignment controls for both known and unknown variables that can creep in with other selection processes to confound analyses. Randomized experimental design is a powerful tool for drawing valid inferences about cause and effect. The use of randomized experimental design should allow a degree of certainty that the research findings ...

  11. Random Assignment in Psychology

    Random assignment is defined as every participant having an equal chance of being in either the experimental group or the control group. Each group is presented with the independent variable , or ...

  12. Protection of Random Assignment

    The essential rationale for protecting random assignment is to obtain a conclusive result. An inconclusive result occurs when there is an alternative explanation for the outcome of a trial [ 95 ]. The risk of confounding is great in the presence of the background noise that surrounds most trials in humans.

  13. Module 3: Elements of Research

    The benefit of using random assignment is that it "evens the playing field." This means that the groups will differ only in the program or treatment to which they are assigned. If both groups are equivalent except for the program or treatment that they receive, then any change that is observed after comparing information collected about ...

  14. Random Assignment in Research: Definition and Importance

    Cite this lesson. Researchers rely on random assignment--a type of randomization--to get the most accurate results. Learn the definition of random assignment in research, and explore the process ...

  15. An overview of randomization techniques: An unbiased assessment of

    TYPES OF RANDOMIZATION. Many procedures have been proposed for the random assignment of participants to treatment groups in clinical trials. In this article, common randomization techniques, including simple randomization, block randomization, stratified randomization, and covariate adaptive randomization, are reviewed.

  16. How to Do Random Allocation (Randomization)

    Due to the nature of Excel, if there is a change, it creates a new random number accordingly. If we input any number instead of '2' in the orange-colored cell and click the 'enter key,' it creates new random sequences (Fig. 1). The sequences are the result of simple randomization.

  17. Random Selection vs. Random Assignment

    Random selection and random assignment are two techniques in statistics that are commonly used, but are commonly confused.. Random selection refers to the process of randomly selecting individuals from a population to be involved in a study.. Random assignment refers to the process of randomly assigning the individuals in a study to either a treatment group or a control group.

  18. 5.5

    The primary benefit of random sampling is that it strengthens our confidence in the links between cause and effect. ... This discussion was illustrated by random assignment of subjects to treatment groups. The same logic applies to how to select subjects from a population. If the sampling is large enough, then a random sample of subjects will ...

  19. Random Assignment in Experiments

    Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups. While random sampling is used in many types of studies, random assignment is only used ...

  20. 17 Advantages and Disadvantages of Random Sampling

    2. There is an equal chance of selection. Random sampling allows everyone or everything within a defined region to have an equal chance of being selected. This helps to create more accuracy within the data collected because everyone and everything has a 50/50 opportunity. It is a process that builds an inherent "fairness" into the research ...

  21. PDF The Politics of Random Assignment: Implementing Studies and ...

    Random assignment, because of its unique methodological strengths, can help avoid this kind of conflict — what Aaron called "self-canceling research." But random ... and involved denying people access to services viewed as benefits (for example, job training to volunteers) or excluding them from conditions seen as onerous (such as time

  22. Random Sampling vs. Random Assignment

    Random assignment is a fundamental part of a "true" experiment because it helps ensure that any differences found between the groups are attributable to the treatment, rather than a confounding variable. So, to summarize, random sampling refers to how you select individuals from the population to participate in your study. Random assignment ...

  23. Challenges and Dilemmas in Implementing Random Assignment in

    Consideration of challenges encountered in implementing random assignment suggests that 1) researcher communication with program staff improves compliance, but may not overcome the need for learning through experience; 2) in keeping with arguments in favor of random assignment-based research, random assignment may control for diverse selection ...